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ASYMPTOTIC ANALYSIS AND CONTROL OF A HYBRID

SYSTEM COMPOSED BY TWO VIBRATING STRINGS

CONNECTED BY A POINT MASS

C� CASTRO

Abstract� We consider a hybrid� one�dimensional� linear system con�
sisting on two �exible strings connected by a point mass� It is known
that this system presents two interesting features� First� it is well posed
in an asymmetric space in which solutions have one more degree of reg�
ularity to one side of the point mass� Second� that the spectral gap
vanishes asymptotically� We prove that the �rst property is a conse�
quence of the second one� We also consider a system in which the point
mass is replaced by a string of length �� and density ����� We show
that� as � � 	� the solutions of this system converge to those of the
original one� We also analyze the convergence of the spectrum and ob�
tain the well�posedness of the limit system in the asymmetric space as a
consequence of non�standard uniform bounds of solutions of the approx�
imate problems� Finally we consider the controllability problem� It is
well known that the limit system with L��controls on one end is exactly
controllable in an asymmetric space� We show how this result can be
obtained as the limit when � � 	 of partial controllability results for
the approximate systems in which the number of controlled frequencies
converges to in�nity as � � 	� This is done by means of some new
results on non�harmonic Fourier series�

�� Introduction

In this paper we consider a linear hybrid system composed by two vibrat�
ing strings connected by a point mass� Assume that the strings occupy the
intervals ���� �� and ��� �� of the real line and are connected at x � � by a
point mass� Let us consider a function u � u�x� t� describing the vertical
displacements of the strings and denote by z � z�t� the displacement of the
point mass� Assuming that the strings are 	xed at the extremes x � ��

the equations modelling the vibrations of this hybrid system are as follows������������

utt � uxx for � � � x � �� t � ��
utt � uxx for � � x � �� t � ��
u���� t� � u���� t� � z�t� for t � ��
Mztt�t� � ux��

�� t�� ux��
�� t� for t � ��

u���� t� � u��� t� � � for t � ��

�����
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��� C� CASTRO

In ����� the 	rst two equations are the one�dimensional wave equation� The
third equation imposes the continuity of the three components of the me�
chanical system at x � �� The fourth equation describes the dynamics of
the point mass� The parameter M � � represents the mass concentrated
at the point x � �� The last equation is due to the 	xed end conditions at
x � ��� In these equations v���� denote the right and left lateral limits of
the function v at x � ��

Remark ���� WhenM � � we recover the continuity condition of ux at x �
� and the classical equations for the motion of a vibrating string occupy�
ing the interval ���
�� without point mass
 i�e� with unit constant density
everywhere in ���
���

In the sequel
 to simplify the notation we will assume that M � �� This
system was studied by S� Hansen and E� Zuazua �
� from a control theoretical
point of view� It was observed that the system is well posed in an asymmetric
space in which solutions have one more degree of regularity to one side of the
point mass� It was conjectured that this phenomenon is due to the lack of
spectral gap that the presence of the point mass produces on the spectrum
of the system� In this paper we prove that this is indeed true and we explain
this singular phenomenon by means of an asymptotic analysis which consists

roughly
 on viewing system ����� as the limit as �� � of a system connecting
three strings occupying the intervals �������� ���� �� and ��� ��
 the middle
one having a density of the order of ����� In this case the equations of
motion are as follows����������������

utt � uxx� for � � � x � ��� t � �
�
��utt � uxx� for � � � x � �� t � �
utt � uxx� for � � x � �� t � �
u����� t� � u����� t�� for t � �
ux����� t� � ux����� t�� for t � �
u���� t� � u��� t� � �� for t � ��

�����

System ����� is well posed in the energy space

X � H�
����� ��� L����� ��� �����

More precisely
 for any �u�� u�� � X there exists an unique solution
u � C

�
������H�

����� ��
�� C�

�
������L����� ��� of ����� taking the initial

data

u�x� �� � u��x�� ut�x� �� � u��x� in ���� ��� ���
�

On the other hand
 the energy

E��t� �
�

�

Z ��

��

h
jutj� � juxj�

i
dx �

�

�

Z �

��

�
�

��
jutj� � juxj�

�
dx

�
�

�

Z �

�

h
jutj� � juxj�

i
dx �����

remains constant in time�

Remark ���� System ����� can also be viewed as the equations of mo�
tion of a string of density � � �

���������� ������� being the characteristic
function of the interval ���� ���
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However
 it is easy to see that sytem ����� is not well�posed in asymmetric
spaces in which solutions have one more degree of regularity to one side
of x � �� System ����� is well posed in the Hilbert space Y � X � R
in the sense that for any �u�� u�� z�� � Y there exists an unique solution
�u� z� � �C�������H�

����� ��
�� C�

�
������L����� ��� � C� �������� of �����

taking the initial data	
u�x� �� � u��x�� ut�x� �� � u��x� in ���� ��
z��� � u����� zt��� � z��

�����

On the other hand
 the energy

E�t� �
�

�

Z �

��


j ut�x� t� j� � j ux�x� t� j�
�
dx �

�

�
j zt�t� j� �����

remains constant for every solution of ������
However
 as we have said above
 system ����� is also well�posed in an

asymmetric space in which solutions have one more degree of regularity to
one side of the point mass� For instance
 this holds in the space of 	nite�
energy solutions such that their restriction to ���� �� belongs to H����� ���
H����� �� and satisfying some further compatibility conditions�

In �
� the spectrum of ����� was analyzed and it was seen that the distance
between consecutive eigenvalues tends to zero as the frequency increases�
In this paper we analyze the spectrum of the approximate system ������
It is shown that its spectral gap is of the order of

p
�� This provides an

explanation of the fact that the spectral gap vanishes in the limit�
Classical results in spectral theory prove that the spectrum of ����� con�

verges to the spectrum of ����� in the sense that the k�th eigenpair depends
continuously on � even at � � �� However
 in order to explain the well�
posedness of ����� we need some uniform convergence results for high fre�
quencies too� Using classical asymptotic methods we show that
 roughly

the eigenpairs converge uniformly with a rate of the order

p
� and for all the

frequencies k � ����	� This uniform convergence result allows us to obtain
all the singular phenomena related to the limit system when � � � from
some uniform properties of the approximated systems�

For the approximate system ����� we construct 	nite�dimensional Fourier
asymmetric spaces involving the frequencies k � ����	 in which systems
����� are uniformly well�posed� Passing to the limit as � � � we obtain
the well�posedness of system ����� in an asymmetric Fourier space that we
characterize as being constituted by 	nite�energy functions having one more
degree of regularity to one side of the point mass�

Finally
 we address the problem of controllability� In �
� it was shown
that
 if we act on system ����� by means of one L��control we may control
exactly the initial data being
 roughly
 in L� � H�� to the right of x � �
and H� � L� to the left� The controllability space is therefore smaller than
in the approximate systems ����� �in that case the space of controllable
data is L����� �� � H������ ��� and di�ers by one degree of regularity in
���� ��� As conjectured in �
� this fact can also be interpreted in terms of
the vanishing of the spectral gap with the aid of the results by ���� on non�
harmonic Fourier series� We prove a new result in this context showing that
the results of ���� are stable under small perturbations of the spectrum� This
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allows us to prove that in the approximate system the frequencies k � ����	
of the asymmetric space are uniformly controllable� This shows that the
controllability result of the limit system can be obtained as the limit when
�� � of some uniform controllability property of the approximate systems�

In Remark ��� of section ��� we formulate an interesting open prob�
lem that
 in our opinion
 needs signi	cant progresses in the theory of non�
harmonic Fourier series� The question is roughly
 whether the controls are
uniformly bounded in L���� T � if the initial data are uniformly bounded in
the asymmetric norms k 	 k� de	ned in ������ without the restrictions of
having zero Fourier coe�cients for the frequencies jkj 
 K����

The rest of the paper is organized as follows�
In section �
 we show how solutions of ����� can be obtained as limit

of solutions of ����� when � � �� In section � we analyze the eigenvalue
problems corresponding to ����� and ������ In particular
 we show how the
spectral gap associated to ����� is of the order of

p
� and tends to zero

as � � �� In section 
 we prove the convergence of the eigenvalues of
����� to those of ������ First we obtain some rough estimates by means of
Rayleigh quotients� Later on we obtain precise convergence results by means
of a careful asymptotic analysis� In section � we introduce an asymmetric
space for system ����� in terms of Fourier series and we show how the well�
posedness of ����� on it can be proved� In section � we recover this result as
the limit when �� � of non�standard uniform estimates of solutions of the
approximate system ������ In section � we obtain some further convergence
results of solutions of ����� towards the solutions of ������ Finally
 in section
� we address to the control problem� First we recall the controllability
result of �
� for the limit system ������ Then we obtain it as the limit as
�� � of uniform partial controllability results for solutions of ����� in which
the number of controlled frequencies converges to in	nity as � � �� This
requires the obtention of some new results in the theory of non�harmonic
Fourier series�

�� Convergence of solutions

Let us consider a family fu�g��� of solutions of ����� corresponding to the

set of initial data f�u��� u���g��� in H�
����� ��� L����� ��� Assume that���

�u��� u
�
�� is bounded in H�

����� ��� L����� ���Z �

��
j u�� j� dx � C�� for some C � ��

�����

Under these conditions
 and as a consequence of the conservation of the
energies E� in ����� we deduce that the family of solutions u� is bounded in

Y � L�
�
����H�

����� ��
��W ��� �����L����� ��� � �����

We have the following weak convergence result�

Theorem ���� Let us further assume that��� �u��� u
�
��� �u�� u�� weakly in H�

����� ��� L����� �� as �� ��

�
��

Z �

��
u���x�dx� z� as �� ��

�����

Esaim� Cocv� July ����� Vol�	� pp� 	
��	�




ASYMPTOTIC ANALYSIS AND CONTROL OF A HYBRID SYSTEM ���

Then� the family u� of solutions of ����� satis�es

u� � u weakly � � inY ���
�

and

�

��

Z �

��
u�t�x� t�dx � ut��� t�weakly� � in L������ �����

where u is the solution of the limit problem ������ ���	� with initial data
�u�� u�� z���

Remark ���� In view of the second condition in ����� we deduce that the
quantities �

��

R �
�� u

�
��x�dx are bounded� Indeed
���� ���

Z �

��
u���x�dx

���� � �

��

Z �

��
j u���x� j dx �

�

��


Z �

��
j u���x� j� dx

� �
�

�������

�



�

��

Z �

��
j u���x� j� dx

����
�

To pass to the limit in ����� it is natural to assume that the limit of these
quantities exists� This limit provides the initial velocity of the point mass
in the limit system�

Proof� As we said above
 the conservation of the energies provides an uni�
form bound for the solutions u� in Y � By extracting subsequences �that we
still denote by the index � to simplify the notation� we have

u� � u weakly � � in Y � �����

Let us see that the limit u satis	es ������
Solutions of ����� are characterized by the following weak formulation��������������������

Z �

�

Z ��

��
u�t	tdxdt�

Z �

�

Z �

�
u�t	tdxdt�

�

��

Z �

�

Z �

��
u�t	tdxdt

�
Z �

�

Z �

��
u�x	xdxdt�

Z ��

��
u��	�x� ��dx�

�

��

Z �

��
u��	�x� ��dx

�

Z �

�
u��	�x� ��dx � ��

�	 � C�
� ����� ��� ������

�����

and the further initial condition

u��x� �� � u���x� in ���� ��� �����

The embedding from Y into C
�
��� T ��L����� ��� is compact for any � �

T ��� Therefore
 passing to the limit in �����
 the limit u must satisfy the
initial condition

u�x� �� � u��x� in ���� ��� �����

In order to pass to the limit in ����� the only term that requires some careful
analysis is

I� �
�

��

Z �

�

Z �

��
u�t	tdxdt�
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First we observe that

�

��

Z �

��
u�t �x� t�dx is bounded in L������� ������

Indeed
 arguying as in Remark ��� we see that���� ���
Z �

��
u�t �x� t�dx

���� � � �

��

Z �

��
j u�t�x� t� j� dx

����
and the latter is bounded by the conservation of the energies E�� Therefore

by extracting subsequences �that we still denote by the index ��
 we deduce
that

�

��

Z �

��
u�t�x� t�dx � w weakly � � in L������� ������

Let us see that w�t� � ut��� t�� For any f � C�
������ we haveZ �

�

�

��

Z �

��
u�t �x� t�dxf�t�dt � �

Z �

�

�

��

Z �

��
u��x� t�f ��t�dxdt� ������

The embedding from Y into C ����� ��� ��� T �� is compact for any � � T �
�� Therefore
 in view of ����� the right hand side in ������ converges� More
precisely


�
Z �

�

�

��

Z �

��
u��x� t�f ��t�dxdt� �

Z �

�
u��� t�f ��t�dt �

Z �

�
ut��� t�f�t�dt�

This shows that w�t� � ut��� t� and concludes the proof of ������
Let us go back to the term I�� We claim that

I� �
�

��

Z �

�

Z �

��
u�t	tdxdt�

Z �

�
ut��� t�	t��� t�dt� ������

Indeed
 ���� ���
Z �

�

Z �

��
u�t	tdxdt�

Z �

�
ut��� t�	t��� t�dt

����
�
����Z �

�

�

��

Z �

��
u�t�x� t� �	t�x� t�� 	t��� t��dxdt

����
�

����Z �

�

�

��

Z �

��
�u�t � ut��� t��	t��� t�dxdt

���� �
By ����� the last term converges to zero� For the other one we have�����Z �

�

�

��

Z �

��
u�t �x� t� �	t�x� t�� 	t��� t��dxdt

����
�
Z �

�



�

��

Z �

��
ju�t�x� t�j�dx

����
 �

��

Z �

��
�	t�x� t�� 	t��� t��

� dx

����
dt

� ��E��������
Z �

�



�

��

Z �

��
�	t�x� t�� 	t��� t��

� dx

����
dt�

The initial energies E���� are bounded and the last term in this inequality
converges to zero since 	 � C�� This concludes the proof of �������
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We can now pass to the limit in ������ We easily get that the limit u
 in
addition to �����
 satis	es�������

Z �

�

Z �

��
�ut	t � ux	x�dxdt�

Z �

�
ut��� t�	t��� t�dt

�

Z �

��
u�	�x� ��dx� z�	��� �� � � � �	 � C�

� ����� ��� ������ �

����
�

The variational equation ����
� with ����� characterizes the solution of the
limit system �����
 ����� with initial data �u�� u�� z��� The solution u of �����

����� being unique we deduce that the whole family u� converges as �� ��
This concludes the proof of Theorem ����

The following theorem provides a strong convergence result�

Theorem ���� Let us assume that the initial data are such that���
�u��� u

�
��� �u�� u�� strongly in H�

����� ��� L����� ��� as �� �

�
��

Z �

��
j u���x� j� dx� z�� � as �� ��

������

Then� the solutions u� of ����� with data �u��� u
�
�� satisfy���

u� � u strongly in H� ����� ��� ��� T �� � as �� �

�
��

Z �

��
u�tdx� ut��� t� � z��t� strongly in L���� T �� as �� �

������

for every � � T � �� where u is the solution of ������ ���	� with data
�u�� u�� z���

Proof� From Theorem ��� we know that convergences ������ hold in the weak
topologies�

On the other hand
 from ������ the initial energies E���� converge to
E��� as � � �
 and in view of the conservation of energies we deduce that
E��t� � E�t� for all t � �� Furthermore
 by the dominated convergence
Theorem


E� � E in L���� T �� ������

The strong convergences ������ are a direct consequence of the weak con�
vergence and the convergence of the energies �������

Remark ���� In section � we will show that the strong convergence holds
uniformly in time
 i�e� in the space Y �

�� Spectral analysis

In this section we describe the main properties of the spectra of systems
����� and ������ First we analyze the approximate system ����� and then the
limit system ������
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���� The approximate system

The spectrum of system ����� consists of the positive real numbers 
 � �
such that the equation	 �u�� � 


�
� � �

���������
�
u in ���� ��

u���� � u��� � �
�����

admits a non�trivial solution� Here and in the sequel � denotes derivation
with respect to x�

The weak formulation of ����� is as follows����
u � H�

����� ��Z �

��
u�v�dx � 


�Z ��

��
uvdx�

�

��

Z �

��
uvdx�

Z �

�
uvdx

�
� �v � H�

� ���� ���
�����

It is easy to see that 
 is an eigenvalue of ����� if and only if 
 � �
� � �

being an eigenvalue of the compact
 self�adjoint operator T� � H
�
����� ���

H�
����� �� such that T�f � u
 where u is the unique solution of the problem���

u � H�
����� ��Z �

��
u�v�dx �

Z �

��



� �

�

��
�������

�
fvdx �v � H�

� ���� ���
�����

We deduce that the eigenvalues f
�kgk�� constitute an increasing sequence
of distinct positive numbers

� � 
�� � 
�� � 	 	 	� 
�k � 	 	 	
and that the corresponding eigenfunctions f	�kgk�� form an orthonormal

basis of H�
� ���� �� for every � � ��

Concerning the spectral gap we have the following�

Theorem ���� There exist positive constants Ci � � � i � �� � such that

C�
p
� 
 inf

j ��k

���q
�j �
p

�k

��� 
 C�
p
� ���
�

for every � � � � ��

Proof� First of all we prove the lower bound on the spectral gap
 i�e�

C�
p
� � inf

j ��k

���q
�j �
p

�k

��� � �����

It is easy to see that the eigenfunctions of ����� are either even or odd
functions� We start by considering the even eigenfunctions� In this case
system ����� reduces to	 �u�� � 


�
� � �

���������
�
u in ���� ��

u���� � u���� � ��
�����

An easy computation shows that these eigenvalues are the roots of

�p
��

tg


r
�


�

�
� cotg

�p

��� ��

�
� �����

To simplify this equation we perform the change of variables
p

 � � �����
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so that equation ����� becomes

�p
��

tg


r
�

�
�

�
� cotg ����� ��� � �����

The odd eigenfunctions satisfy	 �u�� � 

�
� � �

���������
�
u in ���� ��

u���� � u��� � ��
������

It is easy to see that the corresponding eigenvalues
 under the change of
unknown �����
 satisfy

p
�� tg


r
�

�
�

�
� � tg ����� ��� � ������

Let us 	rst analyze the roots � such that the terms on the left hand
sides of ����� and ������ are positive� Thus
 we focus 	rst on the interval
� � � � 
�

p
��� The intervals in which the right hand sides of ����� and

������ are positive are
 respectively


Ii �

�
i


�� �
�
�i� �

��


�� �

�
� i �Z ������

Ji �



�i� ����


�� �
�

i


�� �

�
� i �Z� ������

Observe that these intervals are disjoint and that Ii is in between Ji and
Ji���

It is easy to see that equations ����� and ������ have at most one root
in the intervals ������ and ������ respectively� This shows that
 in order to
prove ����� it is su�cient to get lower bounds on the distance between ��k
and the extremes of the intervals in which they lie�

Let us consider 	rst the root on Ii� Since the function on the left hand
side is increasing and the one on the right hand side decreasing
 it is easy
to see that
 as � increases it approaches the left extreme of the interval Ii�
Given a � �
 to see that the roots of ����� are at distance greater than

p
a�

to the left extreme of Ii it is su�cient to impose that

�p
��

tg


r
�

�
�

�
� cotg

�p
a���� ��

�
�

or
 equivalently


� �
r

�

�
arctg

�p
�� cotg

�p
a���� ��

��
� ����
�

On the other hand
 in order to guarantee that the distance between the
roots of ������ and the right extreme of the intervals Ji in which they lie is

greater than
p
b� the following is a su�cient condition�

p
�� tg


r
�

�
�

�

 � tg

�

�
�
p
b���� ��

�
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or
 equivalently


� 

r

�

�
arctg



�p
��

tg
�p

b���� ��
��

� ������

We now claim that there exist a� b� c � � such thatr
�

�
arctg

�p
�� cotg

�p
a���� ��

�� �r�

�
arctg

�
tg�
p
b���� ���p

��

�
� c�

������

Indeed
 using Taylor�s developments at � � � we have�

�p
��

tg
�p

b���� ��
�
�

r
b

�
� O����

p
�� cotg

�p
a���� ��

�
�

r
�

a
�O����

By the mean value theorem
 there exists ���� � �
q

�
a � O����

q
b
� � O����

such thatr
�

�

�
arctg

�p
�� cotg

�p
a���� ��

�� � arctg



�p
��

tg
�p

b���� ��
��

�

r
�

�



�

� � �����

��r
b

�
�
r

�

a
� O���

�



r

�

�



�

� � b�� � O���

��r
b

�
�
r

�

a
�O���

�
�

Clearly
 the last term can be done uniformly greater than a positive constant
c � � for � � � small enough provided a and b are taken such that

p
b���p

��a � ��
Now
 	x a� b � � as above� Then
 clearly
 two consecutive eigenvalues

�solutions of ����� and ������� may not be simultaneously to a distance less

than
p
a� and

p
b� respectively of the left extreme of Ii and the right extreme

of Ji� Indeed
 otherwise
 in view of the conditions ����
� and ������ we have
obtained
 the quantity of the left hand side of ������ would be bounded

above by
�p

a�
p
b
�p

� and this is in contradiction with the positivity of

the constant c in �������
On the other hand
 since the roots of ����� move much faster towards

the left end of Ii than the roots of ������ move to the left end of Ji as �
increases
 it is easy to see that the situation we have considered is precisely
that in which the gap is minimized�

More precisely
 in order to guarantee that the roots of ������ are at a
distance greater than �


 �� � �� of the left extreme of Ji
 it is su�cient to
guarantee that

p
�� tg


r
�

�
�

�
� � tg

�

�
�






�
� �

or
 equivalently


� �
r

�

�
arctg



�p
��

�
� ������
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For � � � small enough
 the right hand side of ������ is greater than the
right hand side of ����
�
 i�e�r

�

�
arctg

hp
�� cotg

�p
a���� ��

�i �r�

�
arctg



�p
��

�
�

In a similar way
 it is easy to check that the roots of ����� are at a distance
greater than �


����� of the right extreme of Ii if

� 

r

�

�
arctg

�p
��
�

������

and
 again
 for su�ciently small � � �
r
�

�
arctg

�
�p
��

tg
�p

b���� ��
��



r

�

�
arctg

�p
��
�
�

In view of ������������� we deduce thatr
�

�

�
arctg



�p
��

�
� arctg

�p
��
��


 c � �

too and
 as above
 this implies that when measuring the distance from a root
of ����� to the next root of ������ this is at least of the order of �


 �� � ���
Therefore
 the proof of the lower bound ����� for the eigenvalues in the
interval

�
�� 
�

p
��
�
is concluded�

The same argument can be used to bound the gap between roots in

the intervals of the form
�p

�k�p
�
�
��k����p

��

�
in which the terms on the right

hand side of ����� and ������ remain positive�

The distance between the roots on the intervals
�
��k����p

��
�
p
��k����p

�

�
in

which the terms on the left hand sides of ����� and ������ are negative can
be estimated in a similar way�

Let us now prove the upper bound on the gap�

min
j ��k

j�j � �kj � C�
p
�� ������

We focus on the eigenvalues in the interval � � � � 
�
p
��� We will use the

following simple lemma�

Lemma ���� Let f�kgk�� be an increasing sequence of positive real numbers�
Assume that there exist positive constants a� b� A� B with B � A such that
the following three conditions hold


If A � k
���� ��� then ��k�� � k
���� �� � a ������

If k
���� �� � B then k
���� ��� ��k � b ������

B � A � 
���� ��� ������

Then� necessarily

min
k��

��k�� � �k� � a� b� ������
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Proof� By ������
 there exists k 
 � such that A � k
��� � �� � B and
therefore ��k��� ��k are in the conditions of ������ and ������ respectively�
Thus

��k�� � ��k � ��k�� � k
���� �� � k
���� ��� ��k � a � b�

We denote by f��k��gk�� the roots of ����� in the intervals Ii and by
f��kgk�� the roots of ������ in the intervals Ji� It is su�cient to check that

given any a � � � b � �
 then�

If k�
��� �

q
�
� arctg

�p
�� cotg �

p
a���� ���

�
� then ��k�� � k
��� �� �

p
a��

����
�

If k�
��� �

q
�
� arctg

�
�p
��
tg
�p

b���� ��
��


 then k�
��� � ��k �

p
b�� ������

Indeed
 assuming that ����
� and ������ hold and applying Lemma ��� it
would be su�cient to show the existence of a� b � � such thatr

�

�
arctg



�p
��

tg
�p

a���� ��
�� �r�

�
arctg

�p
�� cotg

�p
b���� ��

��
� 
���� �� � �� � � � �

but this can be done in a straightforward way by using Taylor�s expansion
at � � ��

Finally
 let us check that ����
� holds
 the proof of ������ being analogous�
We recall that the roots of ����� are at a distance smaller than

p
a� to the

left extreme of Ii if

� 

r

�

�
arctg

hp
�� cotg

�p
a���� ��

�i
�

Then
 clearly
 since ��k�� � k
���� �� and k�
����� is the left extreme of the

interval in which ��k�� lies
 if

k


�� �


r

�

�
arctg

hp
�� cotg

�p
a���� ��

�i
then
 necessarilly
 ��k�� � k
���� �� �

p
a��

Remark ���� From the proof of Theorem ��� it can be seen that the qual�
itative behavior of the eigenvalues is di�erent in the intervals in which the
left hand sides of ����� and ������ are positive and negative� Indeed
 when
the gap is minimized the expressions of ����� and ������ being positive
 the
roots of ����� approach the left extreme of the interval in which they lie while
the roots of ������ approach the right end of the intervals Ji� However
 in
the regions in which the left hand side of ����� and ������ are negative the
reverse happens
 i�e� the roots of ����� approach the right end while the roots
of ������ approach the left one� This behavior was refered to as �solotone�
phenomena in ����

Notice that when the density of the string is of the form ��x� � � �

��x� with � smooth
 non�negative
 bounded and such that
R �
�� � � � then

the eigenvalues are equidistributed at high frequencies� More precisely
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p

k 
 k
���

p
�� and the asymptotic gap is of the order of 
���

p
�� �see

������ The solotone behavior is due to the lack of regularity of the density
in our problem�

���� The limit problem

The eigenvalue problem associated with ����� consists on 	nding 
 such
that ���

�u�� � 
u in ���� ��� ��� ��
u���� � u����
u������ u����� � 
u���

������

admits a non�trivial solution u� One can easily check that the eigenvalues
constitute an increasing sequence of positive real numbers

� � 
� � 
� � 	 	 	 � 
k � 	 	 	 � �
and that the corresponding eigenfunctions f	kgk�� form an orthonormal

basis of H�
� ���� ���

Indeed
 
k � ���k � �k being the eigenvalues of the compact
 self�adjoint
operator T � H�

����� ��� H�
����� �� such that Tf � u� u � H�

� ���� �� being
the unique solution of���

u � H�
����� ��Z �

��
u�v�dx �

Z �

��
fvds� f���v��� � �v � H�

����� ���

The symmetry of the problem allows to show that the eigenfunctions are
either even or odd� Even eigenfunctions solve	

u�� � 
u � � in ��� ��
u���� � �

�u��� � u��� � �

which
 under the change of unknown 
 � ��
 reduces to the equation � �
� cotg���� Let us denote by

� � �� � �� � 	 	 	 � �k � 	 	 	
the sequence of roots of this equation�

Odd eigenfunctions satisfy	
u�� � 
u � � in ��� ��
u��� � u��� � �

and therefore the corresponding eigenvalues and eigenfunctions are	

�k � k�
� � k 
 �

�
��k �

p

�k � k


�
�

	�k�x� � sin�k
x� � k 
 ��

It is easy to see that
p

�k�� � ��k�� � ��k�� �

p

�k�� � �k � ��k �

p

�k�

On the other hand
 a simple calculation shows that

��k � ��k�� � k
 � �k �
�

k

�O�k���� as k ��� ������

In particular
 the spectral gap in the limit system ����� vanishes
 i�e�

inf
j ��k
��p
j �p
k�� � ��
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This is consistent with Theorem ���
 namely the spectral gap in the approx�
imate system ����� vanishes as �� ��

�� Convergence of the spectrum

First of all we obtain some preliminary convergence results by means
of basic tools from Functional Analysis� In a second paragraph we prove
re	ned convergence results by a precise asymptotic analysis of the eigenvalue
problems�


��� Preliminary results

Let us recall that T�� T � L �H�
����� �� � H�

����� ��
�
are the linear
 self�

adjoint compact operators such that their eigenvalues f��kgk�� � f�kgk��
satisfy ��k � ��
�k � �k � ��
k� where f
�kgk�� and f
kgk�� are respectively

the eigenvalues of ����� and ������� We have the following result on the
convergence of T� towards T �

Proposition ���� There exists C � � such that

kT� � TkL�H�
��������H�

�������� � C
p
� � �� � � � �� �
���

Proof� Given f � H�
����� �� we set T�f � u� � Tf � u� We have

k�T � � T �fk�H�
� ������ �

Z �

��
ju�x � uxj� dx �

Z �

��
u�x�u

�
x � ux�

�
Z �

��
ux �u

�
x � ux� �

Z �

��
f�u� � u� �

Z �

��

f�u� � u�

��
�

Z �

�

f�u� � u�

�
Z �

��
f�u� � u�� f����u� � u���� � �

Z �

��
f�u� � u�

�

Z �

��

f�u� � u�� f����u� � u����

��
� �� k u� � u k�k f k�

�
p
��

�Z �

��

jf�u� � u�� f����u� � u����j�

��

dx

����
� �
���

Using Hardy�s inequality the last term can be estimated as follows�Z �

��
jf�u� � u�� f����u� � u����j� dx �
���

�

Z �

��

jf�u� � u�� f����u� � u����j j x j�
j x j� dx

� ��
Z �

��

jf�u� � u�� f����u� � u����j�
j x j� dx

� C��
Z �

��
j�f�u� � u��xj� dx� �
�
�

Combining �
��� and �
�
� we deduce that

k�T � � T �fk�H�
�

� �� k u� � u k�k f k� �C
p
� k f�u� � u� kH�

� ������
� C

p
� k f kH�

� ������k u
� � u kH�

������� �
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This concludes the proof of Proposition 
���

As a consequence of this proposition and of classical results on the conti�
nuity of the spectrum �see
 for instance
 E� S�anchez Palencia ����
 page ����
we have�

Proposition ���� For all k 
 �� 
�k converges to 
k as �� �� On the other
hand� the eigenfunctions 	�k converge strongly in H�

����� �� to 	k as �� ��

Using the variational principle that characterizes the eigenvalues we can
obtain the following result on the rate of convergence of eigenvalues�

Proposition ���� There exists a constant C � � such that���� �
�k � �


k

���� � C
p
�� �k 
 �� �� � �� �
���

Remark ���� Observe that
 strictly speaking
 �
��� does not provide a uni�
form estimate on the rate of convergence of the eigenvalues�

Proof� We proceed as in ���� We know that


�k � sup
P�Ek

inf
u�P�
u���

R �
�� j u� j�R ��

�� u
� � �

��

R �
�� u

� �
R �
� u

�
� 
k � sup

P�Ek

inf
u�P�
u���

R �
�� j u� j�R �

�� u
� � u����

where Ek is the set of �k����dimensional subspaces of H�
����� �� and P�

its orthogonal complement� Observe thatZ ��

��
u� �

�

��

Z �

��
u� �

Z �

�
u�

�
Z �

��
u� � u���� �

����
�� �

��

�Z �

��
u� � u����

���� �
Proceeding as in the proof of Proposition 
�� we can show that����
�� �

��

�Z �

��
u�dx� u����

���� � C
p
� k u k�H�

� ������ �

Therefore

�


k �
� inf

P�Ek

sup
u�P�
u���

�R ��
�� u

� � �
��

R �
�� u

� �
R �
� u

�R �
�� j u� j�

�

� inf
P�Ek

sup
u�P�
u���

�R �
�� u

� � u����R �
�� j u� j�

� C
p
�

�
�

�


k
� C

p
�� �� � �� �k 
 ��

This concludes the proof of �
����

As a consequence of these estimates we have the following preliminary
result on the rate of convergence of the eigenfunctions�

Proposition ���� There exists a positive constant C � � such that for any
K � N

k 	�k � 	k kH�
�������� CK
p� � �k � K� �� � K�
� �
���
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Proof� First of all we observe that

k T	�k �
�


�k
	�k kH�

��������k T	
�
k � T �	�k kH�

� ������� C
p
� �
���

by Proposition 
��� This allows us to apply the following classical result in
spectral theory �see
 for instance
 Oleinik
 Shamaev and Yosi	an �����

Proposition ���� Let T � H � H be a linear self�adjoint compact operator
in a Hilbert space H� Assume that there exists � � � and u � H with
k u kH� � such that

k Tu� �u kH� �

with � � �� Then� for every � � � there exists some eu � H with k eu kH� �
such that

k u� eu kH� �
�

�
�

eu being a �nite linear combination of eigenvectors of T corresponding to
eigenvalues in the interval ��� �� �� ���

In view of �
��� we are going to apply Proposition 
�� with � � C
p
�� We

need to 	nd � � C
p
� such that the unique eigenvalue of T in the interval

���
�k � �� ��
�k � �� is ��
k� To do this
 	rst of all we estimate the quantity

mK � min
k	K

	���� �


k��
� �


k

���� � ���� �
k � �


k��

�����
� min

k	K

	p

k�� �

p

k


k��
k

��p
k�� � p

k
�� � p
k �p


k��

k
k��

��p
k �p
k����� �
In view of the results of section ��� it is easy to see that
 for � � � su�ciently
small�

min
k	K

	p

k�� �

p

k


k��
k
�

p

k �

p

k��


k
k��

�

 �K���

Therefore
 since
p

k � p


k�� is of the order of k�� as k � � we deduce

that
 for a su�ciently small � � �� mK 
 �K�
� Taking � such that C
p
� �

� � �K�
� in view of Proposition 
��
 we deduce that

k 	k � 	�k kH�
� �������

�C
p
�

�

and minimizing the upper bound we conclude that �
��� holds for a suitable
choice of C � ��


��� Refined estimates on the rate of convergence

Concerning the rate of convergence of the eigenvalues of ����� towards
those of the limit system we have the following�

Theorem ��	� We have��p
��k � k

�� � �

p
��O��� � �k � ��� ���


p
�� � O�������� �
������q
��k�� � �k

��� � �
p
���O����	� � �k � ����	� �
���
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Proof� First we consider the eigenvalues 
��k that correspond to odd eigen�
functions� From section � we know thatp


��k �
�
�k � ����


�� �
�

k


�� �

�
�

On the other hand
 if � � x � ��
p
�� we have � �

p
�� tg

�p
�
�x
�
�
p
�� and

therefore
 taking k � ������
p�� we obtain � �
p
�� tg

�p
�
�

p

��k
�
�
p
���

Taking into account that
p

��k solves ������ we deduce that

� � � tg
�p


��k��� ��
�
�
p
��

and therefore
 using the Taylor expansion of arctg�x� at x � �


�k
 � �p
��k��� �� � arctg
�p

��
�
� �k
 �

p
���O����

Therefore ����p
��k �
k


�� �

���� � p
���O���

and then
 if k � ��� ���

p
�� we have��p
��k � k


�� � p
��� O��� �

���� k
�� �
� k


���� � p
���

k�


�� �
� O���

�


p
� �

�p
�

�p
��O��� � �

p
�� O����

Let us consider now the eigenvalues 
��k�� corresponding to even eigen�
functions� From section � we know thatq


��k�� �
�
�k� ��


�� �
�
�k � ����


�� �

�
�

Using the Taylor expansion of tg�x� at x � � we get thatp

��k��
�

�
�p
��

tg


r
�

�

q

��k��

�
�

p

��k��
�

�
p
��O

�
���	
�

provided
�

��k��

����
�� � ��

p
� and therefore
 in particular
 if k �

�

�
�

��� ��






�p
�

����
� Taking into account that

p

��k�� are the roots of �����

we deduce that

� � cotg
�q


��k����� ��
�
�
p

��k��
�

�
p
� �O

�
���	
�
� �
����

If ��k is the k�th positive root of cotg �x��� ��� � x
� � using the Taylor ex�

pansion of the function f��x� � cotg ���� ��x�� x
� at ��k
 in view of �
����

we deduce that ���q
��k�� � ��k

��� � �
p
�� O����

On the other hand
 as seen in section ���
 �k is the root of cotg�x� � x
� � It

is easy to check that

j��k � �kj � C�k�
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Therefore���q
��k�� � �k

��� � ���q
��k�� � ��k

���� j��k � �k j � �
p
�� C�k �O����

Remark ��
� This result
 although it applies to small frequencies only
 im�
proves the previous ones in this range� Indeed from Proposition 
�� we may
deduce that

C
p
� 


���� �
�k � �


k

���� �
����� �p


�k
� �p


k

�����
����� �p


�k
�

�p

k

�����


����� �p


�k
� �p


k

�����


���� ��

k

�

�

k


�

 Ck��

����� �p

�k
� �p


k

����� �
Therefore

��p
�k �
p

k
�� �p
�k

p

k

����� �p

�k
� �p


k

����� � Ck�
p
�� �
����

Clearly
 the results of Theorem 
�� improve signi	cantly �
����� The fact
that estimates of the form �
��� and �
��� hold for small frequencies only is
natural in view of the solotone phenomena described in Remark ����

We have a similar result for the eigenfunctions�

Theorem ���� There exist positive constants C � �� � � � such that

k 	��k � 	�k kH�
�������� C

p
� � �k � ������� �� � � � �� �
����

and

k 	��k�� � 	�k�� kH�
� ������� C

p
� � �k � �����	� �� � � � �� �
����

Proof� A straightforward computation shows that the eigenfunctions of the
approximate problem normalized in H�

����� �� �in the norm �
R �
�� j u� j�

dx����� are as follows

	��k �

�����������
� 	��k

��k

sin ����k�� � x�� � x � �������
	��k

��k

���k sin
�

��kp
��
x
�
� x � ���� ��

	��k

��k

sin ����k��� x�� � x � ��� ��

�

	��k�� �

�������������

	��k��

��k��

sin
�
���k���� � x�

�
� x � �������

	��k��

��k��

���k�� cos
�

��k��p

��
x
�
� x � ���� ��

	��k��

��k��

sin
�
���k����� x�

�
� x � ��� ��
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with

��k �

�
�� ��

sin ����k��� ���

���k
�

�
�

�
� ����k sin�

p
����k�

�
p
����k

�
���k�

�

�����

���k � �
p
��

cos ����k��� ���

cos
�
���k
p

�
�

� � ���k�� �
sin
�
���k����� ��

�
cos
�
���k��

p
�
�

� �

Recall that ��k �
p

�k� In these expressions we have chosen the derivative

of the eigenfuction at x � � to be negative�
On the other hand
 the normalized eigenfunctions of the limit problem

are given by

	�k �
����k��

k

sin�k
x� � 	�k�� �

� 	k
�k

sin ��k�� � x�� � x � ���� ��
	k
�k

sin ��k��� x�� � x � ��� ��

with �k �
�
� �

sin���k�
��k

�����
� This eigenfunction has been chosen to satisfy

the same sign criteria at x � ��
Using the fact that 	��k and 	�k are odd functions we have

k 	��k � 	�k k�H�
� �������

Z �

��

���	��k�� � 	��k
��� dx � �

Z �

�

���	��k�� � 	��k
��� dx

� �

Z �

�

�������k���kp
��

cos



���kp
��
x

�
� ����k�� cos�k
x�

�����
��

Z �

�

������k cos ����k��� x�� � ����k�� cos�k
x�
����

� 


Z �

�

��������k���kp
��

cos



���kxp
��

������� j cos�k
x� j�
�

�


Z �

�

h
j���k � �j� jcos ����k��� x��j�

i
�


Z �

�

h
jcos ����k��� x��� cos �k
��� x��j�

i
� � j ���k���k j� �
� � 
 j ���k � � j� ��� ��

� 
 j ���k � k
 j�
Z �

�
��� x�� sin����x��dx � � j ���k���k j� �
�

�
 j ���k � � j� ��� �� � 
 j ���k � k
 j� ��� ���

�
� �
��
�

Let us analyze now all the terms on the right hand side of this inequality�
First we observe that if k � ��


p
��
 then

cos



���k

r
�

�

�
� cos



k


r
�

�

�
� cos



�

�

�
�

�

�

and therefore

j ���k j�� ��
cos� ����k��� ���

cos�
�
���k
p

�
�

� � ���
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On the other hand
 it is easy to check that ����k�
� � C

��� when k � ��

p
���

The last term in �
��
� can be estimated as a consequence of Theorem 
���
Let us analyze 	nally the term

j ���k � � j��
���� �p

�� �



� �

sin �����k��� ���

����k��� ��

�

�

�
� �

sin
�p

�����k
�

p
�����k

����k�
�

���� ��

�����
� �

������
�

� �

���� �p
�� �

� �

����� � �

�� �

���� 
� � sin�����k��� ���

����k��� ��
�

�

�
� �

sin
�p

�����k
�

p
�����k

�
����k�

�

���� ��

�����
� �

������
�

� �
����

The 	rst term on the right hand side is clearly of the order of ��� The second
one can be bounded above by C� as follows� First of all we observe that������ �p

� � x

���� � j x j
�

if x � �� �
����

On the other hand����sin �����k��� ���

����k��� ��

���� �

���� sin �����k��� ��� �k
�

����k��� ��

���� � �������k��� ��� k


���k��� ��

����
�

���� ���k � k


���k��� ��
� �

���k��� ��

���� � O�
p
�� �
����

and �����
�
�

�
�

sin�
p
�����k�

�
p
�����k

�
���k ���

�� �

����� � ���k ���

�� �

�
��

�� �

�
cos����k��� ���

cos����k
p

�
��

��
� O��� �
����

in view of �
���� Combining �
������
���� we easily deduce that j ���k� � j��
O����

The proof of �
���� is rather similar and we omit it for brevity�

�� Well�posedness of the limit problem

in the asymmetric space

As we have shown in section ��� the eigenvalues 
k are divided in two sets��
k�
�

�
k�N and

�
��k
�
k�N corresponding to odd and even eigenfunctions re�

spectively� In this section we change a bit the notation in what concerns
the eigenfunctions� 	k is an eigenfunction associated to the eigenvalue k�
�

while �k is associated to ��k � The set f	kgk�N� f�kgk�N is chosen so that
they constitute an orthonormal basis of H�

� ���� ���
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The solution u of ����� can be written as follows

u�x� t� �
X
k�N

f�eak cos�k
t� � eck sin�k
t��	k�x�
�
hebk cos��kt� � edk sin��kt�i�k�x�o �����

where eak�ebk�eck� edk are real Fourier coe�cients determined by the initial data����������������

u�x� �� � u��x� �
X
k�N

�eak	k �ebk�k�
ut�x� �� � u��x� �

X
k�N

�k
eck	k � �k
 edk�k�
ut��� �� � z� �

X
k�N

�
k
eck	k��� � �k
 edk�k���� �

�����

This section is organized as follows� In a 	rst subsection we will give
some basic properties of the elliptic operator involved in system ������ This

will allow us to explain how the coe�cients eak�ebk�eck� edk of the Fourier de�
velopment can be computed since
 in principle
 system ����� seems to be
overdetermined� In a second subsection we will introduce an asymmetric
Fourier space in which the system ����� is well�posed� Finally
 we will char�
acterize this space in classical terms and see that it is constituted �roughly�
by functions with one more degree of regularity to one side of the mass�

���� Preliminaries on the development of solutions

in Fourier series

Let us introduce the domains of the fractional powers of the
compact self�adjoint operator T � L �H�

� ���� ��� H�
����� ��

�
that we have

introduced in section ��� to show the existence of the eigenvalues of the limit
system� For any � � R we de	ne the Hilbert space�

X� �

�
u �

X
k�N

�ak	k � bk�k� �

k u k���
X
k�N

�j ak j� k
�� j bk j� �
�k
�
��

�
� �����

endowed with the norm k 	 k�� Taking into account that f	kg � f�kg have
been chosen to constitute an orthonormal basis of H�

� ���� �� we deduce that
X� � H�

����� ��� ���
�

On the other hand
 clearly

X� � Im�T��� �
�
u � 
H����� �� �H���� ��

��H�
����� �� �

u������ � �� u������ � u������ � u������ u�����g �
�����

the norm in X� being equivalent to

k u k��k T��u kH�
��������

�Z �

��
j u��� j� �

Z �

�
j u��� j�

����
� �����
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Let us characterize now X���� Given u � X� we have

k u k���� � � T��u� u �H�
� ������� �

Z �

��
u���u� �

Z �

�
u���u�

�

Z �

��
j u�� j� � j u������ u����� j� �

Therefore X��� �


H����� ���H���� ��

��H�
����� ��� In a similar way we

may compute X����� We have

k u k������� Tu� u �H�
� �������

Z �

��
u� � u�����

If we identify H�
� ���� �� with a closed subspace of H�

����� ���R by means
of the linear mapping u � �u� u����
 we see that the norms of the spaces
X���� and L����� ���R coincide over H�

����� ��� Since H�
����� �� is dense

in both spaces we deduce that
�
X����� k 	 k����

�
coincides with L����� ���R

algebraically and topologically�
With these characterizations of the fractional spaces X� it is easy to see

how the coe�cients of the Fourier expansion ����� are determined in terms
of the initial data�

We assume that �u�� u�� z�� � H�
� ���� ���L����� ���R which coincides

with X� � X����� Then
 since u� � H�
����� �� � X� and f	kg � f�kg

constitutes an orthonormal basis of H�
����� �� we have

eak � � u�� 	k �H�
� �������

Z �

��
�u��

�	�kdx � ebk �� u�� �k �H�
� ������

�

Z �

��
�u��

���kdx�

On the other hand
 since �u�� z�� � L����� ���R� X���� we have

eck �� �u�� z��� 	k �X�����

Z �

��
u�	kdx� z�	k��� �

Z �

��
u�	kdx�

edk �� �u�� z��� �k �X�����

Z �

��
u��kdx� z��k����

Under these assumptions it is easy to see that the solution u given by
����� belongs to the class C

�
������H�

����� ���� C��������L����� ��� and
moreover
 that

u��� t� � z�t� �
X
k�N

hebk cos��kt� � edk sin��kt�i�k���
belongs to C���������

In order to simplify the expression for the solution u we set

	�k � 	k � ��k � �k � ��k � ��k
ak �

eak � ieck
�

� a�k �
eak � ieck

�
� bk �

ebk � iedk
�

� b�k �
ebk � iedk

�
�
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Then
 clearly

u�x� t� �
X

k�Znf�g

�
ake

ik�t	k � bke
i�kt�k

�
z�t� � u��� t� �

X
k�Znf�g

bke
i�k t�k����

On the other hand
 �u�� u�� z�� � H�
����� ���L����� ���R if and only if

fakg � fbkg � �� or
 equivalently


u � C
�
������H�

����� ��
�� C��������L����� ���� u��� t� � C���������

The energy of the solution �which is constant in time� can also be repre�
sented in terms of the Fourier coe�cients�

E�t� �
�

�

�Z �

��
j ux�x� t� j� �

Z �

��
j ut�x� t� j� � j zt�t� j�

�
�

�

�

h
k u�t� k�H�

� ������ � k �ut�t�� zt�t�� k�L�������
R
i

�
�

�

X
k�Z�f�g

�
j akeik�t j� � j bkei�k t j�

�
�

�

�

X
k�Znf�g

�j ak j� � j bk j�� � E����

���� The asymmetric Fourier space

We set

�k � �k�
k � k
 �����

where �k is the sign function
 i�e� �k � � if k � � and �k � �� if k � ��
In view of the results of section ��� we know that

�k � O�k���� �����

We introduce the Hilbert space

H �

���U �
X

k�Znf�g

�
ak	k � bk�k

� � Y � X� �X���� � k U k�H�

�
X

k�Z�f�g
j ak j� �jb�j� � jb��j� �

X
k�Znf����g

j ak�
k � bk j�
��k�
k

��
�
������

In ����� we have used the notation

	k � �	k� k
	k� �� � �k � ��k� �k�k� �k�k���� ������

so that the vector U represents the vector�valued unknown of our system

U � �u� ut� zt�� ������

Since �k � � as k �� it is clear that

H � Y � X� �X���� ������

i�e� H is a strict subspace of the energy space Y � H�
����� ���L����� ���R�

Moreover
 H is clearly an asymmetric Fourier space since the coe�cients
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fak�
k � bkg and fak�
k � bkg are weighted di�erently� Therefore
 H is
not of the form X��X�����
 for any � � R
 i�e� it is not a natural fractional
power or energy space for system ������ However
 system ����� is well�posed
in this asymmetric Hilbert space�

Theorem ���� For any �u�� u�� z�� � H there exists an unique solution
U�t� � �u�t�� ut�t�� zt�t�� � C������� H� of the limit system ������ More�
over� there exists C � � such that

k U�t� k�H� C�� � t�� k �u�� u�� z�� k�H � �t � �� ������

Proof� Given �u�� u�� z�� � H the unique solution U � �u� ut� zt� of ����� can
be represented in Fourier series

U�t� �
X

k�Znf�g

�
ake

ik�t	k � bke
i�kt�k

�
provided the Fourier coe�cients fakg � fbkg are determined by the initial
data
 i�e�

U� � �u�� u�� z�� �
X

k�Znf�g

�
ak	k � bk�k

�
�

On the other hand


k U�t� k�H�j b�ei��t j� � j b��ei�t j� �
X

k�Znf�g
j akeik�t j�

�
X

k�Znf����g

j ak�
kei�k�
k��t � bke
i�k t j�

��k�
k

�j b� j� � j b�� j� �
X

k�Znf�g
j ak j�

��
X

k�Znf����g

�
j ak�
k � bk j�

��k�
k
� j bk j� j e

i�k�
k��t � ei�kt j�
��k�
k

�

� � k U� k�H ��
X

k�Znf����g
j bk j� j e

i�k�
k��t � ei�kt j�
��k�
k

� � k U� k�H ��t�
X

k�Znf����g
j bk j�� C�� � t�� k U� k�H �

The continuity of U from t � ����� to H it is easy to check� This con�
cludes the proof of the theorem�

Remark ���� The proof of this theorem shows that the �ow generated by
the limit system ����� is also stable in every asymmetric space of the form

H� �

���U �
X

k�Znf�g

�
ak	k � bk�k

�
� j b� j� � j b�� j� �

X
k�Znf�g

j ak j�

�
X

k�Znf����g

j ak�
k � bk j�
���k�
k

��
���
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with � � � � �� The spaceH introduced in ����� corresponds to � � � and it
is the smallest one in which this holds� It is also obvious that H is the sharp
space
 in the sense that system ����� is not well�posed in H� for any � � ��

System ����� is also well�posed in a more general class of asymmetric
spaces of the form����U �

X
k�Znf�g

�
ak	k � bk�k

�
� j b� j� � j b�� j� �

X
k�Znf�g

j ak j�
���k

�
X

k�Znf����g

j ak�
k � bk j�
�����k�
k

��
���

with � � R� The case we have considered corresponds to � � ��
In order to characterize the asymmetric space H it is natural to introduce

pk �
�k � 	k�
k

�
� qk � �k�
k

��k � 	k�
k �
�

� �k �Zn f����g � ����
�

We have the following result�

Proposition ���� The set fpkgk�Znf����g�fqkgk�Znf����g�
�
���� ��

�
con�

stitutes a Riesz basis of the asymmetric space H�

Proof� We 	rst observe thatX
k�Znf�g

�
ak	k � bk�k

�
� b����� � b���

�
X

k�Znf����g



� �ak�
k � bk� pk �



ak�
k � bk
�k�
k

�
qk

�
�

Therefore
 the set under consideration is complete in H �
On the other hand
 if we de	ne on H a scalar product such that this set

is orthonormal
 then
 clearly
 the corresponding norm k 	 k� is such that

k U k���j b�� j� � j b� j� �
X

k�Znf����g

�
j ak�
k � bk j� �

����ak�
k � bk
�k�
k

�����
�

which is equivalent to the norm of H � This concludes the proof of the
proposition�

���� Characterization of the asymmetric space

The main result of this section is as follows�

Theorem ���� The space H coincides with the subspace of H�
����� �� �

L����� ��� R constituted by the elements �u�� u�� z�� such that the restric�
tions of �u�� u�� to the interval ��� �� belong to H���� ���H���� ��� i�e��

u�j����� � u�j�����
� � H���� ���H���� �� ������

and satisfying the further compatibility conditions

u���
�� � z� � u���� � �� ������
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Moreover the norm of H is equivalent to the following one

�
k u� k�H�

������� � k u� k�L������� �
Z �

�

�j u��xx j� � j u��x j�
�
dx

����
� ������

As a direct consequence of Theorems ��� and ��
 we have

Corollary ���� Given �u�� u�� z�� � H�
����� ��� L����� ���R such that

�����������	� hold� the solution of ������ ���	� satis�es the following further
regularity conditions


u�x� t� j������ C
�
������H���� ��

�� C�
�
������H���� ��

�
� ������

Remark ���� The regularity result of Corollary ��� was proved by S� Hansen
and E� Zuazua in �
�� Therefore
 the result is not new� However in �
� the
proof was based on the use of the explicit formula of solutions of the one�
dimensional wave equation while the present proof is based on the Fourier
expansion method�

Let us now proceed to the proof of Theorem ��
� First of all we need the
following technical lemma�

Lemma ��	� For any k �Zn f�� �g we set

�k�x� �

���
�k��k��k

� in ���� ��
�k��k��k

� in ��� ��

� e�k�x� �
���

�k��k��k
� in ���� ��

�k��k��k
� in ��� ��

������

and ��� � ���� Then� there exist positive constant �� � � � such that the
following hold


X
k�Znf�g

k �k � �k k�X�
X������ ������

X
k�Znf�g

�

k�
k ��k � �k k�X���
X�

�� ������

X
k�Znf����g

k e�k � �

k
�k k�X���
X�

�� ������

where X� are the fractional spaces introduced in section ����

Proof� Let us check that ������ holds
 the proof of ������������� being anal�
ogous� Note however that in ������������� the constants �� � have to be
chosen such that the general terms of the series tend to zero as k ���
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Functions �k and �k are even� Therefore


k �k � �k k�X�
X�����
�

�

Z �

��

�������k cos ��k � ��
x� � �k cos ��k�� � x��
����

�
�

�

Z �

��

�������k sin ��k � ��
x� � �k sin ��k�� � x��
���� � �



j�k sin��k�j�

� ��� �k�
�

Z �

��
jcos ��k � ��
��� x�x�j�

���k

Z �

��
jcos ��k � ��
��� x��� cos ��k�� � x��j�

���� �k�
�

Z �

��
jsin ��k� ��
��� x��j�

���k

Z �

��
jsin ��k � ��
��� x��� sin ��k�� � x��j�

�
�



j �k j� jsin��k�j� � ���� �k�

� �
�



��k sin��k��

� ������

���k

Z �

�

h
jcos ��k � ��
x�� cos��kx�j� � jsin ��k � ��
x�� sin��kx�j�

i
�

It is easy to see that all the terms on the right hand side of ������ are
of the order of k��� More precisely
 there exists C � � such that k �k �
�k k�X�
X����� C�k� and this implies �������

In view of Proposition ���
 any element U � H can be written as

U � d�  �� � d��  ��� �
X

k�Znf����g
�ckpk � dkqk�

with fckg � fdkg � ���
We set U� � d�  ���d��  ����

P
k�Znf����g dkqk and de	ne U�

e as the even

extension to ���
�� of the restriction of U� to ��
��� Clearly

U�
e �

X
k�Znf�g

dk�k���k

since �k�
k�k is the even extension to ���� �� of the restriction of qk to ��� ���

On the other hand
 since
�
�k
� � �	k� constitute an orthonormal basis

of X� �X����
 then
n

�
�k
�k

o
� � �

k�	k
�
constitute an orthonormal basis of

X��� �X��
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By ������
 taking into account that �k��k are orthonormal in X����X�

and that ���k is of the order of �k��
 we deduce that

k U�
e kX���
X��

������
X

k�Znf�g
dk�k�
k �k

������
X���
X�

�
X

k�Znf�g

dk�k�
kk
�
�
k k ��k � �k kX���
X�

�
�

�

������
X

k�Znf�g

dk�k�
k
�

�k

������
X���
X�

�
�� X
k�Znf�g

j dk�k�
kk j�
��

 A����� X
k�Znf����g

�

k�
k ��k � �k k�X���
X�

 A���

�

������
X

k�Znf�g

dk�k�
k
�

�k

������
X���
X�

� C

�� X
k�Znf�g

j dk j�
 A���

�

Therefore U�
e � X����X� and this implies that U�j����� � H���� ���H���� ���

Let us take now U� �
P

k�Znf����g ckpk and de	ne U�
e as the even exten�

sion to ���
�� of its restriction to ��
��� We have U�
e �

P
k�Znf����g cke�k and


as above
 using ������ we obtain

k U�
e kX���
X��

������
X

k�Znf����g
ck

�e�k � �

k
�k

�������
X���
X�

�

������
X

k�Znf����g

�ck
k
�k

������
X���
X�

� C

�� X
k�Znf����g

j ck j�
 A���

�

This implies that U�j����� � H���� ���H���� ���

We have proved that
 if U � H then U j����� � H���� ���H���� ��� This

implies
 in particular
 that the restriction of u� to ��
�� belongs to H���� ��
and therefore u� � C���� ���� As a consequence of this
 the compatibility
conditions ������ hold�

Let us see that every element U � X��X���� such that ������������� are
satis	ed is contained in H �

Since U � X� �X���� it can be written as

U � d�  �� � d��  ��� �
X

k�Znf����g



ckpk �

dk
�k�
k

qk

�
�

with fckg � fdkg � ��� In order to see that U � H we have to show thatX
k�Znf����g

���� dk
�k�
k

����� ��� ����
�

Proceeding as above we can prove that
 since fckg � ��
 then U� � d�  ���
d��  ��� �

P
k�Znf�g ckpk restricted to ��� �� belongs to H���� ��� H���� ��
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and satis	es the compatibility conditions ������� Therefore
 the problem is
reduced to consider elements U � X� �X���� of the form

U �
X

k�Znf����g

dk
�k�
k

qk

with fdkg � �� such that ������������� are satis	ed�
Let us de	ne Ue the even extension to ���
�� of the restriction of U to

��
��� In view of the characterizations of the fractional spaces X� of section
��� we have that

Ue �
X

k�Znf�g
dk�k � X����X�� ������

Let us see now that combining ������ and ������ the proof of ����
� can
be completed�

It is su�cient to show that �
�

P
k�Znf�g �kdk

�
�k
�k

�
belongs to X��� �X�

since
�
�k��k

�
are orthonormal in X��� � X� and �k

�� is of the order of
�k�
k �

Actually
 it is su�cient to prove the convergence of the tails
�
�

P
jkj�N �kdk

�
�k
�k

�
in X��� �X� for N large enough� We have������

X
k�jN j

�kdk
�

�k
�k

������
X���
X�

�

�� X
jkj�N

�����kdk�

�����
 A���

� ������

On the other hand
������
X
k�jN j

�kdk
�

�k

�k

������
X���
X�

�
������
X

k�Znf�g

kdk
�

�
�

k

�
�k � ��k

��������
X���
X�

�

������
X

k�Znf�g
dk�k

������
X���
X�

�
�� X
jkj�N

����kdk�
�����
 A����� X

jkj�N

�

k�
k � �k � �k k�X���
X�

 A���

�

������
X
jkj�N

dk�k

������
X���
X�

� ������

We have ������
X
jkj�N

dk�k

������
X���
X�

��

and
 in view of ������
X
jkj�N

�

k�

����k � �k
���
X���
X�

�� �� as N ��� ������
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Combining ������������� with N large enough such that

X
jkj�N

�

k�

����k � �k

���
X���
X�

�
�

�

with � � � su�ciently small such that j ����k j�j �k j for every j k j� N 
 we
easily obtain an upper bound for the quantity in ����
��

This completes the proof of the fact that H coincides algebraically with
the space of elements of X� �X���� satisfying �������������� On the other
hand
 the proof of the 	rst inclusion provides a bound of the norm of the
latter in terms of the norm in H � The fact that these spaces coincide topo�
logically is then a consequence of the open mapping theorem�

Remark ��
� The fact thatH coincides with the space of 	nite energy data
with one more degree of regularity to the right of the point mass can be ex�
plained
 roughly
 in the following way� The graphs of pk �

�
�k � 	k�
k

�
��

and qk��k�
k �
�
�k � 	k�
k

�
�� are basically one re�exion of the other with

respect to x � �� Moreover pk
��
����� is very small in H���� ���L���� �� while

pk
��
������ is rather close to an orthonormal basis of H����� ��� L����� ���

In a similar way qk
�k��

���
������

is rather small in H����� ��� L����� �� while
qk

�k��k

��
����� is almost an orthonormal basis of H���� �� � L���� ��� Since

�k � O�k��� and we are considering qk instead of qk ��k�
k 
 we see that
qk
��
������ has to be small in H����� ���H����� �� while qk

��
����� is close to

an orthonormal basis of H���� ��� H���� ��� This explains the asymmetry
of H �

In 	gures � and � below we show the graphs of the 	rst components of
	k and �k�
k � Then
 in 	gures � and 
 the graphs of the 	rst components of
pk and qk ��k�
k are shown� These 	gures exhibit the phenomena we have
described above�

- 1 1 - 1 1

.

Figure � � 	� Figure � � ��

- 1 1 - 1 1

Figure � � p� Figure � � q����
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�� Uniform well�posedness of the approximate problems

in �asymmetric spaces�

The goal of this section is to show that the well�posedness of the limit
system in the asymmetric space H can be obtained as a consequence of
an uniform well�posedness result of the approximate problems in 	nite di�
mensional spaces that
 as � � �
 cover the whole asymmetric space H �
Obviously
 the approximate problems ����� are not well�posed in an asym�
metric space like H � Therefore
 it is natural to consider them in suitable
	nite�dimensional spaces�

With a notation similar to that of section �
 solutions u� of ����� can be
written in Fourier series as follows�

u��x� t� �
X

k�Znf�g

�
ake

i��kt	�k�x� � bke
i��kt��

k�x�
�
� �����

In �����
 f	�kg denote the odd eigenfunctions and ��k the corresponding eigen�
values while f��

kg denote the even eigenfunctions and ��k its eigenvalues�
These eigenfunctions are assumed to be orthonormal in H�

����� ��� The
complex Fourier coe�cients fakg � fbkg are determined by the initial data
and 	nite energy solutions correspond to �� coe�cients�

We also introduce the vector�valued eigenfunctions

	
�
k � �	�k � i�

�
k	

�
k� � �

�
k � ���

k� i�
�
k�

�
k� �����

so that the vector valued unknown U � � �u�� u�t� can be written as follows

U ��x� t� � �u��x� t�� u�t�x� t�� �
X

k�Znf�g

�
ake

i��kt	
�
k � bke

i��kt�
�
k

�
�

The second components of
n
	
�
k

o
�
n
�
�
k

o
constitute an orthonormal basis

of L����� �� with the scalar product associated to �����
 i�e�

j f j��

Z ��

��
j f j� dx� �

��

Z �

��
j f j� dx�

Z �

�
j f j� dx

����
�

In what concerns the corresponding fractional spaces
 it is easy to see that
X�
� � H�

����� �� with the usual norm and that X�
���� �

�
L����� ��� j 	 j�

�
�

The conservation of the energy E� in ����� corresponds to the fact that
system ����� generates a group of isometries in X�

� �X�
����
 i�e�

k U ��t� k�X�
�
X�

����
�

X
k�Znf�g

���akei��kt��� � ���bkei��kt�����
�

X
k�Znf�g


j ak j� � j bk j�
�
�k �u�� u�� k�X�

�
X�
����

�

By analogy with the quantity �k measuring the distance between consec�
utive eigenvalues in the limit problem we introduce

��k � ��k�
k � ��k � �����

As we have shown in Theorem ���


inf
k�Znf�g

j��kj 

p
�� ���
�
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We now introduce the Hilbert space H� �
�
X�
� �X�

����� k 	 k�
�
the norm

k 	 k� being as follows� If U �
X

k�Znf�g

�
ak	

�
k � bk�

�
k

�
then

k U k���j b�� j� � j b� j� �
X

k�Znf�g
j ak j� �

X
k�Znf����g

j ak�
k � bk j��
��k�
k

�� � �����

The algebraic structure of the norm k 	 k� is similar to the asymmetric
norm k 	 kH introduced in ����� for the limit problem� However
 in view of
���
� the norm k 	 k� is equivalent to the usual H�

����� ���L����� ���norm�
The 	rst result of this section is as follows�

Theorem ���� There exists C � � independent of � � � � � such that the
solutions U � � �u�� u�t� of ����� satisfy

k U ��t� k��� C�� � t�� k U� k�� �t 
 �� �����

for all U� � �u�� u�� � H�
����� ��� L����� �� and � � � � ��

Proof� We have

k U ��t� k���j b��ei�
�
��t j� � j b�ei���t j� �

X
k�Znf�g

j akei��kt j�

�
X

k�Znf����g

j ak�
kei�
�
k��k

t
� bke

i��kt j��
��k�
k

��
�j b�� j� � j b� j� �

X
k�Znf�g

j ak j�

��
X

k�Znf����g

�B� j ak�
k � bk j��
��k�
k

�� � j bk j� j e
i��k��k

t � ei�
�
kt j��

��k�
k
��

 CA
� C

�
� � t�

� k U� k��
since

j ei��k��k t � ei�
�
kt j��

��k�
k
�� � t�

and

j bk j�� �
�j ak�
k j� � j ak�
k � bk j�

� � C

�B�j ak�
k j� � j ak�
k � bk j��
��k�
k

��
 CA �

Remark ���� Theorem ��� is the analogue of Theorem ��� in the context
of the approximate systems ������

However it is not clear whether Theorem ��� is a consequence of passing
to the limit as � � � in Theorem ���� Indeed
 given U� in the asymmetric
space H it is not clear if the norms of U� in H� remain bounded or not�
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In order to solve this problem we need some further results on how solu�
tions of ����� approximate the solutions of the limit system�

Let us consider U� � �u�� u�� � H�
����� ��� L����� �� such that

�

��

Z �

��
j u��x� j� dx � C � �� � � � � �����

�

��

Z �

��
u��x�dx� z� � as �� �� �����

Under these assumptions the weak convergence result of Theorem ��� ap�
plies� Now
 we can develop U� in Fourier series both in the basis associated
to the approximate and limit systems�

U� �
X

k�Znf�g

�
a�k	

�
k � b�k�

�
k

�
�����

U� �
X

k�Znf�g

�
ak	k � bk�k

�
� ������

Note that in ������
 U� � �u�� u�� z�� � X� �X�����
We also introduce

c��� �
�

��

Z �

��
u��x�dx� z�� ������

We have the following result�

Lemma ���� There exists C � � such that

j a�k � ak j � C
�
c��� � k

p
�
�
� �k �j k j� �����	 ������

j b�k � bk j � C
�
c��� � k

p
�
�
� �k �j k j� �����	� ������

with � � � small enough independent of � � � � ��

Proof� We focus on the second estimate
 the 	rst one being easier to obtain�
From Theorems 
�� and 
�� on the convergence of the eigenvalues and

eigenfunctions we have�

j bk � b�k j�
���� U�� �k �X�
X���

� � U�� �
�
k �X�

�
X�
����

���
�
���� u�� �k � ��

k �H�
� ������

���� ����Z �

��
u��k�kdx� z��k�k���

�
Z
��jxj��

u��
�
k�

�
k �

�

��

Z �

��
u��

�
k�

�
k

�����
�k u� kH�

� ������k �k � ��
k kH�

� ������ � k u� kL�k �k�k � ��k�
�
k kL�

�
�

��

����Z �

��
�z��k�k���� u��

�
k�

�
k�x��

���� �
�����
Z
jxj��

u��
�
k�

�
k

����� �
By Theorems 
�� and 
�� the 	rst two terms are �uniformly� of the order

of
p
�� The last term can be estimated easily as follows�����
Z
jxj��

u��
�
k�

�
k

����� � k u� kL�������
p
��



�

��

Z �

��
j ��k��

k j�
����

�
p
�� k u� kL������� �
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Let us analyze the third term� We have


���� ���
Z �

��
�z��k�k���� u��

�
k�

�
k�x��

���� � �

��

����Z �

��
�u� � z��

�����k�k���
�

�

��

Z �

��
ju��k��� ��k � ��k�j�

�

��

Z �

��
ju���k ��k���� ��

k����j

�
�

��

Z �

��
ju���k ���

k���� ��
k�x��j

� c��� j �k�k��� j �C j �k��� j j �k � ��k j �C j ��k j j �k���� ��
k��� j

�
�

��

Z �

��
ju���k ��k���� ��

k�x��j �

The 	rst two terms can be bounded by c��� �
p
� while the third has to be

majorized by k
p
�� Finally
 the last term can be estimated as follows�

�

��

Z �

��
ju���k ��k���� ��

k�x��jdx

� j ��k j



�

��

Z �

��
j u� j�

����
 �

��

Z �

��
j �k�x�� �k��� j�

����
� C j ��k j

p
� k �k kH�

� ������� C
p
�k

since j ��k j� Ck� This concludes the proof of the Lemma�

Theorem ���� Let U� � H be such that �	�
���	��� hold� De�ne

U �
� �

X
jkj	K���

�
a�k	

�
k � b�k�

�
k

�
����
�

with K��� � min
�
c���������� �����	

�
for any � � � with � � � small

enough� where fa�k� b�kg are the Fourier coe�cients of U� in the basis of

f	�k� ��kg� Then�

k U �
� k��k U� kH � as �� �� ������

Remark ���� Theorem ��
 states that the norm k U� kH can be obtained
as the limit of the norms k U �

� k� provided U �
� is a suitable truncation of the

Fourier series associated to U� in the basis
�
	�k
� � ���

k

�
�
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Proof� We have

��k U �
� k�� � k U� k�H

�� �
������j b��� j� � j b�� j� � j b�� j� � j b� j� �

X
jkj	K���

j a�k j�

�
X

k�Znf�g
j ak j� �

X
jkj�K���
k ����

j a�k�
k � b�k j��
��k�
k

�� �
X

k�Znf����g

j ak�
k � bk j�
��k�
k

�������
� C �k U� kH � k U �

� k��K���
�
c��� �K���

p
�
�
�

X
jkj�K���

j ak j� ������

�
X

jkj�K���

j ak�
k � bk j�
��k�
k �

�
�

�������
X

jkj�K���
k ����

!"# j a�k�
k � b�k j��
��k�
k

�� � j ak�
k � bk j�
��k�
k �

�

$%&
������� �

The coe�cient K��� �C��� �K���
p
�� as well as the second and third terms

of the right hand side of ������ converge to zero as �� ��
Concerning the last term
 we have�������

X
jkj�K���
k ����

!"# j a�k�
k � b�k j��
��k�
k

�� � j ak�
k � bk j�
��k�
k

$%&
�������

�
X

jkj�K���
k ����

��� j a�k�
k � b�k j� � j ak�
k � bk j�
����

��k�
k

��
�
X

jkj�K���
k ����

�������
��

��k�
k
�� � �

��k�
k

������� j ak�
k � bk j� � ������

We have�������
��

��k�
k
�� � �

��k�
k

������� �
�����k�
k � �k�
k

����
��k�
k

��
��k�
k

����k�
k � �k�
k
�� � C

p
�K����

��k�
k
������

since
 in view of �
�����
���
 j ��k�
k � �k�
k j� C
p
� and�

�

��k�
k

��
� CK����� ������

To check that ������ holds we observe that

��k�
k 
 �k � C
p
� 
 C

K���
� C

p
� 
 C

�K���

since K��� �� ������
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From ������ we deduce that

X
jkj�K���
k ����

�������
��

��k�
k
�� � �

��k�
k

������� j ak�
k � bk j�

� C
p
�K����

X
jkj�K���
k ����

j ak�
k � bk j�
��k�
k

� C
p
�K���� k U� k�H ������

which tends to zero as �� ��
Finally
 in view of ������
 ������ and ������ we have

X
jkj�K���
k ����

���j a�k�
k � b�k j� � j ak�
k � bk j�
����

��k�
k
��

�
X

jkj�K���
k ����

���j a�k�
k � b�k j � j ak�
k � bk j
��� ���j a�k�
k � bk j � j a�k�
k � bk j

����
��k�
k

��
� C

�
c��� �K���

p
�
� X
jkj�K���
k ����

�
j a�k�
k � b�k j � j ak�
k � bk j

�
�
��k�
k

��
� CK���

�
c��� �K���

p
�
�

�

�B� X
jkj�K���
k ����

�B� j a�k�
k � b�k j��
��k�
k

�� �
j ak�
k � bk j��

��k�
k
��

 CA
 CA
���

K������

� CK������
�
c��� �K���

p
�
� �k U �

� k�� � k U� k�H
����

� ������

Clearly
 the coe�cient K������ �c��� �K���
p
�� tends to zero as �� ��

Combining ������
 ������
 ������ and ������ we have��k U �
� k�� � k U� k�H

�� � o��� ��� k U �
� k� � k U� kH� as �� �

and this implies �������

From these results we can recover the well�posedness of the limit system
in the asymmetric space H �

Corollary ���� As a consequence of Theorem 	�� and the approximation
results above� the limit system ����� is well�posed in the asymmetric space
H�

Proof� We consider 	rst the case of initial data U� � H such that the condi�
tions ����� and ����� hold
 and obtain the stability result ������� The general
case U� � H can be then easily obtained by a density argument�

Given U� � H satisfying ����� and ����� we de	ne U �
� as in ����
�� Let

U ��t� be the solution of ����� with data U �
� � By theorem ��� we have

k U ��t� k��� C�� � t�� k U �
� k�� � ������
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Taking in ������ the lim inf as �� �
 using Fatou�s Lemma and Theorem
��
 we deduce that the solution U of ����� satis	es

k U�t� k�H� lim inf
���

k U ��t� k��� C���t�� lim inf
���

k U �
� k�� �C���t�� k U� k�H

and this concludes the proof of the corollary�

�� Further convergence results

The techniques of section � allow us to obtain the following result about
the convergence of the solutions of ����� towards the solution of ������

Consider �u�� u�� z�� � H�
����� ��� L����� ���R such that

�

��

Z �

��
j u� j� dx � C �����

�

��

Z �

��
u� � z� as �� �� �����

Let u be the solution of the limit problem ����� and fu�g��� the sequence
of solutions of ����� with the same initial data� Let us also de	ne the trun�
cated family of solutions of ������

eu� � X
jkj	K���

�
a�k	

�
ke

i��kt � b�k�
�
ke

i��kt
�

�����

with K��� as in Theorem ��
�
We have the following

Theorem 	��� Under the assumptions above� for any T � � we have���
eu� � u in C

�
��� T ��H�

����� ��
�� C�

�
��� T ��L����� ���

�
��

Z �

��
eu�tdx� ut��� t� in C���� T ��� as �� ��

���
�

If moreover�

�

��

Z �

��
j u� j� dx� �z��

� as �� � �����

then ���
u� � u in C

�
��� T ��H�

����� ��
�� C�

�
��� T ��L����� ���

�
��

Z �

��
u�tdx� ut��� t� in C���� T ��� as �� ��

�����

Remark 	��� The 	rst part of Theorem ��� ensures that
 under the condi�
tions in which u� converges weakly to u in the energy space �see Theorem
���� the truncated sequence eu� converges strongly�

The second part asserts
 in the case in which the strong convergence holds
�see Theorem ����
 that the convergence holds uniformly in time and not
only in L� with respect to time�

Proof� Let us proof the 	rst statement� By eU � we denote the vector�valued
unknown eU � �



u�� u�t �

�

��

Z �

��
u�tdx

�
and U�x� t� � �u�x� t�� ut�x� t�� ut��� t���
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To simplify notation we will denote the norm k 	 kH�
� ������
�L�������
R� byk 	 k along the proof� We have

k U�t�� eU ��t� kH�
�������
�L�������
R�

�

������
X

jkj	K���

h�
ak	ke

ik�t � bk�ke
i�kt
�
�
�
a�k	

�
ke

i��kt � b�k�
�
ke

i��kt
�i������

�

������
X

jkj�K���

�
ak	ke

ik�t � bk�ke
i�kt
������� � �����

Clearly������
X

jkj�K���

�
ak	ke

ik�t � bk�ke
i�kt
������� �

�� X
jkj�K���

�j ak j� � j bk j�
� A���

�����

and this tends to zero as �� ��
On the other hand
������

X
jkj�K���

�
ak	ke

ik�t � a�k	
�
ke

i��kt
�������

�

� C
X

jkj	K���

h
j ak � a�k j� � j a�k j�j eik�t � ei�

�
kt j�
i

�C

������
X

jkj	K���

a�k

�
	k � 	

�
k

�
eik�t

������
�

� �����

By Lemma ��� we haveX
jkj	K���

j ak � a�k j�� CK���
�
c��� �K���

p
�
��

and
 in view of the choice of K���
 this converges to zero as �� ��
By Theorem 
�� we also have
���eik�t � ei�

�
kt
��� � jk
 � ��kj t � C

p
�T � � j k j� K���� �t � ��� T ��

Therefore
 the second term on the right hand side of ����� converges to zero
too as �� ��

To estimate the last term we observe that
 in view of Theorem 
��
���	k � 	
�
k

��� � C
p
� � j��kj

Z �

��
	�kdx � C

p
� �� �K���� �
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Thus ������
X

jkj	K���

a�k

�
	k � 	

�
k

�
eik�t

������ � C
p
� �� �K����

X
jkj	K���

j a�k j

� C
p
� �� �K����K������

�� X
jkj	K���

j a�k j�
 A���

which tends to zero too�
The term������

X
jkj	K���

�
bk�ke

i�kt � b�ke
i��kt
�������

H�
� ������
�L�������
R�

can be estimated in a similar way�
Let us prove now the second part of the theorem� In view of the 	rst one

it is su�cient to check that������
X

jkj�K���

a�k	
�
ke

i��kt � b�k�
�
ke

i��kt

������
H�
� ������
�L�������
R�

converges uniformly to zero as �� ��
The norm of the 	rst two components can be bounded above by the norms

in X�
� �X�

���� which coincide with�� X
jkj�K���

ja�kj� � jb�kj�
 A���

and this tends to zero as �� � sinceX
k�Znf�g

j a�k j� � j b�k j�� �E����� �E��� �
X

k�Znf�g

�j ak j� � j bk j�
�

in view of the assumptions on the initial data which guarantee the conver�
gence of the energies�

Concerning the third component we have������
X

jkj�K���

b�k�
�
k

��

Z �

��
��
kdx

������ � �p
��

��Z �

��

�� X
jkj�K���

b�k�
�
k�

�
k

 A� A���

�
������
X

jkj�K���

b�k�
�
k�

�
k

������
X�
����

�

�� X
jkj�K���

jb�k��kj�
 A���

which tends to zero too�
This concludes the proof of Theorem ����
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	� Controllability

Let us consider the problem of controlling the dynamics of the limit system
by means of a control v � v�t� acting on the extreme x � ��

The equations of motion read now as follows����������������

utt � uxx � for �� � x � �� � � t � T
utt � uxx � for � � x � �� � � t � T
u���� t� � u���� t� � z�t� � for � � t � T
Mztt�t� � ux��

�� t�� ux��
�� t� � for � � t � T

u���� t� � � � for � � t � T
u��� t� � v�t� � for � � t � T�

�����

The only di�erence between system ����� and the original uncontrolled
system ����� is that we have replaced the homogeneous boundary condition
u��� t� � � by u��� t� � v�t��

The control time T � � is 	xed a priori� Due to the 	nite speed of
propagation it is natural to assume that T � 
�

The control problem can be formulated as follows� we assume that the
control v belongs to L���� T �� The question consists in characterizing the
space of controllable initial data �u�� u�� z�� for which there exists a control
v � L���� T � such that the solution u of ����� taking the initial data	

u�x� �� � u��x�� ut�x� �� � u��x� in ���� ��
ut��� �� � z� � zt���

�����

is at rest at time t � T 
 i�e�	
u�x� T � � ut�x� T � � � in ���� ��
zt�T � � ut��� T � � ��

�����

The answer to this problem was obtained in �
�� It turns out that the
sharp controllable space is an asymmetric space� We recall this result in
section ��� below and give a complete explanation in terms of Fourier series�
In section ��� we recover this result as the limit when � � � of uniform
partial controllability results for the approximate systems ������

���� Controllability of the limit system

in the asymmetric space

The following result was proved in �
��

Theorem 
��� For any �u�� u�� z�� z�� � L����� ��� H������ ��� R� R
such that 	

u�
��
������ � H����� ��� u�

��
������ � L����� ��

u����� � � � u����� � z�
���
�

there exists a control v � L���� T � such that the solution of ����� satisfying
the initial conditions ����� and

z��� � z�

satis�es the control condition ������
The map �u�� u�� z�� z��� v is continuous in the corresponding topologies�
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Moreover� the solution u of ����� belongs to the class���
u � C

�
��� T ��L����� ���� C�

�
��� T ��H������ ���

z � C����� T ��
u
��
������ � C

�
��� T ��H����� ���� C�

�
��� T ��L����� ��� � �����

Using Lions� HUM method �see ���� it is easy to see that Theorem ���
can be reduced to the obtention of suitable observability inequalities for the
uncontrolled system ������ As it was shown in �
�
 Theorem ��� is quivalent
to the existence of positive constants Ci � �� i � �� � such that

C�

h
k u� k�L������� � k u� k�H�������� � k u� k�H������ � k u� k�L������ � j z� j�

i
�
Z T

�
j ux��� t� j� dt � �����

C�

h
k u� k�L������� � k u� k�H�������� � k u� k�H������ � k u� k�L������ � j z� j�

i
holds for every solution of the uncontrolled system ������

These inequalities assert that the quantity
�R T

� j ux��� t� j� dt
����

de	nes

a norm in the space of the initial data which is
 roughly
 equivalent to the
natural norm of the asymmetric space

H�� �
�
�u�� u�� z�� � L����� ���H������ ���R � u�j����� � H���� ���

u�j����� � L���� ��� u���� � �
�
� �����

By means of the tools we have developed in section ��� it is easy to see
that this space coincides algebraically and topologically with the following
asymmetric space de	ned in terms of Fourier series�

H�� �

���U �
X

k�Znf�g

�
ak	k � bk�k

� � X���� �X�� � k U k����j b�� j�

� j b� j� �
X

k�Znf�g
��k j ak j� �

X
k�Znf����g

j ak�
k � bk j���
��� � �����

On the other hand
 since

u�x� t� �
X

k�Znf�g

�
ake

ik�t	k�x� � bke
i�kt�k�x�

�
we see that ����� is equivalent to

C�

!#j b�� j� � j b� j� �
X

k�Znf�g
��k j ak j� �

X
k�Znf����g

j ak�
k � bk j�
$&

�
Z T

�

������
X

k�Znf�g

�
ake

ik�t	�k��� � bke
i�kt��k���

�������
�

dt �����

� C�

!#j b�� j� � j b� j� �
X

k�Znf�g
��k j ak j� �

X
k�Znf����g

j ak�
k � bk j�
$& �
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As it was shown in �
�
 the fact that ����� holds is due precisely to the
fact that the gap between consecutive eigenvalues is of the order of �k and
that this quantity tends to zero as k ���

Indeed
 it can be seen that ����� is a consequence of the following result
by D� Ulrich �����

Theorem 
��� �D� Ulrich ����� Let f�ngn�Z and f�ngn�Zbe two sequences
of distinct complex numbers such that �n �� �n for all n� and satisfying

j �n � n j� �� j �n � n j� � as j n j� ��

Then
�
ei
nt

�
n�Zforms a Riesz basis in L���� �
� and�

ei
nt
�
n�Z�

	
ei
nt � ei�nt

�n � �n

�
n�Z

forms a Riesz basis in L���� 

��

In order to obtain the controllability of the limit system as the limit when
�� � of controllability results for the approximate systems we need a result
on the theory of non�harmonic Fourier series showing
 roughly
 that Theorem
��� is stable under small perturbations of �n and �n� This is the object of
the next section�

���� A new result in the theory of non�harmonic Fourier series

The main result of this section is as follows�

Theorem 
��� For any � � � � � we consider two sequences f��ngn�Zand
f��ngn�Zof distinct real numbers� Then� there exists � � � such that� if

max fj n � ��n j� j n � ��n jg � � for all n �Zand � � � � �� ������

the following two properties hold


�a� For any � � � � �� the set
�
ei


�
nt
�
n�Z�

n
ei�

�
nt�ei��nt

�n���n

o
n�Z

constitutes

a Riesz basis of L���� 

��
�b� There exists a positive constant C � � which is independent of

� � � � �� such that

�

C

X
n�Z

�j an j� � j bn j�
� �

Z 
�

�

�����X
n�Z

�
ane

i
�nt � bn

�
ei


�
nt � ei�

�
nt
�

��n � ��n

������
�

dt

� C
X
n�Z

�j an j� � j bn j�
�

������

for every � � � � � and fang � fbng � ���

Proof� We write

��n � n� ��n��� ��n � n� ��n���

In view of ������ we know that

sup
n�Z
j����

�j ��n�j j� � � for all � � � � �� ������

We need the following lemma due to D� Ulrich �����
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Lemma 
��� ������
 Let f�ngn�Zbe a sequence of functions in C����� 

��
with norms less than a � � for all n �Z� Then� for any fcng � �� we haveZ 
�

�

�����X
n�Z

cne
int�n�t�

�����
�

dt � a�M�
X
n�Z

j cn j� ������

where M � �
 � M�

���� M� � ��a�M�

� and M� �k � kC� where � �
C���
� �
� is a function of compact support and such that � � � in ��� 

��

As a consequence of Lemma ��
 we have�Z 
�

�

�����X
n�Z

cn
�
eint � ei


�
nt
������
�

dt �

Z 
�

�

�����X
n�Z

cne
int
�
�� ei


�
n��t
������

�

� M�a�
X
n�Z

j cn j� ����
�

and moreoverZ 
�

�

�����X
n�Z

cn



iteint � ei


�
nt � ei�

�
nt

��n � ��n

������
�

dt ������

�

Z 


�

�����X
n�Z

cne
int

�
it� ei


�
n��t � ei


�
n��t

��n�� � ��n��

������
�

dt �M�a�
X
n�Z

j cn j�

with a � � depending on the constant � � � of ������ and such that a����
� as � � �� On the other hand
 the constant M � � on ����
� and ������
does not depend on � � � � � and � � � � ��

From ����
� and ������ we deduce thatZ 
�

�

�����X
n�Z

cn��
�
eint � ei


�
nt
�
�
X
n�Z

cn��



iteint � ei


�
nt � ei�

�
nt

��n � ��n

������
�

dt

� �M�a�
X
n�Z

�j cn�� j� � j cn�� j�
�
� ������

We need now the following two results from D� Ulrich �����

Lemma 
��� The set
�
eint� teint

�
n�Zforms a Riesz basis of the Hilbert space

L���� 

��

Lemma 
��� Let fxng be a Riesz basis of the Hilbert space H such that

A�
X
n�Z

j an j��k
X
n�Z

anxn k�H� B�
X
n�Z

j an j� � ������

Assume that there exists � � A� � A and a set fyng � H such that�����X
n�Z

anyn

�����
�

H

� A�
�

X
n�Z

j an j�

for all fang � ���
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Then� fxn � yng forms a Riesz basis of H and

�A�A��
�
X
n�Z

j an j��
�����X
n�Z

an �xn � yn�

�����
�

H

� �B �A��
�
X
n�Z

j an j� �

In view of Lemma ���
 fxng �
�
eint� teint

�
n�Z form a Riesz basis of

L���� 

�� Using ������
 taking into account that a���� � as � � � and ap�

plying Lemma ��� with fxng as above and fyng �
n
�ei
�nt��

�
ei�

�
nt�ei��nt

�n���n

�o
we deduce that Theorem ��� holds provided � � � is small enough�

For the applications we need a more general version of Theorem ����

Theorem 
�	� Let f�ngn�Zbe a sequence such that �n �� n for all n � Z
and j �n � n j� � when n � �� For any � � � � � we consider two
sequences f��ngn�Zand f��ngn�Zof distinct real numbers such that ��n �� ��n�
Then� there exists � � � such that� if

max fj �n � ��n j� j n� ��n jg � � for all n �Zand � � � � � ������

then the two conclusions of Theorem ��� hold�

Proof� Given N � N large we replace f��ng by

e��n �

	
n � ��n j n j � N
��n j n j � N�

where j��nj � �
 !��n �� ��n and f!��ng are all distinct�
If � � � in ������ is small enough and N is chosen large enough
 then the

sequences fe��ng and f��ng satisfy the hypotheses of Theorem ����
Proceeding as in A� Haraux ��� it is easy to see that the terms correspond�

ing to j n j� N in the Riesz basis
�
eie


�
nt
��n eie��nt�ei��nt

e
�n���n

o
can be substituted

by
�
ei


�
nt
��n ei��nt�ei��nt
�n���n

o
and still keep a Riesz basis with uniform constants

in �������

���� Uniform partial controllability of the approximate

systems

We consider now the approximate system ����� with a control v � v��t�
acting on the extreme x � �����������������

utt � uxx� for �� � x � ��� t � �
�
��utt � uxx� for �� � x � �� t � �
utt � uxx� for � � x � �� t � �
u����� t� � u����� t�� for t � �
ux����� t� � ux����� t� for t � �
u���� t� � �� u��� t� � v��t�� for t � ��

������

Using HUM the controllability problem for ������ can be reduced to the
obtention of suitable observability inequalities for the uncontrolled system
������ Since the density ���x� � � � �

����������x� of system ����� is in BV it
is easy to see that
 for T � 

 there exists a constant C� � � such that

E� � C�

Z T

�
j ux��� t� j� dt ������
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for any 	nite�energy solution of ������
However
 the constant C� �� as �� �� This can be easily seen taking

into account that the spectral gap vanishes as �� ��
As a consequence of this
 for any T � 
 system ������ is exactly control�

lable in L����� ���H������ �� with L���� T ��controls� However
 there are
not uniform bounds �with respect to �� �� on the control v� in L���� T � in
terms of the norm of the controlled initial data�

The results of previous sections suggest that one can expect some uni�
form bounds in the observability inequalities if one introduces the 	nite�
dimensional asymmetric spaces�

Thus
 let us consider initial data of the form

U �
� �

X
jkj	K���

�
a�k	

�
k � b�k�

�
k

�
������

for the uncontrolled system ����� and let us denote by H� the Hilbert space
of the those initial data endowed with the norm

k U �
� k��� jb���j� � jb��j� �

X
jkj	K���

���k�
� ja�kj� �

X
jkj � K���
k �� ��

ja�k�
k � b�kj��

������

where
 we recall
 K��� 
 ����	�
Solutions U � of ����� with initial data of the form ������ can be developed

in Fourier series as follows�

U ��t� �
X

jkj	K���

�
a�ke

i��kt	�k � b�ke
i��kt�

�
k

�
� ������

Clearly

u�x��� t� �
X

jkj	K���

�
a�ke

i��kt �	�k�
� ��� � b�ke

i��kt ���
k�
� ���
�
� ����
�

The following uniform observability result holds�

Theorem 
�
� Assume that T � 
� Then� there exists C � � such that

�

C

Z T

�
ju�x��� t�j� dt �k U �

� k��� C

Z T

�
ju�x��� t�j� dt ������

holds for any solution of ����� with initial data U�
� � H� and for every

� � � � �� with �� � � small enough�

Remark 
��� We do not know whether uniform estimates of the form ������
may be true for all initial data U� without the restriction on the number
of non�zero Fourier coe�cients of being less than K���� The present state
of the theory of non�harmonic Fourier series does not seem to allow to give
an answer to this question� Notice that in the norm k 	 k� each Fourier
coe�cient has been weighted by the distance between the corresponding
consecutive eigenvalues� This enables to 	nd counterexamples for such an
uniform estimate and the situation seems much more delicate than when
analyzing the classical inequalities of the form �������

Esaim� Cocv� July ����� Vol�	� pp� 	
��	�




��	 C� CASTRO

Proof� In view of ����
� we can rewrite u�x��� t� as follows�

u�x��� t� �
X

jkj	K���

h
a�k �	

�
k�
� ���

�
ei�

�
kt � ei�

�
kt
�

�
�
a�k �	

�
k�
� ���� b�k ��

�
k�
� ���
�
ei�

�
kt
i
� ������

Using the asymptotic estimates of Theorem 
�� on the eigenvalues of system
����� and Theorem ��� we deduce that if K��� � �����	 with � � � small
enough and � � � � �� with �� � � su�ciently small
 then

�

C

X
jkj	K���

h
���k�

� ja�kj�
���	�k�� ������ � ��a�k �	�k�� ���� b�k ��

�
k�
� ���
���i

�
Z T

�
ju�x��� t�j� dt ������

� C
X

jkj	K���

h
���k�

� ja�kj�
���	�k�� ������ � ��a�k �	�k�� ���� b�k ��

�
k�
� ���
���i �

On the other hand
 it is easy to see that���	�k�� ��� � �
�� � C

p
� � if j k j� K���

and ���	�k�� ���� ���
k�
� ���
�� � ��k

�
� if k� �j k j� K���

for k� � � large enough independent of ��
Therefore
 ������ is an easy consequence of �������

Let us consider now the controlled system ������ with initial data in
L����� ���H������ ��� For any � � � we de	ne the projection 
� from this
space into the 	nite�dimensional subspace of elements of the form �������

As a consequence of the uniform observability result of Theorem ��� and
applying HUM �see ���� the following uniform partial controllability result
holds�

Theorem 
��
� Assume that T � 
 and � � � � ��� For any �u�� u�� �
L����� �� � H������ �� there exists a control v� � L���� T � such that the
solution u� of ������ taking the initial data

u���� � u�� �u��� ��� � u� in ���� �� ������

satis�es the �nal conditions


�
�
u��T �� �u����T �

�
� �� ������

Moreover� there exists a constant C � � independent of � � � � �� such
that

k v� kL����T �� C k 
��u�� u�� k�� ������

and

max
�	t	T

��
� �u��t�� �u����t������ � C k v� kL����T � ������

where k 	 k�� is the dual norm with respect to k 	 k��
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Remark 
���� If U �
� is of the form ������ the norm k 	 k�� is de	ned as

follows�

k U �
� k���

!""#jb���j� � jb��j� �
X

jkj	K���

���k�
�jakj� �

X
jkj � K���
k �� ��

ja�k�
k � b�kj�

$%%&
���

�

������

Theorem ���� states that we can control uniformly the 	rst K��� fre�
quencies of solutions of the approximated system ������� Uniformly means
that
 in particular
 when the initial data are 	xed the control is bounded
in L���� T � as � � � and
 on the other hand
 that the projection of the
solutions u� into the 	nite�dimensional subspace of elements with K��� non�
initial Fourier coe�cients remains bounded for all � � t � T as �� ��

We do not give the details of the proof of this Theorem which is a straight�
forward consequence of Theorem ���� When passing to the limit in Theorem
���� we will brie�y sketch the proof of Theorem ���� too�

��
� Passage to the limit

We are now in conditions to obtain the controllability result of Theorem
��� as the limit when �� � of the uniform
 partial controllability results of
the section ��� above�

Theorem 
���� Assume that T � 
 and � � � � ��� Let �u�� u�� z�� z��
be as in ����� an element of the in�nite�dimensional asymmetric space H��
in ���
�� with Fourier coe�cients fakg � fbkg� On the other hand� let v �
L���� T � be the control obtained in Theorem ��� for the limit system �����
and u the corresponding solution�

Now let U �
� be the truncated data

U �
� �

X
jkj	K���

h
ak	

�
k � bk�

�
k

i
������

and v� � L���� T � the corresponding partial controls of Theorem �����
Then�	

v� � v weakly in L���� T �

� �u��t�� u�t�t�� � �u�t�� ut�t�� weakly � in L���� T �H����

����
�

Remark 
���� This result
 roughly
 establishes the continuity of the con�
trols as �� �� Of course
 the controls v� and v are not unique and therefore

the meaning of ����
� has to be made precise�

Even if the controls ar not unique
 HUM provides a unique choice of them�
In ����
� we state the convergence of these controls obtained by HUM�

Convergences ����
� can be improved� Indeed
 it is not hard to see that
the controls converge strongly in L���� T � and that the solutions are such
that the second convergence of ����
� holds strongly in Lp��� T �H��� for any
� � p ���

Sketch of proof� We will not give all the details of the proof that follows by
standard arguments �see for instance ���
 ��� and ��� for similar convergence
results in other contexts��
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The control v� given by HUM for the approximate system can be charac�
terized in the following way�

We solve the uncontrolled system���
���x���tt � ��xx � �� �� � x � �� � � t � T
������ t� � ����� t� � �� � � t � T
���x� �� � ����x�� �

�
t�x� �� � ����x�� �� � x � �

������

with ���x� � � � �
����������x� and initial data ����� �

�
�� of the form

����� �
�
�� �

X
jkj	K���

�
c�k	

�
k � d�k�

�
k

�
� ������

Given an initial data U �
� of the form ������ we de	ne the quadratic func�

tional�

J� ��
�
�� �

�
�� �

�

�

Z T

�
j��x��� t�j� dt� b��d

�
�� � b�d

�
�

�
X

jkj � K���
k �� ��

h
��k�
k �ak�
k � bk��c

�
k�
k � d

�
k�

� ��k�
k �ak�
k � bk��c
�
k�
k � d

�
k�
i
� ������

Clearly J� is continuous from the space H� of initial data of the form
������ into R� Notice that in ������
 the last two terms denotes the duality
between the data ����� �

�
�� and the data U �

� of the controlled system�
In view of Theorem ��� it is easy to see that J� is uniformly coercive�

More precisely
 there exists C � � such that

J� ��
�
�� �

�
�� 
 C k����� ����k�� � �

C � �� � � � ��� � ����� ���� � H��
������

Therefore
 the minimizers ����� �
�
�� for J� in H� exist for each � � � � ��


are unique and uniformly bounded in the sense that the quantity k����� ����k�
remains bounded�

Note that
 in order to obtain ������
 we have used the fact that the data
�u�� u�� z�� z�� belong to H�� in an essential way�

The minimizer ����� �
�
�� of J� in H� is characterized byZ T

�
��x��� t��

�
x��� t�dt � b������ � b����

�
X

jkj � K���
k �� ��

h
��k�
k �ak�
k � bk����k�
k � ��k�

� ��k�
k �ak�
k � bk����k�
k � ��k�
i

������

for any solution �� of ������ with initial data in H� and Fourier coe�cents
f��kg � f��kg�

The control v� for the approximate system is precisely

v� � ��x��� t� ���
��

and it is uniformly bounded in L���� T � in view of Theorem ����
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In what concerns the limit system �����
 the control v is also of the form

v�t� � �x��� t� ���
��

where � is a solution of the adjoint system�����������
�tt � �xx� �� � x � �� � � t � T
�tt � �xx� � � x � �� � � t � T
����� t� � ����� t� � ��t�� � � t � T
M�tt�t� � �x��

�� t�� �x��
�� t�� � � t � T

����� t� � ���� t� � �� � � t � T

���
��

with initial data 	� of the form

	� �
X
k�Z



ak	k � dk�k

�
���
��

belonging to the asymmetric space H of ������
The initial data corresponding to the solution � that determine the control

v by ���
�� are obtained by minimizing the quadratic functional

J �	�� �
�

�

Z T

�
j�x��� t�j� dt� b��d�� � b�d�

�
X

k�Znf����g



�k�
k �ak�
k � bk��ck�
k � dk�

� �k�
k �ak�
k � bk��ck�
k � dk�
�

���

�

over H � The minimum is characterized byZ T

�
�x��� t��x��� t�dt

� b����� � b��� �
X

k�Znf����g



�k�
k �ak�
k � bk���k�
k � �k�

� �k�
k �ak�
k � bk���k�
k � �k�
�

���
��

for all solution � of ���
�� with data in H corresponding to Fourier coe��
cients f�kg � f�kg�

Using the characterizations ������ and ���
�� it is easy to see the weak
limits of subsequences of v� solve ���
��� The solution of ���
�� being unique
this allows to conclude the 	rst part of ����
��

Applying the identities ������ and ���
�� with �� � �� and � � � re�
spectively and using the convergence of the right hand side terms �they are
linear on �� and � and therefore converge by continuity with respect to the
weak topologies� one deduces thatZ T

�
j��x��� t�j� dt�

Z T

�
j�x��� t�j� dt

and concludes the strong convergence of the controls�
Finally
 using a transposition argument
 it is easy to see that the solutions

of the controlled systems converge in the sense of the second statement of
����
��
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