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INPUT TO STATE STABILITY PROPERTIES OF

NONLINEAR SYSTEMS AND APPLICATIONS TO

BOUNDED FEEDBACK STABILIZATION USING

SATURATION

J� TSINIAS

Abstract� The concepts of stability� attractivity and asymptotic sta�
bility for systems subject to restrictions of the input values are intro�
duced and analyzed in terms of Lyapunov functions� A comparison with
the well known input�to�state stability property introduced by Sontag is
provided� We use these concepts in order to derive su�cient conditions
for global stabilization for triangular and feedforward systems by means
of saturated bounded feedback controllers and also recover some recent
results due to Teel�

�� Introduction

Input to state stability analysis of nonlinear control systems has been
a subject of research by many authors and the corresponding results con�
sist powerful tools for the feedback stabilizability problem �see for instance
and references therein�� The well known input�to�state�stability �ISS� prop�
erty proposed by Sontag in ��	
 and studied further in ���� �
� ��� ��� ��

play an important role to the global stabilization procedure for a wide class
of systems like those having triangular structure� cascade connections� feed�
forward systems and linear systems subject to actuator saturations�
Our purpose is to analyze a weaker version of the ISS property� that has

been originally introduced in ���� ��� ��
� and give applications to stabi�
lization of nonlinear interconnected systems by means of nested saturation
functions�
In Section � we give the concepts of stability� attractivity� asymptotic and

uniform asymptotic stability of control systems

�x � f�x� u�� �x� u� � Rn�Rk �����

f��� �� � �

subject to the restriction that each admissible control is an essentially
bounded map t � u�t� � Rk with the property that for any initial state
x� � R

n and time t the following holds

�x�t� x�� u�� u�t�� � L �����

where x�t� x�� u� denotes the trajectory of ����� of initial value x� and input
u and L is a subregion of Rn�Rk containing zero�
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Thanks to recent contributions of Sontag� Lin and Wang �see ���� ��� ���
��
� it is possible to analyze the notion of the �uniform global asymptotic
stability for ����� under the restriction ������ �L�UGAS� in terms of Lya�
punov functions �Theorems ��� and ���� and to provide some links between
L�UGAS and ISS� Comparisons with the a�L� stability as well as with the
�robust global uniform asymptotic stability� introduced by Teel ��� ��
 and
Freeman�Kokotovic �	
� respectively� are also given� In Theorem ��	 of the
present work it is shown that L�UGAS is equivalent to ISS for the particular
case where L has the form

L �� f�x� u� � juj � ��jxj�g

� � R�� R
� being an increasing positive de�nite function with ��s�� ��

as s� ���
Using the concepts of L�attractivity� L�GAS and L�UGAS and by extend�

ing the feedback design procedure of ������
 we derive in Section � su�cient
conditions for global stabilization for interconnected systems by means of
combination of simple saturations� namely functions of the form

��s� �

�
a�sgns � jsj � �
as � jsj � �

for certain constants � and a� Particularly� in Theorem ��� of this work
su�cient conditions are obtained for global bounded stabilization by using
saturations for single�input systems of the form�

�x � f�x� y��

�y� � y� � g��x� y��

��� �����

�ym�� � ym � gm���x� y�� � � � � ym���

�ym � u� gm�x� y�� � � � � ym��� u�

�x� y�� � � � � ym� � R
n�Rm�

where f � Rn �R� R
n and gi � R

n�i � R are continuously di�erentiable
�C�� vanishing at zero and each gi is bounded over R

n�i� Boundedness
hypothesis for the terms gi is motivated by the possibility of cascade inter�
connections subject to actuator saturations�
Theorem ��� constitutes a version of the �adding one integrator� result

�see ��� 
� ��
�� namely the feedback stabilization procedure for systems

�x � f�x� y� �����

�y � u� �x� y� u� � Rn�R�R�

and an extension of Teel�s main theorem in ���
 concerning stabilization of
the linear chain of integrators

�y� � y�� �y� � y�� � � � � �ym � u ���	�

On the other hand� our approach is di�erent from the design procedure
developed in ���
 and ���
 as well as in earlier works �see ��� ����� ��� ���
��� �����
�� where similar problems are considered� Speci�cally� the main
di�erence with Teel�s approach for the case ���	� is that our procedure is
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�backforward� and no change of coordinates is needed� while in ���
 is �feed�
forward��
For the case ����� the hypothesis of Theorem ��� can be relaxed� In

Proposition ��� we establish that global stabilization by means of a nested
saturation can be succeeded� provided that there exists a C� function y �
��x� with ���� � � such that the map x� D��x�f�x� ��x�� is bounded and
zero is UGAS for the subsystem �x � f�x� ��x���
Using the analysis of Theorem ��� we can recover the main results of Teel�s

works ���
 and ��	
 for the case ���	� as well as for feedforward single�input
systems

�yi � yi�� � gi�yi��� � � � � ym� u� ���
�

� � i � m� yi � R� u �� ym��

where each gi is C
� and o�yi��� � � � � ym� u� at �� Particularly� Lemma ����

presents a general global stabilization approach by using saturation which
is applicable to a wide class of feedforward systems including those of the
previous form ���
��
Notations�

� jxj denotes the usual Euclidean norm of a vector x � Rn and x� its
transpose� Sn�x� r� denotes the open sphere of radius r � � centered
at x � Rn�

� For any measurable function u � R�� R
m we denote jjujj�supfju�t�j�

t � �g�
� A function V � Rn � R

� is called positive de�nite� if V �x� � � for
x �� � and V ��� � �� V is called positive de�nite radially unbounded
�p�d�r�u��� if it is positive de�nite with V �x�� �� as jxj � ���

� A function a � R�� R
� is of class K� if it is continuous �C��� positive

de�nite and non�decreasing� By K� we denote the subclass of K
consisting of all strictly increasing functions a � K with a�s� � ��
as s � ��� A function 	 � R� �R� � R is of class KL� if it is C�

and such that for each �xed t the map 	�	� t� is of class K and for each
�xed s the function 	�s� t� is decreasing to zero as t� ���

� D��x� denotes the derivative of a given map ��

Remark ���� Usually� K denotes the class of positive de�nite C� functions
that are strictly increasing� For the purposes of this paper however� it is
preferable to adopt the notation K for the class of positive de�nite nonde�
creasing functions in order to include those that are bounded with constant
values away from zero�

�� Stability properties of control systems

���� Definitions

We consider a system of the form ����� whose dynamics f � Rn�Rk � R
n

are C� vanishing at zero� Assume that ����� is complete� namely for every
initial x� and essentially bounded input u each solution x�t� � x�t� x�� u� of
����� is de�ned for all t � ��
Let L be a closed subset of Rn�k with the following properties�

P�� Zero � � Rn�k belongs to L�
Esaim� Cocv� March ����� Vol� 	� pp� 
���




	� J� TSINIAS

P�� The projection 
�L� of L onRn along Rk coincides with the state space�
i�e� 
�L� � Rn�

Next we extend the usual notions of positive invariance� stability� asymp�
totic stability and uniform asymptotic stability concerning single di�erential
equations� as well as control systems with inputs taking values on a subset
I of Rk �see for instance ���
�� for the case ����� where the admissible inputs
u depend on the initial state x� in such a way that

�x�t�� u�t�� � L� 
 t � ��� tx��u
 �����

for some � � tx��u � �� also depending on x� and u� Of course� the
de�nitions given below have sense provided that for every initial x� the set
U�x�� L� tx��u� of inputs u satisfying ����� for some tx��u � � is nonempty�

L�positive invariance

We say that the set M � Rn is positively invariant with respect to
L �L�positively invariant�� if x�t� � M � for all initial x� � M and for

every t � � and u for which ����� holds�

L�stability

We say that zero is stable with respect to L�L�stable�� if for any � � � a
positive constant � � ���� can be found such that

jx�t�j � �� 
 jx�j � �

for all t � � and inputs u for which ����� holds�

L�attractivity

Zero is called attractor with respect to L�L�attractor�� if there exists a
neighborhood N of � � Rn such that

jx�t�j � � as t� ��

for any initial x� � N and input u for which ����� holds for all t � � �i�e��
tx� �u � ���� if in addition N � Rn zero is called an L�global attractor�

L�asymptotic stability

Zero is asymptotically stable with respect to L�L�AS� if it is L�stable and
L�attractor� It is globally asymptotically stable with respect to L�L�GAS�
if it is L�stable and L�global attractor�

L�uniform asymptotic stability

We say that zero is uniformly asymptotically stable with respect to
L�L�UAS�� if there exists a function 	 � KL and a neighborhood N of
zero � � Rn such that

jx�t�j � 	�jx�j� t�� 
 t � � �����

and for every x� � N and input u� provided that ����� holds for all t � �� if
in addition N � Rn then zero is called L�uniformly globally asymptotically
stable �L�UGAS��
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The notion of L�UGAS is equivalent to the concept of �robust global uni�
form asymptotic stability� �RGUAS� introduced in the work �	
 of Freeman�
Kokotovic� To be precise� given a set�valued map W from Rn to the subsets
of Rk with � � W ��� and Dom �W � � Rn� we say that ����� satis�es the
W�RGUAS property� if ����� holds for all x� and input u�t� � W �x�t��� It
turns out that

W�RGUAS�
 L�UGAS� provided that L � Graph �W ��

The following properties are direct consequences of the previous de�ni�
tions�

� L�UAS� UGAS implies L�AS� GAS� respectively�
� If L�� L� is a pair of subset of R

n�k satisfying properties P� and P��
then

�� If zero is L�� L��stable� attractor� AS� UAS� GAS� UGAS then it is
L� � L��stable� attractor� AS� UAS� GAS� UGAS� respectively�

�� If L� � L� and zero is stable� attractor� AS� UAS� GAS� UGAS with
respect to L�� then it has the same properties with respect to L��

Note that for the particular case

L �� Rn� I� I � Rk �����

the concepts of L�AS� L�UAS� L�GAS and L�UGAS coincide with the
usual notions of AS� UAS� GAS and UGAS� respectively� as they have been
de�ned in ���� �	� ��
� Moreover� as it has been recently proven by Sontag
and Wang in ���
� according to our notations and de�nitions� for the case
����� L�UAS is equivalent to L�AS� provided that the map f is Lipschitzian
and I is compact�
Note �nally that� when L has the form ������ completeness assumption

for ����� implies that for every initial x� the set U�x�� L���� consisting of
inputs u for which ����� holds for all t � � is nonempty� in fact it contains
all essentially bounded measurable inputs taking values on I�

���� Lyapunov function description

Next� we focus our attention for the case where L is represented as follows�

L �� f�x� u� � ai�x� � ui � bi�x�� � � i � kg �����

with f��� u� � �� 
 u � ai��� � ui � bi��� for certain continuous functions
ai� bi � R

n � R� which are �locally� Lipschitzian for x �� � and satisfy
ai�x� � bi�x�� 
 x � R

n and ai���bi��� � �� i � �� �� � � � � k�
This case is of particular interest and arises when one assumes that �����

is globally asymptotically stabilizable at the origin by a continuous map
u � ����x�� � � � � �k�x�� vanishing at zero� Then by using standard Lyapunov
function based arguments �see for instance ��

� it can be easily established
that ����� is UGAS with respect to a region L of the form ����� for certain
continuous functions ai and bi with ai�x� � �i�x� � bi�x�� x �� � which
are C� except possibly at zero� Conversely� L�UGAS for ����� with L as
above� implies global asymptotic stabilization at the origin by means of a
continuous feedback law�
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The following theorem� whose proof is based to the converse stability
theorem in ���
 and Remark ��� in ���
� gives a Lyapunov characterization
of the uniform global asymptotic stability with respect to a given region L
of the form ������ As it was pointed out by a referee the result is a special
case of Theorem 	�� in �	
 under the presence of W�RGUAS� To be more
precise� for the case where L has the form ����� and ai� bi are Lipschitzian
everywhere� the proof of the necessity part of the present result is basically
the same with that given in �	
� The improvement here is that the function
ai� bi are assumed to be Lipschitzian except possibly at the origin which is
a general hypothesis�

Theorem ���� Suppose that there exist a positive de�nite C� map V � Rn�
R
�� a positive de�nite C� function c � R�� R

� such that

DV �x�f�x� u�� �c�jxj�� ���	�


 �x� u� � L� x near zero�

where L is a subset of Rn�Rk satisfying properties P� and P�� Then zero
is L�UAS for ����	
 if in addition V is p�d�r�u� and ����	 holds for all
�x� u� � L then zero is L�UGAS� The converse claims are true� provided
that f is Lipschitz continuous and L has the form ����	� where the functions
ai� bi � Rn� R are C� and Lipschitzian for x �� ��

Proof� For reasons of simplicity we deal only with the global part of the
statement� Suppose �rst that ���	� holds for every �x� u� � L and V is
p�d�r�u� Then there exists a pair of functions c�� c� � K� such that

c��jxj� � V �x� � c��jxj� ���
�

which by ���	� implies DV �x�f�x� u� � �c�c��� �V �x��� for all �x� u� � L�

Consequently� by evaluating the time derivative �V of V along the solutions
of ����� we �nd

�V �x�t� x�� u�� � �c�c��� �V �x�t� x�� u����

as long as ����� holds� From the comparison principle in ���
 it follows
that there exists a function � � KL depending only on c and c� such that
V �x�t� x�� u�� � ��V �x��� t� as long as ����� holds� The latter in conjunction
with ���
� implies that zero is L�UGAS for ������ Conversely� suppose that
L has the form ����� and zero is L�UGAS for ������ Consider the system

�x � F �x� v� �� f�x� a��x�v� � b��x���� v��� � � � � ak�x�vk � bk�x���� vk��
�����

with input v � �v�� � � � � vk� � Rk taking values on the compact set I ��
��� �
k� Then L�UGAS of zero for ����� implies �Rn � I��UGAS of zero
for ������ which in turns guarantees completeness of ������ Indeed� each
trajectory x�t� �� x�t� x�� v� of ����� is also a trajectory of ����� with the
same initial x� and input u�t� � �u��t�� � � � � uk�t�� with components

ui�t� �� ai�x�t��vi�t� � bi�x�t����� vi�t��

This is an immediate consequence of the fact that ai�x�t�� � ui�t� � bi�x�t���
or equivalently �x�t�� u�t�� � L� It turns out that the origin is �Rn � I��
UGAS for ������ hence the latter is complete� Since the map F is C� and
Lipschitzian for x �� � it follows by the converse stability theorem in ���
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and Remark ��� in ���
 that there exists a p�d�r�u� C� map V � Rn � R
�

and a positive de�nite function c � R�� R
� such that

DV �x�F �x� a��x�v� � b��x���� v��� � � � � ak�x�vk � bk�x���� vk�� � �c�jxj�


 x � Rn� v � I�

which is equivalent to ���	��

Remark ���� It is worthwhile to note that according to the previous dis�
cussion it follows that for every x� the set U�x�� L���� in nonempty� pro�
vided that L has the form ����� and zero is L�UGAS for ������ Speci�cally�
U�x�� L���� contains all inputs of the form u�t� � �u��t�� � � � � uk�t��� with
ui�t� �� ai�x�t��vi�t� � bi�x�t���� � vi�t��� where x�	� � x�	� x�� v� denotes
the trajectory of ����� with input v � I �

A consequence of Theorem ��� and the main result in ���
 is the following
theorem of particular interest�

Theorem ���� If the functions ai� bi in ����	 are bounded then the following
statements are equivalent �provided that f is Lipschitzian	�

�i� Zero is L�GAS�
�ii� Zero is L�UGAS�
�iii� There exist a p�d�r�u� C� map V and a positive de�nite C� function c

such that ����	 holds for all �x� u� � L�

Proof� Since the functions ai and bi are bounded and ����� is complete�
it follows that ����� with inputs v taking values on the compact set I �
��� �
k is also complete� According to ���
 the latter in conjunction with the
assumption that zero is GAS for ����� with respect to L implies that zero
is UGAS for ����� with respect to Rn � I � The rest part of the proof is a
direct consequence of Theorem ����

Remark ���� By Remark ��� and Theorem ��� it follows that� if ai and bi
are bounded and zero is L�GAS for ������ the set U�x�� L���� is nonempty�

���� Comparison with ISS and a�L� stability

First� we recall the precise de�nition of ISS as well as of the concept
asymptotic�L� stability as introduced by Teel �see for instance ��� ��
��
The system ����� satis�es the ISS property� if there exist functions 
 � KL
and 	 � K such that

jx�t� x�� u�j � 
�jx�j� t� � 	�jjutjj�� 
 t � � �����

ut�s� ��

�
u�s� � � � s � t
� � s � t

The a�L� stability holds� if there exist functions ��� ��� �
 � K such that
for every initial x� and input u each solution x�t� x�� u� of ����� satis�es

sup
t��

jx�t� x�� u�j � maxf���jx�j�� ���jjujj�g �global stability�

lim
t���

sup jx�t� x�� u�j � �
� lim
t���

sup ju�t�j� �asymptotic gain property�
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Theorem ���� Assume that the dynamics f of ����	 are Lipschitzian� Then

ISS �
 
�L� stability �
 L�UGAS

provided that L has the form ����	 with ai�x� � �pi�jxj� and bi�x� � pi�jxj�
for certain pi � K��

Proof� The equivalence ISS�
 a�L� stability has been established in ���
�
It remains to establish the equivalence ISS �
 L�UGAS� �It should be
noted here that the su�cient part of this statement has originally been
obtained in �	
 in the presence of W�RGUAS and under the assumption
that pi are Lipshitzian everywhere� this is a consequence of this equivalence
of L�UGAS andW�RGUAS�� From ��	� ��
 it is known that ISS is equivalent
to the existence of a p�d�r�u� C� map V � Rn � R

�� a positive de�nite C�

function c � R�� R
� and a function � � K� such that

DV �x�f�x� u� � �c�jxj�� 
 juj � ��jxj�� �����

Obviously� the latter implies ���	� and thus by Theorem ��� zero is UGAS
with respect to L having the form ����� with ai�x� � �pi�jxj� and bi�x� �
pi�jxj� for certain pi � K� being Lipshitzian for x �� � and such that

�
Pk

i�� p
�
i �s��

��� � ��s�� Conversely� suppose that zero is L�UGAS and L
has the form ����� with ai�x� � �pi�jxj� and bi�x� � pi�jxj� with pi � K��
i � �� � � � � k� By Theorem ��� it follows that there exists a p�d�r�u� C� map
V and a positive de�nite C� function such that ���	� holds for all �x� u� � L�
The latter implies ����� for some � � K� with ��s� � minfpi�s�� i �
�� � � � � kg and thus ISS property�

It turns out by Theorem ��	 that in general L�UGAS is weaker than
both ISS and a�L� stability� It should be remarked that if ����� holds then
L�UGAS is satis�ed with L as described in the statement of Theorem ��	
where pi being of class K� in such a way that 	��

Pk
i�� p

�
i �s��

���� � �s�

 s � � for certain constant � � � � �� �see ���
�� Finally� an important
consequence of the recent contribution ���
 is that the conjunction of local
stability and L�attractivity with L as described in the statement of Theorem
��	 is equivalent to ISS and thus to L��UGAS with L� being a subregion of
L of the same form �see ���� sec� ��	
 for details��

�� Applications to stabilization using saturations

���� Triangular systems

The following theorem provides su�cient condition for global stabilization
for systems ����� by means of a combination of saturation functions�

Theorem ���� Consider the system ���
	� where f and gi are C� vanish�
ing at zero and each gi is bounded over Rn�i� Moreover� assume that the
subsystem

�x � f�x� y�� �����

with y� as input is complete and there exist a bounded function �� � Rn� R

with ����� � � which is C� around zero and whose derivative exists almost
everywhere being bounded over Rn and a bounded function �� � K such that
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A�� The origin � � Rn is a global attractor for

�x � f�x� ���x� � y�� �����

with respect to

L� �� f�x� y�� � jy�j � ���jxj�g�

A�� If we denote A �� �f
�x��� ��� B ��

�f
�y�
��� �� and F �� D������ the matrix

A� BF is Hurwitz�
A�� The map D���x�f�x� y� � ���x�� is bounded over

f�x� y�� � jy�j � sup
x�Rn

���jxj�g�

Then there exist positive constants Ei� � � i � m� simple saturations

�i � R � R� � � i � m and a bounded C� map b�� � Rn � R which is
linear near zero and coincides with �� away from zero such that the bounded
feedback

u � ��x� y�� � � � � ym�

�� �Em�m�ym �Em���m���� � �� E����y� � b���x�� � � ��� �����

globally asymptotically stabilizes ���
	 at zero� Furthermore� there exist a
function b� � K such that the origin of the closed�loop ���
	 with u � ��	��v

is UGAS with respect to bL �� f�x� y�� � � � � ym� v� � jvj � b��j�x� y�� � � � � ym�j�g�
Proof� Taking into account Conditions A�� A� and Lemma ��� in the appen�
dix we may assume that �� is linear near zero� constant away from zero and
���x� � Fx for x near zero� The same conditions in conjunction with The�
orem ��� and boundedness of �� imply that � � R

n is L��UGAS for ������
We proceed by induction showing that for every � � i � m the system

�x � f�x� y��

�yj � yj�� � gj�x� y�� � � � � yj�

� � j � i

is globally asymptotically stabilizable from the input yj��� Consider the
case i � ��

�x � f�x� y��
�y� � y� � g��x� y��

�����

with y� as input� Let G�� ��
�g�
�x ��� �� and G�� ��

�g�
�y�
��� ��� It is not di�cult

to verify that there exists a constant E�� � � such that for every E� � E��

the matrix �
A B

E�F � G�� �E�F �G��

�
is Hurwitz� ���	�

Particularly� Condition A� implies the existence of a positive de�nite matrix
P such that P �A�BF ���A�BF ��P is negative de�nite� Then by evaluating

the time derivative �V
��x� y�� y�� E�� of the positive de�nite function

V �x� y�� �� x�Px � �y � Fx��

along the trajectories of

�� �
�x � Ax� By�
�y� � �E��y� � Fx� � y� �G��x�G��y�
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we can determine positive constants E��� ��� and � such that

�V
��x� y�� y�� E�� � ��j�x� y��j
�


 jy�j � ��j�x� y��j� �� � ���� E� � E��
���
�

which implies ���	�� We now take into account ���
� and the fact that

���x� � Fx for x near zero and evaluate the time derivative �V
��x� y�� y�� E��
of V along the trajectories of

�� �
�x � f�x� y��
�y� � �E��y� � ���x�� � y� � g��x� y��

�����

For x� y� appropriate small we �nd by ���
�

�V
��x� y�� y�� E�� � �V
��x� y�� y�� E��

�DV �x� y��

�
f�x� y���Ax �By�

g��x� y��� G��x� G��y�

�
� ��j�x� y��j

� � o�x� y���


jy�j � ��j�x� y��j� �� � ���� E� � E��

where o�	� is independent of E� and satis�es o�x� y���j�x� y��j � � as �x� y��
� �� This implies that

�V
��x� y�� y�� E�� � �
�

�
j�x� y��j

� �����


 j�x� y��j � ��� jy�j � ��j�x� y��j� �� � ���� E� � E��

for certain positive constant ��� From Condition A� there exists a function
�� � K of the form

���s� �

�
c� � s � ��
c�
��
s � s � ��

�����

for certain positive constants c� � � and � � �� � �� in such a way that the
region

 �� �� f�x� y�� � jxj � ��� jy� � ���x�j � ���jxj�g

is a subset of Sn����� ��� and zero is UGAS for ����� with respect to L� with
�� as de�ned by ������ Using ����� we can determine positive constants C��
�� and E� such that

C�
��

� �� � ���� E� � E��� �����a�

C� � �� � supfjD���x�f�x� ���x� � y��j� jy�j � c�g �
�

�
E�c�� �����b�

�� �� supfjg��x� y��j� �x� y�� � R
n��g �����c�

From ������ ����� and �����a� it follows that zero is �locally� AS for �����
with respect to f�x� y�� � jy� � ���x�j � ���jxj�g for the speci�c choice of
��� c�� �� and E�� Without loss of generality we may assume that S

n����� ���
is contained to the region of attraction A� and the restriction of the graph
of the function y� � ���x� in A� coincides with the graph of the linear map
y � Fx� Consider now the simple saturation

���s� ��

�
c�sgns � jsj � c�
s � jsj � c�

�����a�

and de�ne
���x� y�� �� �E����y� � ���x��� �����b�
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We claim that zero � � Rn�� is UGAS for

�x � f�x� y��
�y� � ���x� y�� � y� � g��x� y��

������

with y� as input with respect to

L� �� f�x� y�� y�� � jy�j � ���j�x� y��j�g ������

where

���s� ��

��� C� � s � ��
C�
��
s � s � ��

������

First� notice that ������ with y� as input is complete� This is an immediate
consequence of boundedness of ��� �� and g� and completeness of the sub�
system ������ In order to prove that zero is L��UGAS for ������ we need to
establish that this system satis�es the following properties�

Property �� If we de�ne

 �� f�x� y�� � jy� � ���x�j � c�g ����	�

each trajectory of ������ enters  after some �nite time provided that

�x�t�� y��t�� y��t�� � L�� ����
�

Indeed� by ������ and ������ there exists a constant � � � such that

�y��t� � �E����y��t�� ���x�t��� � y��t� � g��x�t�� y��t��

� �
�

�
E�c� � C� � �� � �� ������

as long as ����
� holds and

y��t� � ���x�t�� �
�

�
c�� ������

From ������ it follows that y��t� � y�� � t�� as long as ����
� and ������
hold� thus there exists a time T � � such that �x�T �� y��T �� �  � Similarly�
a constant �� � � can be found such that y��t� � y�����t as long as y��t� �
���x�t���

�
�c� and ����
� hold from which we get the desired conclusion�

Property �� The set  as de�ned by ����	� is L��positively invariant for
�������
It su�ces to show that

�y��t� � �E����y��t�� ���x�t��� � y��t�
� g��x�t�� y��t��

�
d

dt
���x�t�� � D���x�t��f�x�t�� y��t��

for
�

�
c� � y��t�� ���x�t�� � c�

�����a�

and similarly

�y��t� �
d

dt
���x�t��� for �

�

�
c� � y��t�� ���x�t�� � �c� �����b�

as long as ����
� holds� Indeed� by taking into account ������ we get

supf jD���x�f�x� y��j� jy� � ���x�j � c� g �
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supf jD���x�f�x� y�� ���x��j� jy�j � c�g �
�

�
E�c� � �� � C�

therefore

jD���x�f�x� y��j� jy�j� jg��x� y��j �
�

�
E�c� � E����jy� � ���x�j��



�

�
c� � jy� � ���x�j � c�� �x� y�� y�� � L��

The previous inequality implies both �����a� and �����b��

Property �� Each trajectory x�t� of the subsystem ����� enters Sn��� ���
after some �nite time� provided that jy��t�� ���x�t��j � ���jx�t�j�
This is an immediate consequence of the fact that zero � � Rn is L��

UGAS for the system ������

Taking into account Properties � and � it follows that each trajectory
�x�t�� y��t�� of ������ is de�ned for all t � � and enters  after some �nite
time T and remains thereafter� provided that ����
� holds for all t � �� We
now distinguish two cases� The �rst is �x�T �� y��T �� � N �� Sn����� ���� �
Since in that region ���x� y�� � �E��y� � Fx� and N is contained to the
region of attraction of ����� it follows by the positive invariance of  that
�x�t�� y��t�� � � as t � ��� The second case is �x�T �� y��T �� �  n N �
In that region jy��t� � ���x�t��j � ���jx�t�j� � c�� hence by Property �
�x�T ��� y��T ��� � N for some T � � T � and so �x�t�� y��t�� � � as t � ���
It turns out by taking into account the previous discussion and ���	� that
zero � � Rn�� is L��UGAS for �������
Notice that �� and its derivative D�� are bounded over R

n��� Next we
show that the map

�x� y�� y��� D���x� y��

�
f�x� y��

y� � ���x� y�� � g��x� y��

�
is bounded over f�x� y�� y�� � jy�j � C�g� Indeed� D�� vanish for jy� �
���x�j � c� whereas for jy� � ���x�j � c� we get by ����������D���x� y��� f�x� y��

y� � ���x� y�� � g��x� y��

����� �
E�jD���x�f�x� y��j�E�jy�j� E�

�jy� � ���x�j�E���
� �E�

�c� �E�C� �E���

for almost all x for which D���x� exists�
We conclude that for the system ����� with y� as input Conditions A��

A� and A� are satis�ed with �f� y� � g���� ��� �� and L� instead of f �
��� �� and L�� respectively� hence by repeating the previous analysis we
can �nd a saturation �� and a constant E� � � such that the map y
 �
���x� y�� y�� �� �E����y�����x� y��� � �E����y��E����y�����x��� glob�
ally asymptotically stabilizes the system �x � f�x� y��� �y� � y� � g��x� y���
�y� � y
 � g��x� y�� y���
We proceed similarly by induction� For reasons of completeness we note

that for each � � i � m we can select appropriare constants Ej � � and
su�ciently small positive constants cj � Cj��� �j and �j � � � j � i� � such
that

Cj � �j�� � �E
�
j cj�� � EjCj�� � Ej�j �

�

�
Ej��cj �����a�
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�j �� supf jgj�x� y�� � � � � yj�j g� �����b�

for each j the matrices	







�

A B � � � �
G�� ��G�� � � � �
� � ��G�
 � � �
� � � � � �
� � � � � �

��G�j���j

EjEj�� � � �E�F�Gj�� �EjEj�� � � �E��Gj�� � � � �Ej�Gjj

�







�
������

where Gji ��
�gj
�yi
��� �� � � � � �� are Hurwitz� the origin � � Rn�j is �locally�

AS for
�x � f�x� y��
�y� � y� � g��x� y��
���

�yj � yj�� � �j�x� y�� � � � � yj� � gj�x� y�� � � � � yj�

with yj�� as input with respect to

Lj �� f �x� y�� � � � � yj � yj��� � jyj��j � �j�j�x� y�� � � � � yj�j� g

where

�j�x� y�� � � � � yj� �� �Ej�j�yj � �j���x� y�� � � � � yj����� j � �

�j�s� ��

�
cj�� � jsj � cj��
s � jsj � cJ��

�j�s� ��

��� Cj�� � s � �j��
Cj��

�j��
s � � � s � �j���

Furthermore� the constants �j and �j have been selected in such a way that
Sn�j��� �j��� is contained to the region of attraction Aj of

�x � f�x� y��
�y� � y� � g��x� y��
���

�yj�� � yj � gj���x� y�� � � � � yj���
�yj � �Ej�yj � �j���x� y�� � � � � yj���� � gi�x� y�� � � � � yj�

and in addition the region

 �j�� �� f �x� y�� � � � � yj� � j�x� y�� � � � � yj���j � �j���
jyj � �j���x� y�� � � � � yj���j � �j���j�x� y�� � � � � yj���j� g

is a subset of Sn�j��� �j��� and the restriction of �j on Aj is linear�

Example ���� Consider the planar system �x � x� y��� � x������ �y� � u�
sin x� Notice that the �rst subsystem is complete� Indeed� for any input y�

its corresponding trajectory x satis�es jx�t�j � jx���j exp
�
t��

R t
� jy��s�jds

�
�
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provided that jx�t�j � � which implies completeness� Moreover� all as�
sumptions of Theorem ��� are satis�ed� hence the system is globally asymp�
totically stabilizable by means of a feedback law of the form ������ In�
deed� let y� � ���x� ��

��x
���x�����

� Then� obviously zero is UGAS for

�x � x � ����x� � v��� � x����� � �x � v�� � x����� with respect to L� ��
f �x� v� � jvj � ���jxj� g for some �� � K with ���s� � ��� for s away from
zero� and the map �x� v� � D���x���x � v�� � x������ is bounded over
R� ������ ���
�

Consider next the particular case of systems ����� with n � �� f�y�� y�� �
y�� y� �� x and gi � �� � � i � m� or equivalently the linear chain of
integrators ���	�� Teel�s theorem in ���
 asserts that for arbitrarily small
� � � there exist simple saturations �i � R� R with j�i�s�j � �� 
 s � R
and matrices Ti��m� ��� �m� ��� such that the map

u � ��m�Tmy � �m���Tm��y � �m���� � ����T�y � ���T�y�� � � ����� ������

globally asymptotically stabilizes ���	�� This result can be modi�ed by the
following corollary which states that stabilization can be succeeded by means
of a saturated feedback of the form ������� where each Ti is the identity
matrix�

Corollary ���� For any constant � � � there exist positive constants Ei

with Ei � �� simple saturations �i � R� R of the form �
���a	 with j�i�s�j �
�� 
 s such that the map

u � ��y�� y�� � � � � ym�

�� �Em�m�ym �Em���m���� � ��E����y� �E����y��� � � ��� ������

globally asymptotically stabilizes ����	 at zero� Furthermore� there exist func�
tions �i � K such that if we de�ne

�i�y�� � � � � yi� �� �Ei�i�yi � Ei���i���� � ��E����y� �E����y��� � � ���
������

the origin � � Ri�� is UGAS for the system

�y� � y�� �y� � y�� � � � � �yi � yi�� � �i�y�� � � � � yi� ����	�

with yi�� as input with respect to Li �� f �y�� � � � � yi� yi��� � jyi��j �
�i�j�y�� � � � � yi�j g and for almost every y�� � � � � yi for which the derivative
D�i exist it holds that

jD�i 	 �y�� y�� � � � � yi�� � �i�
�j �

�

�
Ei� 
 �y�� � � � � yi��� � Li� ����
�

Proof� Consider the family of mappings�

���y�� �� �E����y��� ���y�� ��

�
�� signs � jsj � ��
s � jsj � ��

������

���s� ��

�
c� � s � ��
c�
��
s � s � ��

c�� �� � �� E� � c��
��
� �

Obviously� all conditions of Theorem ��� are satis�ed with the previous
choice of �� and �� for arbitrary c�� �� and E� as above� Therefore� we
Esaim� Cocv� March ����� Vol� 	� pp� 
���




INPUT TO STATE STABILITY AND APPLICATION TO BOUNDED FEEDBACK ��

can determine positive constants Ei� Ci� ci� i � �� � � � � m and saturations
��� � � � � �m such that the map ������ globally asymptotically stabilizes ���	�
at zero� Speci�cally� as in the proof of Theorem ��� we can choose appro�
priate small positive constants Ei� ci � Ci��� such that in addition to the
required properties described in the procedure design of Theorem ��� the
following hold

maxfE�� E�� � � � � Emg � minf�� �g� �����a�

c� �E� �
�

�
E�� Ci � �E

�
i ci�� � EiCi�� �

�

�
Ei��ci� i � �� �����b�

The latter imply ������ and �����a�� respectively with �i � �� In order to
complete the proof it su�ces to show that the constants Ei can be chosen in
such a way that both �����a� and �����b� are satis�ed and for each � � j � m
the matrix ������ with F � �E�� A � �� B � � and Gji � � is Hurwitz�
But this is a direct consequence of Lemma ��� below�

Lemma ���� Suppose that Gji � � for all i� j and assume either that A is
Hurwitz and F � � or A � �� B � � and F � �E�� Then for every � � �
the constants Ej can be selected in such a way that � � Ej � � and the
matrices �
���	� � � j � m are Hurwitz�

Proof� For reasons of simplicity we deal only with the second case� namely
we assume that A � �� B � �� F � �E�� The �rst case can be dealt quite
similarly� To establish the statement it su�ces to show that for arbitrarily
small constants Ei the polynomials

pi�s� � si � ais
i�� � ai��si�� � � � �� a�s� a�� � � i � m

with a� �� EiEi�� � � �E�E�� a� �� EiEi�� � � �E�� � � � � ai �� Ei are Hurwitz�
To establish the previous claim we apply the Hurwitz algebraic criterion�
namely� for every i we consider the matrix

Hi ��

	





�
ai ai�� ai�� � �
� ai�� ai�
 � �
� ai ai�� � �
� � ai�� � �
� � ai � �
� � � � �

�





�
and evaluate the determinants of its principal minors

Hi� � Hi��Ei� �� Ei

Hi� � Hi��Ei� Ei��� Ei��� �� det

�
ai ai��
� ai��

�
� EiEi���Ei �Ei����

Hi
 � Hi
�Ei� Ei��� Ei��� Ei�
� Ei��� �� det

�� ai ai�� ai��
� ai�� ai�

� ai ai��

�A � � � �

Notice that for every j � � we get

Hij�Ei� Ei��� � � � � Ei�j � �� Ei�j��� � � �� � EiEi�� � � �Ei�jHi�j���

The latter implies that for any positive constants ��� � � � � �m we can �nd
constants E�� E�� � � � � Ei� in such a way that � � Ei � �i and Hij � � which
imply that for every � � i � n the polynomial pi�s� is Hurwitz�
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Remark ���� Alternatively� in order to prove the statement of the previous
lemma we can directly proceed by evaluating for each � � i � m the time
derivative of the positive de�nite functions

V��y�� �� ��y
�
�

Vi�y�� � � � � yi���iVi���y�� � � � � yi�����yi � �i���y�� � � � � yi����
�� � � i � m

���y�� �� �E�y�� �i�y�� � � � � yi� �� �Ei�yi �Ei���i���y�� � � � � yi����

for appropriate positive constants �i � �� along the trajectories of ����	��
The corresponding procedure is more technical but quite useful for further
considerations �see for instance Example ���� in Section �����

Corollary ��� can be extended for a chain of integrators subject to input
saturations� namely for systems of the form

�y� � f��y��� �y� � f��y��� � � � � �y� � fm�u�� ������

where each fi � R � R is C� with bounded derivative and the mappings
s� fi�s� and �s� �fi��s�� s � R� are of class K and linear near zero�

Corollary ��	� There exist arbitrarily small positive constants E�� � � � �
Em and simple saturations ��� � � � � �m such that the map �
��
	 globally
asymptotically stabilizes �
���	 at zero�

Proof� The proof is a direct consequence of Corollary ���� Speci�cally� taking
into account the linearity of fi near zero� boundedness of Dfi� inequality
����
� and the fact that Ei can be selected arbitrarily small� we can easily
verify that for appropriate small Ei the map ������ globally asymptotically
stabilizes �������

���� Adding one integrator

The approach of Theorem ��� is applicable to the design of a global satu�
rated feedback stabilizer for the special case of �n����dimensional triangular
systems� namely systems of the form

�x � f�x� y��
�y� � u� g��x� y��

������

�x� y�� u� � R
n�R�R�

under weaker assumptions than those imposed in the general case�

Proposition ��
� Consider the system �
�
�	� where f and g� are C
� with

f��� �� � � and g� is bounded over Rn��� Assume that the subsystem �
��	
with y� as input is complete and there exists a C� bounded function �� �
R
n � R with ����� � � such that Condition A� of Theorem 
�� holds and

further the rest Conditions A� and A
 are satis�ed with �� � �� Then there
exists a simple saturation �� � R � R� a C� map d � R� � R

�� which
is strictly positive everywhere� a constant E� � � and a C� bounded mapb�� � Rn � R which coincides with �� away from zero such that the saturated
feedback

u � ���x� y�� �� �E����d�jxj��y�� b���x��� ������

globally asymptotically stabilizes �
�
�	 at zero and the linearization of the
resulting closed�loop system at � � Rn�� is asymptotically stable�
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Proof� As in the proof of Theorem ��� by Condition A� we may assume that
���x� � Fx near zero and further ����� is satis�ed for appropriate ��� ���
and E��� Using our hypothesis and Lemma ��� we can establish that for any
su�ciently small constant �� � � there exist a positive de�nite C

� function
	 � R�� ��� �� and constants E� � E�� and K � � such that 	�s� is linear
near zero� particularly� 	�s� � �s for � � s � �� and for certain constant
� � �� zero is UGAS for ����� with respect to

L �� f �x� y�� � jy� � ���x�j � 	�jxj� g

and the following holds

�� � jD���x�f�x� y��j �
�

�
E�� 
 �x� y�� � L ������

where �� �� supf jg��x� y��� �x� y��j � R
n�� g�

Let k be a function of class K which satis�es

supf jf�x� ���x� � y��j� jy�j � 	�jxj� g � k�jxj�� 
 x � Rn� ������

By Lemma ��� there exists a positive de�nite bounded C� function � which
is linear for s � ��

� � increasing for s � ��� decreasing for s � �� and such
that

��s� � minf	�s�� �g �����a�

jD��s�jk�s��
�

�
E� � ��� 
 s � �� �����b�

In addition to the previous requirements and by selecting �� appropriate
small we can construct the function � in such a way that the region

 �� �� f �x� y�� � jxj � ��� jy� � ���x�j � ����� g

is contained in Sn����� ���� Let

c �� max
s��

��s� � ����� ����	�

and de�ne

b��s� �� � ��s� � s � ��
c � s � ��

� d�s� ��
�b��s� ����
�

By �����������
� and the speci�c de�nition of 	� L and  �� it followsb��jxj� � c � ��

zero is UGAS for ����� with respect to

L� �� f �x� y�� � jy� � ���x�j � ��jxj� g

and the following inequality is satis�ed�

�jDb��s�j� jD���x�j� jf�x� ���x� � y��j� �� �
�

�
E� ������


 x � Rn� jy�j � b��jxj��
As in the proof of Theorem ��� we may assume that ���x� � Fx for �y�� x� �
Sn����� ��� and because of ����� Sn����� ��� and thus  �� are both contained
to the common region of �local� attraction of zero for the family of systems

�x � f�x� y��� �y� � �E��y� � Fx� � g��x� y��� E� � E��� ������

Esaim� Cocv� March ����� Vol� 	� pp� 
���




�� J� TSINIAS

Consider now the simple saturation

���s� ��

�
� � jsj � �
s � jsj � �

and the map �� as de�ned in ������ with E� and d as given by ������ and
����
�� respectively� We claim that � � Rn�� is UGAS for the closed�loop
system

�x � f�x� y��� �y� � ���x� y�� � g��x� y��� ������

We proceed as in the proof of Theorem ���� Notice again that completeness
of ����� and boundedness of ��� �� and g� imply completeness of �������
Moreover� similar to the proof of Theorem ��� we can establish the following
properties�

Property �� Each trajectory �x�t�� y��t�� of ������ enters

 �� f �x� y� � jy� � ���x�j � b��jxj� g�
This is a consequence of ������ and the de�nition of �� which imply

j���x� y�j � minf �
�E�d�jxj�b��jxj�� E�g �

�
�E�

� sup�x�y���Rn�� jg��x� y��j� 
 �x� y�� �
�

�
b��jxj� � jy� � ���x�j�

Using the previous inequality we can immediately establish as in the proof
of Theorem ��� the statement�

Property �� The set  is positively invariant�
The statement is a consequence of ������ from which we get

�� � supf j�D���x��Db��jxj�j jf�x� y��j�
x � Rn� ��b��jxj� � jy� � ���x�j � b��jxj�g

�
�

�
E� �

�

�
E�d�jxj�b��jxj� � j���x� y��j�



�

�
b��jxj� � jy� � ���x�j � b��jxj��

The previous inequality leads as in the proof of Theorem ��� to the desired
property�
Finally� by ����
� and the fact that zero � � Rn is UGAS for ����� with

respect to L�� we can easily verify that the following holds�

Property �� Each trajectory x�t� of �x � f�x� y�� enters S
n��� ��� after

some �nite time� provided that jy��t�� ���x�t��j � b��jx�t�j��
Finally� we take into account that ���x� y�� � �E�c

���y� � Fx� for
�x� y�� �  �� and the facts that E�c

�� � E� � E�� and the region  �� ��
Sn����� ��� is contained to the common region of attraction of zero for
������ for all E� � E��� which in turns implies that zero is locally AS for
�x � f�x� y��� �y� � �E�c

���y� � Fx� � g��x� y��� We then proceed as in the
proof of Theorem ��� to complete the proof�

Example ���� The planar system �x � f�x��x�y���x������ �y � u� where
f � R � R is a C� function with f��� � �� Df��� � �� xf�x� � � for
x �� � and jf�x�j � jxj for all x� satis�es the hypothesis of Proposition ����
hence it is globally asymptotically stabilizable by means of a feedback law
of the form ������� Indeed� notice that the �rst subsystem with y as input is
Esaim� Cocv� March ����� Vol� 	� pp� 
���




INPUT TO STATE STABILITY AND APPLICATION TO BOUNDED FEEDBACK ��

complete� and if we de�ne ���x� ��
�x

���x�����
then obviously zero is UGAS for

�x � f�x��x����x��������x� � f�x� andD���x��f�x��x����x����x
������

is bounded�

���� Remarks for the Feedforward case

In this section we brie!y present extensions of the previous stabilization
procedure for feedforward single�input systems

�y� � d��y�f��y�� � g��y�� � � � � ym� u�
�y� � d��y�f��y�� � g��y�� � � � � ym�u�

���
�ym�� � dm���y�fm���ym� � gm���ym� u�
�ym � dm�y�fm�u� � gm�u�

������

y �� �y�� � � � � ym� � R
m���

where the mappings fi� gi are C� vanishing at zero� each gi is
o�yi��� � � � � ym� u� at � �i�e� satis�es gi�yi��� � � � � ym� u��j�yi��� � � � � ym� u�j �
� as �yi��� � � � � ym� u� � ��� fi satisfy the hypothesis of Corollary ��
 and
the functions di are C

� such that

k� � di�y� � k�� 
 i � �� �� � � � � m� y � Rm��� ������

for certain constants k� � k� � �� Obviously� the feedforward case ���
�
belongs to the previous class ������� Under the previous hypothesis� it is
possible to show that there exist saturations �i � R� Rwith j�i�s�j � � for
all s and arbitrarily small constants Ei � � such that the saturated map �
as de�ned by ������ globally asymptotically stabilizes ������ and in addition
the origin of the system ������ with u � � � v is UGAS with respect tobL �� f �y� v� � jvj � b��jyj� g for certain b� � K� The proof of the previous
statement follows by extending the induction procedure of Corollary ��� and
is based on a general technical result �Lemma ���� below� which is interest
in itself concerning systems of the form

�x � f�x� y� u� u�
�y � ud� g�x� y� u� u�

������

�x� y� � Rn�R� �u� u� � R�Rm� d � R

with �u� u� d� as input�

We assume that the mappings f� g � Rn�m�� � R are C� vanishing at zero
and d � d�t� takes values on a compact set� namely

k� � d�t� � k�� 
 t � � ������

for certain constants k� � k� � �� We also make the following assumption�

Assumption ���� The subsystem

�x � f�x� y� u� u� ������

with �y� u� u� as input is complete and there exist a C� function �� � Rn� R

with ����� � � which is di�erentiable almost everywhere� positive constants
E�� c�� c�� c�� c�� ��� �� with �� � ��� � � p � � and functions ��� ��� ��� �� �
K with

���s� � c�� ���s� � c�� for s � ��
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���s� � c�� ���s� � c�� for s � ��
such that

B�� The origin � � Rn is UGAS for

�x � f�x� ���x� � y� u� u� ����	�

with �y� u� u� as input with respect to

L� �� f �x� y� u� u� � jyj � ���jxj�� j�u� u�j � ���jxj� g

B�� The origin � � Rn�� is �locally	 AS for

�x � f�x� y��E�k
��
� �y � ���x�� � u� u�

�y � �E�k
��
� �y � ���x��d� g�x� y��E�k

��
� �y � ���x�� � u� u�

����
�

with �u� u� d� as input with respect to

L� �� f �x� y� u� u� d� � juj � ���j�x� y�j�� juj � ���j�x� y�j�� d � �k�� k�
 g

and if we de�ne

 �� �� f �x� y� � jxj � ��� jy � ���x�j � c�p g

then Sn����� ��� �  �� and  �� is contained to the region of attraction
of �
���	�

B�� By denoting

� �� supf kg�x� y� u�E�k
��
� �y � ���x��� u�j� juj � ���j�x� y�j��

juj � ���j�x� y�j�� jy � ���x�j � c�g

we assume that

�� c� � c� � E�k
��
� c�p � c�� �����a�

jD���x�f�x� ���x� � y� u� u�j � E�k
��
� c�p�


 jyj � c�� j�u� u�j � c�
�����b�

and for �almost	 all x for which D���x� exists�

Lemma ���
� Consider the system �
���	 and suppose that Assumption 
��
and �
��
	 are ful�lled� Then if we de�ne

���x� y� �� �E�k
��
� ��y � ���x��� ��s� ��

�
pc�sings � jsj � c�p
s � jsj � c�p

������

� the origin of the closed�loop system

�x � f�x� y� ���x� y� � u� u�
�y � ����x� y� � u�d� g�x� y� ���x� y� � u� u�

������

with �u� u� d� as input is L��UGAS

� if in addition

pk���

��
E�

k�

��
c��� � k�� �

E�

k�
�� � ��

�
� E�c�p

� � c� ���	��

for certain constants E� � � and � � p� � �� the following holds����D���x� y�� f�x� y� ���x� y� � u� u�
����x� y� � u�d� g�x� y� ���x� y� � u� u�

����� � E�c�p
� � c�

���	��

for all juj � c�� juj � c�� d � �k�� k�
 and for �almost	 all �x� y� for
which D���x� y� exists�
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Proof� We proceed as in the proof of Theorem ���� We de�ne

 �� f �x� y� � jy � ���x�j � c� g

and establish that the following properties hold�

Property �� Each trajectory �x�t�� y�t�� of ������ enters  after some �nite
time� provided that

�x�t�� y�t�� u�t�� u�t�� d�t�� � L� ���	��

Property ��  is L�positively invariant for �������

Property �� Each trajectory x�t� of the subsystem

�x � f�x� y� ���x� y� � u� u�

enters after some �nite time in Sn��� ���� provided that jx�t�j � ��� jy�t��
���x�t��j � ���jx�t�j� and ���	�� hold�

Properties � and � are consequences of Condition B�� ������ and the de�ni�
tion ������� which yield

sup
�
jD���x�f�x� y��E�k

��
� �y � ���x�� � u� u��

�x� y� u� u� d� � L�� jy � ���x�j � c�p
�

� sup
�
jg�x� y��E�k

��
� �y � ���x�� � u� u�j�

�x� y� u� u� d� � L�� jy � ���x�j � c�p
�

� sup
�
jD���x�f�x� ���x� � y��E�k

��
� y � u� u�j�

�x� y� u� u� d� � L�� jyj � c�p
�
� �

� sup
�
jD���x�f�x� ���x� � y� u� u�j�

j�u� u�j � E�k
��
� c�p� c� � c� � c�� jyj � c�� g� �

� E�k
��
� c�p� � � E�k

��
� ��jy � ���x�j�d� c� � c� �

���x� y�d� c� � c��


 �x� y� u� u� d� � L�� jy � ���x�j � c�p�

Property � follows from Condition B� and the facts that ��s� � c�� ��s� � c��
and �because of �����a��E�k

��
� c�p����s�����s� � E�k

��
� c�p�c��c� � c��

for s � �� from which we obtain

�x� y� ���x� y� � u� u� � L� ���	��

j����x� y� � u� u�j � c� � ���jxj� ���	��


 jxj � ��� �x� y� u� u� d� � L��

From ���	�� and ���	�� and our hypothesis that zero is L��UGAS for ����	�
we get the desired Property �� In order to show that zero is L��UGAS
for ������ we use Properties ������ Condition B�� the fact that ���x� y� �
�E�k

��
� �y � ���x�� for �x� y� �  �� and proceed as in Theorem ���� The

rest part of the proof is left to the reader�
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Example ����� Consider the system

�x � d��x� y�y � g��y� u� u�
�y � d��x� y�u� g��u� u�

���		�

�x� y� � R�� �u� u� � R�Rm�

where g� and g� are C
� and satisfy

jg��y� u� u�j

j�y� u� u�j
� � as �y� u� u�� � ���	
a�

jg��u� u�j

j�u� u�j
� � as �u� u�� � ���	
b�

and the functions d� and d� are C
� and satisfy

k� � di�x� y� � k�� i � �� �� 
 x� y ���	��

It is not di�cult to verify that all hypothesis of Assumption ��� as well as
���	�� are satis�ed for certain appropriate small constants E�� E�� c�� c�� c��
c�� ��� �� and functions ��� ��� ��� �� � K� Indeed� consider �rst the positive
de�nite functions

V��x� �
�

�
x�� V��x� y� �

�

�
E�
�x

� �
�

�
�y �E�x�

�

where E� is a positive constant and evaluate their derivatives along the
trajectories of

�x � d��x��E�x� y���E�x� y� � g���E�x� y� u� u� ���	��

with �y� u� u� as input�

�x � d��x� y�y � g��y��E��y �E�x� � u� u�
�y � d��x� y���E��y �E�x� � u� � g���E��y � E�x� � u� u�

���	��

with �u� u� as input�

respectively� Taking into account ���	�� we �nd

�V��x� � �k�E�x
� � k�jxjjyj� jxj jg���E�x� y� u� u�j ���
��

�V��x� y� � � k�E


�x

� � k��E� � E��jy � E�xj� � k�jy �E�xj juj�
�E�

� jxj� E�jy � E�xj� jg��y��E��y � E�x� � u� u�j�
jy �E�xj jg���E��y �E�x� � u� u�j

���
��

Consider now positive constants 
� 
� 	� 	� � and �� � �� and de�ne

���x� ��

�
�E���sgnx � jxj � ��
�E�x � jxj � ��

���
�a�

c� �� 
��� c� �� 
��� c� �� 	��� c� �� 	�� ���
�b�

�i�s� ��

�
ci � s � ��
ci
��
s � s � ��

� �i�s� ��

�
ci � s � ��
ci
��
s � s � ��

� i � �� � ���
�c�

We also consider the region

N� �� f �x� y� � V��x� y� � � g
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for certain constant � � �� From ���	
�� ���	��� ���
��� ���
�� and ���
�� it
follows that there exist arbitrarily small positive constants �� E�� E�� 
� 
� 	�
	� �� and �� such that the following properties hold�

� The system ���		� satis�es Conditions B� and B� of Assumption ����
Particularly� ���	
a�� ���	�� and ���
�� imply that �V��x� � � for all
x �� � and for appropriate small selection of the previous constants�
hence zero � � R is L��UGAS with respect to

�x � d��x� ���x� � y�����x� � y� � g�����x� � y� u� u��

From ���	
b� and ���
�� it also follows that for each su�ciently small
� it holds

�V��x� y� � � � 
 �x� y� � N�� ���
��

provided that

k��E� � E��E


� �

�

�

� ���
��

and for su�ciently small constants 	� 	 and ��� Condition ���
�� im�
plies that for �xed E� and for each appropriate small choice of the rest
constants the region N� consists a positively invariant neighborhood of
L���local� attraction for ���	�� as well as for

�x � d��x� y�y� g��y��E��y � ���x��� u�
�y � d��x� y���E��y � ���x�� � u� � g���E��y � ���x�� � u� u��

Roughly speaking the latter is a consequence of ���
�� and the fact
that for appropriate small �� the restriction of the graph of the map
y � ���x� on the region N� �except of its slight modi�cation near
the boundary of N�� coincides with the graph of the map y � �E�x�
Furthermore� we can select the constants 
 and �� in such a way that

f �x� y� � jxj � ��� jy � ���x�j � 
�� g � N�� ���
	�

� In addition to the previous requirements the desired constants can be
selected arbitrarily small in such a way that the following inequalities
hold for certain constants � � p� p� � ��b�� 	 � 	 �E�k

��
� 
p � 
 ���

�

where

b� �� sup
���

f
�

�
jg��u�E�k

��
� �y�E�x�� u�j� juj � 	�� juj � 	�� jy�E�xj � 
� g

E��E� � 
 � sup
���

f
�

�
jg��y� u� u�j� jyj � 
�� j�u� u�j � 	� g� � E�k

��
� 
p�

���
��

pk���

��
E�

k�

��

�� � k�� �

E�

k�
	 �

E�

k�
b�� � E�	p

� � 	� ���
��
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It should be noted that� because of ���	
�� the previous choice of ��
E�� E�� 
� 
� 	� 	 and �� satisfying ���
������
�� is always feasible� Further�
more� the constants E� and E� can be selected arbitrarily small� Obviously�
���

�� ���
��� ���
�� in conjunction with ���
�� imply B� for appropriate
small selection of the constants �� and ���
We now brie!y describe the applicability of Lemma ���� for the feedfor�

ward case ���
�� By extending the approach in the Example ���� a family
of arbitrarily small constants ci� ci� � � pi � �� and Ei� � � i � m can be
determined such that

�i � ci�� � ci�� � Ei��cipi � ci ���
��

where

�i�� supfgi�yi��� yi�� � Ei���yi�� � �i�y�� � � � � yi��� yi��� � � � � ym� u��
jyi��j � ci� j�yi�
� � � � � ym� u�j � ci� jyi�� � �i�y�� � � � � yi�j � ci��g�

���y�� �� �E�y��

�i�y�� � � � � yi����Ei�yi��i���y�� � � � � yi������EiEi�� � � �E�y�� � � ��Eiyi�

pi��E
�
i��ci � Ei��ci�� �Ei���i� � Ei��ci��pi�� � ci�� ������

for � � i � m�� and in addition the polynomials si�Eis
i���EiEi��s

i���
� � �� EiEi�� � � �E� are Hurwitz� Furthermore� we can determine functions
��� �i� �i like those in ���
��� particularly� there exist positive constants �i
with �i�� � �i such that

�i�s� ��

�
ci � s � �i
ci
�i
s � s � �i

� �i�s� ��

�
ci � s � �i
ci
�i
s � s � �i

�

each Si��� �i� is contained to the region of �local� attraction of zero for

�y� � y� � g��y�� � � � � u�
���

�yi � yi�� � gi�yi��� � � � � u�
�yi�� � �EiEi�� � � �E�y� � � � �� Eiyi � v � gi���yi��� � � � � u�

with respect to Li �� f �y�� � � � � yi� v� yi��� � � � � u� � jvj � �i�j�y�� � � � � yi�j��
j�yi��� � � � � u�j � �i�j�y�� � � � � yi�j� g and all Conditions B��B� are satis�ed
for the subsystem �y� � y� � g��y�� � � � � u�� �y� � y
 � g��y
� � � � � u�� where
�y�� y��� y
 and �y�� � � � � u� play the role of x� y� u and u� respectively� We
then use Lemma ����� conditions ���
�� and ������ and proceed by induction�
The same procedure is applicable for the general case ������� Our method�

ology also works for several other cases under di�erent assumptions as the
following example shows�

Example ����� Consider the planar case

�x � a�x�y � b�u�
�y � u

������

where b is C� and satis�es

b�u��juj�� � as u� � ������
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and a is C�� bounded� positive de�nite with

a�jxj
� � a�x� � a�jxj

�� 
 jxj � �� a�x� � a�� 
 jxj � � ������

for certain positive constants a�� a�� a� and ��
We claim that ������ satis�es Assumption ���� with u � �� g � � and

d � �� hence is globally asymptotically stabilizable by saturated feedback�
Indeed� notice �rst that� since a is bounded� the subsystem �x � a�x�y �
b�u�� with �y� u� as input is complete� Taking account the properties of the
functions a and b we can easily verify that there exist positive constants
��� 
� and 	� such that if we consider the family of functions�

���x� ��

�
�� sgnx � jxj � �
�x � jxj � �

���a�s� ��

�

� � s � �

s � s � �

�����s� ��

�
	� � s � �
	s � s � �

the origin is UGAS for the system �x � a�x��y � ���x�� � b�u� with respect
to

L��	�� �� f �x� y� u� � jyj � ���	�jxj�� juj � �����jxj� g

for every pair of positive constant �� 
� 	 with � � ��� 
 � 
� and 	 �
	�� Furthermore� by evaluating the time derivative of the positive de�nite
function V �x� y� �� x� � �x � y�� along the trajectories of the closed�loop
system

�x � a�x�y � b��E�y� ���x���� �y � �E�y � ���x�� ������

and taking into account ������ and ������ we �nd a positive constant E such
that �V �x� y� � � for every nonzero for �x� y� belonging to a neighborhood N
of � � R�� Without loss of generality assume that N is positively invariant
and is contained in the region of attraction of zero for ������� Finally� de�

termine positive constants b� � minf ��� � g� b
 � 
�� b	 � 	� and � � p � �
with �����a�

� b	
pE

� �

�b�
 �maxfjb�u�j� juj � b	b�g����� � pEb
b� � b	b� ����	�

and in such a way that if we de�ne c� �� b
b�� and
�� �� �

b�� �� �� �
b��a� �� �� �

b���� ����
�

the region  �� � f �x� y� � jxj � b�� jy � ���x�j � c� g contained in N � It
follows that all conditions of Assumption ��� are satis�ed with ��� �� and
�� as de�ned by ����
�� For reasons of completeness we note that ������ is
a direct consequence of ������� ������� ����	� and the fact that D���x� � �
for jxj � b�� We conclude by Lemma ���� that the map ���x� y� � �E��y�
���x�� with � and �� as de�ned by ������ and ����
�� respectively� globally
asymptotically stabilizes �������
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���� Robustness

The results of Sections ��� and ��� can directly be extended for the case
where the dynamics contain unknown parameters� For instance� let us con�
sider systems of the form

�x � f�x� y�� ��
�yi � diyi�� �Gi�x� y� �� � � � i � m

������

u �� ym��

y �� �y�� � � � � ym�
�

where � � ��t� � R
 and di � di�t� are time varying unknown parameters
with

k� � di�t� � k� � 
 t � � ������

for certain constants k� � k� � �� the mappings f � Rn � R� R
 � R
n

and� Rn � Rm � R
 are C� vanishing at zero and satisfy f��� �� �� � ��
Gi��� �� �� � �� 
 � � R
� Furthermore� assume that there exists a pair of
functions �� and �� as in the statement of Theorem ��� such that

� Zero � � Rn is a global attractor for �x � f�x� ���x��y�� �� with respect
to L� �� f �x� y�� �� � jy�j � ���jxj�� j�j � k g for certain constant k � ��

� If we denote A � �f
�x��� �� ���B �

�f
�y�
��� �� �� and F � D����� then the

matrix A�BF is Hurwitz with jf�x� y�� ���Ax�By�j�j�x� y��j
� � ��

uniformly on ��
� The mapping D���x�f�x� y� � ���x�� �� is bounded over f �x� y�� �� �
jy�j � supx�Rn ���jxj�� j�j � k g

� There exist positive de�nite C� mappings gi�x� y�� � � � � yi� such that

jGi�x� y� ��j � gi�x� y�� � � � � yi� for all x� y and ��

Under the previous assumptions it can be shown as in Theorem ��� that
������ is globally asymptotically stabilizable �uniformly on � and di� by
means of a feedback of the form ����� being independent of � and di�
Similarly� it can be shown that global stabilization by means of a saturated

feedback law ������ is feasible for parameterized systems of the form

�yi � diyi�� �Gi�yi��� � � � � ym� u� ��� � � i � m

u �� ym��

yi � R� � � R
� di � R�

where � and di are unknown parameters such that ������ holds and each Gi

satis�es

jGi�yi��� � � � � ym� u� ��j � gi�yi��� � � � � ym� u�� 
 yi��� � � � � ym� �� u

for certain positive de�nite C� mappings gi which are o�yi��� � � � � ym� u� at
�� The result follows by applying Lemma ���� and induction procedure�
Esaim� Cocv� March ����� Vol� 	� pp� 
���




INPUT TO STATE STABILITY AND APPLICATION TO BOUNDED FEEDBACK �


�� Appendix

The following result has been extensively used in the previous sections�
Its proof is a direct consequence of Theorem ��� and its nature is closed
related with the results in ��

�

Lemma ���� Assume that the system �x � f�x� y� u�� �x� y� u� � Rn�Rk�Rm

with �y� u� as input is complete� the map f � Rn�k�m � R is C� vanishing at
zero and there exist a C� map � � Rn� R

k with ���� � � and C� functions
�� � R

�� R
� being positive de�nite and ai� bi � R

n � R� � � i � m being
C� for x �� � with ai�x� � bi�x� for all x� such that

�� Zero is UGAS for

�x � f�x� ��x� � y� u�

with respect to L �� f �x� y� u� � jyj � ���jxj�� ai�x� � ui � bi�x� g�
�� The matrix Df�x� ��x�� ��jx�� is Hurwitz and there exists a constant

K � � such that����f�x� y� u�� �f

�x
��� �� ��x�

�f

�y
��� �� ��y

����� Kj�x� y�j� �����

for all u � Rm and x� y near zero�

Then for any bounded function h � K there exist a pair of constants

�� � �� � �� a C� map b� � Rn� R with b���� � � and a positive de�nite C�

function � � R�� R
� such that

� Both b��x� and ��s� are linear for jxj � �� and s � ��� respectively andb��x� � ��x� for jxj � ���
� Zero is UGAS for

�x � f�x� b��x� � y� u� �����

with �y� u� as input with respect to

L� �� f�x� y� u� � jyj � ��jxj�� ai�x� � ui � bi�x�g� �����

� � is nonincreasing for s � �� and satis�es

��s� � ���s�� 
 s � ��� jD��s�jh�s�� �� 
 s � �� �����

Proof� Condition � guarantees the existence of a positive de�nite matrix P

and a positive constant � such that x�P
�
�f
�x��� �� ���

�f
�y ��� �� ��D����

�
x �

��jxj� for all x which in conjunction with ����� implies

x�Pf�x�D����x� y� u� � �
�

�
jxj�� ���	a�


 x�Px � ��� jyj � ��jxj� ai�x� � ui � bi�x��

j��x��D����xj � �jxj� 
x�Px � �� ���	b�

for certain positive constants �� and �� From Condition � and Theorem ���
we can determine a p�d�r�u� C� map V � Rn � R

� and a positive de�nite
function c � R�� R

� such that

DV �x�f�x� ��x� � y� u� � �c�jxj�� 
 �x� y� u� � L� ���
�
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Let � � R� � ��� �
 be a smooth function such that ��s� � � for s � �� for
certain positive �� � ��� ��s� � � for s � �� and de�neb��x� �� ��p�x��D����x� ��� ��p�x�����x� ����a�

where
p�x� �� x�Px � V �x� ����b�

From ���	�� ���
� and ����� we can determine a pair of constants �� � �� � ��
a positive de�nite C� function " � R�� R

� being linear on ��� ��
� increasing
on ��� ��
� nonincreasing on ������� and in such a way that

"�s� � ���s�� 
 s � ��� �����

x�Pf�x� b��x� � y� u� � �
�

�
jxj�� 
 �x� y� u� � L�� p�x� � ��� ����a�

DV �x�f�x� b��x� � y� u� � �c�jxj�� 
 �x� y� u� � #L�� p�x� � ���� ����b�

where L� �� f�x� y� u� � jyj � "�jxj�� ai�x� � ui � bi�x�g

for certain ��� � ��� Finally� let � be a positive constant with

� supfjD"�s�jh�s�� s � �g � � ������

and de�ne

� ��
�

� � �
" ������

Obviously� ����� and ������ imply ����� with � as de�ned by ������� More�
over� the Lyapunov inequalities ����� imply that zero is L��UGAS for �����
with L� as de�ned by ������ To be more precise the statement follows by
checking the time derivatives of x�Px for p�x� � �� and of V �x� � x�Px for
p�x� � ��� along the trajectories of ����� provided that �x� y� u� � L� � Details
are left to the reader�

Remark ���� Condition � of Lemma ��� can be substituted by weaker hy�
pothesis that zero is L�GAS for ����� provided that the functions ��� ai and
bi are bounded� This is a direct consequence of Theorem ����

The author would like to thank the anonymous referee who pointed out the
relationship between RGUAS property introduced by Freeman�Kokotovic in
�	
 and L�UGAS�
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