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NULL CONTROLLABILITY
OF THE SEMILINEAR HEAT EQUATION

E. FERNANDEZ-CARA

ABSTRACT. This paper i1s concerned with the null controllability of sys-
tems governed by semilinear parabolic equations. The control is exerted
either on a small subdomain or on a portion of the boundary. We prove
that the system is null controllable when the nonlinear term f(s) grows
slower than s - log |s| as |s| = +oo.

1. INTRODUCTION

Assume a bounded and connected open set Q@ C RY with regular bound-
ary 0f2, a nonempty open subset O C €2 and a positive number 7" are given.

We will use the following notation: @ = Q x (0,7), ¥ = 92 x (0,7,
H = L*(Q); |.| and (.,.) will stand for the usual norm and scalar product in
H, respectively; C will denote a generic constant.

In this paper, we consider systems of the form

Oy — Ay + fy) = lov in Q,
y=0 on X, (1.1)

y(0) = yo,

where yo € H and v € L?(0,T; H) are given. Here, 10 is the characteristic
function of the set O and it is assumed that f: R +— R is locally Lipschitz-
continuous and satisfies f(0) = 0.

It will be said that (1.1) is null controllable if there exists a control v €
L%(0,T; H) such that the corresponding initial-boundary problem possesses
a solution y € C°(0,T; H) with y(T) = 0. In other words, if the set R(yo;T)
formed by all reachable states at time 1" satisfies R(yo;7") 5 0.

Of course, the existence of a solution to (1.1) defined in the whole interval
[0, T] is not assured for arbitrary yo and v, unless something is imposed to
f. However, for the functions f considered below, at least local existence
holds.

During the last years, the null controllability of systems governed by par-
abolic PDE’s has been intensively studied. Nowadays, the situation seems
to be the following:

1. In the linear case (f(s) = as for some a), (1.1) is null controllable
with no restriction on yg, T or O. For the proof of this result there
exist, at least, two approaches. The first one is due to G. Lebeau
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and L. Robbiano. It connects null controllability to the observability
through O x (0,7') of the solutions to the adjoint system

—Op—Ap+ap=0 in @,
=0 on X, (1.2)
p(T) = ¢"
i.e. to the fact that, for some C only depending on €2, O and T, one
has

PO < C // o2 Wl e H. (13)
Ox(0,T)

In the particular case ¢ = 0, a proof of (1.3) is given in [8] (see also
9]).

A second approach, due to A. V. Fursikov and O. Yu. Imanuvilov, is
based on some global Carleman’s inequalities that can be deduced for
the solutions to (1.2) (and lead in particular to (1.3)). This method
can be applied to quite general linear parabolic problems and provides
a control v such that y(7') = 0 and y is of minimal norm (see [5], [3]).
It will be revisited below, in section 5.

. When f is sublinear at infinity, i.e.

[f(s)| < Cls[ +C, (1.4)

system (1.1) is again null controllable with no restriction on yo, T or
O. This is due to O. Yu. Imanuvilov (see [6]). The argument uses a
fixed-point reformulation of the problem and the null controllability
properties of linear problems. The assumption (1.4) leads to suitable
uniform estimates and allows to apply Schauder’s theorem.

. In general, when f is superlinear at infinity, (1.1) is not null control-

lable. Indeed, recall that when f(s) = —s- (log|s|)" (r > 1) blow-up
phenomena may occur. Even when f has “the good sign”, null con-
trollability may fail. More precisely, when

Cls|"t = C < f(s)-s < Cls|"T +C (r>1)

and yo # 0, there exists To > 0 such that, if T < Ty, (1.1) is not null
controllable (however, under this assumption on f, there exists 73 such
that, for all yo € H, (1.1) is null controllable whenever T' > Ty; see [5]
and [6]).

Hence, the natural question is: What happens if | f(s)| grows faster than

|s| but slower than all |s|” (r > 1) as |s| = o0 7

We are also interested in questions of this kind for systems controlled on

a portion of the boundary. More precisely, let v be a nonempty open subset
of 9Q2 and let us put

['=0Q\ .

For each h € L?(%), we consider the parabolic problem

Oy = Ay + fly) =0 i Q,
y=1,h on X, (1.5)

y(0) = yo,
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NULL CONTROLLABILITY OF THE SEMILINEAR HEAT EQUATION 89

where f is as before and 1, is the characteristic function of v. We will say
that (1.5) is null controllable if there exists h such that the corresponding
initial-boundary problem possesses a solution y € C°(0,7; H) satisfying
y(T) = 0.

As for system (1.1), the existence of a global solution to (1.5) is not always
assured. Moreover, the sense in which a function y can solve (1.5) has to be
specified for general h € L?(3). Nevertheless, we will work with appropriate
functions f and we will find control functions & which are regular enough to
guarantee that (1.5) can be solved (at least) in the usual weak sense.

Again, under condition (1.4), system (1.5) is null controllable (cf. [6]; see
also [1] for the case of Neumann boundary controllability). It is also true
that, for superlinear nonlinearities, (1.5) is not null controllable in general.
Consequently, it is also natural to study the case in which |f(s)| grows
superlinearly but slower than all |s|".

2. THE MAIN RESULTS AND SOME REMARKS

In this paper, we prove that systems (1.1) and (1.5) are null controllable
when yo € C°(Q) and the behavior of f(s) as |s| — oo is, at most, almost
critical. More precisely, one has:

THEOREM 2.1. Assume f :Rw— R is locally Lipschitz-continuous, f(0) =0
and

I AR (2.1)

[s|=2c0 S - log |S| -
Also, assume that yo € C°(Q). Then system (1.1) is null controllable.
THEOREM 2.2. Under the assumptions of theorem 2.1, system (1.5) is null
controllable. More precisely, there exists h, with
L,h € L2(0,T; H¥*(0Q)) N L*=(%),
such that the corresponding system (1.5) possesses at least one solution
y € L*(0,T; HY(Q)) N C°(0, T H) N L™ (Q)

satisfying y(T') = 0.

REMARKS.

1. Assumption (2.1) can be slightly weakened. Indeed, from the proofs in
sections 3 and 4, we see there exists a positive constant ¢ = £(2, O, T') such
that theorems 2.1 and 2.2 still hold when

|f(s)]| < els|-log|s| for large |s].

On the other hand, the requirement yo € C°(Q) is unnecessary in practice.
It is sufficient to assume the following: The initial data yo and the function f
are such that, when v = 0, system (1.1) possesses a solution y € C°(0,4; H)
which satisfies y(§) € C°(Q). This happens for all yo € H and for all
functions f as in theorems 2.1 and 2.2, as a consequence of the regularizing
effect.
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2. We are dealing with quasi-optimal assumptions: recall again that, for
f(s) = %|s|""!s (r > 1), systems (1.1) and (1.5) are not null controllable in
general. Also, recall that blow-up may occur for f(s) = —s- (log|s|)".

3. Theorems 2.1 and 2.2 hold for more general problems. Thus, one can
replace —A by a general linear elliptic operator A, with

Ay = —0;(a;(x)0;y) + 0;(b:i(2)y) + c(x)y.

In this case, the coefficients have to be regular enough and the a;; must
satisfy the usual ellipticity condition. The nonlinear term can also be of the
form f(z,t,y), with f: Q@ XR — R being a Carathéodory function satisfying
(for instance):

f(z,t,0)=0, s+ f(x,t,s) is locally Lipschitz

and
t
lim S, t,5) =0 uniformly in (2,t) € Q.
[s|2c0 S+ log |S|
Furthermore, a nonvanishing additional term F' = F'(2,t) can be put in the
left in the equations in (1.1) and (1.5). The above results will still be true

provided F' is sufficiently small near ¢t = T". For instance, it will suffice to

have )
// F(x,t)%e(™-97 < too.
Q

Let us also mention that, for semilinear parabolic equations of higher order,
similar results can be obtained.

4. By adapting the arguments in sections 3 and 4, one is led to a new
proof of known local results. These must hold for arbitrary locally Lipschitz
functions f satisfying f(0) = 0. More precisely, if f is given, there exists
§ = 6(Q,0,T, f) > 0 such that, for every yo € C%(Q) with ||yollco < 6, a
control v € L?(0,T; H) can be found such that the corresponding problem
(1.1) possesses a solution y € C°(0,T; H) which satisfies y(T) = 0 (compare
with the local results in [1], [4] and [6]).

5. System (1.1) is approximately controllable (in H) if the set R(yo;T)
formed by all reachable states at time T is dense in H. It has been proved
in [2] that, under condition (1.4), system (1.1) is approximately controllable
with no restriction on yo, T or O. However, to our knowledge, the approxi-
mate controllability of (1.1) under assumption (2.1) is an open question. A
similar remark concerning the approximate controllability of system (1.5)
can be made.

3. THE PROOF OF THE BOUNDARY CONTROLLABILITY RESULT

In this section, we prove theorem 2.2. We will first consider the case in
which, for instance, f is C' in the open interval (—1,1) and yo € C%?(Q)
for some 3 € (0,1). We will use the standard norm in C%?(Q), given as

follows: .
|2(2) — 2(2")]|
oo
Under these assumptions, we are going to rewrite (1.5) together with the

equality y(7T') = 0 as a fixed-point equation in the Banach space Y = L*>(Q).

Esaim: Cocv, APRIL 1997, VoL. 2, pp. 87-103
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NULL CONTROLLABILITY OF THE SEMILINEAR HEAT EQUATION 91

Then, using (2.1) and some specific properties of linear parabolic equations,
we will see that Schauder’s theorem can be applied.

Arguments of this kind have already been used in this and other similar
contexts (see [2], [6], [10], ... ). Here, since f is not necessarily globally
Lipschitz, one sees that the range of the mapping arising in the fixed-point
formulation is not bounded (this is also the case for the questions considered
in [11]). Thus, the methods in [1] and [6] cannot be directly applied and
some extra work has to be made.

Let us put
f(s)
gls) = s Pl (3.1)
f(0) ats=0.

Then, in view of assumption (2.1), one has:
V6 >0 3Cs such that |g(s)| < Cs+4d|logls|| VseR. (3.2)
For each y € Y, we consider the following null controllability problem

du—Au+g(y)u=0 in Q,
w=1,h on X, (3.3)
uw(0) =yo, u(T)=0,
where the state equation is linear. A solution u = A(y) to (3.3) can be
obtained by adapting the method of A.V. Fursikov and O.Yu. Imanuvilov

(cf. [5], [3]). More precisely, for the construction of A(y), we do the following:
a) We introduce z = z(-;y), with

Oz—Az+g(y)z=0 in Q,
z=0 on X (3.4)
2(0) = yo.
b) We fix a function § € C°°(0,T) such that 6(t) = 1 near t =0, 6(t) =0
near t = T and 0 < 6 < 1. Then, we set A(y) = 0z(-;y) + w(-;y), with

w(-;y) being (together with h) the solution furnished by lemma 3.2 to the
following problem (see below):

0w — Aw +g(y)w = —0'()z(z, t;y) in Q,
w=1,h on X,
w(0) =0, w(T)=0.
Our aim is to find a fixed-point in Y of the mapping y — A(y). Obviously,
if we are able to prove that such a fixed-point exists, theorem 2.2 will have
been demonstrated (at least when fis C'in (=1, 1) and yo € C%P(Q)).

First, we will show that the mapping y — A(y) is well defined and, also,
that it maps a ball of ¥ into itself. We need the following elementary result:

LEMMA 3.1. Leta € Y and zp € L*°(Q) be given. Then the linear problem
Oz — Az+a(z,t)z=0 in Q,
z=0 on X, (3.5)
2(0) = 2o
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92 E. FERNANDEZ-CARA
possesses exactly one solution z € L*(0,T; HY(Q)) NY, with
@l < M )z0]lc 2 € 0,77, (3-6)

We will also use the following result, whose proof is given in section 5:

LEMMA 3.2. To each couple {a,k}, with a,k € Y such that
k=0 for 0<t<b and T-b<t<T,
one can assign a solution {w, h} to the null linear controllability problem

dw — Aw +a(z, t)w = k(z,t) in Q,
w=1,h on X, (3.7)
w(0) =0, w(T)=0,

in such a way that

we L0, T; HA(Q)NY, dwe L*Q), (3.8)
L,h e L*0,T; H3?(0Q)) N L= (%) (3.9)

and
]l 220,720 + 105wl L2y + lwlly < e HHIEM gy, (3.10)

Here, the constant C' can depend on Q, ~, T and b, but not on k.

REMARK. Lemma 3.2 will also be used in section 4, for the proof of
theorem 2.1. It remains true under more general conditions on k.

From lemmas 3.1 and 3.2, it is clear that y — A(y) is a well defined
mapping from Y into itself. Moreover, one has

[A(Y) |y < eCOHIWI yg) o Wy ey, (3.11)

where C' can only depend on Q, v and 7. Hence, in view of (3.2), one sees
that A maps a ball Bg of Y into itself.

It is clear that y — A(y) is a continuous mapping. Let us now prove
that, for some o € (0,1), it maps bounded sets in Y into bounded sets in
CO,a,a/Q(@)‘ This will suffice to our purpose, since this space is compactly
embedded in Y. Recall that CO,a,a/Q(@) is the Banach space formed by all
functions u € C°(Q) such that

_ !
4 oy 100 = ufe. 1)

e o [t —t/|2/2

< 4o00.

The (natural) norm in C%*2/2(Q) is as follows:

lellaasz == llully + [u]a o/

We will use the following lemma, which is proved in [7] (see theorems 7.1
and 10.1, Ch. III):
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LEMMA 3.3. Assume a,k € Y, h € L2(0,T; HY/2(9Q)) N L= (%) and z €
CY98(Q), where 3 € (0,1). Then the linear problem

Ou — Au+a(z,thu=k(z,t) in Q,

u="h on >,

u(0) = 2o,
possesses exactly one solution w € L*(0,T; HY(Q))NY. Furthermore, there
exists a € (0, 3) (only depending on Q, T and §) such that u € CO,a,a/Q(@)
and there exists a function My (increasing with respect to its last argument)
such that

[ulasarz < Mo(Q, T, B, e, || 20l oo + [20]5 [lully)- (3.12)

We deduce that, for some «, all functions A(y) belong to C%2/2(QQ).
Combining (3.12) with (3.11), we also deduce that, for some M, (again
increasing with respect to its last argument), one has:

AW a,072 < Ma (T, B, o [[yol oo + [yols: g (w)]y)-

This shows that A maps bounded sets of ¥ into bounded sets of C**2/2(().

We have thus seen that Schauder’s theorem can be applied to the fixed-
point equation y = A(y), y € Y. This proves theorem 2.2 when f is C* in
(—=1,1) and yo € C%P(Q).

In the general case, one can always put

f=lim f, uniformly in R,
n— 0o

for some locally Lipschitz functions f, which are C'! in (—1,1) and satisfy
fn(0) =0, and f, = f outside (—2,2). One can also put

Yo = lim yg uniformly in Q,
n— 0o

for some functions y7 € C%%(Q). For each n > 1, let {y,, h,} be a couple
satisfying

Dyn — Ayn + fulys) =0 in Q,

Yn = 1whn on X, (313)
constructed as above. For

fn(s)

s

for s # 0,
gn(s) =
70) ats =0,

it is not difficult to see using (2.1) that

V6 >0 3IC5 such that |g.(s)| < Cs+dllogls|]|] VseRVn > 1.
Consequently, one has ||y,|ly < Const. (use the corresponding estimates
(3.11)). Notice that y,, can be written in the form y, = 6z, + w,, where

e z, is uniformly bounded in L2(0,7; H}(Q)) NY and 9z, is uniformly

bounded in L?(0,7T; H=()), see (3.5) and (3.6).

e w, can be estimated as in (3.10).
Esaim: Cocv, APRIL 1997, VoL. 2, pp. 87-103
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Hence, it can be assumed that y, converges strongly in L?(Q) and a.e. and
1,h,, converges (at least) weakly in L2(0,7; H*/?(0Q)). We can thus take
limits in (3.13) as n — oo and obtain (1.5) together with the equality y(1') =
0. This proves theorem 2.2.

4. THE PROOF OF THE INTERNAL CONTROLLABILITY RESULT

In this section, we will prove theorem 2.1. As in the previous section, we
will first assume that f is C'* in the open interval (—1,1) and yo € C%7(Q)
for some § € (0,1). Again, we will use the function g given by (3.1).

We will introduce a mapping y — Il(y) such that, for each y € Y, u =
I(y) is, together with some v € L%*(0,T; H), a solution to the following
problem:

du— Au+g(y)u=lov in Q,
vu=0 on X, (4.1)
u(0) = yo, uw(T) = 0.

This is made as follows:

a) First, we fix a nonempty open, simply connected and regular set Q' CC
O, we put

v =00, ['=0Q
and we denote by D the open set bounded by v and I, i.e. D =Q\ O'.
b) Using lemma 3.2 in D x (0,7"), we assign to y a couple {&(-;y), h(-;y)}
satisfying
o — A+ g(y)w = —0'(t)z(z,t;y) in D x(0,T),
w=1,h on 3D x(0,T), (4.2)
w(0)=0 and @(T)=0 in D.
Here, z = z(-;y) is the (unique) solution to (3.4). One has

we L20,T; HX (D)) N L>=(D x (0,T)), 0 e L*(D x (0,7)), (4.3)

L,h e L2(0,T; H¥*AD)) N L (0D x (0,T)) (4.4)
and
10| oo (D 0,7y < €@ |yq) (4.5)

where C' can depend only on ©, O" and T'. We will denote by w the extension-
by-zero of w to the whole set Q).
c) Let us set w = nw and v = =2Vn-Vw — (An)w+ (1 —n)8'z(-; y). Here,

n=n(z)is a C* cut-off function satisfying:

n=1 in a neighborhood of Q\ O,

7 =0 in a neighborhood of ¢’
and 0 < n < 1. Then, we put Il(y) = 0z(-;y) + w(-;y), with 8 being as
in section 3, i.e. a function satisfying § € C*°(0,7), 6(t) = 1 near t = 0,
f(t) =0mneart =T and 0 <9 < 1.

Esaim: Cocv, APRIL 1997, VoL. 2, pp. 87-103
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It is not difficult to see that w = II(y) is (together with v) a solution to
(4.1). From (4.3)—(4.5) and (3.6), one has

uwe L*0,T; Hy(Q)nY, velLl*0,T;H)

and
ITL(y) ||y < e“CHIs®I |1

Consequently, Il maps a ball B of Y into itself. It is also clear that y —
II(y) is a continuous mapping. Furthermore, we can apply lemma 3.3 to
(4.2). This leads easily to the facts that II(y) € C%**/2(Q) and

W) llayarz < Ma(2,T, 3, e, ||yollso + [vols, [19(y)lly)

for all y € Y and for some a € (0, 3) (once more, Ms is increasing with re-
spect to its last argument). Hence, Il maps bounded sets of ¥ into bounded
sets of CO,a,a/Q(@) and we can apply Schauder’s theorem to the fixed-point
equation y = II(y), y € Y. This proves theorem 2.1 when f is C'!in (—1,1)
and yo € COP(Q).

In order to prove the same result in the general case, we can argue as in
section 3. Thus, introducing the functions f,, and yj, we find for each n > 1
a couple {y,,v,} satisfying

Oyn — Ayn + fulys) = lov, in Q,
Yo =0 on 3 (4.6)
yn(0) = yg, ya(T) =10
and
llynlly < Const., lvallr2(0,7;0) < Const.

Hence, it can be assumed that y, converges strongly in L?(Q) and a.e. and
L,v, converges (at least) weakly in L?(Q). Taking limits in (4.6), we obtain
(1.1) and y(T") = 0. This proves theorem 2.1.

5. THE PROOF OF LEMMA 3.2

We will first analyze a null controllability problem, similar to (3.7), in
a suitable larger domain G' x (0,7). We will present an argument, taken
from [5] and [3], which leads to a function w that solves this problem in a
generalized sense. Then, we will assign to @ a couple {w, h} satisfying (3.7)
and we will check that (3.8), (3.9) and (3.10) are satisfied. Accordingly, the
proof will be divided in several steps.

STEP 1: THE ANALYSIS OF AN AUXILIARY PROBLEM — Let Q and v C 02
be as before and assume that a,k € Y, with £ = 0 for 0 < ¢ < b and also
for T —b<t<T. Let G CRY be a bounded, regular and open set with
GDQand 0QNIG =T = 9Q\ v. Let Sy C dG be an open neighborhood
of I' (S # 0G) and let us put

Sy =0G\ Sy, L =0Gx(0,T) and %;=5;x (0,7)

for ¢ = 1,2. We will denote by @ and k the extensions-by-zero to the whole
set G x (0,T) of the functions a and k, respectively. We will need the

following
Esaim: Cocv, APRIL 1997, VoL. 2, pp. 87-103



96 E. FERNANDEZ-CARA

LEMMA 5.1. There exists a positive function p° € C*(G) such that Vp° # 0
in G and 0,p° < 0 on Sy.

Here (and also in the sequel), 0, stands for the outward normal derivative.
Lemma 5.1 is proved in [6] (see [1] for another similar but different result).
Let us introduce the space

Zo=1{qeC*(Gx[0,T]); g=0on 3, dpg =0 on 3 }.
We will need a second lemma:

LEMMA 5.2. There exists a positive function p (which is of class C* in the
set G x (0,T) and depends only on G, Sy and T ) and there exist constants
s.(G, 81,1, ||ally) and C(G, S1,T) such that the following inequalities hold
for all s > s, and for all g € Zy:

L[ - (o +150P)

+s//p—25t—1(T—t)—1|vq|2+53 //p_ZSt_3(T—t)_3|q|2 (5.1)
< C. //p‘zslﬁthrAq—ﬁqI?-

Here, the integrals are extended to G x (0,T). Furthermore, s. can be chosen

of the form oy + O'QHQH?//S, where oy and oy only depend on G, Sy and T.

The inequalities (5.1) are global Carleman’s estimates associated to the
adjoint system (1.2). The main ideas needed for the proof of lemma 5.2
are presented in [5] and [3]. Nevertheless, in order to clarify the situation
as much as possible, we will give a complete proof of this lemma in the
following section. This will serve to show that we can choose s, as indicated
above. Also, it will be seen that an admissible choice for p is

o= (2120,

where p! = exp(Ap) — exp(Ap®), A and p are large enough and p° is the
function furnished by lemma 5.1.

Let us come back to the proof of lemma 3.2. Let us fix s and p such that
(5.1) holds. Then

[p,q] = // (0 + Ap — ap)(dg + Ag — ag)
G>< OT

is a scalar product in Zy. Let Z be the completion of Zy for [-,-]. If ¢ € Z,
the functions p=25t (T — t)|dq|?, p~25t (T — )| Aq|?, etc. are integrable and
(5.1) is satisfied. Let us put

<lyq>=—// kg VqeZ
Gx(0,T)

Then, [ is a bounded linear form on Z. Indeed, using Holder’s inequality
and (5.1), one has:

Mo
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with

1/2
E(G, 81, T, k,s) = Cy(G, Sy, T)"/%s~ (// 23T |k|2) . (5.3)

But this is a finite quantity, in view of the assumptions on k. Consequently,
there exists a unique solution p to the following problem:

Let us put w = p~2*(dyp + Ap — ap). Obviously, w € L*(G x (0,T)) (in
fact, one has more than this); moreover, from lemma 5.2, (5.2) and (5.3), it
is easy to deduce that

_ al2/?
0]l 2% (0,1)) < e lelly )HkHH(Q)v (5.4)

where C' only depends on G, Sy, T and b. In the next step, it will be
shown that w is a generalized solution to a null controllability problem (in

G x (0,7)).

STEP 2: PROPERTIES OF w — In the sequel, new constants C' will appear,
all them depending only on GG, Sy, T and b. One has dyw — Aw+aw = k in
the usual distributional sense in G' x (0,7') since, for all ® € D(G x (0,1')),
one has

<8ﬂ’5—m’5—|—’d@,<b>:—// @(8,5<1>—|—A<I>—’d<1>):// k®.
Gx(0,T) Gx(0,T)

One also has w € C°(0,7; H~Y(()) and w(0) = w(T) = 0. This stems
from the following two facts:
o we L*(Gx(0,T)) and dyw € L*(0, T; H™*(G)) (because 0y — Aw +
aw =k € L*(G x (0,T))). Consequently, w € C°(0,T; H~YG)).
o If ®; € D(G), Py € C[0,T] and ® = §1(x)P2(¢), one has at the same

time
// ’;;cpz// (0,@ — AT + aw) ®
Gx(O,T) GX(O,T)
__ // T (0P + AP — a®) + (@, )]
Gx(0,T)

(as a consequence of the previous regularity of w and d;w) and also

// E@:_// W (9,® + AD — 0d) (5.5)
Gx(0,T) Gx(0,T)

(from the definition of w). Hence, w(0) = w(T) = 0in H~'(G) (it was
reasonable to expect something like this, since w is the product of p~*°
by a function of L?(G x (0,T))).

Furthermore, w = 0 on i]o = So x (0,7) in an appropriate sense. Indeed,
one has:

e we LG x(0,T)) and Aw € H™1(0,T; L*G)), whence w possesses
a trace in H=1(0,T; H-'/2(0G)).
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o If &) € C*(G), @3 € D(0,T) and ® = &, (x)P,(t) belongs to Zp, one
must have (5.5) and also

// %@:// (045 — AW + aw) B
Gx(O,T) GX(O,T)
:_[/ T (0,® + AD — a®) + {@, 0,0},
Gx(0,T)

as a consequence of the previous property. Here, {-,-} stands for

the duality pairing concerning the spaces H~'(0,T; H~'/2(dG)) and

HE(0,T; HY?(AG)). Thus, the trace of @ on Y vanishes, as an ele-
ment of H=1(0,T; H='/2(Sp)).

From the previous considerations, one sees that w solves, in some gener-
alized sense, the following problem:

8w — AW+ a(z, ) = k(z,t) in G x(0,T),
w=0 on io,

w(0)=0 and w(T)=0 in G.

STEP 3: THE DEFINITION AND PROPERTIES OF w AND h — Let us denote
by w the restriction to @ of w. Let g € C*°(G) be a cut-off function with
supp 19 C G'USp, 190 = 1 in a neighborhood of € and 0 < 19 < 1. Let us
set wg = now. A simple computation shows that wg satisfies

atﬁo—Aﬁo +6($7t)150:§0($7t) in G x (O#T)7

wg=0 on X,
wo(0) =0 and we(T)=0 in G,

where §o = nok — 2Vng - V@ — (Ano)@, is a function in L2(0,T; HYG)).
Hence, wo € L*(0,T; HY{(G)) N C°(0,T; L*(G)) and w € L*(0,T; H'(Q)) N
C°(0,T; H). Tt follows that w satisfies (3.7) for some h. From the usual
energy estimates, the definition of go and (5.4), one also has:

1woll 20,11 (Gy) + | Woll Lo (0,1:22(c)) < eCUHIEI | 2 ). (5.6)

It remains to see that (3.8), (3.9) and (3.10) hold.

Let g € C*(G) be a second cut-off function such that 7, = 1 in a
neighborhood of Q, 0 < 7y < 1 and supp 7y C {70 = 1}. Let us introduce
the new function wy; = mw (which coincides with nwp). Then

8t151 — Aﬁ;l —|—a($7t)151 = gl($7t) in G x (O#T)7
wy =0 on i
wi1(0)=0 and w(T)=0 in G,
where g1 = nik — 2V - Vg — (Amy)i, is a function in L2(G x (0,T)).
Hence, wy € L*(0,T; H*(G))NC%(0, T; HY{(G)), &y € L*(G x (0,T)); once
more, from the energy estimates, the definition of g; and (5.6), one finds:
{ w1l r20,m:m2(G)) + Wil Lo 0,12 (6y) T 10801 |22 (G 0,1))

< €C(I+H“HY)H§1HL2(Gx(0,T)) < 60(1+Ilally)HkHY'
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Since w is the restriction to ) of the function wy, we have actually proved
(3.8), (3.9) and (3.10), except for the estimate of ||w]|y.

Now, we can introduce a third cut-off function 7, € C°°(G) such that,
72 = 1 in a neighborhood of ©, 0 < 7y < 1 and supp 72 C {n = 1}. This
leads to wy = npw (which coincides with 7,w) and we see that

8t152 — A{DQ —|—a($7t)152 = §Q($7t) in Gx (O#T)7

we=0 on X,
wy(0) =0 and we(T)=0 in G,

where gy € L2(0,T; HY(G)) N L>=(0, T; L*(&)).

For simplicity, let us assume that N < 3 (a similar argument holds
when N > 4 after introducing additional cut-off functions). Then, g, €
L*(0,T; L5(()). Consequently, we can use theorem 6.1 (Ch. II) and theo-
rem 7.1 (Ch. III) of [7], which give wy € L*(G x (0,7)) and

|@a]| oo (cixo.1y) < C (Nally + 182l 20,7508 c))"

for some p > 0. This yields the desired estimate for ||w]||y. Hence, lemma 3.2
is proved.

6. THE PROOF OF LEMMA 5.2

In this section, ||-|| and ((-,-)) will stand for the norm and the scalar prod-
uct in L?(G x (0,T)), respectively. We will use the standard convention for
the sum of repeated indices. Furthermore, all integrals below are extended
to G x (0,7) (unless otherwise specified).

We will denote by A and (' generic constants which can depend only on
the data G, 51 and 7. In our argument, other (specific) constants Ay, sy,
etc. depending on the same data will also be needed. Let us put

_ (=) B pl(x)
oz, t) = T=0 and p(z,t) = exp (m) ,

where p! = exp(Ap) —exp(Ap?), A is large enough (its choice is made below),
p > pYin G and p® is the function given by lemma 5.1. We will prove (5.1)
for this function p.

Let ¢ be given in Zy and set 1 = p~%¢, where s is also chosen below. Let
us put w = drqg + Ag — ag. Then

My + Mot
= (01 + 25V - Vib) + (A + 52| Vi 2 + 5(Dy0) ) (6.1)
= ws — (s(Ap) —a)p,

where wy = p~*w. We deduce the following identity:

M I+ (| Mol + 2( My, M) = [Jws = (s(Ag) — @)l (6.2)
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Now, let us analyze the scalar product in (6.2):

(M, M)
://3¢¢A¢—|—QS/ (V- Vi) A
. //wmﬁwzf/ (Ve Vi) |Vl

+s [ [[(ve-v0)000
= Il + 28[2 + 8213 + 28314 + SI5 + 28216.

First, one has:
1
11:—5/ 8t|V¢|2:0

After integration by parts and some manipulation, one easily finds:

L= [[ (-oase+ 5a0bs) avo+ 5 [[ octor

1 1
== [[oavettor. == [[ aeler

Also,

and
1
ls = —3 // (0:(De0) D0 + Do Ap) |07

Finally, integration by parts also leads to

Iy= //( 9:0jp — Aw)&]) Dip0;plv]%.
Consequently,

M2 + || Ma]|? + 453 // —0,0,) 0000l 0

2s | /E el +2 [[ ((AQIToP - BT ePIoP) -

= s — (s(Ag) — @) + 4 / / (0:00) 0.0,
+5 / / Pl + 25 / / (20:0000:0 + (010) M) |16

Using the particular form of ¢ we see that, for some Ay and for all A > Ay,
one must have

0 A3
30 . h— 3Nt
( 828]99)82998]99 € tS(T _ t)3(

> ANVl + A[Ve|?
(here, A does not depend on T'). We also see that
107 2] + 10:0k0i0] + |0rp D p| + [A%p] < C| V™, (6.4)

Esaim: Cocv, APRIL 1997, VoL. 2, pp. 87-103

0:0;p° + A;p°0;p°) 0ip°9; p°



NULL CONTROLLABILITY OF THE SEMILINEAR HEAT EQUATION 101

Consequently,

ts / / P2l + 257 / / (20,0000 + Do Ag) |6

< Cs? / / Vol 2,

and the last two terms in (6.3) can be controlled by the third term in the

left for s large enough. This and the fact that d,¢ > 0 on S lead to the

following for A > Ay and s > s + SQHQH?//S:

My + || Mz

a5 [[196PluP + a5 [[ 9o

< JJuss|]? + 4s / (0:00) Di1b0

= / (5(A0) V[ — 5*(Ap) |V 6]2)

On the other hand, from (6.1) we notice that

/ (5(A0) [V — 5*(Ag)[Vl2|2)

=5 [[@ronr+ s [[asaanr

b [[ 00— vt (5(89) - @) (B0,
whence
1 2 2 ~12 2 2 3 2 2 2
1< SIMGIE + ol + € [ [+ o187+ 296l + gl

Using again (6.4), one obtains the following inequalities, which must hold

for all s > s34 54HaH?//3:

My || + ([ Mo ||?

w45 [[196P1or + 48 [[ 9ol (6.5)

< Clls|]? + 4s / (0:00) 0,000,

There exists s5 such that

A
Pl +as [[ 1wl > 2 [[Iweiaer o)

for all s > s5. Indeed, one has:
1 _
s 1wertar
1 _ 2
=& [[ 1961 Ot - (760 + 5010 0)

< Myl + Cs? / Vol
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Also,

s wertser e on [[19ertor = asi [[vel v ©60)

for all s > sg for some sg > s5. This can be seen as follows:

SA1/2 / / Vol (Vo

=002 [ [ IVel-awp - g2 [ [ 919l (0)
< oo [[Ivertiaer+ g [[1vepier + s [[arwenior
From (6.5), (6.6) and (6.7), we see that
gl + 5 [ [ 19607 80P
wxtt2 [[ 1w 1vop 42 [[ 9o
< CllulP+Cs [[ 0001000,
for all s > s + 84HaH?//3 and all A > Ay, We can thus choose (and fix) A

sufficiently large (depending on G, S1 and T') to control the last term in the
right with the fourth term in the left. After this, we can write

1 _
gl + 5 [ [ 19607 80P

T / / Vol Vo2 4 5° / Vol

< Cfjwsl?.

It is also true that, for some s; > sg and for all s > s7,

A
Il +s [[19e1196P 2 2 [ [ 1veow

Indeed, when s is sufficiently large, one has:
1 _
s [[wer o
1
== [[ Vet g - 2556 - 0

< |IMyo|2 + Cs / Vol

Consequently,
1
= [[1welm o + 1aup)
ts [[1vel1v0r+2 [[werop (6.8)

< Cfws|?
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for all s > s7 + S4H(ZH?//3. Replacing ¢ by p~%¢ in (6.8), it is not difficult to

deduce (5.1) for s > sg + 54HaH?//3. Hence, lemma 5.2 is proved.

The author is indebted to J.-P. Puel and E. Zuazua for several fruitful dis-
CUSSIONS.

(1]
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