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ASYMPTOTIC ANALYSIS AND CONTROL OF A HYBRID
SYSTEM COMPOSED BY TWO VIBRATING STRINGS
CONNECTED BY A POINT MASS

C. CASTRO

ABSTRACT. We consider a hybrid, one-dimensional, linear system con-
sisting on two flexible strings connected by a point mass. It is known
that this system presents two interesting features. First, it is well posed
in an asymmetric space in which solutions have one more degree of reg-
ularity to one side of the point mass. Second, that the spectral gap
vanishes asymptotically. We prove that the first property is a conse-
quence of the second one. We also consider a system in which the point
mass is replaced by a string of length 2e and density 1/2e. We show
that, as ¢ — 0, the solutions of this system converge to those of the
original one. We also analyze the convergence of the spectrum and ob-
tain the well-posedness of the limit system in the asymmetric space as a
consequence of non-standard uniform bounds of solutions of the approx-
imate problems. Finally we consider the controllability problem. It is
well known that the limit system with L?-controls on one end is exactly
controllable in an asymmetric space. We show how this result can be
obtained as the limit when ¢ — 0 of partial controllability results for
the approximate systems in which the number of controlled frequencies
converges to infinity as ¢ — 0. This is done by means of some new
results on non-harmonic Fourier series.

1. INTRODUCTION

In this paper we consider a linear hybrid system composed by two vibrat-
ing strings connected by a point mass. Assume that the strings occupy the
intervals (—1,0) and (0, 1) of the real line and are connected at 2 = 0 by a
point mass. Let us consider a function w = u(x,t) describing the vertical
displacements of the strings and denote by z = z(¢) the displacement of the
point mass. Assuming that the strings are fixed at the extremes z = +1,
the equations modelling the vibrations of this hybrid system are as follows:

Uty = Ugy for —1<z<0,t>0,

Uty = Ugy for0<ax<1,t>0,

w(0F, ) = w(07,¢) = 2(¢) for t > 0, (1.1)
Mz (t) = u, (0 t) —u,(07,¢t) fort >0,

u(—1,t) = u(1, t) fort > 0.
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232 C. CASTRO

In (1.1) the first two equations are the one-dimensional wave equation. The
third equation imposes the continuity of the three components of the me-
chanical system at @ = 0. The fourth equation describes the dynamics of
the point mass. The parameter M > 0 represents the mass concentrated
at the point « = 0. The last equation is due to the fixed end conditions at
x = #1. In these equations v(0F) denote the right and left lateral limits of
the function v at z = 0.

REMARK 1.1. When M = 0 we recover the continuity condition of u, at z =
0 and the classical equations for the motion of a vibrating string occupy-
ing the interval (-1,1) without point mass, i.e. with unit constant density
everywhere in (-1,1).

In the sequel, to simplify the notation we will assume that M = 1. This
system was studied by S. Hansen and E. Zuazua [4] from a control theoretical
point of view. It was observed that the system is well posed in an asymmetric
space in which solutions have one more degree of regularity to one side of the
point mass. It was conjectured that this phenomenon is due to the lack of
spectral gap that the presence of the point mass produces on the spectrum
of the system. In this paper we prove that this is indeed true and we explain
this singular phenomenon by means of an asymptotic analysis which consists,
roughly, on viewing system (1.1) as the limit as ¢ — 0 of a system connecting
three strings occupying the intervals (—1, —¢), (—¢,¢) and (g, 1), the middle
one having a density of the order of 1/2¢. In this case the equations of
motion are as follows:

Ut = Upg, for —l<aez<—¢, t>0
%utt:um, for —e <z <e¢g, t>0
Ut = Upg, fore <z <1, t>0 (1.2)
u(te™,t) = u(Le™,t), fort >0 '
Uy (7, 8) = uy(£et,t), fort >0
u(=1,t) = u(1,t) =0, fort > 0.

System (1.2) is well posed in the energy space

X = Hy(—1,1) x L*(—1,1). (1.3)

More precisely, for any (ug,u;) € X there exists an unique solution
ue C([0,00); Hi(—1,1)) N C* ([0,00); L?(—1,1)) of (1.2) taking the initial
data
w(z,0) = ug(z), w(z,0)=wui(z) in (—1,1). (1.4)
On the other hand, the energy
1 [7¢ 1 /11
=g [P tul] e+ 5 [l ]

€

w3 [l + sl (15)
2 . 1 x .

remains constant in time.

REMARK 1.2. System (1.2) can also be viewed as the equations of mo-
tion of a string of density 1 4 %X(_m),x(_m) being the characteristic
function of the interval (—&,¢).
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ASYMPTOTIC ANALYSIS AND CONTROL OF A HYBRID SYSTEM 233

However, it is easy to see that sytem (1.2) is not well-posed in asymmetric
spaces in which solutions have one more degree of regularity to one side
of # = 0. System (1.1) is well posed in the Hilbert space ¥ = X x R
in the sense that for any (ug,u1,21) € Y there exists an unique solution
(,2) € (C(]0,50); HA(~1,1)) 1 CT ([0,50); L3(~1,1)) ,C* ([0, 50))) of (1.1)
taking the initial data

u(z,0) = ug(x), ue(z,0) = uq (x in (—=1,1
{ Z((O):)uo(o)(, z)t(O)(: ,21). ) ( ) (1.6)

On the other hand, the energy

1
5O =5 [ llu@o P+ lu@oPld+3120F 00
remains constant for every solution of (1.1).

However, as we have said above, system (1.1) is also well-posed in an
asymmetric space in which solutions have one more degree of regularity to
one side of the point mass. For instance, this holds in the space of finite-
energy solutions such that their restriction to (—1,0) belongs to H%(—1,0) x
H'(—1,1) and satisfying some further compatibility conditions.

In [4] the spectrum of (1.1) was analyzed and it was seen that the distance
between consecutive eigenvalues tends to zero as the frequency increases.
In this paper we analyze the spectrum of the approximate system (1.2).
It is shown that its spectral gap is of the order of \/e. This provides an
explanation of the fact that the spectral gap vanishes in the limit.

Classical results in spectral theory prove that the spectrum of (1.2) con-
verges to the spectrum of (1.1) in the sense that the k-th eigenpair depends
continuously on ¢ even at ¢ = 0. However, in order to explain the well-
posedness of (1.1) we need some uniform convergence results for high fre-
quencies too. Using classical asymptotic methods we show that, roughly,
the eigenpairs converge uniformly with a rate of the order /= and for all the
frequencies k& < e/, This uniform convergence result allows us to obtain
all the singular phenomena related to the limit system when ¢ — 0 from
some uniform properties of the approximated systems.

For the approximate system (1.2) we construct finite-dimensional Fourier
asymmetric spaces involving the frequencies k < £~1/6 in which systems
(1.2) are uniformly well-posed. Passing to the limit as ¢ — 0 we obtain
the well-posedness of system (1.1) in an asymmetric Fourier space that we
characterize as being constituted by finite-energy functions having one more
degree of regularity to one side of the point mass.

Finally, we address the problem of controllability. In [4] it was shown
that, if we act on system (1.1) by means of one L%-control we may control
exactly the initial data being, roughly, in L? x H~! to the right of 2 = 0
and H! x L? to the left. The controllability space is therefore smaller than
in the approximate systems (1.2) (in that case the space of controllable
data is L?*(—1,1) x H™1(—1,1)) and differs by one degree of regularity in
(—1,0). As conjectured in [4] this fact can also be interpreted in terms of
the vanishing of the spectral gap with the aid of the results by [12] on non-
harmonic Fourier series. We prove a new result in this context showing that
the results of [12] are stable under small perturbations of the spectrum. This
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234 C. CASTRO

allows us to prove that in the approximate system the frequencies k < e~1/6
of the asymmetric space are uniformly controllable. This shows that the
controllability result of the limit system can be obtained as the limit when
€ — 0 of some uniform controllability property of the approximate systems.

In Remark 8.9 of section 8.3 we formulate an interesting open prob-
lem that, in our opinion, needs significant progresses in the theory of non-
harmonic Fourier series. The question is roughly, whether the controls are
uniformly bounded in L%(0,T) if the initial data are uniformly bounded in
the asymmetric norms || - || defined in (8.22) without the restrictions of
having zero Fourier coefficients for the frequencies |k| > K (¢).

The rest of the paper is organized as follows:

In section 2, we show how solutions of (1.1) can be obtained as limit
of solutions of (1.2) when ¢ — 0. In section 3 we analyze the eigenvalue
problems corresponding to (1.1) and (1.2). In particular, we show how the
spectral gap associated to (1.2) is of the order of /¢ and tends to zero
as ¢ — 0. In section 4 we prove the convergence of the eigenvalues of
(1.2) to those of (1.1). First we obtain some rough estimates by means of
Rayleigh quotients. Later on we obtain precise convergence results by means
of a careful asymptotic analysis. In section 5 we introduce an asymmetric
space for system (1.1) in terms of Fourier series and we show how the well-
posedness of (1.1) on it can be proved. In section 6 we recover this result as
the limit when ¢ — 0 of non-standard uniform estimates of solutions of the
approximate system (1.2). In section 7 we obtain some further convergence
results of solutions of (1.2) towards the solutions of (1.1). Finally, in section
8 we address to the control problem. First we recall the controllability
result of [4] for the limit system (1.1). Then we obtain it as the limit as
¢ — 0 of uniform partial controllability results for solutions of (1.2) in which
the number of controlled frequencies converges to infinity as € — 0. This
requires the obtention of some new results in the theory of non-harmonic
Fourier series.

2. CONVERGENCE OF SOLUTIONS

Let us consider a family {u®} ., of solutions of (1.2) corresponding to the
set of initial data {(u5,u$)}eso in Ha(=1,1) x L?(=1,1). Assume that

(u§,u$) is bounded in H}(—1,1) x L?(-1,1),

/ | u§ |? de < Ce, for some C' > 0. (2.1)
Under these conditions, and as a consequence of the conservation of the
energies /¢ in (1.5) we deduce that the family of solutions u® is bounded in

Y=L (0,00; Hy(—1,1)) N W™ (0, 00; L*(—1,1)) . (2.2)
We have the following weak convergence result:
THEOREM 2.1. Let us further assume that
(ug, us) — (ug,uy) weakly in Hy(=1,1) x L*(=1,1) as £ — 0,
) uj(z)de — z; as € — 0. (2.3)

—&

1
2e
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ASYMPTOTIC ANALYSIS AND CONTROL OF A HYBRID SYSTEM 235

Then, the family u® of solutions of (1.2) satisfies
u® — u weakly — +xinYy (2.4)

and

1 €
%/ ug(z,t)de — u(0,t) weakly — in L™ (0, 00) (2.5)

where u is the solution of the limit problem (1.1), (1.6) with initial data
(U07 Uy, Zl) .

REMARK 2.2. In view of the second condition in (2.1) we deduce that the
quantities 5= [°_u§(x)dx are bounded. Indeed,

1
1 [° 1 f° 1 c 2
_ € < _ <_ € 2 1/2
o [l < o [1weaes o ([ T Pas) e

1 /e 1/2
R CIALCIRI N

To pass to the limit in (1.2) it is natural to assume that the limit of these
quantities exists. This limit provides the initial velocity of the point mass
in the limit system.

—&

Proof. As we said above, the conservation of the energies provides an uni-
form bound for the solutions u® in Y. By extracting subsequences (that we
still denote by the index € to simplify the notation) we have

u® — u weakly — in Y. (2.6)

Let us see that the limit u satisfies (1.1).
Solutions of (1.2) are characterized by the following weak formulation:

// utcbtdacdt—l—// qbtdacdt—|——// c rdadt

/ / u qﬁxdacdt—l—/ ujo(z, O)dac—l——6 uiqb(x,O)dac
+ [ ot 0z =0,

Vo € C3((—1,1) x [0,00))
(2.7)

and the further initial condition
u®(z,0) = ug(z) in (—1,1). (2.8)

The embedding from Y into C' ([O,T];LQ(—L 1)) is compact for any 0 <
T < oo. Therefore, passing to the limit in (2.8), the limit u must satisfy the
initial condition

w(z,0) = ug(z) in (—1,1). (2.9)

In order to pass to the limit in (2.7) the only term that requires some careful

analysis is
1 o] &
I.= — Sordadt.
e ), [ e
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236 C. CASTRO
First we observe that
1 =
2—/ ug (z,t)dz is bounded in L*(0, c0). (2.10)
8 —&

Indeed, arguying as in Remark 2.2 we see that

1 © 15 1 © 15 2 1/2
% ui (2, t)dz| < % | ui(z,t) |* da

and the latter is bounded by the conservation of the energies F/°. Therefore,
by extracting subsequences (that we still denote by the index ¢), we deduce
that

%/ ui(z,t)de — w weakly —*in L°(0,00). (2.11)

—&

Let us see that w(t) = u.(0,¢). For any f € C}(0,00) we have

/ /_Eutxtdxf /OO 1/—5 (x,t) f'(t)dedt.  (2.12)

The embedding from Y into C' ([—1, 1] x [0,77]) is compact for any 0 < T <
oo. Therefore, in view of (2.6) the right hand side in (2.12) converges. More
precisely,

—Amgafiﬂmﬂf@¢mw+—Zﬁu@JﬁﬁMt:AmmmJﬁ@ML

This shows that w(t) = u¢(0,¢) and concludes the proof of (2.5).
Let us go back to the term I.. We claim that

1 oo re 0o
L=y [ [ wiza— [T woneond 23
2 Jo e 0
1 oo re 0o
_/ / U§¢tdacdt—/ ut(O,t)@(O,t)dt‘
2 Jo e 0

| 21/ 00, ) o) = (0,)) dc]

Indeed,

By (2.5) the last term converges to zero. For the other one we have:

1

) ug(z,t) (Pe(z,t) — ¢4(0,1)) dacdt‘

—&

< [T(L ) menra) (£ [ oo -aonre) e

< o [ (L [ @mn-sonra)w

0
The initial energies £2°(0) are bounded and the last term in this inequality
converges to zero since ¢ € C'*. This concludes the proof of (2.13).
Esaim: Cocv, JuLy 1997, VoL.2, pp. 231-280



ASYMPTOTIC ANALYSIS AND CONTROL OF A HYBRID SYSTEM 237

We can now pass to the limit in (2.7). We easily get that the limit u, in
addition to (2.9), satisfies

/ / [usdr — uxqu]dxdt—l—/ u(0,1) Py (0, t)dt

/1 w1 6(z, 0)de + 216(0,0) = 0, ¥ € CL((=1,1) x [0, 9)) .
) (2.14)

The variational equation (2.14) with (2.9) characterizes the solution of the
limit system (1.1), (1.6) with initial data (ug, w1, 2z1). The solution » of (1.1),
(1.6) being unique we deduce that the whole family u® converges as ¢ — 0.
This concludes the proof of Theorem 2.1. O

The following theorem provides a strong convergence result:

THEOREM 2.3. Let us assume that the initial data are such that

(u5, u5) — (uo,uy) strongly in HY(—1,1) x L*(=1,1), ase — 0

1

% | u§ () |* de — 21, ase — 0.

—&

(2.15)
Then, the solutions u® of (1.2) with data (uy,u) satisfy

u® — u strongly in H' ((=1,1) x (0,7)), ase — 0

%/ uSdr — uy(0,t) = 2/(t) strongly in L*(0,T), ase — 0 (2.16)

for every 0 < T < oo, where u is the solution of (1.1), (1.6) with data
(u07u1721)'

Proof. From Theorem 2.1 we know that convergences (2.15) hold in the weak
topologies.

On the other hand, from (2.15) the initial energies E°(0) converge to
E(0) as € — 0, and in view of the conservation of energies we deduce that
E#(t) — E(t) for all ¢ > 0. Furthermore, by the dominated convergence
Theorem,

Ef — E in L*(0,T). (2.17)

The strong convergences (2.16) are a direct consequence of the weak con-
vergence and the convergence of the energies (2.17). O

REMARK 2.4. In section 7 we will show that the strong convergence holds
uniformly in time, i.e. in the space ).

3. SPECTRAL ANALYSIS

In this section we describe the main properties of the spectra of systems
(1.1) and (1.2). First we analyze the approximate system (1.2) and then the
limit system (1.1).
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238 C. CASTRO

3.1. THE APPROXIMATE SYSTEM

The spectrum of system (1.2) consists of the positive real numbers v > 0
such that the equation

—u" =v(1+ 53X emy)u in (—1,1)
{ w(=1) 22(1) =0 ) (3-1)

admits a non-trivial solution. Here and in the sequel ’ denotes derivation
with respect to .
The weak formulation of (3.1) is as follows:

u€ HY(-1,1)

1 —e 1 15 1
/ wo'de = v [/ uvdw—l—g uvdw—l—/ uvdw] , Vv € H&(—l7 1).
-1 -1 —£ £
(3.2)

It is easy to see that v is an eigenvalue of (3.1) if and only if v = %,,u

being an eigenvalue of the compact, self-adjoint operator T, : HJ(—1,1) —
H}(—1,1) such that 7. f = u, where u is the unique solution of the problem

u€ Hi(-1,1)
1 1 1
/ w'v'de = / (1 + £X(_575)) fvde Vv e H&(—l, 1).

1 1

(3.3)

We deduce that the eigenvalues {v}},.  constitute an increasing sequence
of distinct positive numbers B

0< <V < o <vp < e
and that the corresponding eigenfunctions {¢%},, form an orthonormal

basis of H}(—1,1) for every £ > 0.
Concerning the spectral gap we have the following:

THEOREM 3.1. There exist positive constants C; > 0,1 = 1,2 such that

Cov/e > ]122 VS = V| 2 Cive (3.4)

Jor every 0 < e < 1.
Proof. First of all we prove the lower bound on the spectral gap, i.e.
CiVE < inf ‘1 A (3.5)
j

It is easy to see that the eigenfunctions of (3.1) are either even or odd
functions. We start by considering the even eigenfunctions. In this case
system (3.1) reduces to

—u"=v 1—|—21—6 —e0))u in (=1,0)
{ w(=1) :5/(0) = ) (3:6)

An easy computation shows that these eigenvalues are the roots of

\/% tg (\/%) = cotg (vVv(1 —¢)). (3.7)

To simplify this equation we perform the change of variables

V7= A (3.8)
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ASYMPTOTIC ANALYSIS AND CONTROL OF A HYBRID SYSTEM 239

so that equation (3.7) becomes

\/%_8 e (\/;) — cotg (A(1—2)). (3.9)

The odd eigenfunctions satisfy

" =y 1"‘21_5 —e0y) ¥ in (=1,0)
{ u(=1) ZEL(O) :ig( ) (3.10)

It is easy to see that the corresponding eigenvalues, under the change of
unknown (3.8), satisfy

V2e tg (\@A) = —tg (M1 —2)). (3.11)

Let us first analyze the roots A such that the terms on the left hand
sides of (3.9) and (3.11) are positive. Thus, we focus first on the interval
0 < A < ®/v/2e. The intervals in which the right hand sides of (3.9) and

(3.11) are positive are, respectively,

I = ( i (H%)T) €T (3.12)

1—e’ 1-¢

l—e ’1—¢

Ji = (("_1/2)7T i ) i€ L. (3.13)

Observe that these intervals are disjoint and that I; is in between .J; and
Ji—l—l-

It is easy to see that equations (3.9) and (3.11) have at most one root
in the intervals (3.12) and (3.13) respectively. This shows that, in order to
prove (3.5) it is sufficient to get lower bounds on the distance between A7
and the extremes of the intervals in which they lie.

Let us consider first the root on I;. Since the function on the left hand
side is increasing and the one on the right hand side decreasing, it is easy
to see that, as A increases it approaches the left extreme of the interval 1.
Given @ > 0, to see that the roots of (3.9) are at distance greater than \/as
to the left extreme of I; it is sufficient to impose that

%tg (\@A) < cotg (Vas(1-¢))

or, equivalently,

A< \/garctg (\/%cotg (Vas(1 - 5))) . (3.14)

On the other hand, in order to guarantee that the distance between the
roots of (3.11) and the right extreme of the intervals J; in which they lie is
greater than v/be the following is a sufficient condition:

V2e tg (\/g/\) > g (g — V(1 - 5))
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240 C. CASTRO

or, equivalently,

2> \/garctg (\/% tg (Voe(1 - 5))) . (3.15)

We now claim that there exist a,b, ¢ > 0 such that

(3.16)

Indeed, using Taylor’s developments at € = 0 we have:

\/%_gtg (\/@(1 —5)) = \/g—I—O(s); V2e cotg (Vas(l — ) = \/%-I—O(e).

By the mean value theorem, there exists 7(e \/>—|— Ofe \/7 +O(e
such that

\/g (arcte (V2s cotg (Vaz(1 - ) ) — arctg (\/% te (Voe(1 - e)))
:\/5(1+n )(\ﬁ_\ero )
Z\/5(1+b/2+0 )(\[ \/>+O )

Clearly, the last term can be done uniformly greater than a positive constant
¢ > 0 for € > 0 small enough provided a and b are taken such that \/W -
v2/a > 0.

Now, fix a,b > 0 as above. Then, clearly, two consecutive eigenvalues
(solutions of (3.9) and (3.11)) may not be simultaneously to a distance less
than y/ae and Vbe respectively of the left extreme of I; and the right extreme
of J;. Indeed, otherwise, in view of the conditions (3.14) and (3.15) we have
obtained, the quantity of the left hand side of (3.16) would be bounded

above by (\/E—I— \/5) V£ and this is in contradiction with the positivity of

the constant ¢ in (3.16).

On the other hand, since the roots of (3.9) move much faster towards
the left end of I; than the roots of (3.11) move to the left end of J; as A
increases, it is easy to see that the situation we have considered is precisely
that in which the gap is minimized.

More precisely, in order to guarantee that the roots of (3.11) are at a
distance greater than 5 (1 — ) of the left extreme of .J;, it is sufficient to

guarantee that
€ T 7
Vartg (/oA ) < (54 5) =1
°8 (\/g =iyt

A< \/garctg (\/%_e?) . (3.17)
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For £ > 0 small enough, the right hand side of (3.17) is greater than the
right hand side of (3.14), i.e.

\/garctg [\/Ecotg (Vas(1 - e))} < \/garctg (\/%_g) :

In a similar way, it is easy to check that the roots of (3.9) are at a distance
greater than —=F 3 of the right extreme of I; if

(-
A> \/garctg (\/%) (3.18)

and, again, for sufficiently small £ > 0,

\/garctg [\/%—5 te (Vo=(1 - g))] > \/garctg (v22).

In view of (3.16)-(3.18) we deduce that

\/g [arctg (\/%) — arctg (\/ﬁ)] >e> 0

too and, as above, this implies that when measuring the distance from a root
of (3.9) to the next root of (3.11) this is at least of the order of 7 (1 — ¢).
Therefore, the proof of the lower bound (3.5) for the eigenvalues in the
interval (0,77/\/2_5) is concluded.

The same argument can be used to bound the gap between roots in
the intervals of the form (ﬁ]m (2k+1)7r) in which the terms on the right

Ve Ve
hand side of (3.9) and (3.11) remain positive.
The distance between the roots on the intervals ((2k+1)7r, ﬁ(k+1)7r) in
V2e Ve

which the terms on the left hand sides of (3.9) and (3.11) are negative can
be estimated in a similar way.
Let us now prove the upper bound on the gap:

min |\; — Al < Cov=. (3.19)
I#k

We focus on the eigenvalues in the interval 0 < A < 7/v/2c. We will use the
following simple lemma:

LEMMA 3.2. Let {og} ., be an increasing sequence of positive real numbers.
Assume that there exist positive constants a,b, A, B with B > A such that
the following three conditions hold:

IfA< kn/(1—¢), then agper —kr/(1—¢) <a (3.20)
Ifkr/(1—c)< B thenkn/(1—¢)— ag <b (3.21)
B-A>n/(1-¢). (3.22)

Th(?ﬂ, necessar Zly
[8% — ‘I‘ 0. .2
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242 C. CASTRO

Proof. By (3.22), there exists £ > 1 such that A < kn/(1 —¢) < B and
therefore agpy1, agx are in the conditions of (3.20) and (3.21) respectively.
Thus
Qa1 — Qo < Ogpy1 — krn /(L —e)+krn/(1 —¢) — agzp < a+b.
|

We denote by {Agzx_1}.5; the roots of (3.9) in the intervals I; and by

{A2k}p>q the roots of (3.11) in the intervals J;. It is sufficient to check that,
given any a > 0, b > 0, then:

If 2= > \/garctg (V2¢e cotg (vaz(1 — ¢))) , then Agpy1 — kn (1 —2) < Vae;
(3.24)

If 2= < \/garctg (\/% tg (\/g(l — 5))), then 22 — Xy < Vbe. (3.25)

Indeed, assuming that (3.24) and (3.25) hold and applying Lemma 3.2 it
would be sufficient to show the existence of a,b > 0 such that

\/garctg (% tg (Vas(l — 5))) - \/garctg (\/%cotg (\/%(1 - 5)))
>a/(l—¢),V0<e<1

but this can be done in a straightforward way by using Taylor’s expansion
at ¢ = 0.

Finally, let us check that (3.24) holds, the proof of (3.25) being analogous.
We recall that the roots of (3.9) are at a distance smaller than \/as to the
left extreme of I; if

A > \/garctg {\/%cotg (Vas(1 - 5))} .

Then, clearly, since Agpy1 > kw/(1 —¢) and (lk%s) is the left extreme of the

interval in which Agx4q lies, if

k 2
: _ﬂg > \/;arctg {\/%cotg (Vas(1 - 8))}
then, necessarilly, Aypt1 — kn/(1 —2) < \Jac. O

REMARK 3.3. From the proof of Theorem 3.1 it can be seen that the qual-
itative behavior of the eigenvalues is different in the intervals in which the
left hand sides of (3.9) and (3.11) are positive and negative. Indeed, when
the gap is minimized the expressions of (3.9) and (3.11) being positive, the
roots of (3.9) approach the left extreme of the interval in which they lie while
the roots of (3.11) approach the right end of the intervals J;. However, in
the regions in which the left hand side of (3.9) and (3.11) are negative the
reverse happens, i.e. the roots of (3.9) approach the right end while the roots
of (3.11) approach the left one. This behavior was refered to as “solotone”
phenomena in [8].

Notice that when the density of the string is of the form p(z) = 1 +
a(z) with o smooth, non-negative, bounded and such that f_ll o = 1 then
the eigenvalues are equidistributed at high frequencies. More precisely,
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V7V ~ km/(2¢/2) and the asymptotic gap is of the order of 7/(2v/2) (see
[10]). The solotone behavior is due to the lack of regularity of the density
in our problem.

3.2. THE LIMIT PROBLEM
The eigenvalue problem associated with (1.1) consists on finding v such
that
—u'" =vu in (-1,0)N (0,1)
w(0F) = u(07) (3.26)
u'(07) — u/(07) = vu(0)
admits a non-trivial solution u. One can easily check that the eigenvalues
constitute an increasing sequence of positive real numbers
O<i<m< << — 00
and that the corresponding eigenfunctions {¢y},;~, form an orthonormal
basis of H(—1,1).
Indeed, v, = ,u,;l , 1tk being the eigenvalues of the compact, self-adjoint
operator T : H}(—1,1) = Hd(—1,1) such that Tf = u,u € H}(—1,1) being
the unique solution of

we€ Hi(-1,1)
1 1

/ u'v'dz :/ fods+ f(0)v(0) , Yv € Hy(—1,1).
-1 -1

The symmetry of the problem allows to show that the eigenfunctions are
either even or odd. Even eigenfunctions solve

{ v +vu=0 1in (0,1)
u'(0) + 5u(0) = u(l) =0

which, under the change of unknown v = A%, reduces to the equation A =
2 cotg(A). Let us denote by

O<w <wy <o <Cwp < ---

the sequence of roots of this equation.
Odd eigenfunctions satisfy

{ u +vu=0 in (0,1)
uw(0) =u(1l)=0

and therefore the corresponding eigenvalues and eigenfunctions are

vor = k*n? k>1 (A= /vag = kr),
¢or(z) = sin(krz), k> 1.

It is easy to see that

VV2k—2 = A2 < g1 = Vak—1 = Wi < Ao = /2.

On the other hand, a simple calculation shows that
2
Ao — Aopy =k —wy, = o= + O(k_?’)7 as k — oo. (3.27)

In particular, the spectral gap in the limit system (1.1) vanishes, i.e.

inf |77 — | = 0.
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This is consistent with Theorem 3.1, namely the spectral gap in the approx-
imate system (1.2) vanishes as ¢ — 0.

4. CONVERGENCE OF THE SPECTRUM

First of all we obtain some preliminary convergence results by means
of basic tools from Functional Analysis. In a second paragraph we prove
refined convergence results by a precise asymptotic analysis of the eigenvalue
problems.

4.1. PRELIMINARY RESULTS

Let us recall that 7.,7 € £ (H}(-1,1), H}(—1,1)) are the linear, self-
adjoint compact operators such that their eigenvalues {uf}, <, » {tk}p>1
satisfy pj = 1/v} , px = 1/vg, where {vj}, o, and {rx},5, are respectively
the eigenvalues of (3.1) and (3.26). We have the following result on the
convergence of T, towards T

ProrosiTioN 4.1. There exists C' > 0 such that
172 = Tll g(pg <10y, (-1.0)) S CVE, WO <2 < . (4.1)

Proof. Given f € H}(—1,1) weset T.f = u® , Tf = u. We have
1 1
I = 1) gy = [ 1o —mfdx—/"uy@—mw

1

_/_1%“_% /fu—u (u;;u)-l-/:f(us_u)

/ flu® —u) — f(0)(u® —u)(0) = — f(us—u)
i

(u — )~ JO)( —u)(0) . .

+ 2e

< 2e ||t = loof £ {leo

—&

€ € € 2 V2
+¢E(/ U@-—M—f@ﬂu—UMmlm) | (1.2)

4e2

Using Hardy’s inequality the last term can be estimated as follows:

/fUW?—w—fwﬂw—umem (1.3)

—&

By g LSO TS UTE

- |z |?

< / |f(ue =) = FO)(w = ()

|z |?

—&

—&

< ¢ /_1 (f(uf = u)),|* da. (4.4)

1
Combining (4.2) and (4.4) we deduce that

T =Tl < 261w = ullooll £ lloo +CVE I F(05 = ) 21,
< OVeE | fllp-pll v =l -

Esaim: Cocv, JuLy 1997, VoL.2, pp. 231-280



ASYMPTOTIC ANALYSIS AND CONTROL OF A HYBRID SYSTEM 245
This concludes the proof of Proposition 4.1. O

As a consequence of this proposition and of classical results on the conti-
nuity of the spectrum (see, for instance, E. Sanchez Palencia [11], page 227)
we have:

ProrosITION 4.2, For all k > 1,v; converges to vy ase — 0. On the other

hand, the eigenfunctions ¢} converge strongly in H}(=1,1) to ¢ as e — 0.
Using the variational principle that characterizes the eigenvalues we can

obtain the following result on the rate of convergence of eigenvalues.

PRrROPOSITION 4.3. There exists a constant C' > 0 such that
1 1

v Vg

< Cye, Vk>1, Ve > 0. (4.5)

REMARK 4.4. Observe that, strictly speaking, (4.5) does not provide a uni-
form estimate on the rate of convergence of the eigenvalues.

Proof. We proceed as in [3]. We know that

1 1

v i f—l Kk . f—1 | u' |?
vy, = sup lan_ = 1 7 2 T 2; vp = sup 1an_ T
Peky ufé—"o f—l u + %f_su + fs U Peky uS¢P0 f—l u? 4+ u (0)

where Fj is the set of (k—1)-dimensional subspaces of H}(—1,1) and P+
its orthogonal complement. Observe that

—e 1 e 1
/ u? 4+ — u? + / u?
-1 2e —e e
1 1 £
§/ u2—|—u2(0)—|—‘(1——)/ uz—l—uz(O)‘.
1 2e e
Proceeding as in the proof of Proposition 4.1 we can show that

1 &
(1-2) stz cvrotn

—&

Therefore

Jawt g [l )] uz]

= inf sup [ f_ll e

+Cye

1
= — 4+ CVE Ve >0, Yk 2 L.
k

This concludes the proof of (4.5). O

As a consequence of these estimates we have the following preliminary
result on the rate of convergence of the eigenfunctions:

PRrOPOSITION 4.5. There exists a positive constant C' > 0 such that for any
KeN

|65 = o NS CKWeE, VE<K, Ve < K™% (4.6)
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Proof. First of all we observe that
& 1 & & £ /&
1765 = =0k lma—,0=0 Tok = 1765 g -1y < Cye (4.7)
k

by Proposition 4.1. This allows us to apply the following classical result in
spectral theory (see, for instance, Oleinik, Shamaev and Yosifian [9]):

ProprOSITION 4.6. LetT : H — H be a linear self-adjoint compact operator
in a Hilbert space H. Assume that there exists p > 0 and v € H with
|| wl|g=1 such that

| Tu - pu |l< a

with o > 0. Then, for every > a there exists some v € H with || u ||g=1
such that

o
B 3
u being a finite linear combination of eigenvectors of T corresponding to
eigenvalues in the interval [p— B, p+ 3]

u—wulp<2

In view of (4.7) we are going to apply Proposition 4.6 with o = C'\/e. We
need to find § > C'y/c such that the unique eigenvalue of 7" in the interval
[1/vi — 3,1/vi + 3] is 1/vg. To do this, first of all we estimate the quantity

. { 1 1 1 1 }
myi = min -, |— -
E<K | Vk+1 Vg Vg Vg1
. Vi1 T/ VE A VE + V=1
= min {— V1 — V| |V — \/Vk—l‘} .
k<K Vg1V VEVE—

In view of the results of section 3.2 it is easy to see that, for ¢ > 0 sufficiently
small:

min { Vi1 ¥ \/ﬁ7 s Vk_l} > 6K 3.

k<K Vg1V VEVk—1

Therefore, since \/v; — /Pr_1 is of the order of k=1 as k — oo we deduce
that, for a sufficiently small § > 0, mg > §K~*. Taking 3 such that C'\/e <
3 < K=, in view of Proposition 4.6, we deduce that

201\/7
p

and minimizing the upper bound we conclude that (4.5) holds for a suitable
choice of C' > 0. O

| or — 95 HH&(—I,I)S

4.2. REFINED ESTIMATES ON THE RATE OF CONVERGENCE

Concerning the rate of convergence of the eigenvalues of (1.2) towards
those of the limit system we have the following:

THEOREM 4.7. We have
|\/V5, — k7| < 3VE+0(e), Yk < (1 —2)/mV2e = O(e71/?), (4.8)
‘, [vs,_, — wn| < 2122 + O(e) | vk < e~ V/8. (4.9)
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Proof. First we consider the eigenvalues v5, that correspond to odd eigen-
functions. From section 3 we know that

(k—1/2)7  krx
l—-¢ "1-¢

On the other hand, if 0 < z < 1/\/% we have 0 < \/%tg (\/gx) < /2¢ and

therefore, taking k < (1—¢)/mv/2e we obtain 0 < v/2=tg (/5/v5;) < V2.
Taking into account that ,/v5, solves (3.10) we deduce that

0 < —tg (Vi (1 —2)) < V2=

and therefore, using the Taylor expansion of arctg(z) at z = 0,
—kr < —\/v5, (1 —¢) < arctg (\/%) = k1 2+ Of(e).
Therefore

£
Vs, €

‘w/y_2 ‘<\/_+0()
and then, if k < (1 — &)/mv/2¢ we have

‘w/l/gk—kﬂ" < \/%—I—O(e)—l— ‘11677 —kr

k
— V2 4 1i+0(5)

(f+7)f+0( ) < 3vE+O(s).

Let us consider now the eigenvalues v5, , corresponding to even eigen-
functions. From section 3 we know that

\/ﬂ ; [(kl__1€)7r G :/gz)ﬂ] |

Using the Taylor expansion of tg(z) at = 0 we get that

et < e (y5vhan) < Y5 e v o (1)

3/2

1
provided (ng_l) /6 < 1/+/c and therefore, in particular, if k& < 3 +

1_ 6\ 1/3
(1=¢) (7) . Taking into account that ,/v5, | are the roots of (3.7)
T €

we deduce that

I/E
0 < cotg (y/v5,_, (1 -2)) = Y2=L < E+0 (7/°) (4.10)
2
If wi is the k-th positive root of cotg (z(1 —¢)) = 7, using the Taylor ex-

pansion of the function f.(z) = cotg ((1 —¢)x) — 5 at wy, in view of (4.10)

we deduce that
‘1/V§k_1 —wz‘ < 2/ + O(e).

On the other hand, as seen in section 3.2, wy is the root of cotg(z) = 5. It
is easy to check that

lwi —wi| < Cek.
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Therefore
it =] < [\is — |+ 1wf — el < 2vE+Coh+06e).

O

REMARK 4.8. This result, although it applies to small frequencies only, im-
proves the previous ones in this range. Indeed from Proposition 4.3 we may
deduce that

1 1

7

Cye >

‘ 1 1 1 1

NN | NZ R

(2 2) o

1 1
Vi V" '

Vi = vl =

Therefore

< Ck3/z. (4.11)

6

vy,

Clearly, the results of Theorem 4.7 improve significantly (4.11). The fact
that estimates of the form (4.8) and (4.9) hold for small frequencies only is
natural in view of the solotone phenomena described in Remark 3.3.

We have a similar result for the eigenfunctions:

THEOREM 4.9. There exist positive constants C > 0,6 > 0 such that
| 955 — Sk llamy(-1,0)< CVE, Yk < 6712 W0 <2 < 1, (4.12)
and

| 9541 = P2r [l -1,y < CVE, VE < 8710, W0 <2 < L. (4.13)

Proof. A straightforward computation shows that the eigenfunctions of the
approximate problem normalized in H}(—1,1) (in the norm (f_ll | o |?

dz)'/?) are as follows

iik sin (A3 (1 +2)),2 € (-1, —¢)
Sy = iik v55 sin ( ) :

f)\zi sin (/\gk( B x)) RS (57 1)

2=l sin (A3, (1+2)) 2 € (~1,—¢)

2k—1

Pik—1 e ASk—1
c _ 2k—1 _
ko1 =4 a2, ak-rcos (e ) v e (—e,¢)

D=t gin (A, (1 —2)) ,z € (5,1)

2k—1
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with
in(205(1-2) (1 in (VIEAD) i
Sin — & Sin £
£ — 1 _ 8 k _ _1 k k £ 2

s s, (1-9)

e cos (053 T s (5 VE)

Recall that A = \/I/—z In these expressions we have chosen the derivative
of the eigenfuction at z = 1 to be negative.

On the other hand, the normalized eigenfunctions of the limit problem
are given by

kL g sin(wp(1+2)) , 2 € (-1,0)
Pok = (Tsm(lmw); P2k—1 = { Zhsin (wp(1— ) , @ € (0,1)

: —1/2
with pp = (1 + Sln(?wk)) . This eigenfunction has been chosen to satisfy

2wk
the same sign criteria at z = 1.
Using the fact that ¢5, and ¢y are odd functions we have

1 1
| P5% — P2k \’12115(_1,1): /1 ‘((b;k)/ - ¢/2k‘2 dr = 2/0 ‘((b;k)/ - ¢/2k‘2 dx

:2/
0
2
P cos (5e(1 - o)) + (~1)*" cos(hkrz)

1
+2/
£ = AE
Parok cos ( 2kx)

S?A[ V2e P\ Ve
[ e 1 Pleosatt -]

2

Pk 2k /\gk) k41
cos z) — (-1 cos(kmx
s (o) - (0 cotin

2

+ | cos(kmz) |2]

1
+4/ [|cos (A, (1— 2)) — cos (kn (1 — x))|2]
<2 s P e +4 | p - 1P (1-9)
1
HA X = b (1) sin(g(o))de < 2 phyage P +s

(-2
3

Let us analyze now all the terms on the right hand side of this inequality.
First we observe that if k < 1/7v/2¢, then

Paf3) > e (15y3) > (3) 2
cos | ASpa/ = cos | kmy /= cos | = =
2 2 2 2

and therefore

T 5= 1P (1= 2) 44| N — ko [ (1.14)

cos? (A5, (1~ ))

o (35 1/3)
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On the other hand, it is easy to check that (p5,)* < 1= when k < 1/7v/2¢.

The last term in (4.14) can be estimated as a consequence of Theorem 4.7.
Let us analyze finally the term

1 sin (2A5,(1 —¢))
ps -1 2: ‘ (1 + i 2
| P2 | Viee 205, (1 —¢)

+ (1 + sin (v/2e)5,) (’ng)Z)) o -1

2

V2eds,  2(1-¢

S 2‘ . 2+ L (1 SlIl(QA%k(l—g))
T - 228, (1— 2)
: £ e \2 _1/2 ?
+—(1+SH16EEA”)) () ) 1. (4.15)
Vo, ) 2-9)

The first term on the right hand side is clearly of the order of £2. The second
one can be bounded above by Ce as follows. First of all we observe that

1 | 2 |
142 2

‘1— < if 2 > 0. (4.16)

On the other hand
sin (2A5,(1 —¢))
225, (1 —¢)

sin (225, (1 — €) — 2kn)
225, (1 —¢)

‘ A5y — km €

Aol =€) Al —¢)

< ‘/\gk(l —e)—kn
B Asi(1—¢)

—0(8)  (417)

and
l N sin(\/%Agk) (2K 6)2 (72K 6)2
2 2y2ex, l—¢ 1—¢

2¢ [ cos(A5(1—¢)) 2 B
Cl-c¢ ( Cos(/\kgk\/g) ) =0(e) (4.18)

in view of (4.8). Combining (4.15)-(4.18) we easily deduce that | p5, — 1 [*=
Of(e).
The proof of (4.13) is rather similar and we omit it for brevity. O

5. WELL-POSEDNESS OF THE LIMIT PROBLEM
IN THE ASYMMETRIC SPACE

As we have shown in section 3.2 the eigenvalues vy are divided in two sets:
{kQﬂ-Q}keN and {wz}keN corresponding to odd and even eigenfunctions re-
spectively. In this section we change a bit the notation in what concerns
the eigenfunctions: ¢y, is an eigenfunction associated to the eigenvalue k%72
while 1y, is associated to wf. The set {¢p} o U {0k} ey is chosen so that
they constitute an orthonormal basis of HJ(—1,1).
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The solution u of (1.1) can be written as follows

u(w,t) = Y {[ax cos(krt) + csin(krt)] op(x)

kEN
+ [I;k cos(wit) + dy, Sin(wkt)} ¢k($)} (5.1)

where Ek,gk, Chs Jk are real Fourier coefficients determined by the initial data:

u(z,0) = uo(w) = Y " (ards + brtor)
keN
ui(2,0) = i (2) = Y (knérdy + wpmdyy) (5.2)
kEN
w(0,0)=2 = (mzm(()) + wmim(())) .
keN

This section is organized as follows. In a first subsection we will give
some basic properties of the elliptic operator involved in system (1.1). This

will allow us to explain how the coefficients dy, by, ¢, di, of the Fourier de-
velopment can be computed since, in principle, system (5.2) seems to be
overdetermined. In a second subsection we will introduce an asymmetric
Fourier space in which the system (1.1) is well-posed. Finally, we will char-
acterize this space in classical terms and see that it is constituted (roughly)
by functions with one more degree of regularity to one side of the mass.

5.1. PRELIMINARIES ON THE DEVELOPMENT OF SOLUTIONS
IN FOURIER SERIES

Let us introduce the domains of the fractional powers of the
compact self-adjoint operator T € £ (H¢(—1,1), Hi(—1,1)) that we have
introduced in section 3.2 to show the existence of the eigenvalues of the limit
system. For any o € R we define the Hilbert space.

Xo = {UIZ(akak—l-bek)i

keN
Full2=>" {ar |+ | b [P wi} < oo} . (5.3)
keN

endowed with the norm || - ||,. Taking into account that {¢x} U {1} have
been chosen to constitute an orthonormal basis of H}(—1,1) we deduce that

Xo = H}(—1,1). (5.4)
On the other hand, clearly

Xy =Im(TY) = {ue [H*(-1,0) x H3(0,1)] N H}(-1,1) :
W!(&1) = 0, w'(0%) = u"(07) = w'(0%) — w/(07)},

the norm in X being equivalent to

0 1 1/2
Fa = 7 = | [T P (1] )
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Let us characterize now X /,. Given u € X; we have

0 1
H U H%/Q = < T_1u7u >H&(_171): —/ u”/ul _ /0 u///u/

-1

1

= [ 1 P ) - )
-1

Therefore X/, = [H?*(—1,0) x H*(0,1)] N Hj(—1,1). In a similar way we

may compute X_; /5. We have

1
o= Tou >y = [0 4 a?(0)

If we identify H}(—1,1) with a closed subspace of Hj(—1,1) x R by means

of the linear mapping v — (u,u(0)), we see that the norms of the spaces

X_y/3 and L*(—1,1) x R coincide over Hj(—1,1). Since Hj(—1,1) is dense

in both spaces we deduce that (X_y/5, | - [|-1/2) coincides with L?(—1,1) xR

algebraically and topologically.

With these characterizations of the fractional spaces X, it is easy to see
how the coefficients of the Fourier expansion (5.1) are determined in terms
of the initial data.

We assume that (ug, u1, 21) € Hi(=1,1) x L*(=1,1) x R which coincides
with Xo x X_y/5. Then, since ug € Hj(—1,1) = Xp and {¢p} U {¢}
constitutes an orthonormal basis of Hi(—1,1) we have

1

ap = <o, Ok >pi—1,n)= /1(uo)'¢2d96 P bk =< o, Vg >Hl(-11)

_ /_ " (wo) L

1

On the other hand, since (uy,z1) € L?(—1,1) X R= X_; /5 we have

1 1
T =< (11, 21), B >x_, o= / e + 21 63(0) = / wdpd;
-1 _

1
1

Jk =< (uhzl),lﬁk >X_1/2: / uyppda + Zl¢k(0)'

~1
Under these assumptions it is easy to see that the solution u given by
(5.1) belongs to the class C' ([0, 00); H3(—1,1)) N C'([0,00); L*(—1,1)) and

moreover, that

a(0,6) = 2(t) = > [Brcos(wit) + d sin(wit) | Y4(0)
keN
belongs to C'!([0, o0)).

In order to simplify the expression for the solution v we set

k=P, V_p=Ur, w_p=-Wk

_6k—igk _6k+lgk _Zk—igk _Zk+lgk
U= =5 dp =g =— ==—".

Esaim: Cocv, JuLy 1997, VoL.2, pp. 231-280

2 k 2



ASYMPTOTIC ANALYSIS AND CONTROL OF A HYBRID SYSTEM 253

Then, clearly
u(z,t) = Z (akeikm% + bkewktlbk)

keZ\{0}
Z(t) = U(O,t) = Z bkeiwktlﬁk(()).
keZ\{0}
On the other hand, (ug, u1,21) € H}(—1,1) x L?*(=1,1) x R if and only if
{ap}, {bx} € £? or, equivalently,
we C ([0, 00); Hi(=1,1)) 1 C1([0, 00): L*(~1,1)):  u(0,) € C' ([0, ).
The energy of the solution (which is constant in time) can also be repre-
sented in terms of the Fourier coefficients:

B0 = 5[ twtnrs [ ez

-1

1
= L) Mgy + 1 02000 Py
1 . .
— 5 Z (| akezkwt |2 T | bkezwkt |2)
kez\{0}
1
= LY Galn ) = E).
keZ\{0}

5.2. THE ASYMMETRIC FOURIER SPACE

We set
Ok = Whto, — k7 (5.7)
where oy is the sign function, i.e. o, = 1if k> 0and o, = —1if k < 0.
In view of the results of section 3.2 we know that
5= O(k™1). (5.8)

We introduce the Hilbert space

H={U= 3" (axdy+bethy) €Y = Xox X_ypp ¢ | U |f}=
kELZ\{0}

o by |2
= E | ag |2 401>+ 101> + g |ak52k—+k| < oo} .(5.9)
kez\{0} k€Z\{0,£1} k—oy

In (5.9) we have used the notation

b, = (b1, kT2, 0) 5 Uy = (Y, wpthr, wp o (0)) (5.10)

so that the vector U represents the vector-valued unknown of our system

U = (u,uy, z). (5.11)
Since 8, — 0 as k — oo it is clear that
HCY =Xox X_y/ (5.12)

i.e. H is astrict subspace of the energy space Y = H}(—1,1)x L?(—1,1) xR.
Moreover, H is clearly an asymmetric Fourier space since the coefficients
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{ap—s, — b} and {aj_,, + by} are weighted differently. Therefore, H is
not of the form X, x X,_; /9, for any @ € R, i.e. it is not a natural fractional
power or energy space for system (1.1). However, system (1.1) is well-posed
in this asymmetric Hilbert space:

THEOREM 5.1. For any (ug,u1,21) € H there exists an unique solution
U(t) = (u(t), us(t), z(t)) € C([0,00); H) of the limit system (1.1). More-
over, there exists C' > 0 such that

U@ < CO+22) [ (uut, =) (17, ¥ > 0. (5.13)

Proof. Given (ug, u1,21) € H the unique solution U = (u, uy, 2¢) of (1.1) can
be represented in Fourier series

U= Y (wee™ @, + bre™ ;)
keZ\{0}

provided the Fourier coefficients {ay},{br} are determined by the initial
data, i.e.

Uo = (uo, u1, 21) = Z (ardy, + brpty) -
keZ\{0}
On the other hand,

VU@ =l b Pt (o™ P a3 a2

keZ\{0}
| gy, e/ F=TRITL 4y piont |2
—I_ Z : 52
keZ\{0,£1} k—oyg
=| b |2—|-|b_1 |2_|_ Z |ak|2
keZ\{0}
| ak—o, + bg |? | eilk—or)mt _ giwgt 2
KEZN{0,£1} k—oy s
i(k—op)mt _ dwgt |2
€ e
N lE+2 Y ] . |
keZ\{0,£1} k—oyg

kEZ\{0,£1}

The continuity of U from ¢ € [0,00) to H it is easy to check. This con-
cludes the proof of the theorem. O

REMARK 5.2. The proof of this theorem shows that the flow generated by
the limit system (1.1) is also stable in every asymmetric space of the form

H, = (U= Z (ardp +brtby) < [ by [P+ b-y [P+ Z | ay |?
kez\{o} keZ\{0}
o b5 |?
+ Z | o (’SZkoz—I_ ¢ | < o0
keZ\{0,£1} k—og

Esaim: Cocv, JuLy 1997, VoL.2, pp. 231-280



ASYMPTOTIC ANALYSIS AND CONTROL OF A HYBRID SYSTEM 255

with 0 < a < 1. The space H introduced in (5.9) corresponds to & = 1 and it
is the smallest one in which this holds. It is also obvious that H is the sharp
space, in the sense that system (1.1) is not well-posed in H, for any o > 1.

System (1.1) is also well-posed in a more general class of asymmetric
spaces of the form:

2
@ »h a

U= Z (akdy + bxthy) +| by [P+ |01 |2 + Z |5§a|
kEZ\ {0} o O

| ag—o, + i |?
+ Z —52ka+2 < 00
keZ\{0,£1} k—oy

with @ € R. The case we have considered corresponds to o = 0.
In order to characterize the asymmetric space H it is natural to introduce

B oy — Ek—ak (Py + ak—crk)
- 2 ’ 2 ’
We have the following result:

PROPOSITION 5.3. The set {pk} ez 0,213 U0 rez 0,413 U101, ¥1 ) con-
stitutes a Riesz basis of the asymmetric space H.

Pk QU = Ok—q,, Vk € Z\{0,&1}. (5.14)

Proof. We first observe that
Z (a;@ + bk%k) =b_1t_y + b1ty

keZ\{0}
Gp_g, + b
+ (— (h—o, — bi) P + (%) (]k) :
KEZ\{0,41} k=

Therefore, the set under consideration is complete in H.
On the other hand, if we define on H a scalar product such that this set
is orthonormal, then, clearly, the corresponding norm || - ||. is such that

2)
which is equivalent to the norm of H. This concludes the proof of the
proposition. ]

A—g, + bi

IO 12=lba P+ 100 P+ D) (Iak-ak—bm% 5
o

kEZ\{0,£1}

5.3. CHARACTERIZATION OF THE ASYMMETRIC SPACE

The main result of this section is as follows:

THEOREM 5.4. The space H coincides with the subspace of Hi(—1,1) x
L*(=1,1) X R constituted by the elements (ug, u1, 21) such that the restric-
tions of (ug,u1) to the interval (0,1) belong to H*(0,1) x H'(0,1), i.e.

(uol(0.1y » w1lio,1)) € H*(0,1) x H(0,1) (5.15)
and satisfying the further compatibility conditions
u (07) = 21, uy (1) = 0. (5.16)
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Moreover the norm of H is equivalent to the following one

1 1/2
Il wo 17y =0y + F e 122y ‘|‘/0 (| toe [P + [ ure |*) dz| . (5.17)

As a direct consequence of Theorems 5.1 and 5.4 we have

COROLLARY 5.5. Given (ug, u1,21) € H}(—1,1) x L*(=1,1) x R such that
(5.15)-(5.16) hold, the solution of (1.1), (1.6) satisfies the following further

reqularity conditions:
u(@,1) |0,y C ([0,00); H*(0,1)) N C" ([0, 00); H'(0,1)). (5.18)

REMARK 5.6. The regularity result of Corollary 5.1 was proved by S. Hansen
and E. Zuazua in [4]. Therefore, the result is not new. However in [4] the
proof was based on the use of the explicit formula of solutions of the one-
dimensional wave equation while the present proof is based on the Fourier
expansion method.

Let us now proceed to the proof of Theorem 5.4. First of all we need the
following technical lemma:

LEMMA 5.7. For any k € Z\ {0+ 1} we set

wk_(ik—o'k Zn (_170) N wk-l_(gk—o'k

Erlx) = 743 , Gle) = 73
——F=% in (0,1) — =% in (0,1)

(5.19)

in (—1,0)

and &41 = y,. Then, there exist positive constant 3,7 > 0 such that the
following hold:

Yo & =k exx,, < 0 (5.20)
kEZ\{0}
1 _
> 186 =B Ik, x, < o0 (5.21)
kEZ\ {0}
o
Do I I, axxo< 0 (5.22)
keZ\{0,£1}

where X, are the fractional spaces introduced in section 5.1.

Proof. Let us check that (5.20) holds, the proof of (5.21)-(5.22) being anal-
ogous. Note however that in (5.21)-(5.22) the constants 3, have to be
chosen such that the general terms of the series tend to zero as k — oo.
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Functions & and v, are even. Therefore,

1

_ 0 2
16 T Py 3 [ 10 cos (6 = 1ym) 4 pecos 1 + )

-I-% /_1 ‘(—1)k sin ((k — 1)ma) 4 pg sin (wi(1 + 2)) 2 v % o Sin(wk)|2

< (=) [ feos (b= 1r(1+ o))

-1

bt [ feos (k= (14 2) = cos (w1 + )

-1

(1= [ Jsin (k= Dr(1+ )P

-1

ot [ sin (k= (1 42)) = sin (o1 4 2)

-1

1 . 1 .
+5 1w [P sin(n) < 2(1 = pi)? + 1 (ppsin ()’ (5.23)

o [ [loos (= 1m2) = contra)*+ i (0~ 1yr) — s

It is easy to see that all the terms on the right hand side of (5.23) are
of the order of k=2. More precisely, there exists C' > 0 such that || & —
Py, Hg(oxX_mg C/k* and this implies (5.20). O

In view of Proposition 5.3, any element U € H can be written as

U=dipr+dava+ Y, (epr + dragr)
keZ\ {0,241}

with {cp}, {di} € (2. B
We set Ul = dyip +d_1¢_4 +ZkeZ\{0,il} drqr and define Ue1 as the even
extension to (-1,1) of the restriction of U! to (0,1). Clearly

Ul = Z dp0g—1&k

keZ\{o}

since 8;_q, &k is the even extension to (—1, 1) of the restriction of ¢ to (0, 1).

On the other hand, since {ﬂk} U {Ek} constitute an orthonormal basis
of Xo x X_;/2, then {wl—kﬂk} U {%Ek} constitute an orthonormal basis of
X1/2 X XO.
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By (5.21), taking into account that 1, /wy are orthonormal in Xi/2 X Xo
and that wk_l is of the order of §;_1, we deduce that

H Uel HX1/2><X0: Z dk(sk—crkgk

kezZ\{0} X, /% Xo
dk(sk—crkk (% H ﬁgk - % HX1/2 XXO) dk(sk—crk_
< E + Z g
kezZ\{0} keZ\{0} X, 3% Xo
1/2 1/2
| dpdr_o, k|2 1 —
<| X S 186 = T e,
kezZ\{0} keZ\{0,£1}
1/2
Z dkfsg—o'k _k S C Z | dk |2
kezZ\{0} Xy /5% Xo keZ\{0}

Therefore Ul € X /3% Xg and this implies that U"[ (o 1y € H?(0, 1) x H'(0,1).

Let us take now U? = ZkeZ\{O,ﬂ} cppr and define U2 as the even exten-
sion to (-1,1) of its restriction to (0,1). We have U2 = D okez\ {01} € and,
as above, using (5.23) we obtain

102 o= | D en (&= 1)

kEZ\{0,+1} Xy /5% Xo
1/2
Cl—
oY G el > dap
keZ\{0,£1} Xy 5% X0 keZ\{0,£1}

This implies that U?| o) € H*(0,1) x H'(0,1).

We have proved that, if U/ € H then Ul € H?(0,1) x H'(0,1). This
implies, in particular, that the restriction of u; to (0,1) belongs to H1(0,1)
and therefore uy € C([0,1]). As a consequence of this, the compatibility
conditions (5.16) hold.

Let us see that every element U € X X X_j/, such that (5.15)-(5.16) are
satisfied is contained in H.

Since U € Xo X X_; 5 it can be written as

_ _ d
U=dipr+d_1v_1 + Z (Ckpk + k f]k) )

KEZ\{0,£1} 0o
with {cx}, {dr} € 2. In order to see that U € H we have to show that

>

keZ\ (0,41} | Rk

2
< 0. (5.24)

Proceeding as above we can prove that, since {c.} € 02, then U? = dyip +
d_1¥-1 + > ez oy CkPk restricted to (0,1) belongs to H?(0,1) x HY(0,1)
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and satisfies the compatibility conditions (5.16). Therefore, the problem is
reduced to consider elements U € Xo X X_;/, of the form

dy,
U= Z Shor Ik
KEZ\{0, 41}
with {di} € (? such that (5.15)-(5.16) are satisfied.
Let us define U, the even extension to (-1,1) of the restriction of U to

(0,1). In view of the characterizations of the fractional spaces X, of section
5.1 we have that

Z Ay € X9 X Xo. (5.25)
keZ\{0}
Let us see now that combining (5.21) and (5.25) the proof of (5.24) can
be completed.

It is sufficient to show that 1 3 ZkeZ\{o} wrdy, ( ) belongs to X/, X Xo

-1

since {Qbk/wk} are orthonormal in X/, X X and wy 7" is of the order of

k—crk-
Actually, it is sufficient to prove the convergence of the tails

%Zlklﬂ\f wrdy, (Z—:) in Xq/5 X Xo for N large enough. We have

3 wrdy Uy _ ‘“’“d’“ (5.26)
E>|N]| pown X, /5% Xo |k|>N
On the other hand,
Z i ¢k < Z ke [ (¥, —ﬁfk)]
E>|N e keZ s
>| | X1/2XX0 € \{0} X1/2><X0
+| YD desy
keZ\{0} X1/2 < Xo
1/2
kdk 1 —
‘ Z 2 | B& — ¥y, H%{l/QxXO
|k|>N |E|>N

> dréy : (5.27)
[kl>N X172xXo
We have

Z dp&r < 00

[k[>N Xy /2xXo
and, in view of (5.21),

1 _
Z 2 Hﬂfk - ¢k“§(1/2xXo — 0, as N — co. (5.28)
[k[>N
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Combining (5.26)-(5.28) with N large enough such that

1 — 2 o
Z ﬁHﬁgk_lkaXl/QXXo < 5

|k|>N

with § > 0 sufficiently small such that | §'/2k |<| wy, | for every | k |> N, we
easily obtain an upper bound for the quantity in (5.24).

This completes the proof of the fact that H coincides algebraically with
the space of elements of Xo x X_;/, satisfying (5.15)-(5.16). On the other
hand, the proof of the first inclusion provides a bound of the norm of the
latter in terms of the norm in H. The fact that these spaces coincide topo-
logically is then a consequence of the open mapping theorem.

REMARK 5.8. The fact that H coincides with the space of finite energy data
with one more degree of regularity to the right of the point mass can be ex-
plained, roughly, in the following way: The graphs of py = (Ek — Ek_gk) /2
and ¢ /0p—y, = (Ek + Ek_gk) /2 are basically one reflexion of the other with
respect to & = 0. Moreover py, ‘(071) is very small in H(0,1) x L(0,1) while
D ‘(_170) is rather close to an orthonormal basis of H'(—1,0) x L%(-1,0).

In a similar way 3l 1o is rather small in H'(—1,0) x L*(—1,0) while
“1l(-1,0
5 ‘(071) is almost an orthonormal basis of H'(0,1) x L?(0,1). Since

—op
5 = O(k™') and we are considering ¢, instead of g /6x—s, , we see that

qr ‘(_170) has to be small in H%(—1,0) x H'(—1,0) while g ‘(071) is close to
an orthonormal basis of H?(0,1) x H'(0,1). This explains the asymmetry
of H.

In figures 1 and 2 below we show the graphs of the first components of
¢, and ﬂk_gk. Then, in figures 3 and 4 the graphs of the first components of
pr and qx /8y—,, are shown. These figures exhibit the phenomena we have
described above.

Figurel : ¢, Figure 2 : 1,

Figure 3 : p, Figure4 : 7,/
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6. UNIFORM WELL-POSEDNESS OF THE APPROXIMATE PROBLEMS
IN “ASYMMETRIC SPACES”

The goal of this section is to show that the well-posedness of the limit
system in the asymmetric space H can be obtained as a consequence of
an uniform well-posedness result of the approximate problems in finite di-
mensional spaces that, as ¢ — 0, cover the whole asymmetric space H.
Obviously, the approximate problems (1.2) are not well-posed in an asym-
metric space like H. Therefore, it is natural to consider them in suitable
finite-dimensional spaces.

With a notation similar to that of section 5, solutions u® of (1.2) can be
written in Fourier series as follows:

o)=Y (areie5 (@) + bre i (o) ) (6.1)
keZ\{0}

In (6.1), {¢7 } denote the odd eigenfunctions and o5 the corresponding eigen-
values while {¢7} denote the even eigenfunctions and f; its eigenvalues.
These eigenfunctions are assumed to be orthonormal in Hi(—1,1). The
complex Fourier coefficients {a;} U {by} are determined by the initial data
and finite energy solutions correspond to £? coefficients.

We also introduce the vector-valued eigenfunctions

& = (0F, iaget) , by = (VF, i677) (6.2)
so that the vector valued unknown U = (u®, u$) can be written as follows
U (et) = 0 i) = D0 (e G+ b T
keZ\{0}
The second components of {52} U {ﬂ;} constitute an orthonormal basis
of L*(—1,1) with the scalar product associated to (1.2), i.e.

—& 1 € 1 1/2
= ([ 1P g [C1ras [rpa)
-1 3 —& =4

In what concerns the corresponding fractional spaces, it is easy to see that
X& = H}(—1,1) with the usual norm and that X = (L2 (=1,1),] |¢).

The conservation of the energy E® in (1.5) corresponds to the fact that
system (1.2) generates a group of isometries in X x Xi1/27 ie.

. iast|2 [eH ?
HU (t) Hg{éxXil/Q = Z [‘ake kt‘ —I-‘bkeﬁkt ]
keZ\{o}
= >l P16 =l (o) lguxe, , -
keZ\{o}

By analogy with the quantity é; measuring the distance between consec-
utive eigenvalues in the limit problem we introduce

o = ﬁz_wk - ap. (6.3)

As we have shown in Theorem 3.1,
inf |67] ~ ve=. 6.4
ke%l\{o}| W~ ve (6.4)
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We now introduce the Hilbert space H® = (XS X X249 |- Hs) the norm
|| - || being as follows: If U = Z (akaz + bkEZ) then

keZ\{0}
ko, + bi |?
VOB P b Pt S Jacps 3 Lm0l gy
keZ\ {0} kEZ\{0,£1} (52_%)
The algebraic structure of the norm || - ||. is similar to the asymmetric
norm || - ||z introduced in (5.9) for the limit problem. However, in view of

(6.4) the norm || - ||. is equivalent to the usual HJ(—1,1) x L*(—1, 1)-norm.
The first result of this section is as follows:

THEOREM 6.1. There exists C' > 0 independent of 0 < € < 1 such that the
solutions U® = (u®,u3) of (1.2) satisfy

[U=() 1Z2< C(L+42) || Uo ||, VE 20, (6.6)
Jor all Uy = (ug,u1) € HY(=1,1) x L*(=1,1) and 0 < & < 1.
Proof. We have

JU=0) 2= boae 0 P [ e 2 3 a2
kEZ\{0}

> € t .
+ ) | gy € F=n" 4 bpetPil |2

2
kEZ\{0,+1} (5;_%)
b PHlb P+ > ]
keZ\{0}
Gpo + by, |2 oYkt _ piBEE |2

kEZ\{0,£1} (5;_%)2 (5i_gk)2
<C(1L+2) || Uo |2

since

| oYkt _ piBE 2
<

(6)

t2

and

| ak—o,, + bk |?

(6-0,)

REMARK 6.2. Theorem 6.1 is the analogue of Theorem 5.1 in the context
of the approximate systems (1.2).

[ b 1°< 2 (| thmoy 1P+ | oy + 05 ) < C || ags, |°+

O

However it is not clear whether Theorem 5.1 is a consequence of passing
to the limit as £ — 0 in Theorem 6.1. Indeed, given Uy in the asymmetric
space H it is not clear if the norms of Uy in H. remain bounded or not.
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In order to solve this problem we need some further results on how solu-
tions of (1.2) approximate the solutions of the limit system.
Let us consider Uy = (ug, u1) € H}(—1,1) x L?*(—=1,1) such that

21_5/ |ur(2) |Pda <C,V0<e<1 (6.7)

1 €
E/ uy(z)de — 24, ase— 0. (6.8)

Under these assumptions the weak convergence result of Theorem 2.1 ap-
plies. Now, we can develop Uy in Fourier series both in the basis associated
to the approximate and limit systems:

Up= Y (azdf +0345) (6.9)
keZ\{0}

Uo= > (axdr+ bpty) - (6.10)
keZ\{0}

Note that in (6.10), Uy = (uo, u1, 21) € Xo X X_q/3.
We also introduce

o) = = / @) da — 2 (6.11)

g % .
We have the following result:

LEMMA 6.3. There exists C' > 0 such that
laf —ap | < C(cle)+hvE), Vh:|k|< /6 (6.12)
105 — b | < C(e(e) 4+ kVE) | Vi | b |< 876, (6.13)

with & > 0 small enough independent of 0 < ¢ < 1.

Proof. We focus on the second estimate, the first one being easier to obtain.
From Theorems 4.7 and 4.9 on the convergence of the eigenvalues and
eigenfunctions we have:

- — €
| by — by, [= ‘< Uos ¥ >Xox X1y — < Uoy ¥p >x5xx2

1
< ‘< o, Yr — Uy, >H§(—1,l)‘ + ‘/ wwptpde + z1w0p Pk (0)
-1

£ £ 1 c £ £
—/ w1 Fp g — 2—/ w1 SR
e<|z|<1 € J ¢

<l o mg—ayll Y6 = i lmg 10y + Fo llzell wxtor = BEg [lze

/ u1 B35 ¥
|z|<e

By Theorems 4.7 and 4.9 the first two terms are (uniformly) of the order
of v/e. The last term can be estimated easily as follows

T 21_8 ‘/_5 (21w (0) — Ulﬂi%ﬁ@))‘ +

1 /e 1/2
[ wser| < lu e vE (5 [ 150 E)
|z|<e € J-e
< V2|l lr2(-1,1) -
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Let us analyze the third term. We have,

[ i) - vt < 5 xt(0)

—&

[

+ a0 [ el o = 8001+ 52 [ B (0400) - v

1
2e

o [ (E0) - v
< (o) | rtn(0) | +C | 64(0) [ | = 57 | +C | 57 1] 4(0) = 630)|
o [l (e(0) = w5 (a).

The first two terms can be bounded by ¢(c) 4+ /¢ while the third has to be
majorized by k+/c. Finally, the last term can be estimated as follows:

[ ) — vl da

2e
€ 1/2 € 1/2
<1l (5 [ 10P) (5 [ 1w - aor)

SO BR Ve Y lmp -1, < CVER

since | 5 |< C'k. This concludes the proof of the Lemma. O

THEOREM 6.4. Let Uy € H be such that (6.7)-(6.8) hold. Define

Us= Y (aid+bi9}) (6.14)

k| <K (e)

with K(g) = min (c(e)~#347,627Y) for any v > 0 with§ > 0 small
enough, where {a3, b5} are the Fourier coefficients of Uy in the basis of

{6k Vi }. Then,
| U5 le=1l Uo ||z, as e — 0. (6.15)

REMARK 6.5. Theorem 6.4 states that the norm || Up ||g can be obtained
as the limit of the norms || U§ ||. provided U is a suitable truncation of the
Fourier series associated to Uy in the basis {(/52} U {sz}
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Proof. We have

WU 12 = 1T 7] = {102y P = Tooa P+ 105 P =0 P+ Y Jaf P

k| <K (e)
| ag_y, + 05 |7 | ap—oy, + i |?
_ Z |ay | + Z k— _ Z 5;—
kEZ\{0} RS (5k Uk) kEZ\{0,£1} k—a
C(I Uollar + 1 U5 ll) K(e) (cle) + K(e)ve) + D> lax > (6.16)
|k|>K(e)
op T | @5y + 05 [ oyt bi |
—I— Z |ak5k 2k| —I— Z k k k |ak5k 2k|
iore Coed” g | (00 (o)

The coefficient K (¢) (C'(¢) + K(£)y/<) as well as the second and third terms
of the right hand side of (6.16) converge to zero as ¢ — 0.
Concerning the last term, we have

Z |a2—0k+b2 |2_ |ak—0'k —I_bk |2

2 52
K € k—o
iggo | (00) :
[ a5, 405 2 = | e + b 2
< ). —
rigi (%)
1 1 ,
+ Z VT | ah_o, + b1 |* . (6.17)
We have
1 1 Oy T 00| CVEK?(e)
_ D) = _ 2 5k—0k - 5’“—%‘ ="
(5k O'k) k_gk (5k—0'k) 5k—0'k k= Tk
(6.18)
since, in view of (4.8)-(4.9), [ 6;_, — dk—o, [< Cy/E and
2
1 -2
< CK*(e). (6.19)
-
k
To check that (6.19) holds we observe that
C C
0% > 0 — > — — >
fa 2 0= CVE2 K(e) Cvez 2K (2)

since K (g) << e71/2,
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From (6.18) we deduce that

1 1
> — 5| | W= = bx ?

kcrk

— by, |?
<ovEree Y Mt il oz o0y 620)

lK|<K (<) k—ok
kZ+1

which tends to zero as ¢ — 0.
Finally, in view of (6.12), (6.13) and (6.19) we have

2.

2
k K (e (S )

5 |y + 81 = L ahmoy + e ||| 0, 00 |+ a5, + b

2
24 (SE )
ILS (1 °) ( k—oy

@y + Vi |+ | @k, + 1)

[y 0 1P = Lk, + i

|
ccw@rrond ¥ | :

g (%)
< CR(E) ele) + K )VE)

1/2
Z | aj_,, T ng K | ap—o, + b§ |2 K1/2(5)
g\ (% ak) (%-2)
< CK*P(e) (e(e) + K(2)VE) (| US 112+ 11 Uo |I7)

Clearly, the coefficient K 3/2( ) (c(e) + K (2)+/2) tends to zero as ¢ — 0.
Combining (6.16), (6.17), (6.20) and (6.21) we have

105112 =11 Uo llE| < o(1) A+ 1105 [le + (1 U [l) as = =0
and this implies (6.15). O

1z, (6.21)

From these results we can recover the well-posedness of the limit system
in the asymmetric space H.

COROLLARY 6.6. As a consequence of Theorem 6.1 and the approximation
results above, the limit system (1.1) is well-posed in the asymmetric space

H.

Proof. We consider first the case of initial data Uy € H such that the condi-
tions (6.7) and (6.8) hold, and obtain the stability result (5.13). The general
case Uy € H can be then easily obtained by a density argument.

Given Uy € H satisfying (6.7) and (6.8) we define U§ as in (6.14). Let
U*(t) be the solution of (1.2) with data Uj. By theorem 6.1 we have

[ U=(@) Z< CO+2%) | U5 112 (6.22)
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Taking in (6.22) the liminf as ¢ — 0, using Fatou’s Lemma and Theorem
6.4 we deduce that the solution U of (1.1) satisfies

I UE) 1< Tim inf | U=(¢) [[2< C4£2) lim inf || U5 (|2 =C'(14+62) || Uo [I7
e~ e—
and this concludes the proof of the corollary. O

7. FURTHER CONVERGENCE RESULTS

The techniques of section 6 allow us to obtain the following result about
the convergence of the solutions of (1.2) towards the solution of (1.1).
Consider (ug,u1,21) € Hj(=1,1) x L*(=1,1) x R such that
1

% |y P de < C (7.1)

—&

€

% | up — 2 as € — 0. (7.2)

Let u be the solution of the limit problem (1.1) and {u}_, the sequence
of solutions of (1.2) with the same initial data. Let us also define the trun-
cated family of solutions of (1.2):

it= 3 (afore™ 4 bt ) (73)
k| <K(e)
with K (¢) as in Theorem 6.4.
We have the following
THEOREM 7.1. Under the assumptions above, for any T > 0 we have

w* — uin C([0,T]; HY(-1,1)) nC* ([0, T]; L*(—1,1))

QL/ e da = ui(0,1) in C([0,T]), as = — 0. (7-4)
If moreover, -
21—8 _66 | up |2 de = (1) ase — 0 (7.5)
then
ut = win C ([0,7]; Hi(-1,1)) nC* ([0, T]; L*(—1,1)) )

QL/ wSda — ug(0, 1) in C([0,T]), as = — 0,

—&
REMARK 7.2. The first part of Theorem 7.1 ensures that, under the condi-
tions in which u® converges weakly to u in the energy space (see Theorem
2.1) the truncated sequence u® converges strongly.
The second part asserts, in the case in which the strong convergence holds
(see Theorem 2.3), that the convergence holds uniformly in time and not
only in L? with respect to time.

Proof. Let us proof the first statement. By U we denote the vector-valued

unknown
~5 = = 1 © =
Ur = (u YUty 5o /_6 utdx)

and Ul(z,t) = (u(z,t), ue(z,t), u(0,1)).
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To simplify notation we will denote the norm | +[| 1 (_ 1 1yx(z2(=1,1)x) BY
|| - || along the proof. We have

I U) = U (1) g (11yx (12 (- 1,1) )

= Z {(akakeikm + bkﬂkewkt) - (aiazemit + b‘zEZeiﬁit)}

[k <K (<)
o tkwt L iwgt
+ Z (akqbke + bripe ) . (7.7)
k[>K (<)
Clearly
1/2
> (wde™ t o) | = |3 (lan 41 )
|k|>K(e) |k|>K(e)
(7.8)
and this tends to zero as € — 0.
On the other hand,
2
- ikmt e ¢ iajt
> (akak@ — apope k)
k<K (<)
<C Z “ a, _a.;:g |2 + | ai |2| eikm‘ _eiaZt |2
[k <K (<)
2
e (2 =F tknt
+C Z g, (¢k - ¢k) € : (7.9)
[k <K (<)

By Lemma 6.3 we have

S ar - ai P<CK(E) (e(e) + K (2)vE)

k| <K (e)

and, in view of the choice of K(g), this converges to zero as £ — 0.
By Theorem 4.1 we also have,

. .
ezkwt — etait

< |km — al|t < COVET ¥ | k|< K(2),Vt € [0,T).

Therefore, the second term on the right hand side of (7.9) converges to zero
too as ¢ — 0.
To estimate the last term we observe that, in view of Theorem 4.9,

G- 3 < ovE+lail [ ot <COVEQH K.
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Thus

S @ (G-d) | <oVEQHEE) Y Ta

Ik|<K () IkI<K ()

SOVE(L+ K@) K@) | Y 4]

|k[<K(e)
which tends to zero too.
The term
Z (bkgkeiwkt B biezﬁzt)
k<K (=) HE(~1,1)x (L2(~1,1)xE)

can be estimated in a similar way.
Let us prove now the second part of the theorem. In view of the first one
it is sufficient to check that

D apdie 4 b
[k|>K (<) HY(-1,1)x (L2 (- 1,1)xR)

converges uniformly to zero as ¢ — 0.
The norm of the first two components can be bounded above by the norms
in X§ x X2, which coincide with

1/2

> lagl* +1vel

k|>K (<)
and this tends to zero as ¢ — 0 since
ST olag P+ 1bg P=2E7(0) 5 2E(0)= D (lar >+ [ bk |?)
keZ\{0} keZ\{o}

in view of the assumptions on the initial data which guarantee the conver-
gence of the energies.
Concerning the third component we have

2 1/2
biﬂk/ 1 ¢
3 vids| < = [ | 3 i
|k|>K (£) 22 Ve T \Jk|>K (e
1/2
<| DD bisiv: =1 > sl
|k|>K (e) XE—1/2 |k|>K (e)

which tends to zero too.
This concludes the proof of Theorem 7.1. O

Esaim: Cocv, JuLy 1997, VoL.2, pp. 231-280



270 C. CASTRO

8. CONTROLLABILITY

Let us consider the problem of controlling the dynamics of the limit system
by means of a control v = v(t) acting on the extreme z = 1.
The equations of motion read now as follows:

Ut = Upg , for —1<e<0,0<t<T

Ut = Upg , for 0<a<1,0<t<T

w(0t,8) = u(07,t) = (1), for 0<t<T 21
Mzi(t) = up (0%, 1) — ug(0=,8), for 0<t<T (8.1)
u(—1,t) =0, for 0<t<T

u(l,t) = v(t), for 0<t<T.

The only difference between system (8.1) and the original uncontrolled
system (1.1) is that we have replaced the homogeneous boundary condition
w(l,t) =0 by u(1,t) = v(t).

The control time T > 0 is fixed a priori. Due to the finite speed of
propagation it is natural to assume that T > 4.

The control problem can be formulated as follows: we assume that the
control v belongs to L%(0,T). The question consists in characterizing the
space of controllable initial data (ug,u1,z1) for which there exists a control
v € L?(0,T) such that the solution u of (8.1) taking the initial data

u(z,0) = ug(z), ue(2,0) =uy(z) in -1,1
{ uf(0,0)) = 21(:) zt(O() ) ) ( ) (8.2)

is at rest at time t =T, i.e.

{u(x,T):ut(w,T)zo in (—1,1)

2(T) = u(0,7) = 0. (8.3)

The answer to this problem was obtained in [4]. It turns out that the
sharp controllable space is an asymmetric space. We recall this result in
section 8.1 below and give a complete explanation in terms of Fourier series.
In section 8.2 we recover this result as the limit when ¢ — 0 of uniform
partial controllability results for the approximate systems (1.2).

8.1. CONTROLLABILITY OF THE LIMIT SYSTEM
IN THE ASYMMETRIC SPACE

The following result was proved in [4]:

THEOREM 8.1. For any (ug, u1,20,21) € L?*(=1,1) x H71(-1,1) x R x R
such that

{ Ug ‘(—1,0) € Hl(_lvo)vul‘(_lp) € Lz(—l,O) (84)

UO(—l) =0, UO(O_) =20

there ewists a control v € L*(0,T) such that the solution of (8.1) satisfying
the initial conditions (8.2) and
2(0) = 2o

satisfies the control condition (8.3).
The map (ug, u1, 20, 21) — v is continuous in the corresponding topologies.
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Moreover, the solution u of (8.1) belongs to the class

we C([0,T); LA(-1,1))nC ([0, T); HY(-1,1))
z e CH[0,T)) (8.5)
w2100 € C ([0, T HY(-1,0)) n C* ([0, T); L*(—1,0)) .

Using Lions” HUM method (see [6]) it is easy to see that Theorem 8.1
can be reduced to the obtention of suitable observability inequalities for the
uncontrolled system (1.1). As it was shown in [4], Theorem 8.1 is quivalent
to the existence of positive constants C; > 0,2 = 1,2 such that

Ch {H Uo H%?(—Lo) + Il wa "1211—1(—1,0) + | wo H%Il(o,l) + I w1 "%2(0,1) + |z |2}
T

< [l Pas (8.6)
0

Cy {H o H%?(—Lo) + 1w "1211—1(—1,0) + |l wo H%Il(o,l) + |l w "%2(0,1) + | = |2}
holds for every solution of the uncontrolled system (1.1).

1/2
These inequalities assert that the quantity (fOT | uz (1, 1) |? dt) defines

a norm in the space of the initial data which is, roughly, equivalent to the
natural norm of the asymmetric space

H_y = {(uo,ur,z1) € L*(=1,1) x H™'(=1,1) X R : uol(o.1) € H'(0,1),
U1|(071) € L2(07 1)7 UO(l) = 0} . (87)
By means of the tools we have developed in section 5.3 it is easy to see

that this space coincides algebraically and topologically with the following
asymmetric space defined in terms of Fourier series:

H,=qU= Z (ardy +brby) € X_qjo x X_q [ U [121=] by |
keZ\{0}

FIo P+ D Flar P+ D |k, —br|*< o0 . (8.8)
kezZ\{0} keZ\{0,£1}

On the other hand, since
u(z,t) = Z (akeikmqbk(w) + bkewktlbk(ac))
keZ\{0}

we see that (8.6) is equivalent to

Collboy P+ 10 P+ D Fla P+ D lak—g, — b |
kEZ\{0} KEZ\ (0,1}
2

g/OT 3 (ake“”%(o)+bkewkwg(o)) dt (8.9)

keZ\{o}

<Cy|lboa PHlb P+ D0 Gla P+ D> ko, —bi |
keZ\{0} keZ\{0,£1}
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As it was shown in [4], the fact that (8.9) holds is due precisely to the
fact that the gap between consecutive eigenvalues is of the order of é; and
that this quantity tends to zero as k — oo.

Indeed, it can be seen that (8.9) is a consequence of the following result

by D. Ulrich [12]:
TueorEM 8.2. (D. Ulrich [12]) Let {0,}, o7 and {C.},cp be two sequences
of distinct complex numbers such that o, # (, for all n, and satisfying
|Co—n]—= 0,0, —n|—=0as | n|— oo.
Then {e”"’f}nez forms a Riesz basis in L*(0,27) and
iont _ iCnt
tont € €
n Uq———
{6 }nEZ { o — Cn }nEZ

forms a Riesz basis in L*(0,47).

In order to obtain the controllability of the limit system as the limit when
€ — 0 of controllability results for the approximate systems we need a result
on the theory of non-harmonic Fourier series showing, roughly, that Theorem
8.2 is stable under small perturbations of o, and (,,. This is the object of
the next section.

8.2. A NEW RESULT IN THE THEORY OF NON-HARMONIC FOURIER SERIES

The main result of this section is as follows:

THEOREM 8.3. For any 0 < & < 1 we consider two sequences {0}, }, .7 and
{¢r b nez of distinet real numbers. Then, there exists 6 > 0 such that, if

max{|n—o, |,|n—=C |}<dforalln €Z and 0 < e < 1, (8.10)
the following two properties hold:

ot el —eitht
(a) Forany0 < e < 1, the set {e }neZU{ e
a Riesz basis of L*(0,4r).

(b) There exists a positive constant C' > 0 which is independent of
0 < e <1, such that

} constitutes
new

EZ(I ap >+ b, ?) < /47r > (a R ﬁwm_eicw)) th
Cre ' ! AT e ! b -G
< O llanlP 410 ) (8.11)
nEZ
Jor every 0 < e < 1 and {a,},{b,} € (%
Proof. We write
Uizn‘|‘/\i,07 Cf;:n—l—/\fﬂ.
In view of (8.10) we know that
sup {| A ; |} <éforall 0 <e< 1. (8.12)
nez
iZ5,1

We need the following lemma due to D. Ulrich [12]:
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LEMMA 8.4. ([12]): Let {pn},ez be a sequence of functions in C*([0,47])
with norms less than a > 0 for all n € Z. Then, for any {c,} € {? we have

[

neZ

where M = 61 + Myw?/3, My = 12a®M2 and My =|| ¥ ||c2 where ¢ €
C?*(—n,57) is a function of compact support and such that » = 1 in (0, 4x).

2
dt <a*M*> | en | (8.13)
neZ

eac™ (1)

As a consequence of Lemma 8.4 we have:

/OMZ dt = /047r

2

Z ¢, e (1 _ ei/\fhot)

neZ nez
< MPa*) e | (8.14)
nez
and moreover
. . 2
4 ) tont _ iCht
/ Y e (ite“” - i) di (8.15)
0 ez Oy — Cn

2
dt < M2a22 | cn |
neZ

4 , oMot _ it
= cpe™ | it — ——————

Lz Vo
with a > 0 depending on the constant 6 > 0 of (8.10) and such that a(d) —
0 as § — 0. On the other hand, the constant M > 0 on (8.14) and (8.15)
does not depend on 0 < e <1 and 0 < § < 1.

From (8.14) and (8.15) we deduce that

dr ' . ' piost _ it |7
/ Z Cn0 (eznt B ewnt> + Z Cni (iteznt B ﬁ) dt
0 nez nez In = 5n
<2M%a” Y (| eno |+ | ean 7). (8.16)

neZ
We need now the following two results from D. Ulrich [12]:

LeEMMA 8.5. The set {e™!, temt}nez forms a Riesz basis of the Hilbert space
L2(0,47).

LEMMA 8.6. Let {x,} be a Riesz basis of the Hilbert space H such that
AP T an P anwn [ B a7 (8.17)
n€L neZ n€Z

Assume that there exists 0 < Ay < A and a set {y,} C H such that

2
Z UnYn

< A% Z | an |2
neZ H neZ

for all{a,} € (%
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Then, {x,, + y,} forms a Riesz basis of H and
2

<(B+A)) an*.
H nez

(A - A1)2 Z | a, <

neZ

Z p (Tr, + Yn)

neZ

In view of Lemma 8.5, {z,} = {emt,temt}nez form a Riesz basis of
L*(0,4x). Using (8.16), taking into account that a(§) — 0 as § — 0 and ap-
plying Lemma 8.6 with {z,} as above and {y,} = {—e“’;t, — (M)}

o5=Ch

we deduce that Theorem 8.3 holds provided ¢ > 0 is small enough. O

For the applications we need a more general version of Theorem 8.3:

THEOREM 8.7. Let {w,}, oy be a sequence such that w, # n for alln € 7Z
and | w, —n |= 0 when n — oco. For any 0 < & < 1 we consider two
sequences {0y}, }, o, and {(}}, o of distinct real numbers such that oy, # (5.
Then, there exists & > 0 such that, if

max{|w, —o; [,|n—C |} <dé foralln€Z and 0 < e <1 (8.18)
then the two conclusions of Theorem 8.3 hold.
Proof. Given N € N large we replace {o} by

s _Jntv |n] <N
O e |n|] >N,

where |yZ| < 8, 65 # ¢: and {6} are all distinct.
If § > 0in (8.18) is small enough and N is chosen large enough, then the
sequences {0} and {(:} satisfy the hypotheses of Theorem 8.3.
Proceeding as in A. Haraux [5] it is easy to see that the terms correspond-

ing to | n |< N in the Riesz basis {ent} U {M} can be substituted

a5,—Ch
by {e“’;t} U { 6100":7:21%} and still keep a Riesz basis with uniform constants

in (8.11). O

8.3. UNIFORM PARTIAL CONTROLLABILITY OF THE APPROXIMATE
SYSTEMS

We consider now the approximate system (1.2) with a control v = v*(t)
acting on the extreme z = 1:

Ut = Upg, for —-1<az<—-£,t>0

%utt = Ugg, for —e<az<e,t>0

Ut = Upg, for e<ae<1,t>0 (8.19)
u(te™,t) = u(Fe™, 1), for t>0 '

Uy (™, t) = uy (k™)) for t>0

uw(—1,t) = 0,u(1,t) =v°(t), for ¢>0.

Using HUM the controllability problem for (8.19) can be reduced to the
obtention of suitable observability inequalities for the uncontrolled system
(1.2). Since the density p*(2) = 1+ 5-X(—e,)(2) of system (1.2) is in BV it
is easy to see that, for 7" > 4, there exists a constant C. > 0 such that

T
E* < Cs/ | ug(1,t) |* dt (8.20)
0
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for any finite-energy solution of (1.2).

However, the constant C. — oo as € — 0. This can be easily seen taking
into account that the spectral gap vanishes as ¢ — 0.

As a consequence of this, for any 7' > 4 system (8.19) is exactly control-
lable in L?(—1,1) x H~'(=1,1) with L?(0,T)—controls. However, there are
not uniform bounds (with respect to £ — 0) on the control v* in L?(0,7) in
terms of the norm of the controlled initial data.

The results of previous sections suggest that one can expect some uni-
form bounds in the observability inequalities if one introduces the finite-
dimensional asymmetric spaces.

Thus, let us consider initial data of the form

Us = Z (ak¢k + 0% ¢k) (8.21)
<R (e)

for the uncontrolled system (1.2) and let us denote by H. the Hilbert space
of the those initial data endowed with the norm

IUs 2= 102, P+ 16517+ > @02 lailP+ Y lai,, +05l%
|k|<K(= ) |k < K(e)
E# +1
(8.22)

where, we recall, K (g) ~ g~/6.

Solutions U® of (1.2) with initial data of the form (8.21) can be developed
in Fourier series as follows:

Us(t) = Z (aiemthb_i—l— biewztﬂi) . (8.23)
k<K ()
Clearly
()= Y (ape ™ @) (46 @) (). (824)
k<K ()

The following uniform observability result holds:

THEOREM 8.8. Assume that T > 4. Then, there exists C' > 0 such that

1 T T
o[ leaopa v Ese [eaopa s
0 0

holds for any solution of (1.2) with initial data U2 € H. and for every
0 < e < ey with gg > 0 small enough.

REMARK 8.9. We do not know whether uniform estimates of the form (8.25)
may be true for all initial data Up without the restriction on the number
of non-zero Fourier coefficients of being less than K (). The present state
of the theory of non-harmonic Fourier series does not seem to allow to give
an answer to this question. Notice that in the norm || - || each Fourier
coeflicient has been weighted by the distance between the corresponding
consecutive eigenvalues. This enables to find counterexamples for such an
uniform estimate and the situation seems much more delicate than when
analyzing the classical inequalities of the form (8.20).
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Proof. In view of (8.24) we can rewrite u,(1,¢) as follows:

(.6 = > Jai (@) (1) (9F - )

<K (2)
+ (af (60 (1) = b (1) (1) 701 . (8.26)

Using the asymptotic estimates of Theorem 4.7 on the eigenvalues of system
(1.2) and Theorem 8.7 we deduce that if K(g) = e~/¢ with § > 0 small
enough and 0 < g < g9 with g9 > 0 sufficiently small, then

=3 (@071 |60 O + Ja (61 (1) - 65 (D) (O]

k<K ()
< /T|u (1,0)* dt (8.27)
<C N[l (@) (W + e (60 (1) - b (w7 (V]

[k|<K(e)

On the other hand, it is easy to see that
(65 (D +1]<CVE ,  if [k|< K()

and
of : ;
(60 ()= @D (] < T, itk <| kI< K(E)
for kg > 0 large enough independent of ¢.
Therefore, (8.25) is an easy consequence of (8.27). O

Let us consider now the controlled system (8.19) with initial data in
L?(—1,1) x H7Y(—=1,1). For any € > 0 we define the projection 7. from this
space into the finite-dimensional subspace of elements of the form (8.21).

As a consequence of the uniform observability result of Theorem 8.8 and
applying HUM (see [7]) the following uniform partial controllability result
holds:

THEOREM 8.10. Assume that T > 4 and 0 < £ < g9. For any (ug,u1) €
L%(=1,1) x H71(=1,1) there exists a control v. € L*(0,T) such that the
solution u® of (8.19) taking the initial data

us(0) = up, (u¥) (0) = uy in (—1,1) (8.28)
satisfies the final conditions
me (u*(T), (v*)'(T)) = 0. (8.29)

Moreover, there exists a constant C' > 0 independent of 0 < ¢ < g¢ such
that

Fve llz2 )< C Il meuo ) |2 (8.30)
and
ens *
qnax [|we (@), (@) )| < C N ve N2y (8.31)
where || - ||Z is the dual norm with respect to || - ||..
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REMARK 8.11. If U§ is of the form (8.21) the norm || - ||7 is defined as
follows:
1/2

1O5 11z= [P+ 051+ D 6%l + D lai,, + 031
|k|<K (<) |k

(8.32)

Theorem 8.10 states that we can control uniformly the first K (e) fre-
quencies of solutions of the approximated system (8.19). Uniformly means
that, in particular, when the initial data are fixed the control is bounded
in L2(0,T) as ¢ — 0 and, on the other hand, that the projection of the
solutions u° into the finite-dimensional subspace of elements with K (¢) non-
initial Fourier coefficients remains bounded for all 0 <t < T as ¢ — 0.

We do not give the details of the proof of this Theorem which is a straight-
forward consequence of Theorem 8.8. When passing to the limit in Theorem
8.12 we will briefly sketch the proof of Theorem 8.10 too.

8.4. PASSAGE TO THE LIMIT

We are now in conditions to obtain the controllability result of Theorem
8.1 as the limit when & — 0 of the uniform, partial controllability results of
the section 8.3 above:

THEOREM 8.12. Assume that T > 4 and 0 < ¢ < go. Let (ug,u1, 20, 21)
be as in (8.4) an element of the infinite-dimensional asymmetric space H_y
in (8.7), with Fourier coefficients {ay} U {br}. On the other hand, let v €
L*(0,T) be the control obtained in Theorem 8.1 for the limit system (8.1)
and u the corresponding solution.

Now let U be the truncated data

U= >, {ak@ + bithy (8.33)

[k|<K(e)

and v¢ € L*(0,T) the corresponding partial controls of Theorem 8.10.
Then,

v® — v weakly in L*(0,T)
e (0 (8), w5 (1)) = (u(0), () weakly 5 in L°(0,T; H_1).

REMARK 8.13. This result, roughly, establishes the continuity of the con-
trols as ¢ — 0. Of course, the controls v® and v are not unique and therefore,
the meaning of (8.34) has to be made precise.
Even if the controls ar not unique, HUM provides a unique choice of them.
In (8.34) we state the convergence of these controls obtained by HUM.
Convergences (8.34) can be improved. Indeed, it is not hard to see that
the controls converge strongly in L%(0,T) and that the solutions are such
that the second convergence of (8.34) holds strongly in L?(0,7; H_;) for any
1<p <o
Sketch of proof. We will not give all the details of the proof that follows by
standard arguments (see for instance [7], [1] and [2] for similar convergence
results in other contexts).

(8.34)
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The control v® given by HUM for the approximate system can be charac-
terized in the following way.
We solve the uncontrolled system

pr(r)ph — 95, =0, —l<a<l 0<ti<T
e (—1,1) = 7 (1,1) =0, 0<t<T (8.35)
¢ (2,0) = ¢5(2), @2, 0) = ¢i(2), —l<a<l
with p(z) =1+ zl—sx(_m)(x) and initial data (¢§, ¢7) of the form
(oo = 2 (o +did). (8.36)
k<K (e)

Given an initial data U§ of the form (8.33) we define the quadratic func-
tional:

e e 1 g c ¢ i
Tgost) = 5 [ IR =T - b,

o Z {52—@@ (ak—gk - bk) (Ei—crk - 32)

k| < K(s)
k#+1

HIA

+ 0oy (ki + 06 (Co, + )| (8.37)

Clearly J. is continuous from the space H. of initial data of the form
(8.36) into R. Notice that in (8.37), the last two terms denotes the duality
between the data (¢f, ¢7) and the data Uj of the controlled system.

In view of Theorem 8.8 it is easy to see that .J. is uniformly coercive.
More precisely, there exists €' > 0 such that

T (95, 05) > Cll(es, eDIP — &, Y0 <e<eo, V(g5 ¢5) € He.
(8.38)

Therefore, the minimizers (¢f, ¢7) for J. in H. exist for each 0 < £ < g,
are unique and uniformly bounded in the sense that the quantity ||(¢§, ¥7)|.
remains bounded.

Note that, in order to obtain (8.38), we have used the fact that the data
(uo, u1, 20, z1) belong to H_1 in an essential way.

The minimizer (¢f, ¢j) of J. in H. is characterized by

T
/ 99;(17t)¢;(17t)dt: b—1776_1 —I_bl?ﬁ
0

+ Y [ -G, - )
|k] < K(e)
k#+1

+ 0o (e, +06) (&, +17) (8.39)

for any solution ° of (8.35) with initial data in H. and Fourier coefficents

{6 Ut

The control v° for the approximate system is precisely
v = G5 (1,1) (8.40)

and it is uniformly bounded in L?(0,T) in view of Theorem 8.8.
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In what concerns the limit system (8.1), the control v is also of the form

v(t) = (1,1 (8.41)

where ¢ is a solution of the adjoint system

Pt = Pow, —l<ae<0, 0<t<T
Ptt = Pz, 0<ax<l, 0<t<T
P(0%,1) = (07, 1) = ¢(1), 0<t<T (842
MG (t) = @ (07, 1) — @, (07, 1), 0<t<T
99(_17t):99(17t):07 0<t<T

with initial data ¢g of the form
$o = Z [akak + dk%] (8.43)
kEZ

belonging to the asymmetric space H of (5.9).
The initial data corresponding to the solution ¢ that determine the control
v by (8.41) are obtained by minimizing the quadratic functional

17 .
Jon) =3 [ et de— 0T - 04
0
- Z [8k—oy (@h—s, — bk) (Cheer, — i)
keZ\{0,£1}
+ 8k (@h—ery, + b1) (Cheo, + di)] (8.44)

over H. The minimum is characterized by

T
A<%@omuww

=b_—1 + 071 + Z (850 (@h—, — bk) (ko — TR
KEZN{0,41)

+ 8k (Whmary, + b1) (Eh—ory + )] (8.45)

for all solution ¢ of (8.42) with data in H corresponding to Fourier coeffi-
cients {&x U {nk}.

Using the characterizations (8.39) and (8.45) it is easy to see the weak
limits of subsequences of v, solve (8.45). The solution of (8.45) being unique
this allows to conclude the first part of (8.34).

Applying the identities (8.39) and (8.45) with ¢° = ¢° and ¥ = ¢ re-
spectively and using the convergence of the right hand side terms (they are
linear on ¢° and ¢ and therefore converge by continuity with respect to the
weak topologies) one deduces that

T T
/|@@@PM%/|%uwa
0 0

and concludes the strong convergence of the controls.

Finally, using a transposition argument, it is easy to see that the solutions
of the controlled systems converge in the sense of the second statement of
(8.34).
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