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DUBINS� PROBLEM IS INTRINSICALLY

THREE�DIMENSIONAL

DIRK MITTENHUBER

Abstract� In his ���� paper ��� L� Dubins considered the problem of
	nding shortest di
erentiable arcs in the plane with curvature bounded
by a constant � � � and prescribed initial and terminal positions and
tangents� One can generalize this problem to non�euclidian manifolds
as well as to higher dimensions 
cf� ������

Considering that the boundary data � initial and terminal position
x�� x� and tangents v�� v� � are genuinely three�dimensional� it seems
natural to ask if the n�dimensional problem always reduces to the three�
dimensional case� In this paper we will prove that this is true in the
euclidian as well as in the noneuclidian case� At 	rst glance one might
consider this a trivial problem� but we will also give an example showing
that this is not the case�

�� Introduction

Dubins� problem inRn can be formulated as follows� Given points x�� x� �
R
n and two vectors v�� v� of unit length� �nd a curve � � ��� L� � R

n such
that

	i
 �	s
 is a di�erentiable curve� parameterized by arclength�
	ii
 � has curvature �	s
 almost everywhere� and the curvature is essentially

bounded by some positive constant ��� j�	s
j � �� a�e��
	iii
 � satis�es the boundary conditions�

�	�
 
 x�� ��	�
 
 v�� �	L
 
 x�� ��	L
 
 v��

	iv
 Among all possible arcs satisfying 	i
�	iii
� � has shortest length� i�e�
L is minimal�

One of the well�known interpretations of this problem is to think of a car
moving with constant speed in the plane 	or n�space
 subject to the con�
straint that it cannot make arbitrarily sharp turns� see ����� for example� In
three�space it is better to think of a plumber laying pipes� for driving along
an optimal arc might be a roller coaster ride� cf� Figure �� In that case
one would want to control not only the terminal tangent but the terminal
orientation�

Dubins proved that optimal arcs in R� are concatenations of circular arcs
	with constant curvature ��
 and straight line segments� Moreover he proves
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Figure �� The optimal r�shift in R�� r 
 � cos��

that optimal arcs consist of at most three pieces and that the line segment
� if there is any � has to be in the middle� i�e� the optimal arcs follow
what we now call Dubins� pattern� either CCC or CLC� This reduces �nding
the optimal arcs to a �nite problem� There are at most six candidates for
optimal arcs� So all one has to do is determine these arcs and compare their
lengths�

It was an open conjecture whether optimal arcs in R� are again concate�
nations of circles and straight lines 	cf� ����
 until this was disproved by
Sussmann in �����

In this paper Sussmann gave an example of a particular set of boundary
conditions 	or Dubins� data
 x�� v�� x�� v� and an arc � matching these data�
such that any concatenation of circles and lines satisfying these boundary
conditions must be strictly longer than �� The arc � is a helicoidal arc� so it
has constant curvature � but also constant torsion � �
 �� And this example
sheds a new light on the problem� The result is no longer surprising because
thinking of the curvature as a cost functional in the variational problem� we
are free to add torsion at no cost at all�

Considering Dubins� problem as an optimal control problem on the man�
ifold R�� S� 	position and unit tangent vector
 Sussmann gives a detailed
analysis of the structure of the extremals� i�e� curves satisfying the neces�
sary conditions furnished by the Pontrjagin Maximum Principle 	PMP
� Of
course Dubins� optimal arcs � concatenations of circles and lines � appear
simply because the two�dimensional case is a subcase� but there is another
type of extremals characterized by having constant curvature �� and their
torsion � satisfying a certain ODE� see ���� p� ������

Passing to higher dimensions we observe that the boundary data x�� x��
v�� v� are intrinsically three�dimensional because the vector space V �

spanfx� � x�� v�� v�g has dimension dim	V 
 � �� so the Dubins� data lie in
the a�ne subspace x��V � And since the group SE	n
 of euclidian motions
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of Rn obviously leaves the problem invariant � carrying optimal arcs into
optimal arcs � it seems as if one could immediately reduce the problem to
the subspace V � How could an arc leave this subspace and be shorter than
an arc staying inside of V � But the attempts to prove this directly do not
succeed�

So we look at the step from dimension � to � �rst� and suddenly we realize
that this is a nontrivial question� We consider the following Dubins� data�

x� 
 �� x� 
 re�� with � � r � �� and v� 
 v� 
 e��

Since we know the structure of optimal arcs in R�� it is not hard to verify
that for small r 	 � the optimal arc in R� is of type CLC and has length
L	r
 
 �
 � r� This is in fact true for r � 	�� r�� where �� is the unique
solution of the equation cos� 
 �� and r� 
 � cos	��
 � �������� Just
for sake of completeness we mention that for r � �r�� �� the optimal arc
has length L	r
 
 �
 � � arccos	r��
� Figure � shows the competing CLC
and CCC�arcs� But in R� for any r � 	�� �� we �nd an admissible curve
of length �
� cf� Figure �� Looking at the picture one can think of two

r 
 � r � �

Figure �� r�shifts in R� of length �
�

semicircles tied together but free to rotate around the common axis at the
joint� We pick up the joint lifting it into the vertical z�direction while the
endpoints remain in the xy�plane� The height of the dashed triangles is
h 
 �

�

p
��� r�� One can actually prove that these arcs are optimal� but we

omit the details� At the present all we need is that the three�dimensional
arcs are shorter than the best possible planar arcs�

With this example in mind it is clear that it is not trivial to prove
that shortest arcs are three�dimensional� i�e� stay in a three�dimensional
a�ne subspace compatible with the Dubins� data� Leaving the subspace
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V 	x�� x�� v�� v�
 may decrease the length of the arc� If we think of deform�
ing an elastic rod in the shape of a circular arc� this will add 	perhaps
higher�dimensional
 torsion but it can reduce the curvature or� if we leave
the curvature unchanged� decrease the arclength�

Nevertheless we will prove that one need not go beyond dimension � in
the euclidian as well as the noneuclidian case�

Theorem ���� In order to solve Dubins� problem in Rn� Sn or Hn � it is

su�cient to solve it in R�� S�� resp� H��

Remark ���� In the euclidian case the previous statement may be reformu�
lated as� every optimal arc in Rn is contained in a three�dimensional a�ne
subspace� And if the Dubins� data x�� x�� v�� v� are truly three�dimensional�
i�e� if det	x� � x�� v�� v�
 �
 �� then this subspace is unique�
In the noneuclidian case this reformulation is a little bit more sophisticated�
The abstract generalization of an a�ne subspace would be a totally geo�

desic submanifold� But we rather give a concrete description� If we consider
Sn�Hn appropriately embedded into Rn��� this totally geodesic submanifold
is simply the intersection of Sn� resp� Hn with a subspace R� � Rn��� If we
use the embeddings

S
n 


�
y � Rn�� j kyk 
 �

�
� Hn 


�
y j y�� � y�� � 	 	 	 � y�n�� 
 �� y� 	 �

�
�

and the Dubins� data are x�� x�� v�� v� � Rn��� then the corresponding sub�
sphere� resp� hyperbolic subspace are given as

S
n
 spanfx�� x�� v�� v�g� H

n 
 spanfx�� x�� v�� v�g�
The reason for this simple description is that for x�� x� in S

n� x� �
 �x� 	not
antipodal points
� the geodesic through x�� x� is actually Sn
 spanfx�� x�g�
And a similar statement is true for Hn 	cf� ���� p� ���
�

The proof of Theorem ��� is based on a detailed analysis of the structure
of the extremals� i�e� arcs satisfying the necessary conditions provided by
the 	PMP
� Since the local structure of extremals in dimension three has
already been well analyzed� this paper has considerable overlap with the
work of Monroy and Sussmann� Roughly speaking there are three types of
extremals�

	�
 smooth extremals with nonzero torsion�
	�a
 concatenations of �circular arcs�
	�b
 concatenations of �circular arcs and geodesic segments�

The proof of Theorem ��� is broken into two major steps� In Section �
we will prove that extremals of type 	�
 are three�dimensional� an aspect
considered neither in ���� nor in �����

Extremals of type 	�
 are locally planar� they are generated by piecewise
constant controls� But arbitrary concatenations of circular arcs and geodesic
segments will not be three�dimensional� Therefore a detailed global analysis
of the switching behavior is necessary which is carried out in sections � and ��
The key result is Theorem ���� This is not contained in ����� Moreover
Monroy considers only �� 
 � which is not important in the euclidian and
spherical case� but it makes a great di�erence in the hyperbolic case� we
will prove that the hyperbolic problem with �� 	 � is in full analogy with
the euclidian and spherical problem� Sussmann� on the other hand� obtains
ESAIM� Cocv� February ����� Vol� 	� �
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this theorem in ����� but only for R�� In particular the question whether
an optimal arc is at most three�dimensional does not occur in that case
because it is answered trivially� Since extremals of type 	�b
 need not be
three�dimensional� our observation that an optimal arc of this type has at
most three pieces and is therefore three�dimensional� is� though straight�
forward� crucial�

�� Dubins� problem as an optimal control problem

Sussmann considers Dubins� problem as a control problem with state
space the manifold Rn � Sn�� 	position and unit tangent vector
� We use
the slightly di�erent approach of Monroy in ���� and consider it as a control
problem on the Lie group SE	n
 of euclidian motions of Rn� This approach
has its origin in Jurdjevic�s treatment of Euler�s elastica problem 	cf� ���
�
The Serret�Frenet equations for a curve in R� parameterized by arclength�

�x�	s
 
 cos�	s
�
�x�	s
 
 sin�	s
�
��	s
 
 �	s
�

can be considered as a left�invariant control problem on the motion group
SE	�
�
�g	s
 
 g	s
 	X�� �	s
X�
 with

g	s
 


�
� � � �

x� cos� � sin�
x� sin � cos�

�
A� X� 


�
� � � �

� � �
� � �

�
A� X� 


�
� � � �

� � ��
� � �

�
A�

This approach has two main advantages� First it easily generalizes to the
noneuclidian case and allows a simultaneous treatment of the euclidian� the
spherical and the hyperbolic case� Second� for invariant systems on Lie
groups the 	PMP
 takes a very special form� so one obtains much more
detailed information than for general systems� all this can be found in ����

For dimension n � �� we consider the group

SE	n
 


��
� �
x Q

�
j x � Rn� Q � SO	n


	

and the optimal control problem�

�g 
 g 	
�
� � � �

� � uT

� �u X

�
A � X � so	n� �
� u � Rn��� kuk � ��� 	�


where the cost functional is time� i�e� we are looking for time�optimal paths
steering from a given point g� to another point g��

This setting contains redundancy� One can identify a group element g 

	x�Q
 � SE	n
 with a point in Rn and a positively oriented orthonormal
frame attached to it� If g	t
 is a solution of the above ODE� then its �rst
and second column are

g	t
e� 


�
�

x	t


�
�
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and �
�
�x	t


�

 �g	t
e� 
 g	t


�
� � � �

� � uT

� �u X

�
A e� 
 g	t
e��

So the �rst two columns of g	t
 are in one�to�one correspondence with the
arc x	t
 and its tangent vector v	t
 
 �x	t
� The arc x	t
 has curvature
j�	t
j 
 ku	t
k� Monroy proves that the problems on SE	n
 and Rn�Sn��
are equivalent in the sense that an optimal g	t
 � G projects onto an optimal
arc x	t
 � Rn and conversely every optimal x	t
 may be obtained this way�
i�e� lifts to an optimal g	t
 � SE	n
 	cf� ���� Theorems ����� and ������
�

This lifting is not unique for n 	 �� If n 
 � and v� is a unit vector� then
there is only one possible choice of another unit vector w� such that 	v�� w�

is a positively oriented orthonormal frame in R�� But for n 	 � there are
in�nitely many possibilities�

The manifold Rn�Sn�� is a homogeneous space of the group SE	n
� Let
K � SE	n
 denote the subgroup

K 



�
�
�
� � � �

� � �
� � Q

�
A j Q � SO	n� �



�
� �

then Rn�Sn�� 

 SE	n
�K� the canonical projection 
 � SE	n
� SE	n
�K

is 
	g
 
 	g�e�� g�e�
 


�
� �
x Qe�

�
sending a matrix to its �rst two column

vectors� Let g�� g� � SE	n
 be elements projecting onto a given set of Dubins�
data� i�e� 
	gi
 
 	xi� vi
� Then Dubins� problem is equivalent to �nding
a time�optimal control steering from the initial manifold g�K to the target
manifold g�K�

The generalization to the non�euclidian case looks similar� Let � � f��� ��
�g� Then the group G one has to consider is either SO	�� n
 or SE	n
 or
SO	n� �
� and the ODE of the problem is

�g 
 g 	
�
� � �� �

� � uT

� �u X

�
A � X � so	n� �
� u � Rn��� kuk � ��� 	���


With the same group K 

 SO	n � �
 as above the objective is to �nd for
given g�� g� � G a time�optimal arc from g�K to g�K�

Lifting the problem to the group introduced redundancy which is re!ected
in the fact that the two�point boundary value problem is transformed into a
problem with movable endpoints� As a consequence certain controls will be
left completely undetermined by the 	PMP
� The transversality conditions
will not provide any additional information� either�

Nevertheless we will eliminate these undetermined controls� i�e� we will
show that one may assume that these undetermined controls vanish iden�
tically� The argument is based on symmetry considerations because the
system 	���
 is not only left�invariant with respect to G� it is also right�
invariant with respect to K� This allows us to show that the optimal time
to steer from h� to h� is the same for any choice of h� � g�K and h� � g�K�
Let g 
 L	G
 denote the Lie algebra of G and U � g the set of admissible
ESAIM� Cocv� February ����� Vol� 	� �
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control values� i�e�

U 



�
�
�
� � �� �

� � uT

� �u X

�
A j X � so	n� �
� u � Rn��� kuk � ��


�
� �

Then U has the form B � k where k 
 L	K
 

 so	n� �
 is the Lie algebra
of K and the set

B 



�
�
�
� � �� �

� � uT

� �u �

�
A j u � Rn��� kuk � ��


�
�

is compact and Ad	K
�invariant because for Q � SO	n� �
�

Y 


�
� � �� �

� � uT

� �u �

�
A

and k 
 diag	�� �� Q
 we have

Ad	k
Y 
 kY k�� 


�
� � �� �

� � 	Qu
T

� �Qu �

�
A �

Lemma ���� Let u	t
 � ��� T �� U be an admissible control and g	t
 the cor�

responding trajectory� Let k	t
 � K be absolutely continuous and v	t
 


�k�� �k� Then "g	t
 �
 g	t
k	t
 is a trajectory of the control system 	���
�
generated by the control "u	t
 
 Ad	k��
u	t
� v	t
�

Proof� We di�erentiate "g	t
� Since �g	t
 
 g	t
 u	t
 and �k	t
 
 �k	t
 v	t
�
we obtain

�"g	t
 
 �g	t
 k	t
 � g	t
 �k	t
 
 g	t
 u	t
 k	t
� g	t
 k	t
 v	t



 g	t
k	t

�
k��u	t
k � v	t


�

 "g	t


�
Ad	k��
u	t
� v	t


�

 "g	t
 "u	t
�

Since Ad	K
U 
 U and U � k 
 U � "u	t
 � U follows�

This allows to prove immediately that the minimal time is independent
of a particular choice of points in g�K� g�K�

Corollary ���� For g�� g� � G� let T 	g�� g�
 denote the minimal time to

steer from g� to g�� Then� for all k�� k� � K� we have T 	g�k�� g�k�
 

T 	g�� g�
�

Proof� Let g	t
 � ��� T �� G denote a time�optimal path from g� to g�� Since
K 

 SO	n � �
 is connected� we can �nd an absolutely continuous path
k	t
 � ��� T �� K from k� to k�� Thus "g	t
 �
 g	t
k	t
 is an admissible path
steering from g�k� to g�k� in time T 
 T 	g�� g�
� hence T 	g�k�� g�k�
 �
T 	g�� g�
 follows�

Applying this result to the case g�i �
 giki and k�i 
 k��i yields the reverse
inequality� Thus equality holds�

Remark ���� The same argument works� of course� with in�mum instead of
minimum time� Since time�optimal arcs always exist 	cf� ���� Theorem �������
for example� we need not make this distinction�
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The symmetry considerations of the previous corollary and Lemma ���
allow to completely eliminate the redundancy introduced by lifting the sys�
tem to the group G� This step is new and crucial� It allows us to eliminate
those controls Monroy had to cope with because they are completely unde�
termined by the 	PMP
� Corollary ��� shows that the two�point boundary
value problem and the problem with movable endpoints have the same ex�
tremals� This also explains why the transversality conditions of the 	PMP

will not provide any additional information� roughly speaking the transver�
sality conditions� if satis�ed� imply that the restriction of the optimal time
function T � G�G� R

� to the submanifold g�K�g�K has a critical point�
But this restriction is constant� so we cannot expect to obtain additional
information�

�� Application of the Maximum Principle

As we already mentioned� for invariant control systems on Lie groups the
	PMP
 takes a special form providing much more detailed information than
for arbitrary control systems� For a detailed discussion we refer to ��� �� ����
Before we apply the 	PMP
 we need to introduce some notation� in particular
we �x a basis of g� Let e�� � � � � en denote the standard basis of Rn and let

�i 


�
� ��eTi
ei �

�
� and Lij 


�
� �
� eie

T
j � eje

T
i

�
�

With the bracket being �X� Y � 
 XY � Y X we obtain

��i� �j� 
 ��Lij �

��i� Ljk 
 �ij�k � �ik�j �

�Lij � Lkl� 
 �jkLil � �ikLjl � �jlLik � �ilLjk �

	We note that Monroy uses the opposite sign� cf� ���� p� ���
� We rewrite
the ODE 	���
 as

�g 
 g

�
��� �X

i�j

uijLij

�
A �

nX
j
�

u��j � ���� 	���


In order to apply the 	PMP
 we must lift this control problem to the cotan�
gent bundle T �G� If we let g� denote the vector space dual of g� then one
can identify T �G with G � g�� The set of smooth functions on T �G with
the Poisson bracket f 	 � 	 g is a Lie algebra� Every X � g induces a smooth
function on T �G� namely HX	g� p
 
 hp�Xi� If signs for the Lie bracket
� 	 � 	 � in g and the Poisson bracket f 	 � 	 g are chosen properly� then the map
	X �� HX
 � g� C�	T �G
 is a Lie algebra homomorphism� i�e�

fHX � HY g 
 H�X�Y � for all X� Y � g�

Now let hi� Hij � G � g� � R denote the following functions corresponding
to �i� Lij � g�

hi	g� p
 
 hp� �ii� Hij	g� p
 
 hp� Liji�
Then the system Hamiltonian of the control problem 	���
 is

Hu	g� p
 
 hp� ui 
 h� � u��H�� � 	 	 	� u�nH�n �
nX

��i�j

uijHij �
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Now suppose that g	t
 is an optimal arc generated by the control u	t
� Then
the special formulation of the 	PMP
 for invariant problems on Lie groups
	��� �� ��� ���
 yields the existence of a covector p	t
 � g� with the following
properties�

	i
 p	t
 is not identically � and therefore p	t
 �
 � for all t�
	ii
 p	t
 satis�es a certain ODE� In implicit form� this ODE is

d

dt
Ad
�
g	t
��

��
p	t
 � ��

so Ad
�
g	t
��

��
p	t
 
� # � g� is constant�

	iii
 The Hamiltonian is pointwise maximized by the control u	t
�

Hu�t�	g	t
� p	t

 
 max
v�U

Hv	g	t
� p	t

�

and its value is constant� either � or ��

Hu�t�	g	t
� p	t

 
 � � f�� �g�
In the sequel we will call a pair 	g	t
� p	t

 an extremal if it satis�es the
necessary conditions of the 	PMP
� We need not specify the control u	t

explicitly because �g 
 g u a�e� implies u 
 g�� �g� Extremals with � 
 � are
called regular or normal while extremals with � 
 � are called exceptional

or abnormal�
Since there is no restriction on uij with � � i � j� an immediate con�

sequence of 	iii
 is Hij	g	t
� p	t

 � �� This is precisely the information
provided by the transversality conditions� The latter imply p	t
 � k at the
interval endpoints� which is equivalent to Hij	p	t

 
 � for all � � i � j�

As a drawback Condition 	iii
 does not provide any information about
the controls uij	t
 with � � i � j� A symmetry argument similar to the one
in Lemma ��� allows us to eliminate these controls�

Lemma ���� Let g	t
 be an arbitrary trajectory of 	���
 generated by the

admissible control u� Then there exists another trajectory "g generated by an

admissible control "u with "uij � � such that g	t
K 
 "g	t
K for all t�

Proof� Since the set U has the form B � k let us write u	t
 
 uB	t
 � uk	t
�
Then uij � � for � � i � j is equivalent to uk	t
 � ��

Let k	t
 � K denote the solution of the ODE �k	t
 
 �uk	t
 k	t
� k	�
 
 �
	identity matrix
� and set "g	t
 �
 g	t
 k	t
� Then we obtain

�"g	t
 
 g	t
 u	t
 k	t
 � g	t
 	�uk	t

 k	t


 g	t
k	t
 k	t
��	u	t
� uk	t

 k	t
 
 "g	t
 Ad

�
k	t
��

�
uB	t
�

Since the set B is Ad	K
�invariant� we deduce that "u	t
 �
 Ad	k	t
��
uB	t

� B for all t� or equivalently "uk � �� Now "g	t
K 
 g	t
 k	t
K 
 g	t
K� so
"g	t
 and g	t
 project onto the same arc x	t
�

In particular we deduce that every optimal arc can be obtained from
an extremal with uk � �� Thus we have fully eliminated the redundancy
introduced by lifting the problem to the group G� Throughout the rest of
the paper we will always assume that 	g� p
 is an extremal generated by a
control u	t
 with uk � ��

Since Hij � � and uij � � for � � i � j many terms in the ODE for
p	t
 simply disappear� Let us write hi	t
� H�j	t
 for hi	p	t

� H�j	p	t

 by a
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slight abuse of notation� Then the derivatives �hi	t
� can be obtained through
Poisson bracketing with the system Hamiltonian Hu� With our choice of sign
for Lie and Poisson brackets�

�hi 
 fHu� hig 
 fh� � u��H�� � 	 	 	� u�nH�n� hig� etc�
In particular for the functions hi� H�j we obtain the following brackets�

���� �j� 
 ��L�j � fh�� hjg 
 ��H�j �
���� L�j� 
 �j � fh�� H�jg 
 hj �
�L�j � �j� 
 ��� fH�j� hjg 
 h��

�L�j� L�k� 
 Ljk � fH�j � H�kg 
 Hjk�

Let us de�ne

h� 


�
B�

h�
���
hn

�
CA � H � 


�
B�

H��
���

H�n

�
CA � �	t
 
 kH �k 


q
H�
�� � 	 	 	�H�

�n�

Since Hij � � for i� j 	 � along an extremal� we obtain

�h� 
 �u��h� � 	 	 	 � u�nhn�
�h� 
 h�u�� � �H��� �H�� 
 h��

���
���

�hn 
 h�u�n � �H�n� �H�n 
 hn�

i�e�

�h� 
 �uTBh�� �h� 
 h�uB � �H �� and �H � 
 h��

The function � is the switching function� Discontinuities of the control can
appear only if �	t
 
 �� The value of the Hamiltonian along an extremal is

Hu�t�	g	t
� p	t

 
 h� � ��kH �k 
 h� � ��� � � � f�� �g�

If �	t
 
 �� every v � B maximizes the Hamiltonian� so uB is completely
undetermined� If �	t
 	 � then the optimal control uB	t
 is uniquely deter�
mined�

uB 


�
B�

u��
���

u�n

�
CA 


��
�
H ��

Thus if H � �
 �� then 	h�� h
�� H �
 satisfy the ODE

�h� 
 ��

�
	h�
TH �� �h� 


�
�h�
�

� �

�
H �� �H � 
 h� 	���


Besides the Hamiltonian Hu 
 h����� there are additional integrals of mo�
tion� In view of Condition 	ii
 of the 	PMP
 every function that is constant
along the coadjoint orbits of G in g� will be an integral� These functions
are called Casimir functions�
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Lemma ���� For each � � f��� �� �g the following two functions are Casimir

functions�

J� 

nX
i
�

h�i � �
X

��i�j�n

H�
ij � 	���


J� 

X

��i�j�k�n

	hiHjk � hjHik � hkHij

�

� �
X

��i�j�k�l�n

	HijHkl �HjlHik �HilHjk

�� 	���


Proof� This is proved in ���� Theorem ������ except for J� in the general
euclidian case� � 
 � and n 	 �� The general euclidian case is almost
contained in ��� pp� ��� et sq�� though only n 
 � is explicitly stated�

One may identify so	n
 with the exterior product
V�
Rn and se	n
� with

	
V�
Rn
�Rn� With the standard basis vectors ei � Rn and ei � ej �

V�
Rn

we identify p � se	n
� with 	�� y
 where

� 

X
i�j

Hij	p
 ei � ej � and y 

X
k

hk	p
 ek�

With these identi�cations and the natural actions of SO	n
 on exterior prod�

ucts
Vk
R
n� and Rn� the coadjoint action of g 
 	x�Q
 is given by 	cf� ���

Eqn 	����
�
�

Ad	g
�	�� y
 
 	Q� � 	Qy
 � x� Qy
 
�
�
"�� "y
�
�

Thus k"�� "yk 
 k	Q�
� 	Qy
�	Qy
�x� 	Qy
k
 k	Q�
� 	Qy
k
 k��yk�
so the map 	�� y
 �� k� � yk� is a Casimir function� and this is precisely
J��

The functions J�� J� � g
� � R will be integrals for any left�invariant con�

trol problem on G� In the non�euclidian case the Lie algebra g is semisimple�
and J� is actually a scalar multiple of the Cartan�Killing�form�

Since Hij � � for � � i � j along an extremal 	g	t
� p	t

� the formulas
for J�� J� simplify signi�cantly�

J� 
 h�� � kh�k� � �kH �k� 
 h�� � kh�k� � ���� 	���


J� 

X

��j�k�n

det

�
hj H�j

hk H�k

��
� 	���


We improve this result now�

Proposition ���� Along an extremal 	g� p
 each term

det

�
hj H�j

hk H�k

�

 hjH�k � hkH�j

is constant�

Proof� From 	���
 we get �hj 
 h�u�j � �H�j and �H�j 
 hj � Moreover the

equality H � 
 ����� u holds� regardless whether � 	 � or � 
 �� Hence we
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obtain
d

dt
	hjH�k � hkH�j
 
 �hjH�k � hj �H�k � �hkH�j � hk �H�j


 	h�u�j � �H�j
H�k � hjhk � 	h�u�k � �H�k
H�j � hkhj


 h�	u�jH�k � u�kH�j
 
 h� det

�
u�j H�j

u�k H�k

�



h��

��
det

�
u�j u�j
u�k u�k

�
� ��

Sussmann observed that for a geometrically satisfying treatment one has
to consider the exterior product

V
Rn� This is in accordance with the de�

scription of the coadjoint action� The previous proposition implies that
h� � H � � V�

R
n is a constant of motion� in fact J� 
 ke� � H � � h�k�� In

dimension � everything could be expressed in terms of the vector product
because the latter provides an isomorphism between

V�
R
� and R��

�� Smooth extremals with torsion

In this section we only consider extremals with J� 	 �� We will prove
that they are smooth and three�dimensional�

Lemma ���� Let 	g� p
 be an extremal with J� 	 �� Then �	t
 	 � for all

t � R and g	t
� p	t
� u	t
 are analytic�

Proof� If �	t�
 
 � for some t� � R� then H �	t�
 
 �� whence J�	p	t�

 
 ��
Since J� is constant along p	t
� this implies J� � �� Since we assumed
J� 	 �� this is impossible� hence �	t
 	 � for all t follows�

Since the righthand side of the ODE 	���
 is well�de�ned and analytic
whenever � 	 �� p	t
 must be analytic� As �	t
 	 � yields uB	t
 

���	t


��H �	t
� the control u is analytic as well as g	t
�

The ODE 	���
 shows that all higher order derivatives of h�� H � are linear
combinations of h�� H �� Thus we obtain�

Corollary ���� The vectors h�	t
� H �	t
 � Rn�� always stay in a �xed� at

most two�dimensional subspace V� � Rn���

Proof� Take t� � R arbitrary but �xed and let V� 
 Rh�	t�
 � RH
�	t�
 �

R
n��� Take v� � V �� arbitrary but �xed� Since h�� H � are analytic� the

functions
f	t
 
 hv�� h�	t
i� g	t
 
 hv�� H �	t
i

are analytic� too� In view of the ODE 	���
 all derivatives of h�� H � at t�
lie in V�� Since v� is perpendicular to V�� all derivatives of f and g at t�
must vanish� Since f� g are analytic� they must vanish identically� Thus
h�	t
� H �	t
 � v�� � Since v� � V �� was arbitrary� we deduce h�	t
� H �	t
 � V�
for all t�

Since the control u	t
 is given by uB 
 ���
��H �� this implies that uB	t


lies in a two�dimensional subspace of Rn���

Lemma ���� We may assume without loss of generality that uB 
 	u��� u���
�� � � � � �
�
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Proof� Since uB	t
 is contained in a �xed two�dimensional subspace V� �
R
n��� we can �nd a Q � SO	n� �
 such that QV� 
 R

�� f�g � Rn��� We
have

�g 
 gXuB � with XuB 


�
� � �� �

� � uTB
� �uB �

�
A �

Let k 
 diag	�� �� QT
 

 SO	n � �
 

 K and set "g �
 gk� Then by
Lemma ��� "g projects onto the same curve as g� and �"g 
 "gAd	k��
XuB �
Since Ad	k��
XuB 
 XQuB and QuB � R� � f�g � R

n��� our claim fol�
lows�

Thus we obtain�

Theorem ���� If 	g� p
 is an extremal with J� 	 �� then the arc x	t
 

g	t
e� is three�dimensional�

Proof� By the previous lemma we may assume w�l�o�g� that the controls
u��� � � � � u�n vanish identically� Thus u	t
 � spanf��� L��� L��g� Let g� de�
note either se	�
� so	�� �
� or so	�
� i�e� the Lie algebra one has to consider
for the three�dimensional Dubins� problem sitting in the upper � by ��block
of g� and let G� denote the corresponding subgroup of G� Since the Lie al�
gebra generated by f��� L��� L��g is g�� we deduce that g	t
 � g	�
G�� Thus
x	t
 is a solution of the three�dimensional problem shifted by g	�
 � G into
a di�erent position in Rn�Hn � resp� Sn�

The extremals with J� 	 � correspond to smooth three�dimensional arcs
with constant curvature �� and nonvanishing torsion � � For dimension three
Monroy has actually proved ���� Theorem �������

Theorem ��� 	Monroy�s Torsion Formula
� Let 	g� p
 be an extremal with

J� 	 �� Then the corresponding arc has constant curvature �� and its torsion
is

�	t
 
 �
p
J�

�	t
�

where again �	t
 
 kH �	t
k is the switching function�

Due to our reduction� the same formula follows for higher dimensions�
too� For more information on these arcs we refer to ���� and ����� Sussmann
claims in ���� that these arcs are actually strict local minimizers and that
the torsion cannot be arbitrarily large� In R� with �� 
 � it is not hard to
show that � � �� 	 � is possible� In such a case the torsion is constant
too� � � �� � �� Further analysis shows that only �� � ���� �
 is possible�
In particular �� 
 �� is achieved if and only if � 
 � and J�� 
 �J� 	 ��
This seems to be noteworthy because it shows that in higher dimensions the
abnormal extremals yield arcs that cannot be obtained 	not even locally

from regular extremals�

Monroy solves the ODE for p in the three�dimensional case by quadra�
tures� For the euclidian case R� he also derives formulas expressing the
arc x	t
 in terms of the switching function � and

R
�	t
 dt� He also derives

an ODE for �� thus proving that � may be expressed in terms of elliptic
functions� We will make use of this ODE� too� see Eqn� 	���
�
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Finally we add the new observation that again the hyperbolic problem
has an extraordinary property� If we consider � 
 ��� �� 
 � and J� 	 ��
� 
 �� then the ODE 	���
 yields �h� 
 �� hence h�	t
 is constant� nonzero
	because of J� 	 �
� and H �	t
 
 a � tb with constant� linear independent
vectors a� b � Rn��� and h� 
 � 
 kH �k� In this case it is even possible to
integrate the ODE for g	t
 in terms of elementary functions� see �����

�� Extremals without torsion� the switching pattern

The function �	t
 is called the switching function because its zeros are
linked to discontinuities of the controls� switches can occur only if � 
 ��
Geometrically the case J� 
 � corresponds to the planar Dubins� problem�
it yields the arcs following Dubins� pattern�

Lemma ���� If 	g� p
 is an extremal with J� 
 � and I is an interval where

�	t
 	 �� then u	t
 is constant in I�

Proof� Since � 	 � in I we have u 
 �����H
�� At least one component of

H � does not vanish identically� We simply di�erentiate

d

dt

H�j

H�k



�H�jH�k �H�j
�H�k

H�
�k



hjH�k �H�jhk

H�
�k



�

H�
�k

det

�
hj H�j

hk H�k

�
�

The determinant vanishes because of J� 
 �� so H�j 
 cjkH�k with a con�

stant cjk� Hence H �	t
 
 H�k	t
	c�k� c�k� � � � � cn�k

T and u	t
 
 ��

�
kH �kH

� is

constant in I � Equivalently we can write H �	t
 
 �	t
cI with a constant
vector cI of length kcIk 
 �� and uB � ��cI �

The corresponding arc will be a circular arc� Geodesic arcs appear only in
the following situation 	cf� ���� Propositions ����� and ������
�

Lemma ���� If 	g� p
 is an extremal such that �	t
 � � in an open interval I�
then J� 
 �� J� 
 �� � 
 � and in I we have

h� � �� h� � �� H � � �� and u � ��

Proof� If � � � in I � then H � � � because kH �k 
 �� Thus � � �H � 
 h�

yields h� � �� Since p	t
 �� � by the 	PMP
� h� �
 � follows� Therefore
� � �h� 
 h� u yields u � �� Finally h� � ���� � � � yields h� � � � f�� �g�
As h� �
 �� h� 
 � 
 � follows� Evaluating J�� J� at 	h�� h�� H �
 
 	�� �� �

yields J� 
 � and J� 
 ��

Thus we obtain�

Corollary ���� If 	g� p
 is an extremal with J� 
 �� then the corresponding

arc is a concatenation of circular arcs and geodesic segments�

So locally these arcs are even planar� Monroy obtains the previous corol�
lary from his torsion formula� But he does not determine the precise switch�
ing patterns� Since arbitrary concatenations of circular arcs will not be pla�
nar� we must determine the global switching behavior of optimal controls�
Besides Monroy only considers �� 
 �� This does not a�ect the structure
of optimal arcs in Rn and Sn� but for Hn it makes a great di�erence� Since
we also want to cover that case� we will have to adjust and re�ne some of
his arguments� Since this requires a detailed analysis of the behavior of
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the switching function �� we state our �nal result �rst� It generalizes Suss�
mann�s three�dimensional euclidian results 	cf� ���� Theorem ��
 to higher
dimensions as well as to the non�euclidian manifolds Sn and Hn �

Theorem ���� Suppose that ��� � � 	 �� Let 	g� p
 be an extremal with

J� 
 �� Then the optimal control follows one of the following patterns�

	i
 The control is u	t
 � u� is constant� ku�k 
 ��� The corresponding

arc is a circle and therefore genuinely planar�

	ii
 For a �xed u� with ku�k 
 �� the control u	t
 follows the pattern

u� � �u� � u� � �u� � � � �

and the time T � between successive switches is always the same� be�

tween a half period and a full period�

T � �
�


p
��� � �

�
�
p
��� � �

�
�

The corresponding arc x	t
 is a concatenation of circular arcs C � � �C�
all intermediate circles have the same length� they are at least semicir�

cles� but shorter than a full circle� and all these arcs are in the same

	plane�� So the arc x	t
 is genuinely planar�

	iii
 For arbitrary but �xed u�� u�� u���� with kuik 
 �� the control u	t
 fol�
lows the pattern

u� � � � u� � � � u� � � � u� � � �

The intervals where u	t
 
 � may have arbitrary nonnegative length�

The length of an interval between two switches where u	t
 � ui� is

an integer multiple of the full period �
�
p
��� � �� The corresponding

arc is a concatenation of circles and geodesics CLCLC � � � � and a C
between two L�s must be a full circle� Hence an optimal arc of this

type has at most one L� so it must be CLC� Therefore it is at most

three�dimensional

Remark ���� Even though extremals of types 	ii
 and 	iii
 may have in�
�nitely many switchings� a clustering sequence of switching points 	Fuller�s
phenomenon� see ���
 cannot appear because every interval where � 	 � has

length at least 
�
p
��� � ��

But optimal arcs will actually have at most two switches� For R� this is
the major result in Dubins� original paper� For optimal arcs of type 	iii
 we
already observed this to be true as a consequence of the 	PMP
� For arcs of
type 	ii
 this is another theorem� The euclidian case follows from Dubins�
result because arcs of type 	ii
 are automatically planar� The spherical case
was solved by Monroy ���� Corollary ������� the hyperbolic case is solved
in �����

If ��� � � � �� the switching patterns are similar but much simpler�

Theorem ���� Suppose that ��� � � � �� Let 	g� p
 be an extremal with

J� 
 �� Then the optimal control u	t
 follows one of the following patterns�

	i
 The control is u	t
 � u� is constant� ku�k 
 ��� The corresponding

arc is a circular arc C and therefore genuinely planar�
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	ii
 There is exactly one switch� For a �xed u� with ku�k 
 �� there is

t� � R such that the control is

u	t
 


�
u�� if t � 	��� t�

�u�� if t � 	t���
�

The corresponding arc x	t
 is a concatenation of two circular arcs CC
lying in the same 	plane�� So the arc x	t
 is genuinely planar�

	iii
 There are two switches at t� � t�� For arbitrary but �xed u�� u� with

kuik 
 �� the control is

u	t
 



�
�

u�� if t � 	��� t�
�
�� if t � 	t�� t�
�
u�� if t � 	t���
�

The corresponding arc is of the form CLC and therefore it is at most

three�dimensional�

Remark ���� That a control following the alternating pattern u� � �u� � � �
yields a $planar� arc follows from the fact that the subalgebra generated by
f��� Xu�g is isomorphic to se	�
� so	�� �
� resp� so	�
� So the same argument
as in the proof of Theorem ��� shows that x	t
 is a planar curve�

The geometric meaning of the condition ��� � � 	 �� resp� � � is quickly
explained� Let

Xu 


�
� � �� �

� � �uT
� u �

�
A � with kuk 
 ���

Then X�
u 
 �	��� � �
Xu� If ��� � � 	 �� then exp	RXu
 is a circle group�

With w �

p
��� � � we obtain�

exp	tXu
 
 I �
sin	wt


w
Xu �

�� cos	wt


w�
X�
u�

And the period is T � 
 ��
w
� i�e� exp	T �Xu
 
 I � The arc exp	tXu
e� is a

circular arc� And an arc over the full period T � is a full circle�
In the euclidian and spherical case� we always have ��� � � 	 �� In the

hyperbolic case � � ��� � � 
 ��� � � is equivalent to �� 	 �� This is the
controllable hyperbolic case 	cf� ����
�

In the noncontrollable hyperbolic case� i�e� � 
 �� and �� � �� we have
X�
u 
 	�� ���
Xu and therefore with w �


p
�� ��� we obtain�

exp	tXu
 
 I � tXu �
t�

�
X�
u� if �� 
 ��

exp	tXu
 
 I �
sinh	wt


w
Xu �

cosh	wt
� �

w�
X�
u� if �� � ��

So in this case the $circular arcs� are never closed� Thinking of traveling in
a car at constant speed this means it is impossible to return to the starting
point� It was proved in ���� that in this case Dubins� problem in Hn is not
controllable� i�e� there are boundary conditions x�� v�� x�� v� for which it is
impossible to �nd an admissible arc�
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�� Analyzing the switching behavior

In order to obtain this information about the extremals we must take a
closer look at the switching function� Monroy has proved that the switching
function � satis�es a certain ODE� see ���� Theorem ������� Since we consider
�� 	 � rather than just �� 
 �� we must modify his proof slightly 	p� ���
�rst line� we have h� 
 �� ��� rather than h� 
 �� �
 and obtain

	� ��
� 
 �	��� � �
�� � �����
� � 	J� � ��
�� � J� 
� f	�
� 	���


For J� 
 �� this ODE simpli�es to

��	 ��
� 
 ��
��	��� � �
�� � ������ J� � ��

�

 ��F 	�
� 	���


If � 	 � in an interval I � then either �� 
 �
p
F 	�
 or �� 
 �pF 	�


because � is smooth in I � Since F 	�
 is a quadratic polynomial� the ODE
is integrable in terms of elementary functions 	cf� ���� Corollary ������
� We
omit integration of this ODE� We note that � is de�ned for all t� For the
control is locally constant� thus g	t
 is just a product of exponentials� So
	g	t
� p	t

 are de�ned for all t� hence so is ��

One consequence of this ODE is that � cannot assume arbitrary values�
The righthand side �� F 	�
 has to be nonnegative� Therefore the possible
range of � is

R 

�
� j � � �� ��F 	�
 � �

�

 f�g � �F��	R�
 
 	���


�
�

The case F 	�
 
 J� � �� � � is the simplest case�

Lemma ���� If 	g� p
 is an extremal with J� 
 � and J� � �� � �� then

�	t
 	 � for all t� the corresponding control u	t
 is a constant u� with

ku�k 
 ��� and the corresponding arc is a circular arc�

Proof� If F 	�
 � �� then ��F 	�
 � � for � 	 � su�ciently small� Since �
is continuous� either �	t
 	 � for all t or �	t
 � � follows� If � � �� then
Lemma ��� yields J� 
 � and � 
 �� hence F 	�
 
 �� a contradiction� so
this is impossible� Thus �	t
 never vanishes� the control u	t
 is constant�
and the corresponding arc x	t
 is a circular arc�

Next we consider what kind of information we get about switches� We
claim that if F 	�
 	 �� then we can only have an alternating switching
pattern� i�e� switches of the form u� � �u��
Lemma ���� Let 	g� p
 be an extremal with J� 
 � and J� � �� 	 �� Let

tl � t� � tr be points such that �	t�
 
 � and �	t
 	 � in 	tl� t�
 � 	t�� tr
�
Let ul� ur denote the values of the control in these intervals� Then

ur 
 �ul�
Proof� Let Il� Ir denote the two intervals� Since � 	 � in each of these� either
�� 
 �

p
F 	�
 or �� 
 �pF 	�
� Thus � is either increasing or decreasing�

As �	t�
 
 �� it must be decreasing in Il and increasing in Ir� hence

��	t
 


� �pF 	�	t

� in Il�

�
p
F 	�	t

� in Ir�

Since � is smooth in Il� Ir we look at the one�sided limits of ���

lim
t�t��

��	t
 
 �
p
F 	�
 � �� and lim

t�t��
��	t
 


p
F 	�
 	 ��

ESAIM� Cocv� February ����� Vol� 	� �
��



�� DIRK MITTENHUBER

Now we recall that in Il� Ir we have �	t
u 
 ��H
�	t
 and therefore ��u 


�� �H � 
 ��h
�� Now h� is continuous� So we compute the one�sided limits at

t� and get

�
p
F 	�
ul 
 lim

t�t��
��	t
ul 
 ��h

�	t�
 
 lim
t�t��

��	t
ur 

p
F 	�
ur�

Since F 	�
 	 �� this proves ur 
 �ul�
We notice that if F 	�
 
 �� then we do not obtain any information about

the values of the control� besides being constant in Il� Ir� So our �nal task
is to determine the length of an interval where �	t
 	 �� This also makes
sure that there cannot be clusters of isolated zeros of � 	cf� ���� Proposi�
tion ������
�

We distinguish between the two cases ��� � � 	 � and ��� � � � ��

Lemma ���� Suppose that ��� � � � �� Let 	g� p
 be an extremal with J� 
 �
and F 	�
 � �� If F 	�
 	 �� then there is at most one alternating switch� If

F 	�
 
 �� the control has the form u� � � � u��

Proof� We do not need to integrate the ODE 	���
� It su�ces to analyze
the behavior of its !ow� Since ��� � � � �� the graph of F 	�
 is a parabola
open to the top or a line� Since F �	�
 
 ���� � �� we obtain R 
 ����

and F 	�
 	 � for � � 	���
�

Now let t� be a point with �	t�
 	 �� Let I denote the largest interval
containing t� where �	t
 	 �� Then we have two possibilities�

If ��	t�
 	 �� then �� 

p
F 	�
 	 � in I � thus � is increasing in I and

therefore �	t
 	 � for all t 	 t� follows� Hence there are no switches after
t��

If ��	t�
 � �� then �� 
 �pF 	�
 in I � so � will decrease until it reaches ��
say at t� and �	t
 	 � for all t � t�� Thus there are no switches before t��

Hence we obtain that if �	t�
 	 �� then t� may lie either before or after a
switch� but never between two switches� In other words� if t� � t� are zeros
of �� then � � � in �t�� t��� By Lemma ��� this can happen only if J� 
 ��
� 
 �� i�e� F 	�
 
 ��

So if F 	�
 	 �� then � has at most one zero t�� Now Lemma ��� applies
proving that at t� there is an alternating switch� u� � �u�

If F 	�
 
 �� then let t� 
 inf ft j �	t
 
 �g and t� 
 sup ft j �	t
 
 �g�
Then � � � in �t�� t�� follows as well as � 	 � in 	��� t�
 � 	t���
� So the
corresponding control is 
�

�
u�� in 	��� t�
�
�� in 	t�� t�
�
u�� in 	t���
�

This �nishes the proof of Theorem ����
Finally let us consider the case ����� 	 � and F 	�
 � �� We must compute

the length of a maximal interval where � 	 �� Since F is a quadratic function
with negative leading coe�cient� and F 	�
 � �� it factorizes as

F 	�
 
 	��� � �
	�� a
	b� �
� with a � � � b�
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We observe that Z
d�p

	�� a
	b� �


 arcsin

�
�� b�a

�
b�a
�

�
�

Of course we could integrate the ODE for �� but actually all we need is the
time between switches� i�e� the maximal length of an interval I such that
�	t
 	 � in I �

Lemma ���� Suppose that ��� � � 	 � and let 	g� p
 be an extremal with

J� 
 � and J� � �� � �� Then every maximal interval I where �	t
 	 � has

length

�	I
 �
�


p
��� � �

�
�
p
��� � �

�
�

More precisely �	I
 
 �
�
p
��� � � if and only if J� � �� 
 �� and �	I
 



�
p
��� � � if and only if � 
 ��

Proof� Since �	t
 	 � � I and R 
 ��� b�� b 	 � follows� and �	t
 � 	�� b� for
t � I � Let t� � I be such that �	t�
 
 b� Then in I � must be increasing for
t � t� and decreasing for t 	 t�� The time to decrease from b to � is

T � 


Z �

b

d�

�pF 	�




Z b

�

d�p
F 	�




�p

	��� � �


Z b

�

d�p
	�� a
	b� �


�

Thus the length of I is

�	I
 
 �T � 

�p

��� � �
arcsin

�
� � b�a

�
b�a
�

������
b

�



�p

��� � �

�



�
� arcsin

b� a

b� a

�
�

From F 	�
 
 	��� � �
	� � a
	b � �
 
 	��� � �
	��� � 	a � b
� � ab
 we

obtain a � b 
 ����
��
�
��

� �� Thus

�	I
 �
�


p
��� � �

�
�
p
��� � �

�
�

The left endpoint is obtained if and only if a � b 
 �� Since �� 	 �� this
happens if and only if � 
 �� The right endpoint is attained when a 
 ��
This is equivalent to � 
 F 	�
 
 J� � ���

In particular we obtain that the zeroes of � are essentially isolated 	cf� ����
Proposition ������
�

Corollary ���� If 	g� p
 is an extremal with J� 
 � and J� � �� 	 ��
then the corresponding control is alternating and the time between successive

switches is a constant T � �
�

�p
��
�
��
� ��p

��
�
��

�
�

Proof� From the previous lemma we obtain that � has only isolated zeros�
So Lemma ��� shows that the control follows the alternating pattern u� �
�u� � u� � � � � � etc� And the time between successive switches is given by
the formula of the previous lemma�

ESAIM� Cocv� February ����� Vol� 	� �
��



�� DIRK MITTENHUBER

-2
-1

0
1

-2

0

2

-2

0

2

-2
-1

0
1

-2

0

2

the surfaces the !ow

Figure �� Coadjoint orbits and the !ow of p	t
 in se	�
� for
� 
 ��

Corollary ���� If 	g� p
 is an extremal with J� 
 � and J� 
 � 
 �� and
if the corresponding arc x is optimal� then it is of type CLC�

Proof� The control u follows the pattern u� � � � u� � � � u� � � � � and by
Lemma ��� the time between two $��s is exactly a full period of Xui � So
the corresponding arc is CLCLC � � � � where each intermediate circle is a full
circle� Hence an optimal arc of that type has at most one geodesic segment�
i�e� it is of type CLC�

This �nishes the proof of Theorem ����

Remark ���� Even though integration of the ODE for � is not di�cult� we
refer to ���� Corollary ������ for the formulas 	in the special case �� 
 �
�
The really interesting geometric information is to be found in the covector
p	t
 � g�� W�l�o�g� we only look at 	h�� h�� H��
 � this corresponds to the
two�dimensional problem� The level surfaces of J� 
 h�� � h�� � �H�

�� are
essentially the orbits of the coadjoint action of G on g�� In se	�
� these are
cylinders around the 	vertical
 H���axis� in so	�
� these are spheres� and in
so	�� �
� these are one�sheeted hyperboloids� the upper or lower half of a
two�sheeted hyperboloid or one half of a Lorentzian double cone 	excluding
the vertex at �
� The level surfaces of the optimal Hamiltonian

H	g� p
 
 h� � ��� � � � �� � � f�� �g�
are the boundary of a 	shifted
 wedge in three�space with two faces� On
each face the control is constant either ��� or ���� The switches occur
when p	t
 hits the edge of this wedge� An alternating switch means that p
passes from the upper to the lower face 	and vice versa
� Projecting into the
	h�� h�
�plane one can interpret the time between switches as the euclidian
angle between the origin and the two intercepts of p with the edge of the
wedge� Figure � shows the coadjoint orbits and the !ow of p	t
 in se	�
�� In
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�� � � the !ow �� 	 �

Figure �� Coadjoint orbits and the !ow of p	t
 in so	�� �
�

for � 
 ��

so	�
� one has to replace the cylinders by spheres� but the !ow essentially
looks the same�

In the hyperbolic case the geometric di�erence between the noncontrol�
lable and the controllable case is neatly visualized� If �� � �� then the
intersection of H 
 � with a one�sheeted hyperboloid is never closed � so
p	t
 cannot hit the edge of the wedge twice� On the other hand if �� 	 ��
this intersection is always a closed curve� as in the euclidian and spherical
case� And the !ow of p	t
 looks similar�

Remark ���� Since both referees pointed out that these pictures bear a
signi�cant similarity with those in ���� a few more remarks are in order�
Kupka�s theory ��� cannot be applied to the problem under consideration
for the following reason� the ODE 	���
 is a�ne in the controls and the cost
functional c	u
 � � is independent of u� Therefore� if � 
 kH �k 
 �� then
every v � U is a maximizing control� So the basic assumption that the set
of maximizing controls is �nite ��� Def� �� is violated at all points of the
switching manifold %� 
 fp � g� j H � 
 �� h� 
 �g�

This problem may be overcome at those points of %� where J� � �� 	 ��
Following the ideas in ���� we consider for p� � %� only those maximiz�

ers u� for which �Hu�	p�
 lies in the subtangent set at p� of the level set
fp j H	p
 
 �g� If J� � �� 	 � at p�� then this set of admissible maximizers

consists of two points u���u�� and the vectors �H	u� 	p�
 are transversal to
%�� but only one of them is subtangent to fp j H	p
 
 �g� This is the ge�
ometrized version of Lemma ���� These points are in analogy to the normal
switching points in ����

There is only one more point left to discuss� p� 
 	�� �� �
 with � 
 �� In
view of Lemma ��� it is clear that in Dubins� problem one also has to deal
with singular arcs� a geodesic segment is generated by the control u � �
which is in the interior of the set U of admissible control values� Local
theory for single�input systems with singular arcs can be found in ���� see
in particular the discussion in Section ����� that actually covers the local

behavior in the two�dimensional Dubins� problem� It would make sense to
call p� an elliptic or hyperbolic fold point depending on whether ��� � � 	 �
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or � �� But this has no link with the classi�cation of fold points in ���
p� ����� Writing Hu instead of HXu

� etc�� one computes for u �
 v � Rn���
kuk 
 kvk 
 �� that fHu�Hvg	p�
 
 hp�� �Xu� Xv�i 
 � and

fHufHu�Hvgg	p�
 
 hp�� �Xu�Xu� Xv��i 
 �uT v � uTu 
 ��� � uTv 	 ��

regardless whether ��� � � 	 � or not�

The author would like to thank the referees for pointing out Kupka�s ref�

erences he was not acquainted with so far�
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