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GEOMETRICAL ASPECTS OF EXACT BOUNDARY

CONTROLLABILITY FOR THE WAVE EQUATION �

A NUMERICAL STUDY

M� ASCH AND G� LEBEAU

Abstract� This essentially numerical study� sets out to investigate vari�
ous geometrical properties of exact boundary controllability of the wave
equation when the control is applied on a part of the boundary� Re�
lationships between the geometry of the domain� the geometry of the
controlled boundary� the time needed to control and the energy of the
control are dealt with� A new norm of the control and an energetic cost
factor are introduced� These quantities enable a detailed appraisal of
the numerical solutions obtained and the detection of trapped rays�
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�� Introduction

The motivation for this paper comes from three sources�

� the Hilbert Uniqueness Method �HUM� formulated by J��L� Lions �
see ����

� the numerical application of the above method to exact boundary con�
trol of the wave equation by R� Glowinski et al� � see ��� 
��

� the geometrical results of Bardos� Lebeau and Rauch ��� which enabled
the proof of sharp su	cient conditions for control of the wave equation
from the boundary�

The geometrical result concerning the exact boundary controllability of
the wave equation as obtained by ���� states that one must control on a set
large enough to encounter every ray of geometric optics� However� this is
not very intuitive� especially when the geometry of the controlled domain
becomes complicated and when the control is applied on a part of the bound�
ary only� This numerical study will try to illustrate and elucidate various
aspects of this theoretical result�
We remark that apart from the numerical studies of ��� 
� cited above�

��� have also performed a numerical investigation of the controllability of a
non�linear wave equation �in one space dimension� with the control located
in a small neighborhood of the boundary�
In this paper we begin by recalling the main theorems concerning the

Hilbert Uniqueness Method of J��L� Lions ��� and the geometrical theorems
of Bardos�Lebeau�Rauch ���� We then explain the numerical algorithm which
closely follows the work of R� Glowinski ���� After a validation of the code�
we use it to study various relations between

� the geometry of the control boundary�
� the time needed to control a given geometrical con
guration�
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� the oscillatory nature of the data�
� the cost of the control�
We seek in particular a numerical manifestation of the trapped ray phe�

nomenon� Finally we draw some conclusions�

�� The HUM approach to exact boundary controllability

���� Formulation of the problem

We consider the wave equation with control on a part of the boundary������
����
�u � � in Q � �� ��� T ��
u�x� �� � u�� ut�x� �� � u� in ��

u �

�
g on �� � �� � ��� T ��
� on � n�� � � n �� � ��� T �

�����

where � is a bounded domain of R� with boundary �� and �� � �� In other
words� the boundary control is applied on the part �� of the boundary ��
The problem of exact boundary controllability is then� �Given T � u�� u��

can we 
nd a control g on �� such that the solution of ����� satis
es

u�x� T � � ut�x� T � � � on � � �

The answer is yes� if

� one takes T su	ciently large� and
� one controls on a set large enough to encounter every ray of geometric
optics �see below��

This answer raises numerous questions�

� how does T depend on the geometry of the domain �
� How does T depend on the spectrum of the initial data �
� For complicated geometries� what constitutes a set �large enough to
encounter every ray of geometric optics� �

All these questions will be treated in the sequel�
A systematic and constructive method for computing such a control� g�

is provided by the Hilbert uniqueness method �Hum� of Lions ����

���� Description of the HUM

We now describe brie�y the Hum for control of the wave equation from a
part of the boundary� Full details can be found in ����
Let

E � H�
����� L����� E� � H������ L����

and de
ne the operator

 � E � E�

as follows�

�� Take e � fe�� e�g � E and solve from t � � to t � T

�� � � in �� ��� T ��
��x� �� � e�� �t�x� �� � e� in �� �����

��x� t� � � on �� ��� T � � ��
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�� Then solve �backwards� from t � T to t � �

�� � � in �� ��� T ��
��x� T � � �� �t�x� T � � � in �� �����

��x� t� �

�
��
�n on �� � �� � ��� T ��
� on � n �� � � n �� � ��� T ��

�� Finally� de
ne the operator  as

 e � f�t���������g�
We have the original theorem of J��L� Lions ����

Theorem ��� �J��L� Lions�� Operator  is linear and continuous from E
onto E�� moreover� if T is su�ciently large �� Tmin � �kx�x�kL��	
� and
if �� is of the type

��x�� � fx jx � �� �x� x�� � nx � �g
where x� � R� is an arbitrary point and nx is the outward normal to � at
x� then  is an isomorphism from E onto E��

���� Application of the HUM to the wave equation

Let us now apply Theorem ��� to the control of the wave equation ������
Suppose that

u� � L����� u� � H�����

are given� Then

�� take f � fu���u�g � i�e� we identify u with ��
�� solve  e � f to obtain e�� e�� the initial data for the � wave equation
������

�� solve the � wave equation ����� forwards in time using e�� e� as initial
data�

�� calculate the normal derivative of the solution of the � wave equation
and set g � ��

�n j�� �
�� solve the � wave equation ����� backwards in time using g as the bound�
ary data�

�� 
nally� set u � �� then since ��x� T � � �� �t�x� T � � � was imposed� g
�the boundary control� gives the exact boundary controllability with

u�x� T � � ut�x� T � � �� �x � ��
We remark that the operator  is symmetric and E�elliptic� These prop�

erties imply that  e � f can be solved by a conjugate gradient algorithm�

���� Control on a part of the boundary� theoretical aspects

We would like to analyze more precisely what happens in the case of
control on a part of the boundary� This analysis� which appears in Appendix
A� motivates the introduction of the energetic cost vector of Section ��
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�� Sharp sufficient conditions for the control of waves

from the boundary

In this section we will present a simpli
ed version of the results in ���� We
repeat here a part of the introduction to this paper�

Finally� we come to the idea!method that motivates our analy�
sis� Wave equations have solutions that are localized near curves
�t� x�t�� in space�time� The curves are called rays� and typical
rigorous results assert that for any � � � and T � � there is a
solution so that the fraction of the energy located at a distance
smaller than � from the ray is greater than � � � for � 	 t 	 T �
�� � � � it would be foolhardy to try to control a solution from a set
on which the energy is negligibly small� Thus controls must be
placed so that there is a control on every ray ��� p� ������

The following classi
cation of rays can be made according to the nature
of their contact with the boundary�

� rays that hit the boundary transversally � they are re�ected by the
classical laws of geometrical optics and their trace at the boundary is
comparable in size to the corresponding wave�

� rays that kiss the boundary at a di�ractive point � they leave a very
small trace�

� rays that hug the boundary �near tangential incidence with non�di�rac�
tive contact� � for these gliding rays the traces are comparable in size
to the waves�

This last point constitutes the main estimate of ���� The lower bound on
traces thus obtained in a subset of the region of control� is combined with
theorems on the propagation of singularities to derive estimates throughout
the domain� In fact it is shown that the trace is appreciable for any ray that
in the absence of boundary conditions would leave �� Such rays are called
nondi�ractive� Special cases are the gliding and transversely re�ected rays�
Since the boundary is responsible for con
ning such rays� it is reasonable to
expect that the boundary must do appreciable work�
Once the lower bound �in the energy e �

R
	 u

�
t " jrxuj� " u� dx��

kuk�H��
��T ���
 
 ce

for example� has been obtained� it can be used via a suitable identi
cation
of dual spaces to show the strong ellipticity of the map  of the HUM� To
compute the control we can then use a conjugate gradient method as shown
in the next section�
Many interesting examples of control domain geometry �disconnected

minimal regions for control on the disk� bowling ball and dogbone� are given
in ��� and are compared with results obtainable by multiplier techniques� We
appreciate immediately the advantage of the geometrical approach when
examining these cases� In fact our numerical study will be based on the
intuitions obtained from these very examples�
We can now express the theorem of Lions in its geometrical form�

Theorem ��� �BLR�� If all the generalized geodesics of length T meet the
control boundary� ��� at a non	di�ractive point then for any u�� u� in
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L���� � H����� one can 
nd a control g � L���� � ��� T �� which drives
the system ����� from u�� u� at time zero� to rest at time T �

�� A numerical algorithm based on the HUM

As we will now show� the constructive nature of theHum together with the
favorable properties of the operator  � enables us to formulate a numerical
algorithm based on the use of a conjugate gradient method with the Hum
at its core� This will be presented in three steps�

�� presentation of a general conjugate gradient algorithm �Algorithm CG�

���
�� application of algorithm CG�� to the boundary controllability problem
for the wave equation based on the HUM �Algorithm CG�HUM��

�� discretization of algorithm CG�HUM using a mutltigrid technique �Algo�
rithm CG�h��

���� The conjugate gradient solution

We can rewrite problem  e � f � taking f � fu���u�g� in the following
variational form�

Find e � E such that h e� #ei � hfu���u�g� #ei� �#e � E� �����

where h�� �i denotes the duality pairing between E and E�� We have

h e� #ei �
Z
	

�
�t�x� ��#��x� ��� ��x� ��#�t�x� ��

�
dx

�

Z
�

�
��

�n

� #�

�n

	
d� dt� �e� #e � E�

Hence the bilinear functional h �� �i is continuous� symmetric and E�elliptic
if the geometrical conditions of Theorem ��� are satis
ed� This implies that
for T large enough� problem ����� and hence  e � f can be solved by a
conjugate gradient algorithm�
Problem ����� is a particular case of�

Find u � V such that a�u� v� � L�v�� �v � V� �����

where� in the linear variational problem ������ we have

� V is a real Hilbert space for the scalar product ��� �� and the corre�
sponding norm k�k�

� a � V � V � R is bilinear� continuous� symmetric and V�elliptic �or
coercive��

� L � V � R is linear and continuous�

Under these hypotheses� problem ����� has a unique solution which can
be computed by the following conjugate gradient algorithm �which we will
subsequently apply to our control problem��
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Algorithm CG��

Step 
� Initialization�

� u� � V is given�
� calculate the residual g� � V by solving

�g�� v� � a�u�� v�� L�v�� �v � V �

� if g� � � or is small� set u � u� and STOP� if not� set the 
rst search
direction w� � g� �steepest descent��

Then for k � �� �� �� � � � assuming that uk� gk� wk �solution� residual�
search direction� are known� compute the next iterates uk��� gk��� wk�� as
follows�
Step �� Descent�

� minimize ����� in the search direction by calculating

	k �
kgkk�

a�wk� wk�
�

� update the solution
uk�� � uk � 	kw

k �

Step �� Convergence test � new descent direction�

� calculate the residual gk�� � V by solving

�gk��� v� � �gk� v�� 	ka�w
k� v�� �v � V �

� if gk�� � � or is small� set u � uk�� and STOP� if not� calculate


k �
kgk��k�
kgkk� �

� de
ne the new conjugate search direction as

wk�� � gk�� " 
kw
k �

� set k � k " � and go to step ��

���� Application of CG algorithm to the boundary control
problem

We now apply Algorithm CG�� to the solution of the boundary control
problem for the wave equation ����� in the variational form ������ We recall
the form of the space E and its dual

E � H�
����� L����� E� � H������ L�����

and de
ne the following inner product and norm on E�

�v� w�E �

Z
	

�rv�rw� " v�w�
�
dx� �����

kek�E �
Z
	

h

re�

� " 

e�

�i dx� �����
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Now� we simply replace the functionals a and L in ����� by the corre�
sponding terms of our exact controllability problem�

V � E�

a��� �� � h �� �i�
L � #e� hfu���u�g� ei�

We would like to point out a common source of confusion� the positive
de
nite operator  is composed of the solution of the two wave equations
in � and �� Thus we never end up with a simple positive de
nite matrix
�after discretization� as would be the case in the solution of a large linear
system by conjugate gradient methods� In particular� we cannot measure
directly the condition number of our operator� This need arises when we
solve problems in which the geometrical conditions for controllability are
not satis
ed�
We obtain the following conjugate gradient algorithm �as introduced in

��� and �
�� for the exact controllability problem�
Algorithm CG�HUM

Step 
� Initialization�

� e�� � H�
� ���� e

�
� � L���� are given�

� calculate the residual g� � fg��� g��g � E by solving
� forwards in time

��� � � in Q � �� ��� T ��
���x� �� � e���

���
�t
�x� �� � e�� in �� �����

���x� t� � � on � � ��� T � � � �

� then backwards from t � T to t � �

��� � � in Q � �� ��� T ��
���x� T � � ��

���
�t

�x� T � � � in �� �����

���x� t� � � on � n �� � � n �� � ��� T � �
� 
nally�

�$g�� �
���
�t

� u� in �� ���
�

g�� � � on ��

with

g�� � u� � ���x� �� in � �

� if g� � � or is small� set e � e� and STOP� if not� set the 
rst search
direction w� � g� �steepest descent��

Then for k � �� �� �� � � � assuming that ek � gk� wk are known� compute
the next iterates ek��� gk��� wk�� as follows�
Step �� Descent�
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� minimize ����� in the search direction by calculating

	k �
kgkk�E

h wk�wki �
kgkk�E

�%gk�wk�E
�

where %gk � f%g�k� %g�kg is obtained by solving
� forwards in time

�%�k � � in Q � �� ��� T ��
%�k�x� �� � w�

��
� %�k
�t
�x� �� � w�

� in�� �����

%�k�x� t� � � on � � ��� T � � � �

� then backwards from t � T to t � �

� %�k � � in Q � �� ��� T ��
%�k�x� T � � ��

� %�k
�t

�x� T � � � in �� �����

%�k�x� t� � � on � n �� � � n �� � ��� T � �
� 
nally�

�$%g�k �
� %�k
�t

in �� ������

%g�k � � on ��

with

%g�k � � %�k�x� �� in � �
� update all quantities

ek�� � ek � 	kwk�

�k�� � �k � 	k %�k�

�k�� � �k � 	k %�k�

gk�� � gk � 	k%gk�

Step �� Convergence test � new descent direction�

� if gk�� � � or is small� set e � ek��� � � �k��� � � �k�� and STOP�
� else

� calculate


k �
kgk��k�E
kgkk�E

�

� de
ne the new conjugate search direction as

wk�� � gk�� " 
kwk �

� set k � k " � and go to step ��

Remark 	��� Note that in the above conjugate gradient algorithm we seek
�by minimization of the residual� the good initial conditions� e�� e� of the
� wave equation � not those of the our original u wave equation� Once we
have obtained these initial conditions� we can solve the � wave equation and

ESAIM� Cocv� May ����� Vol� 	� �
	����



��� M� ASCH AND G� LEBEAU

calculate the boundary control g � ��
�n j�� for the � wave equation� However�

we imposed the conditions

��x� T � � �t�x� T � � ��

Thus the solution of the � wave equation� using the converged value of
g� will give us the exact controllability by simple identi
cation with the u
wave equation� The only role played by the initial conditions of u is in the
calculation of the residue in the zeroth iteration of the conjugate gradient �
see above�

We will make further remarks concerning the complexity of this algorithm
at the end of the following section�

���� The discretization of the CG algorithm using a multigrid
filtering technique

The discretization of the above algorithm has undergone numerous meta�
morphoses� The reason for this is the fact that a direct discretization leads
to an ill	posed discrete problem� Numerous attempts were subsequently
made in order to remedy this� see �
� and others� The most successful
of these remedies was formulated by Glowinski in ��� and uses a multigrid

ltering technique inspired from a similar problem which arises in the nu�
merical solution of the Stokes problem� We now present a 
nite di�erence
implementation of this technique� For the interested reader� a 
nite element
implementation is given in the original paper ����
The ill�posedness comes from the high frequency components of the solu�

tion of the discrete problem

 h��teh � fh�

The remedy �see ��� for analysis and details� is to eliminate the short wave�
length components of the initial conditions of the � wave equation by de
n�
ing them on a coarse 
nite di�erence grid of twice the step�size� �h�
We will require two operators for the passage from grid to grid�

� an interpolation operator and
� an injection operator�
The interpolation operator maps the coarse grid onto the 
ne grid�

Ih�h � �
�h �� �h

and is de
ned by

�h�i��j � ��hij

�h�i���j �
�

�

�
��hij " ��hi���j

�
�hi��j�� �

�

�

�
��hij " ��hi�j��

�
�h�i����j�� �

�

�

�
��hij " ��hi���j " ��hi�j�� " ��hi���j��

�
for � 	 i� j 	 I�� � � where I is the number of elements in the 
ne grid�
The injection operator maps the 
ne grid into the coarse�

I�hh � �h �� ��h
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by simply assigning the 
ne grid values to the corresponding coarse grid
points

��hi�j � �h�i����j��

for i� j � �� � � � � I � ��
We will now describe the conjugate gradient solution of the approximate

problem� The discrete space� Eh� which approximates E is simply de
ned
on the discrete domain ��h at the points of the 
nite di�erence mesh� The
L���� inner product� ��� ��h is de
ned by a trapezoid integration over the
discrete domain�
We approximate the fundamental equation  e � f by the following linear

variational problem in Eh�

Find eh � Ehsuch that

h h��teh� �hih � hu�� ��hi �
Z
	
u���h dx� ��h � f��h� ��hg � Eh� ������

where h�� �i denotes the duality pairing between H����� and H�
����� It can

be shown �see ��� 
�� that the discrete operator h h��t�� �i is symmetric and
positive de
nite for T large enough� and hence problem ������ can be solved
by a conjugate gradient algorithm operating in Eh�

t=T

t=0

φ=0 φ=0

Ω

0 1 . . . I+1

0

1

.

.

.

I+1

Ω
Γ

Σ = Γ  x (0,T)

Figure �� Discrete space�time domain for solution of �� � ��

We now describe this algorithm� Suppose �to 
x ideas� that � � ��� ���
��� �� and let the number of elements in each coordinate direction of the 
ne
grid be I �see Figure ��� Let the space discretization� h � ���I " ��� and
the time discretization� �t � T�N � where T is the 
nal time and N is the
number of time steps� In order to satisfy the stability condition of the 
nite
di�erence scheme� we must have �t 	 h�

p
�� A point in �h will be denoted

Mij � fih� jhg where i� j � �� �� � � � � I " �� Then �nij � ��Mij � n$t�� The
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nite di�erence approximation of the � wave equation is

����
���

�n��ij � ��nij " �n��ij

��t�� �$h�
n � � for � 	 i� j 	 I� � 	 n 	 N�

��ij � e��Mij�� �
�
ij � ���ij � ��t e��Mij� for � 	 i� j 	 I� n � ��

�nkl � � for Mkl � �� � 	 n 	 N�

������

where $h is the discrete ��point Laplacian operator� The 
nite di�erence
approximation of the � wave equation which is solved backwards from t � T
to t � � is���������
��������

�n��
ij � ��n

ij " �n��ij

��t�� �$h�
n � � for � 	 i� j 	 I� n � N� � � � � ��

�N
ij � ��

�N��
ij � �N��

ij

��t � � for � 	 i� j 	 I� n � N�

�n
kl �



��kl for Mkl � ��� � 	 n 	 N�
� for Mkl � � n ��� � 	 n 	 N�

������

where the approximation to the normal derivative ��
�n j� � �� is de
ned by

a second order di�erence �see Figure ��

��kl �
��

�n
�Mkl� �

��E�� ��W �

�h
�

Now� �tt � � implies $� � � on �� So

��W � " ��E� " ��S� " ��N�� ���M�

h�
� ��

which gives ��E� � ���W � �since everything else is zero on the boundary�
and hence we obtain

��kl �
��

�n
�Mkl� �

��M�� ��W �

h
� ������

W  M

 N

 S

 E

Ω
Γ

Figure �� Discrete approximation to the normal derivative ����n�

ESAIM� Cocv� May ����� Vol� 	� �
	����



GEOMETRICAL BOUNDARY CONTROLLABILITY ���

The discrete algorithm is then�
Algorithm CG�h

Step 
� Initialization�

� e��� e
�
� are given on the coarse grid�

� solve the discrete forward wave equation ������ for n � �� �� � � � � N on
the 
ne grid� initialized by

��� � Ih�he
�� ��� � ���� � ���t� Ih�he���

and store �N� and �N��
� �

� for n � N�N � �� � � � � � compute �n� � ��n� � �n��
� by integrating back	

wards in time as follows�
� if n � N � compute ��N� using �������
� else �n 
 N�

� 
rst compute �n� by solving for one time step backwards on
the 
ne grid

�n� � ��n��� " �n���

��t�� �$h�
n
� � � for � 	 i� j 	 I

initialized by the stored values �N� and �N��
� �

� then ��n� using �������
� endif�
� solve ������ on the 
ne grid for �n��

� using �n
� � ��n� on ���

� calculate the residual g� � fg��� g��g � Eh by
� solving on the coarse grid

�$hg
�
� � I�hh

��� � ����
��t � I�hh u� for � 	 i� j 	 I� ������

g�� � � for Mij � ��
� then setting

g�� � I�hh u� � I�hh ��� for � 	 i� j 	 I " � �

� if g� � � or is small� set eh � e� and STOP� if not� set the 
rst search
direction w� � g� �steepest descent��

Then for k � �� �� �� � � � assuming that ek � gk� wk are known� compute
the next iterates ek��� gk��� wk�� as follows�
Step �� Descent�

� solve the discrete forward wave equation ������ for %�nk � on the 
ne grid
n � �� � � � � N � initialized by

%��k � I
h��
h w�

k�
%��k � %���k � ���t� Ih��h w�

k

and store %�Nk and %�N��
k �

� for n � N�N � �� � � � � � compute %�nk � � %�nk � %�n��
k by integrating back	

wards in time as follows�
� if n � N � compute � %�Nk from %�Nk using �������
� else �n 
 N�
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� 
rst compute %�nk by solving for one time step backwards on
the 
ne grid

%�nk � �%�n��k " %�n��k

��t�� �$h
%�nk � � for � 	 i� j 	 I

initialized by the stored values %�Nk and %�N��
k �

� then � %�nk from %�nk using �������
� endif�
� solve ������ on the 
ne grid for %�n��

k using �n
� � � %�n� on ���

� calculate the residual %gk � f%g�k� %g�kg � Eh by
� solving on the coarse grid

�$h%g
�
k � I�hh

%��k � %���k
��t for � 	 i� j 	 I� ������

%g�k � � for Mij � ��
� then setting

g�� � �I�hh %��k for � 	 i� j 	 I " � �

� minimize ������ in the search direction by calculating

	k �
kgkk�Eh

h wk�wkih �
kgkk�Eh

�%gk�wk�Eh

�

where the inner product and norm are the discrete analogues �obtained
by trapezoid integration� of ����� and ����� respectively�

� update all quantities
ek�� � ek � 	kwk�

�k�� � �k � 	k %�k�

�k�� � �k � 	k %�k�

gk�� � gk � 	k%gk�

Step �� Convergence test and new descent direction�

� if gk�� � � or is small� set e � ek��� � � �k��� � � �k�� and STOP�
� else

� calculate


k �
kgk��k�Eh

kgkk�Eh

�

� de
ne the new conjugate search direction as

wk�� � gk�� " 
kwk �

� set k � k " � and go to step ��

Remark 	��� We repeat here two basic remarks made in ��� concerning the
complexity of the above discrete algorithm�

�� �The above algorithm may seem complicated at 
rst glance ����� but
the only non�trivial part of it is the solution �on the coarse grid� of the
discrete Dirichlet problems ������ and ������� An interesting feature
of the algorithm is that the simultaneous backward integration �in the
descent step� of the � discrete wave equations for � and � provides a

ESAIM� Cocv� May ����� Vol� 	� �
	����
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very substantial computer memory saving ����� The saving would be
more substantial for large T and would be an absolute necessity for
��d problems��

�� The above remark also shows the interest of the HUM approach from
a computational point of view� In the original control problem� the un�
known is the control g which is de
ned over �� � ������ T �� using the
HUM� the unknown is the solution e of  e � f which is approximated
by eh and is substantially smaller in terms of memory requirement�

�� Norms of the control g and the energetic cost of

control

The following discussion is in fact related to the numerical results pre�
sented in the following section� We examine here the relationship between
the norm of the control g and the control time T �

���� Norms of control

The HUM is formulated in such a way that the control obtained minimizes
the objective function

J�g�T � �
�

�

Z
��

jgj� d��

where �� � �� � ��� T �� This is an L� norm which we denote kgk������ We
de
ne an L� norm of g as follows�

kgk���� �
Z T

�

�Z
��

jgj� dx
����

dt �

Z T

�
kg�t�kL����
 dt�

This is the standard L���� T �L������ norm� The results of the simulations
on the unit square are shown in Figure �� where we compare the quantities�
kgk���� �denoted as L� norm��

p
Tkgk���� and kgk���� �denoted as L� norm�

as functions of T �
We observe the following �see Figure � and also Figures �� � and ���� the

L� norm is a decreasing function of T � whereas the L� norm is approximately
constant and thus independent of T � On multiplying the L� norm by the
square root of T � we obtain a behavior similar to that of the L� norm� It
was already noted in �
� that

p
Tkgk���� s c�

but we can see now that the constant c is closely related to the L� norm�
kgk����� In fact� our observations lead us to a relation

p
Tkgk���� � kgk���� " c � �����

where c is a positive constant� We are thus led to propose the L���� T �L������
norm as a cost function for the HUM�
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������ The �
D case� We can investigate the above relation in the very
special case of one space dimension� We consider the �vibrating string�
described by

utt � uxx � � in � 
 x 
 �� �����

u��� t� � g�t� � u��� t� � � �

u�x� �� � a�x� � ut�x� �� � b�x� �

where the functions a and b are given in L� � H�� and g�t� is the control
function� The solution of ����� is of the form

u�x� t� � ��t� x� " ��t" x��

where ��� �� satisfy the relations

���x� " ��x� � a�x�� ����x� " ���x� � b�x�� � 
 x 
 ��

��t� �� " ��t" �� � �� �t � R�
g�t� � ��t� " ��t�� �t � R�

From the above relations we deduce that ��t� � ���t� �� and that
���x�� ��x� �� � a�x�� � 
 x 
 �� �����

����x�� ���x� �� � b�x�� � 
 x 
 ��

Thus ��t� is given up to a constant in the interval t � ���� ��� and the
control function g satis
es

g�t� � ��t�� ��t � ��� �����

In particular� the set G of control functions g with support in ��� T �� driving
����� to rest at time T �

G �
�
g � L���� T � � the solution u�x� t� of ����� is � for t � T

�
�

is equal to

G � fg�t� � ��t�� ��t � �� � � � &g
with

& �
�
� � L����� T � � �jt�T�� � � � �jt�� � ��

�
�

where �� is the solution of ������
Taking T � ��N "�� with N an integer� and denoting by �j the function

on ��� �� given by �j�t� � ��t " ��j � ��� for � 	 j 	 N � we have �with
�N�� 
 ��

kgk�L����T 
 �
N��X
j��

k�j � �j��k�L�����
�

kgkL����T 
 �
N��X
j��

k�j � �j��kL�����
�

In particular� the optimal control in L���� T �� g�� is unique and is character�
ized by

�j � �j�� � ��
N " �

� � 	 j 	 N�
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Thus we get

inf
�kgkL����T 
 � g � G

�
� kg�kL����T 
 �

�p
N " �

k��kL������
�

On the other hand� the triangle inequality gives

inf
�kgkL����T 
 � g � G

�
� k��kL������
 � kg�kL����T 
�

From these facts we conclude that for T � ��N " ��

inf
�kgkL����T 
 � g � G

�
� k��kL������

	 p

�k��kL������
 �
p
T inf

�kgkL����T 
 � g � G
�

and the optimal L� control is also L� optimal� We observe also that the set
of L� minimizers�

g � L���� T � � kgkL����T 
 � k��kL������

�

is in
nite for N 
 � and that the choice g� � ������
���t � �� is both L�

optimal and supported in the smallest possible time interval� Notice also
that we obtain a relation of the type ������

p
Tkg�kL����T 
 � kg�kL����T 
 " c�

where c is the constant

c �
p
�k��kL������
 � k��kL������
 
 ��

������ The general case � interior control� In order to try and ex�
plain ����� in the general case� we 
rst consider the wave equation in R�

with an �interior� control� g� acting on � � �

���t � c�$�u � g in ��

with the zero initial condition

ujt�� � �� utjt�� � ��
We then have the following energy estimate

p
E�u��T � 	

Z T

�

�Z
	
g� dx

����
dt�

This is easily obtained by rewriting the system in the form

��t �A�U � G

where

U �

�
u
�u
�t

	
� G �

�
�
g

	
and the operator A is de
ned by

A �

�
� I

c�$ �

	
�

This system then has the solution

U �

Z t

�
exp�t�s
AGds
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and immediately gives the L� estimate

jU jH 	
Z t

�
jGjH ds�

������ Dimensional analysis� A qualitative justi
cation of the suitability
of this L� norm is given by the following dimensional analysis� De
ne the
physical energy as

E �

Z
	
jutj� " jcrxuj� dx�

then� denoting the dimensions of a quantity by ���� we want �E� � kg m�s���

This implies that �u� � kg���� Thus the dimension of the control must be

�g� � kg���s��� Now our L� norm�

kgkL� �
Z T

�

�Z
	
g� dx

����
dt�

has a dimension �squared� of kg m� s�� which is precisely that of �E�� How�
ever� the criterion optimized by the HUM

kgkL� �
�Z T

�

Z
	
g� dx dt

����

has a dimension �squared� of kg m� s�� and this is an energy per unit time
or a power� Physically then� it is reasonable that the power decreases as we
extend the time interval� but it is the work that provides a better estimation
of the total energy spent in controlling the system� Thus� extending the
control interval ��� T � leads to a decrease in the power �and consequently a
more optimal solution in the L���� norm�� but a constant expenditure of
energy�
The graphs �see below� show that the L��norm is approximately constant�

If we de
ne

A �
p
TkgkL���
� B � kgkL����T �L���



then since these two quantities have the same homogeneity� we have by the
Cauchy�Schwarz inequality

B 	 A�

What we observe with our choice of data is that

B � A

and that both are approximately constant� This is striking since it implies
that once we have found an optimal control� g� all other controls for larger
T can be obtained directly from this one� This can be explained by the
following argument� Suppose we have found a control �optimal� gT such
that

gT � u���� �
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in time T � Let us now extend the time axis from � to �T � Then by linearity
the following control function will drive our system to rest�

g�T �



�
�gT � � 	 t 
 T
�
�gT � T 	 t 	 �T �

The trivial estimation givesZ �T

�

Z
�
jg�T j� 	

Z T

�

Z
�




gT
�




� " Z �T

T

Z
�




gT
�




� � �

�

Z T

�

Z
�
jgT j��

which implies that

p
�T

�Z �T

�

Z
�
g��T

����

	
p
T

�Z T

�

Z
�
g�T

����
�

However� the quantity on the right is approximately constant in the sim�
ulations� i�e�� it is independent of T � Thus we must have equality in the
above estimate� Hence for any extension of the time axis to T � � T � we can
construct the new control based on the interval ��� T � by linear combinations
of gT since all the control information is already contained in the function
gT �

������ The general case � boundary control� We have not yet dis�
cussed the case where g is on the boundary �� We have a di	culty in
obtaining results analogous to the interior case due to the spaces in which
g must lie� Here the problem is the following�

���t � c�$�v � � in ��

with the non�zero boundary condition

vj� � g� �����

where g � L����� The solution �v� vt� � �L�� H���� The dual problem

���t � c�$�u � � in �

has its solution �u� ut� � �H�
� � L

��� Taking inner products and using the
duality� we obtainZ T

�

Z
	

 ���t � c�$�v� u ��

Z T

�

Z
�
g�nu �

Now de
ning

E�u� � juj�H�
�
" jutj�L� �

the fact that ����� is well�posed results from the estimate

c�
Z T

�

Z
�
j�nuj� 	 CE�u��

where C is a constant� Our problem is thus well�posed with v � C���� T �� L��
�C����� T �� H��� if g � L����� T �� �� but not if g � L���� T �L������ which
is after all a good justi
cation �at least for theoretical purposes� to work in
L�����
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������ Linear elasticity system� We note that also in the case of the
linear elasticity system �see ���� we consistently 
nd that

p
TkgkL���
 s c

and in fact the constant can be estimated numerically by simply setting
T � �� This is possible on condition that we have geometric controllability
at time t � ��

���� The energetic cost of control

First we introduce the following notation for the discrete norms�

� k�k��� is the L���� T � L����� norm� k�k��� is the L���� norm�
� k�k��	 is the L���� norm�
� j � j��	 is the H�

���� norm�
� k�k���	 is the H����� norm� where kvk���	 � jwj��	 with jvj��	 �

�
R
	 jrvj� dx���� and w � H�

���� is the solution of the Dirichlet problem
�$w � v in �� w � � on ��

As a result of the dependence of the norms of the control on the control
time �T � as discussed above� and following the abstract analysis of Appendix
A� we 
nd it appropriate to introduce a new criterion for estimating the
optimal quality of the solution obtained� We are led to the following

Definition ��� �ECV� ECF�� The energetic cost vector �ECV� is de
ned
as

ECV �

� kgk���
ku�k��	 �

ku�T �k��	 " kut�T �k���	
ku�k��	

	

and the energetic cost factor �ECF� is the product of its two components

ECF �

� kgk���
ku�k��	

��ku�T �k��	" kut�T �k���	
ku�k��	

�
�

This factor takes into account the cost of applying the control �in the
L� norm� as well as the cost incurred in driving the system to a 
nal state
which is close to zero� It is normalized by the norm of the initial data to al�
low comparison between di�erent cases ��controllable� and �uncontrollable�
data�� The smaller the value of the components of the ECV� the better the
quality of the solution which then has

�� a smaller control energy and
�� a 
nal state closer to rest�

In the numerical results we will also present the ECF since it provides
us with a useful scalar value and enables comparisons between cases with
di�erent geometries and initial conditions�

�� The wave equation on the unit square� numerical study

Before presenting the numerical results we will give an overview of the
di�erent geometrical con
gurations studied and discuss the convergence cri�
terion and the discrete norms used� Other aspects of convergence are con�
sidered in Appendix C�
ESAIM� Cocv� May ����� Vol� 	� �
	����



GEOMETRICAL BOUNDARY CONTROLLABILITY ���

���� Geometry of domains and control boundaries

In the numerical simulations that follow� we study three geometrical sit�
uations � see Figure ��

�� a square domain with varying control boundary�
�� squares with cavities giving rise to trapped rays�
�� an elliptical region which exhibits di�erent stability properties along
the minor and major axes�

cba

d e f

Figure �� Geometries� squares �a�b�c�� cavities �d�e� and el�
lipse �f� � no control on dotted boundaries� rays of geometric
optics are indicated by thick arrows�

���� Convergence criterion and discrete norms

�� The conjugate gradient algorithm is initialized by e�� � e�� � �� In
other words� the initial guess to the solution eh is zero�

�� The stopping criterion� we use

kgk��k�Eh

kg�k�Eh

	 �

where � depends on the machine precision� In our calculations we use
� � ����� On a supercomputer this precision can be increased to �����

as was done in ���� In cases with oscillatory initial data �see below�� we
reduce this tolerance to ���� � this being the smallest value attainable
in these cases� Examples can be found in Appendix C�

�� In the Tables we denote by u�c and u
�
c the calculated values of the initial

conditions u� and u�� They are in fact the discrete analogues of the
converged values of ���� and �	

�t ����
�� We use the discrete norms de
ned in the previous section�
�� The quantity kgk��� is the L� norm over time of kg�t�kL����
 � this
last function is plotted against time and shows how the energy of the
control varies in time�

�� The � quantities
ku��u�ck���
ku�k���

and ku� � u�ck���	 measure how well the

initial conditions of the original wave equation are recovered by the
algorithm �recall that they are obtained from the � equation��
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� The � quantities
ku�T 
k���
ku�k���

and kut�T �k���	 are obtained by solving

the original wave equation for u� starting from the given initial data�
and employing the exact boundary control� g� which has just been
calculated by the algorithm� They show how well the calculated control
achieves the desired terminal state u�x� T � � ut�x� T � � ��

Note that all norms involving the time derivative of u are not normalized
since we use a zero initial condition on �u��t�

���� The test problem

In order to verify the code� the test problem introduced in �
� was solved�
This problem consists of an analytically obtained control acting on the
boundary of the unit square� Results comparable to those of ��� were ob�
tained� For a typical test run with h � ����� �t � h�

p
� � T � ���� and

� � ����� the algorithm converged after �� iterations and the errors were��e� � e�c
��
L��	


� �������
��e� � e�c

��
H��	


� ���������e� � e�c
��
L��	


� �������

���� Initial data

In order to pursue our study of the geometrical aspects of controllability�
we need a rather versatile function as the initial condition� We will take the
following complex initial data for the wave equation�

u��x� y� � u�x� y� �� � e�
x�x�x�

��
y�y�y�
��i��x�x�x�
��y�y�y�

� �����

u��x� y� �
�u

�t
�x� y� �� � ��

We note the following properties of this function �see the various 
gures in
the sequel��

� it has support centered around the point �x�� y���
� the vector � � ��x� �y� will give a preferred direction of propagation�
� the vector � � ��x� �y� will give support in a desired direction�
This function will enable us to study numerous phenomena�

� the dependence of the control on the direction � � ��x� �y� �
� the interaction between this direction and the geometry of the region
as well as the geometry of the control boundary�

� oscillatory data which has �compact� support in one coordinate direc�
tion and rapid oscillation in the other�

���� Control on the entire boundary of the unit square

The results of the simulations using smooth initial data

u��x� y� � e�����x�x�

���y�y�


�
� u��x� y� � ��

with �x�� y�� � ����� ���� are shown in Figure �� where we compare the
quantities� kgk��� �the L� norm��

p
Tkgk��� and kgk��� �the L� norm� as

functions of T �
We observe the phenomenon referred to in the previous section �see Figure

� and also Figures �� � and ���� the L� norm is a decreasing function of
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Figure 	� L���� T �L����� and L���� norms of the boundary
control as functions of the control time T for control on the
entire boundary of a square�

T � whereas the L� norm is basically constant with a slight increase over T �
On multiplying the L� norm by the square root of T � we obtain a behavior
similar to that of the L� norm�

���� Control on a part of the boundary of the unit square

Using the function ����� we will consider

� smooth� exponential initial data and
� oscillatory initial data�

g=0θ

οΓ/Γ

Γ
o

Figure �� The square with zero control on eastern boundary�
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������ Exponential initial data� The 
rst series of runs �see Table ��
on the unit square shows the e�ect of the direction of � on the control� We
consider two control geometries�

� control on the entire boundary� denoted by ����
� control on the north� south and west boundaries� denoted by ��� �g �
� on eastern boundary��

In all runs we set � � ��� �� and use a rotation of angle � �� 	 � 	 ���� to
change the direction of propagation of the initial data� For the ��geometry
we consider 
rst the dependence on T for � � � 
xed� then the dependence
on � for T � ����� 
xed� These results are plotted in Figures � and 
 �

L2 norm          

L2 norm * sqrt(T)

L1 norm          
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Figure 
� L���� T �L����� and L���� norms of the boundary
control as functions of the control time T for the open square
��

ESAIM� Cocv� May ����� Vol� 	� �
	����



GEOMETRICAL BOUNDARY CONTROLLABILITY ���
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Figure �� L���� T �L����� and L���� norms of the boundary
control as functions of the angle � �� 	 � 	 ����for the open
square ��

In the Table �� we give detailed results of some of these simulations�

G T � kgk��� kgk���
ku��u�

c
k���

ku�k���

ku�T �k���
ku�k���

ECV

� ���� � ������ �����	 ����
 ����
 ���
�� ����
� �����

���� �
� ������ �����	 ����� ����� ���
�� ����
� ����� �a�

� ���	 � ������ ������ ����� ����� ������ ���

� �����

��	
 �
� ������ ������ ����� ����
 ������ ���	
� ���
� �b�

���� �
� �����	 ������ ����� ����� ������ ����
� �����

���� � ������ ���
�� ����
 ����	 ����	� ����
� �����
���	 � ������ ������ ����	 ����� ����	� ����
� �����
���� � ������ �����
 ����� ����� ������ ����
� ����� �c�


��� � ������ ���
�� ����� ����� ������ ����
� �����
	�	� � ���	�� ���
�� ����� ����� ����	� ����
� �����
���� � ����	� ���
�� ����� ����� ������ ����
� �����
���� �

� ����
� ���
�� ����� ����� ����	� ����
� �����

���� �
� ������ ������ ����� ����� ������ ����
� ����� �d�

���� ��
� �����
 ������ ����� ����� ������ ����
� �����

���� �
�

����
� ����
� ����� ����� ����	� ����
� �����

Table �� Complex data on the unit square with � control
geometries� convergence criterion� � � ����� � � ���� ����
� � ��� ���N � ��� The ECV column gives its � components
followed by their product� Notes� �a
 T is minimal here� �b


the smallest T for control� varying �� �c
 for � � �� dependence
on T � �d
 for T � ����� dependence on ��
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Remark 
���

� We need less time to control from the entire boundary than from a
part� as expected�

� As in the case of control on the entire boundary� it is the L� norm and
hence the ECF which gives a better cost function � see Figure ��

� When the direction of propagation is perpendicular to the uncontrolled
boundary� the time needed to control increases when compared with
the direction parallel� The case where the angle is ��� is intermediate
and there is a clear functional relationship between the � norms and
the angle � see Figure 
�

������ Oscillatory initial data� We now impose oscillatory initial data
with compact support in the y�coordinate direction and rapid oscillation in
the x�direction as shown in Figure �� Note that this function is real� We
consider two di�erent geometries for the control boundary�

� control on the west and south boundaries� denoted by �L� � in this
case we have geometric control�

� control on the north and south boundaries� denoted by ��� �g � � on
eastern and western boundaries� � in this case there is no geometric
control�

Detailed results are presented in Table �� The norms are plotted in Fig�
ure ��
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Figure �� Oscillatory initial condition� compactly sup�
ported in y and rapidly oscillating in x� Notes� this function
is the product e����y�y�
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L2 norm          
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Figure �� L���� T �L����� and L���� norms of the boundary
control as functions of the control time T for oscillatory initial
condition on ��� control geometry�

G T kgk��� kgk��� ku��u�ck���
ku�k���

ku�T 
k���
ku�k���

ECV

L ���� ����
� ���

� ����� ����� ������ ������ ����� �a


���� ����
 
��
� ����� ����� ����
� ������ �����
���� ����� 
���� ����� ����� ��
��� ������ �����
��
� ����� 
���� ����� ����� ������ ������ ����� �b


���� ����� 
���� ����� ����� ����
� ������ �����

�
� ����� 
���
 ����� ���
� ����
� ������ �����

Table �� Oscillatory data on the unit square with � control
geometries� � � ��� ����� � ��� ��� � � �� N � ��� The ECV
column gives its � components followed by their product�
Notes� �a
 convergence criterion � � ����� T is minimal� �b


� � ���� but not all runs converged � they were stopped
at point where the convergence criterion started to increase
�between � and � � ����� � see Appendix B�

Remark 
���

� If we compare with the results of Table � we see that the oscillatory
data takes longer to control and approximately �� times the energy�
the 
nal state is one order of magnitude larger and the overall ECF
�energetic cost factor� is about ��� times larger�

� Comparing the � cases of this table� we observe that in the absence of
geometric control ������ the ECF is about �� times larger than when
we do have geometric control ��L��� the 
rst component �cost of the
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control� g� is �� times bigger and the cost of the 
nal state is twice as
big�

� We must have at least one control boundary perpendicular to the di�
rection of the oscillating part of the initial data in order to obtain good
convergence � this is the geometric condition�

� Even in the bad case �control on N and S only� we have the same
behavior of the L� norm of g as a function of T � this phenomenon is
thus independent of the control geometry�

� The comparison of kg�t�kL���
 for the � geometries is interesting �see
Figures �� and ���� the norm of g has an apparently chaotic form for the
bad case� whereas when we have one control boundary perpendicular�
there is a coherent envelope � this indicates a dependence of the form
of kg�t�kL���
 on the control geometry�

� The results for the N�S control boundary are not as well converged as
the others � in fact we have used a convergence criterion of ���� here�

� In ��� and ��� explicit observability inequalities with an exponential
factor of the form en

�

were obtained for the boundary controllability
of a linear hybrid system on the unit square� where n is the frequency
of the oscillations in the x�direction�
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Figure ��� kg�t�k for �L� control geometry with the oscil�
latory initial condition�

�� The wave equation on other domains� numerical study


��� The square cavity

The square cavity presents two obvious control boundaries� the internal
boundary� �� �hole� and the external boundary� �� � see Figure ��� We
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Figure ��� kg�t�k for ��� control geometry with the oscil�
latory initial condition�

Γ

Γ

1

2

Figure ��� The square cavity�

compare these in Table �� Note that with control on the outer boundary we
have geometric controllability� whereas when we control on the hole� there
is no geometric controllability�
The three series of animations in Figures ��� �� and �� compare the solu�

tion of the wave equation without any control �Fig� ��� with that obtained
when a control is applied

� on the exterior boundary �� �Fig� ��� and
� on the interior boundary �� �Fig� ����
The norms for the �� control boundary are plotted in Figure ���

Remark ����

� Controlling on both boundaries is no better than controlling on the
exterior boundary only � there is a very slight di�erence in the ECF's�
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G T kgk��� kgk���
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�� ���	
� ����	
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 ������ �����	 ������ ����
� ���
�
��	
 ���
�	 ������ ������ �����
 ������ ���	
� ����� �a�

���� ����		 �����	 ������ ������ ������ ���

� ����	

��� ������ ������ ������ ������ ������ ���

� �����
	�	� ����	� ������ ������ ������ ������ ���

� �����

�� 
��� ����

 ��
�	� ������ ���	�� ������ ����
� �����

Table �� Exponential data on the square cavity with �
control geometries� convergence criterion� � � ����� � �
���� ���� � � ��� ��� �x�� y�� � ����� ����� N � ��� �� � ex�
ternal boundary� �� � internal boundary� Notes� �a
 � � �

xed and T varying�

� Controlling on the interior boundary requires substantially more time
and a much larger control energy � the ECF is approximately �� times
larger �cost of control is � times larger� cost of 
nal state is twice as
large��

� We once again 
nd the expected dependence of the norms on T � so this
dependence appears to be independent of the domain geometry and of
the control geometry�


��� The square with two cavities

This example is inspired from the �bowling ball� case� We now have
three possible control boundaries� the two holes ��� and ��� and the ex�
terior boundary ����� The 
ne discretization mesh is shown in Figure �
�
In addition to varying the geometry of the control boundary� we will also
examine the e�ect of the direction of propagation of the initial data�
Results are presented in Table ��
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��� �b�

Table 	� Exponential data on the ��cavity square with var�
ious control geometries� �x�� y�� � ����� ����� � � ����� �����
� � ��� ���N � ��� �� �external boundary� ����� � internal
boundaries� Notes� �a
 the minimal control time T � ��

�
�b
 not converged after �� iterations� criterion �c � � � �����
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Figure ��� Solution of wave equation on square cavity � no control�

Remark ����

� Controlling everywhere requires the smallest T and gives a small value
of the ECF�

� Controlling only on the outer boundary is comparable in cost to con�
trolling on the � inner boundaries only�

� The dependence on the angle � is interesting� when controlling on the
outer boundary� the ECF decreases as � varies from � to ��� whereas
when controlling on the � cavities the ECF increases � this shows the
e�ect of controlling in the direction perpendicular to the propagation
of the initial data�
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Figure �	� Solution of wave equation on square cavity �
control on ���

� Controlling on only one cavity is expensive and convergence is di	cult
to achieve � the cost of the control� g� is about �� times larger and the

nal state is � times as big when compared with the case of control on
the whole boundary�
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Figure ��� Solution of wave equation on square cavity �
control on ���


��� The ellipse

Since the boundary of the domain � is no longer straight� we need to
modify the 
nite di�erence scheme� Details of the modi
cations can be
found in Appendix B�
On the ellipse we will 
rst study the case of a nice exponential initial

condition and then we will consider oscillatory initial data on two control
geometries�
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Figure �
� L���� T �L����� and L���� norms of the bound�
ary control as functions of the control time T for exponential
initial condition on the square cavity with control on the
outer boundary �����

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

xy

|u
(x

,y
;0

)|

Figure ��� Exponential initial condition on 
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�� g � � on the extremities of the minor axis �y� � denoted by l � with
the data rapidly oscillating in the y direction �see Figure ����

�� g � � on the extremities of the major axis �x� � denoted by � � with
the data rapidly oscillating in the x direction�

Results are presented in Tables � and ��
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Figure ��� Oscillatory initial condition for the ellipse � N����
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Table �� Exponential data on the ellipse with control on
entire boundary� N � ��� � � ���� ���� � � ��� ��� Notes�
�a
 this value of T is too small for control� �b
 for this T � the
ECF is minimal�
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Table 
� Oscillatory data on the ellipse with � control ge�
ometries� N � ��� Notes� �a
 � � ���� ����� � � ���� ���
� � �� �b
 � � ���� ����� � � ���� ��� � � ����

Remark ����

� It is much more di	cult to control the oscillatory data � as expected
� the ECF's for the exponential data are � to � orders of magnitude
smaller than those of the oscillatory cases�

� If we look at the 
rst components of the ECV �cost of control� we
see that the oscillatory cases give values � to � times larger than the
exponential cases� the second components �cost of 
nal state� are ��
to ��� times larger due mainly to the high values of ku��T �k���	�

� For the exponential data� we again obtain the previously remarked
behavior of the norms of g � the L��norm is basically constant with T�
whereas the L��norm is decreasing�

� The ��� case has ECF's one order of magnitude smaller �factor of �
in g� factor of � in u�T �� than those of the �l� case � the explanation
comes from geometrical optics� the trajectory of a wave propagating
along the major axis is less stable than that of a wave in the minor
axis direction� thus the wave of the minor axis tends to remain in the
vicinity of this axis after re�ections� and hence stays in the zero control
region� on the other hand� due to the instability of the major axis wave�
this wave sees the non�zero control boundary more often and is thus
more easily controlled�

� The ��� case is optimally controlled �minimal ECF� for small values
of T �around T � �� whereas the �l� case needs much more time and
has a minimal ECF around T � ��

� The graphs of kg�t�kL� for the � oscillatory cases are interesting to
compare �see Figures �� and ����
� the peak amplitudes of the ��� case are half as large as those of
the �l� case since this case is more di	cult to control�

� the periods of the peaks re�ect quite precisely the control geometry
as well as the geometry of the ellipse� for the ��� case the period
is about � which corresponds to the length of the major axis� for
the �l� case the period is about ��� which is the length of the
minor axis�
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� We cannot directly compare the ECF's of the ellipse with the previous
cases �square geometries� due to the change in numerical method �see
Appendix B�� however in a forthcoming paper ��� we will use overlap�
ping grids which will treat all geometries with the same precision� when
comparing Tables � and � we note that the g�cost is about the same�
but the u�T ��cost is �� times larger�

	� Summary of numerical results

In this section we present two Tables� 
 and �� which will e�ectively
summarize the numerical results of the previous sections�

G T kgk��� ku�T 
k���
ku�k���

ECV

�� � �� � �� ���� ������ �����
 ������ ������ �����
�� ���� ������ ������ ������ ������ �����

�� � �� ���� ������ �����
 ������ ������ ����

�� 
�
� ���
�� ������ ������ ������ ��
�


Table �� Exponential data on the ��cavity square with var�
ious control geometries� �x�� y�� � ����� ����� � � ����� �����
� � ��� ���N � ��� �� �external boundary� ����� � internal
boundaries�

Table 
 summarizes the results obtained in the two�cavity case� Here we
clearly observe the following�

�� as the size of the control boundary decreases� the time needed to control
increases�

�� as the control boundary becomes smaller� there are more and more
trapped rays and the control energy in the ECV �
rst term� increases

rst by a factor of � as we move from the entire boundary to the internal
boundaries only� and then by a further factor of � as we control on one
cavity only�

�� the overall ECF �product of the two components� increases correspond�
ingly and thus indicates well the loss of geometric controllability�

G T kgk��� ku�T 
k���
ku�k���

ECV

�� � ������ ����
� ������ ������ �����
� �����
 ������ ������ ������ �����

l � ������ ����
� ������ �
��� ���
� ���
�� ������ ���
�� ������ �����

Table �� Oscillatory data on the ellipse with � control ge�
ometries� N � ���

In Table � we present the principal results for the ellipse� We observe
that�
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Figure ��� kg�t�k for oscillatory data on the ellipse with
zero control on the major axis�
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Figure ��� kg�t�k for oscillatory data on the ellipse with
zero control on the minor axis�
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�� for the stable ray which propagates along the minor axis� we need a
larger energy to control than for the unstable ray along the major axis�

�� the ECF is very large in the case where we do not have geometric
controllability�


� Conclusions

This extensive numerical study of the geometrical aspects of boundary
controllability has provided us with an improved understanding of the nature
of the control function g� We have observed the following�

�� an L���� T � L����� � norm of g provides a better estimate of the total
amount of energy needed to control a given con
guration�

�� the ECF enables us to compare quantitatively the cost of control for
di�erent control geometries and for di�erent initial conditions�

�� the magnitude of the ECF is related to the geometric controllability�
when the ECF is large� there are trapped rays and we are thus in a
case where there is a loss of geometric controllability�

�� the form of the time dependence of kg�t�kL���
 is related to the geom�
etry and to the controllable or oscillatory nature of the initial data�

We have also been able to corroborate results stemming from geometrical
optics� Namely�

�� that with certain control geometries it is far more di	cult to achieve
the exact controllability because of rays that are trapped � see the
two�cavity square example�

�� and that on an ellipse� a ray propagating along the direction of the
major axis is less stable than one propagating along the minor axis�
whose stability is due to a �focussing� e�ect�

These results are hopefully applicable to the determination of radar sig	
natures for complicated� non�convex geometries where the phenomenon of
trapped rays is a signi
cant factor� Indeed� we plan to implement a fully
three dimensional version of the code on a supercomputer in order to study
this type of problem�

Appendix A� Control on a part of the boundary�

theoretical aspects

We now analyze more precisely what happens in the case of control on a
part of the boundary�
We rewrite our forward wave equation in the form�

���t �$�� � �� �A���

� � f��� ��g � E � H�
����� L�����

� j� � � � �A���

If we de
ne

K��� � �n�j������T 
�
then the operator

K � E � L� ��� � ��� T ��
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is continuous since a direct inequality gives

k�n�kL��������T 

 	 ck�kE �

The semi�norm induced by K on E will be denoted by kj � kj� If T is
su	ciently large� K is injective and kj � kj is a norm on E�
Now� the backward wave equation is given by

���t �$�� � ��
�jt�T � �t�jt�T � �� �A���

�j������T 
 � g� �j�n������T 
 � ��
with g � L���� � ��� T ��� We de
ne now an operator S � L� ��� � ��� T ���
E� as

S�g� � f�jt��� �t�jt��g � E ��

We can easily obtain a relationship between the operatorsK and S by taking
the inner product and integrating by parts�

� �

Z
Q

���t �$�� � dx dt

� ���t��� ���t��T� "
Z T

�

Z
��

��n�� � d� dt�

Hence Z T

�

Z
��

��n�� g d� dt �
 ��� �� � � 
 ��� �� �

�
�
 �� S�g��

and we obtain 
nally our key expressionZ T

�

Z
��

K���g d� dt �
 �� S�g�� � �A���

This expression has a number of consequences� Firstly� we make the follow�
ing de
nition�

Definition A��� The space of controllable data is the image of S� ImS� a
Hilbert space�

ImS � L���� � ��� T ��� kerS�
Secondly� we have the following relation�

ImS dense � K injective �

which follows directly from our key expression �A��� and is true as long
as T � �maxfdist�x����� x � ��g by the Holmgren uniqueness theorem
��dist� is the geodesical distance�� Finally� we have the proposition that the
following statements are equivalent�

�� exact controllability�
�� ImS � E��
�� there exists a constant� c� such that

k�kE 	 ckK�kL��������T 

 � �A���
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The equivalence between the 
rst two statements is the de
nition of exact
controllability� We prove the equivalence between the last two� The proof
uses the Riesz lemma� there exists an h � E� with khkE� � k�kE such that

k�k�E �
 �� h � �

Now� if ImS � E� then h � S�g� with

kgkL����
 	 ck�kE�
But�

k�k�E �
 �� S�g��

�

Z
��

K���g d� dt

	 kK���kL����
kgkL����
�
and thus

k�kE 	 ckK�kL����
�
On the other hand� if

k�kE 	 ckK�kL����

then ImK is closed in L������ Thus

L����� � ImK � �ImK�� �A���

and we can identify E � ImK� Finally� if h � E�� then 
 �� h � is a linear�
continuous form on E and thus of the form


 �� h ��

Z
��

K���g d� dt �

But Z
��

K���g d� dt �
 �� S�g���

thus

h � S�g��

Once we have the estimate �A��� which is equivalent to ImS � E�� we
can formulate the problem of optimal control� �given an h with 
 �� h � a
linear form on E� what is the g with minimal norm such that


 �� h ��

Z T

�

Z
��

K���g d� dt� �

Using the decomposition �A���� we de
ne g� as the projection of g onto
ImK� This is the control of minimal norm� and

g� � K�w�� � �nw�j������T 
 �
So Z T

�

Z
��

�n� �nw� d� dt �
 �� S�g�� �

and if � � w� then


 �� S�g�� �� h �w��� w�i �
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When the estimate �A��� holds and if T is large enough to ensure that K is
injective� then h �e�� e�i is a scalar product equivalent to ��� ��E�
Finally� in the general case� we attribute to E the norm

kK���k �
� kj�kj

and we complete E in this norm in order to obtain the space F � As a result�
 de
nes an isomorphism from F onto F � � ImS� a dense subset of E��

Remark A��� The operator  constructs the control of minimal norm in
L� ��� � ��� T ���
Remark A��� When T is large enough� ImS is dense� and we can always
�in theory� 
nd a control g� such that the 
nal state is of norm �� However�
if we do not have exact controllability �due to geometrical considerations
in particular�� then kg�k can tend to in
nity as � � �� This crucial point
justi
es the introduction of a new criterion for the appraisal of solutions �see
Section ���� which takes into account both

� the closeness ��� of the 
nal state to zero� and
� the norm of the control �kg�k� or energy expended in order to attain
this 
nal state�

Appendix B� Finite differences on a curved boundary

In this appendix we explain the improvement techniques used for the 
�
nite di�erence scheme in the vicinity of a curved boundary� For an accurate
method� we require that the governing di�erence equation applies at every
internal point� The points neighboring the boundary �internal to or on� will
be called boundary points� There are two types� irregular boundary points
�point A in the 
gure� which do not have all � neighbors inside the region�
and regular boundary points whose neighbors are all inside or on the bound�
ary� The approach most frequently recommended in the literature is that
at an irregular boundary point we must modify the regular computational
molecule �the ��point discrete Laplacian� by taking into account the irregu�
lar spacings ��� and ��� and the boundary conditions� This method is quite
complex and gives very disappointing results when the solution becomes os�
cillatory� It is thus not at all suitable for the solution of the wave equation
whose very nature is to propagate oscillatory solutions inde
nitely� without
any damping� This fact was remarked by �����

B��� The �
point finite difference scheme for the wave
equation

Following the advice of ����� we still use an explicit 
nite di�erence ap�
proximation scheme for the wave equation but we approximate the Laplacian
operator by an O�h�� scheme based on � points with a stencil

$h �

�
� � � �
� ��� �
� � �

�
�
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Figure ��� Geometry of an irregular boundary point A�

and thus

�h�$u � � �ui���j " ui���j " ui�j�� " ui�j���

" ui���j�� " ui���j�� " ui���j�� " ui���j��

� ��uij "O�h�� �

This yields the following discretization of the wave equation at an interior
point with coordinates �ih� jh��

un��ij �
�

�
r�
�
uni���j " uni���j " uni�j�� " uni�j��

�
"
r�

�

�
uni���j�� " uni���j�� " uni���j�� " uni���j��

�
" �

�
�� �

�
r�
�
unij � un��ij �

where r � �$t��h and t � n�$t�� The stability condition for this scheme is
given by

$t 	
s
���p��

�
h � ������h�

B��� Implementation

In order to implement the ��point scheme� we extend the mesh to include
all necessary points in the neighborhood of the irregular boundary points�
When the boundary condition is non�zero as in the case of the � wave
equation� we assign the boundary values to the mesh points exterior to or
on the boundary� Recall that these values are actually the normal derivatives
of � at the boundary� These normal derivatives are calculated on the points
just inside the boundary �the irregular boundary points� and then assigned
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to the corresponding exterior points� If an exterior point has no interior
neighbor� it is assigned a zero boundary value�
This arti
ce of extending the mesh does not produce the spurious spikes

which we observe when using a modi
ed scheme which takes into account
the irregular mesh spacings� or when using the usual ��point scheme�

Appendix C� Convergence of the conjugate gradient

algorithm

In this appendix we present some convergence results for our algorithm�

C��� Convergence and mesh size

This 
rst example will study the convergence of the conjugate gradient
algorithm as a function of the mesh size� h� We take a unit square with
smooth exponential initial data and a 
xed control time� T � �� We stop the
iterations at the point where the calculated convergence criterion� �c� starts
to increase� If one would like to think in terms of a constant convergence
criterion� we could say that all results converged to � � � � ����� The results
are presented in Table ��

h T ( �c
ku��u�ck���
ku�k���

ku�T 
k���
ku�k���

ECF

���� � � ��
 � ���� ������ ������ ������
���� � � ��� � ���� ������ ������ �����

���� � � ��� � ���� ������ ������ ������

Table �� Exponential data on the unit square with control
on entire boundary� � � ���� ���� � � ��� ��� T � ��

Remark C��� We can observe the following�

� the number of iterations required to attain �c is independent of the
mesh size�

� as h decreases� the precision of the results increases � from a ��) error
for h � ���� down to an error of about �) for h � �����

C��� Convergence and control time

In order to study the relationship between the convergence and the time
of control� T � we will take the square cavity geometry with control on the
exterior boundary� As before �see Section 
��� we use exponential initial
data localized in the upper right corner� The convergence tolerance is taken
as � � � � ����� In Figure �� we plot the number of iterations required to
converge versus the control time� We observe that for small values of T � we
need a large number of conjugate gradient iterations� whereas from T � �
the number of iterations stabilizes at �� The explanation of this is easily
made� Look again at Figure ��� We observe that around t � ��� the initial
data has made a complete circuit of the cavity� Thus the e�ective diameter
of the geometry must be around this value �assuming a unit velocity� and for
smaller values of T � the control will be di	cult to achieve� Once the minimal
time to control is passed� the control is equally easy for all T � Tmin�
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Figure ��� Number of conjugate gradient iterations versus
the control time� T � for the square cavity�

C��� Convergence and oscillatory initial data

Here we will compare the convergence results of controllable and oscilla�
tory initial conditions� We take a curved geometry� the ellipse of Section

��� In Table �� we present these � cases� We observe the following�

�� with the controllable data� we can converge to �c 
 ���� as was the
case for the square geometries�

�� when the data is oscillatory� we can only attain a tolerance of ���� �
this was also observed on the square geometries�

�� the oscillatory cases require more iterations to converge �from � to ��
than the controllable cases �from � to � iterations��

T ( �c
ku��u�ck���
ku�k���

ku�T 
k���
ku�k���

ECF Note

� � ��� � ���� ����
� ������ ������ �a


� � 
�� � ���� ������ ���
�� ����� �b


� � ��� � ���� ������ ������ ��
�� �c


Table ��� Controllable and oscillatory data on the ellipse�
N � ��� Notes� �a
 controllable data� � � ���� ���� � �
��� ��� �b
 oscillatory data� � � ���� ����� � � ���� ��� � �
�� ��� geometry� �c
 oscillatory data� � � ���� ����� � �
���� ��� � � ���� �l� geometry�
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Appendix D� Use of MATLAB for solution of the wave

equation

In this appendix� we show an example of the usage of the MATLAB pro�
gram� We solve the wave equation on a general domain using a very e	cient
matrix�vector formulation� MATLAB is ideal for this kind of algorithm�
Here is the program�

� Solve the �forward� wave�equation

� BOX�u� � �� in Omega x ���T�

� u � f�x�y� on dOmega� t � � ��� Sigma�

� u � u��x�y��� � du	dt � u
�x�y��� in Omega

�

� by an explicit finite�difference scheme�

��central�differences�

clear

� INPUT�

Ih � input��Number of spatial elements in x�

and y�directions � ��


N � input��� of time steps � ��


� choose a geometry�

K�menu��GEOMETRY���square���L���L w	 circle���disc�����

�annulus���cardioid���butterfly��


if K��
 � GG��S�


elseif K���� GG��L�
 elseif K���� GG��C�


elseif K���� GG��D�
 elseif K���� GG��A�


elseif K���� GG��H�
 else GG��B�


end

� discretization parameters�

I�Ih�

 h��	Ih
 k�h	sqrt���
 r��k	h�


x���h�

 y���h�



�X�Y��meshdom�x�y�


disp�sprintf��Space discretization� h � �g��h��

disp�sprintf��Time discretization� k � �g��dt��

disp�sprintf��Number of time steps�N � �g��N��

disp�sprintf��Final time �T � �g��N�dt��

� Generate and display the grid

G � numgrid�GG�Ih�
�


spy�G�
 title��A finite difference grid ��

disp��pause��� disp�� ��� pause
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� Generate and display the discrete d�Alembertian�

D � delsqr�G�r�


spy�D�
 title��The ��point d�Alembertian��

disp��pause��� disp�� ��� pause

� Assume a ZERO boundary condition

bc�zeros�I�I�


� Set�up initial conditions in interior

x� � ���
 y� � ���


u� � exp� ���� �X�x����� � �Y�y����� � �

u
 � zeros�I�I�


� Plot the initial condition�

mesh�X�Y�u��
 axis��� 
 � 
 ��� ����


title�� Initial condition� u���
 pause


� SOLVE the wave�equation�

� Convert matrix interior �� vector

u� � u��G���
 u
�u
�G���


� First time step�

unm
�u�


un � ����D�u� � k�u



� Map the solution onto the grid and display results

Un � G


Un�G��� � full�un�G�G�����


mesh�X�Y�Un�
 axis���
 
 �
 
 ��� ����


title��� numerical solution for t���num�str���
��k���

pause


� Loop on time�

disp��Looping on time �����

for nt�
�Nt

� Assign boundary condition to un �if non�zero�

� Solve for t�n�


unp
 � D�un � unm



� Update �except for last step�

ESAIM� Cocv� May ����� Vol� 	� �
	����



��� M� ASCH AND G� LEBEAU

if nt � Nt

unm
 � un 


un � unp



end

� Map the solution onto the grid and display results

Unp
 � G


Unp
�G��� � full�unp
�G�G�����


mesh�X�Y�Unp
�
 axis���
 
 �
 
 ��� ����


title��� numerical solution for t���num�str��nt�
��k���

pause


end � of time loop

Some remarks are in order�

�� all routines called are standard� with the exception of delsqr which
is an obvious modi
cation of the standard routine delsq of Matlab to
calculate the discrete Laplacian�

�� Matlab calculates and stores the 
nite di�erence matrix� D� in a sparse
form� and consequently all computations in the time loop use very
e	cient sparse algorithms�

�� in order to speed up the execution times even further� one should
eliminate all conditionals that are inside the time loop�

This routine is at the heart of our HUM program� and thanks to its
obvious e	ciency we have been able to perform all our numerical simulations
on PC's and Sun workstations�

The authors would like to thank the referees for their thorough work and
their constructive propositions which greatly improved the 
nal form of this
article�
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