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UNIQUENESS RESULTS FOR STOKES EQUATIONS
AND THEIR CONSEQUENCES IN LINEAR
AND NONLINEAR CONTROL PROBLEMS

CAROLINE FABRE

ABSTRACT. The goal of this article is the study of the approximate
controllability for two approximations of Navier Stokes equations with
distributed controls. The method of proof combines a suitable lin-
earization of the system with a fixed point argument. We then are
led to study the approximate controllability of linear Stokes systems
with potentials. We study both the case where there is no constraint
on the control and the case where we search a control having one null
component. In both cases, the problems is reduced to prove unique
continuation results. This is done by means of Carleman estimates.

1. INTRODUCTION

The goal of this article is the study of the approximate controllability for
two approximations of Navier Stokes equations with distributed controls.
To be more precise, let us state the problem: consider an open bounded
connected and regular set  of R", (n > 2), a time 7' > 0 and an open
subset w of Q. We write Q@ = Qx (0,7), ¢ =w x (0,7), and ¥ =02 x (0, 7).
Let H and V be the closure in L?(Q)" and in H}(Q)" of F = {u € C§°(Q)",
divu = 0 in Q} respectively.

Let M > 0 be an arbitrary positive constant that will be fixed all along
the paper, we introduce a mapping Ty € C*(R", R") N L>*(R", R"), such
that Ths(s1,- -+, 8n) = (S1,- -, Sp) if for every @ € [1,n], one has |s;| < M. In
others words, T coincides with the identity in the hypercube [—M, M]™.

For v = (vy,---,v,) € L*(¢)", and y° € H, we denote by y = y(z,t) =
(y1(z,t), -+, yn(x,t)) the vector-valued solution of

d )
y — Ay+ —(Tm(y)ry) = Vp+ovx, in Q

8$k
divy=0 in @ (1.1)
y=0 on X

y(0) =y’ in Q

Université Paris 12-Val de Marne, U.F.R. Sciences, Département de Mathématiques,
Av. du Général de Gaulle, 94010 Créteil Cedex and Centre de Mathématiques Appliquées,
Ecole Polytechnique, 91128 Palaiseau Cedex, France.

Email: cfabre@cmapx.polytechnique.fr.

This work was supported by the project CHRX-CT94-0471 of the European Commu-
nity.

Received by the journal February 15, 1996. Accepted for publication September 30,
1996.

@ Société de Mathématiques Appliquées et Industrielles. Typeset by TEX.



268 CAROLINE FABRE

where ' denotes the derivative with respect to time and x, is the char-
acteristic function of ¢. System (1.1) is in fact made of 3n + 1 equations
5

and Y7_, %(TM(y)kyj) is the j!* component of the vector 5o (Tar(y)ky)

where Ths(y)y is the k' component of Thy(2).

System (1.1) can be viewed as a variant of the classical Navier-Stokes
equations in which the quadratic nonlinearity has been truncated.

As Ty € C(R", R") N L>°(R™,R"), one can prove (using a fixed point
method) that for every (y°,v) € H x L*(q)", system (1.1) has a unique
solution (y,p) € (C([O,T];H) N L*(0,T; V)) x D'(Q) in the sense that y is
unique and the pressure p is defined up to a time dependent distribution.
Of course, the solution y = yas of (1.1) depends on the parameter M which
has been fixed here. One can remark that we would get the Navier Stokes
equation if we had Tas(yar) = yar for some M.

Our purpose is to study the reachable set at time T which is defined for
a fixed y° € H by

R(T) = {y(x,T), v e L*(q)", y solution of (1.1)}.

Clearly R(T) is a subset of H for any T > 0 and y° € H. We will prove
the following result:

THEOREM 1.1. For every M > 0, every y° € H and every T > 0, the
reachable set R(T) is dense in H.

REMARK 1.2.

(i) In [4], it has been proved for example that in two space dimensions and
for the Navier Stokes equation, the vector space spanned by the reachable
set is dense in H.

(ii) J.M. Coron proved in [1] the approximate controllability in a particular
sense for the Navier Stokes equations in two space dimensions with different
boundary conditions (said to be Navier conditions).

(iii) In [5], several results are proved: first, in one space dimension, it
is proved that Burgers equation is not approximatively controllable. Then,
the authors prove a local result which is roughly the following: if there is
a solution of the Burgers equation which starts from y° and goes to y' at
time ¢ = T then for initial data close enough to y°, there exists a distributed
control allowing to go to y!' at time ¢ = 7. In this book, this local result is
extended for the Navier Stokes equations in two space dimensions.

We will also replace the nonlinear term by (Ta(y).V)y instead of
%(TM(y)ky). In that case, the system becomes (where . denotes the scalar

product in R")

y' —Ay+ (Tu(y).V)y=Vp+oy, in Q
divy=0 in @

y=0 on X

y0)=y" € H
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CONTROL FOR STOKES EQUATIONS 269

and we will prove:

THEOREM 1.3. We suppose that w is a neighbourhood of the boundary T
For every M > 0, every y° € H and every T > 0, the reachable set

R(T) = {y(z,T), v e L*(q)", y solution of (1.2)}

1s dense in H.

The density in H of the reachable set is, in general (i.e. for any open
non empty subset w of Q), an open problem which is related to the fol-
lowing regularity result concerning the pressure in linear Stokes systems:
which minimum supplementary regularity conditions on f € L*(0,T,V")
are needed in order to ensure the existence of (u,7) € L*(0,T,V) x L} _(Q)
with »(0) = 0 and v’ — Au = Va4 f? The difficulty comes from the regular-
ity of m with respect to time and the only known result is that f € L*(Q)"

implies 7 € L*(0, T, H(Q)).

In order to prove Theorems 1.1 and 1.3, we use a fixed point method
together with a precise study of the approximate controllability for linear
Stokes equations. As usual in linear cases, the approximate controllability
property can be reduced (using Hahn-Banach theorem) to a unique continu-
ation property concerning the solutions of the adjoint homogeneous problem.

We will set this uniqueness property in a more general setting which
includes systems of linearized Navier-Stokes equations.

More precisely, we consider for 1 < j, k,[ < n, functions aih bil € L>(Qx

(=7,T)) and functions v = (uy,-- -, u,) and 7 solutions of the system
Vi, 1<j<n,
; 8u1 0 ; or .
l,_A. J ozt —b] = — QX —TT
T A Gy, T g V) = gy I XL

dive=0 in Qx(=17,7)
(u7 ﬂ-) € L%oc(_TvT; Hlloc(Q))n X L2 (Q X (_T7 T))

loc

where the j* equation, according to the convention of summation of re-
peated indexes, has to be read for 1 < j <mn:

' a . an
' , j J _
w; — Auj+ E akl@xk + kgl 9, (byuy) Je

We prove
THEOREM 1.4. Let al, and bl, be elements of L2, (Q x (=T,T)) for

loc
1 <4,k <n. If (u,7) is a solution of (1.3) and if u vanishes in an open
non-empty subset O of Q x (=T,T) then it vanishes in the whole horizontal

component of O in Q x (=T,T) which is the set

CO) = {(z, ) € Qx (=T, T), Jwo€Q, (20,t) €O},

Theorem 1.4 has been first proved by Saut and Temam (see [12]) when co-
efficients a3, and by are C' and C? respectively. Then it has been extended
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270 CAROLINE FABRE

when ail = apby, € WH™ and bil = 0 (which means that u is solution of
uw' — Au—(a.V)u = V7 with « = (ay,- -+, a,)) by Fernandez-Cara and Real
in [4]. These authors applied a Carleman estimate on the heat equation com-
bined with a Carleman estimate for the Laplace operator in order to control
the pressure which then satisfies an equation like Ax = div ((a.V)u) € L?.

In [3], we also studied the case where w is solution of '~ Au—(a.V)u = Vr
with coefficients @ € L*(Q)™. Note that when a € L*(Q)", one can no
longer use the usual Carleman inequality for the Laplace operator because of
the lack of regularity of a. To overcome this difficulty, we proved a Carleman
estimate for solutions (7, f) € H._ x L? _of Ar+ L1 f € L* where L is a
first order operator (for more details, see [3]). The argument of the proof
of the unique continuation for the Stokes system with a € L°(Q)" then
combined this new inequality, the usual one on the heat operator (stated by
Saut and Scheurer in [11]) and a change of scale. In our case, the pressure
satisfies an equation like A7+ Ly f+ Lok € L? with functions f and & in L*
(and no more), Ly and Ly being first and second order operators. Thus, the
pressure will no more be in H/ . and there is again a lack of estimate on 7.
Futhermore, the usual Carleman inequality for the heat operator cannot be
applied on wu since the functions b, do not possess sufficient regularity (this
would require bil € W1 in space). One can only say that each component
of u satisfies a heat equation but with a right-hand side in H~1(Q) (in space
and time) and no more even locally. We therefore need a new inequality in
order to treat u.

Using the unique continuation property of Theorem 1.4, we will deduce
the approximate controllability for linear Stokes systems. Note that for
y® € H and v € L*(q)", using a variational method, one can show that
there exists a unique vector-valued fonction y € L?(0,T;V) N C([0,T]; H)
and a pressure p € D'(Q)) (defined up to a time dependent distribution) such
that (y, p) is solution of

Vj, 1<j<m,
; Oy d dp .
vi — Ay + “ila—xk + a—wk(bizyl) = oz, +ox, in Q
divy=0 in Q (1.4)
y=0 on X
y(0)=1" in Q.

We prove the following approximate controllability results for system
(1.4):
ProrosITION 1.5. Let w be a neighbourhood of the boundary I'. Let (a{%l7 bil)
€ L>(Q)? for 1 < j,k,1 < n. For every y° € H, the reachable set at any
time T > 0 defined by

R(T) = {y(x,T) where y is solution of (1.4), v € L*(¢)"}
is dense in H.
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CONTROL FOR STOKES EQUATIONS 271

PROPOSITION 1.6. Letw an open and non-empty subset of Q. Let (ail, bil) €
L>(Q)* with

ifn=2, 3Jpy€]2,+o0l, Vjk,l€{l,---,n} al, € L0, T, WP (Q))
ifn>2, Vjkile{l,---,n} a, € L*0,T,WH™(Q)).
(1.5)
For every y° € H, the reachable set at any time T > 0 defined by

R(T)=A{y(z,T), wherey is solution of (1.4) v € L2(q)n}

1s dense in H.

REMARK 1.7.
(i) The hypotheses on w in Proposition 1.5 and (1.5) are made in order to
ensure the existence of a pressure in L? (Q) for the adjoint system of (1.4).

(ii) Conditions (1.5) can be replaced by

if =2, 3po€]2,400], Vi kle{l,---,n} al, € H(0,T, LP(Q))
if n>2, Vjkie{l,---,n} al, € HY(0,T,L™"(Q)).

Once the approximate controllability of this Stokes system is understood,
one can ask if we can take controls with one component equal to zero. The
problem reduces again to the underlying unique continuation property which
can be formulated as follows: suppose that a solution u of (1.3) satisfies
uy = -+ =ty = 0in O then do we have v = 0 in C'(0)?

“We give a partial result which requires more conditions on the coefficients
a, and b}, and more regularity on u and 7. We will then give a counter-

exemple when one of these conditions is not fulfilled. We consider functions
aj, and B in L (Q x (=T1,7T)) with

day . 9B
Vk e {l,--- —=—"=0
€ { ’ 771}7 8$n 8$n (16)
V(j. k)€ {1, ,n—1} x {1,---,n}, a}, =B} =0.
We denote by (u, ) a solution of
u —Au]—l—akl8 ! —I—B] —ﬁ in Qx (-T,T)
8 8$]'
dive=0 in Qx(=17,7) (1.7)
( ) € Lloc( T7T7Hl200(9)) X Lloc( T7T;Hlloc(9))‘
We prove
THEOREM 1.8. If the functions o, and B] are in L=(Q x (=T, T)) and
satisfy (1.6) and if (u, ) is solution of (1.7) with uy = -+ = u,_; = 0 in
an open set O of Q x (=T,T) then uy = -+ = up_1 = gg" =0 in C(O).

We will then deduce
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272 CAROLINE FABRE

COROLLARY 1.9.  Suppose that € is bounded and that u belongs to
L*(=T,T; HY(Q))™ and is solution of (1.7) with uy = -+ = u,_; = 0 in an
open set O of Q. Then u vanishes in C(O).

Theorem 1.8 is false when condition (1.6) is not fulfilled even in the sta-
tionary case: indeed, let © be the square @ = ] — 1,1[*> and let
0= [$1 < 0] N €.

We consider

up (21, 2) = 21 L, >0)

ug (@1, 29) = —3$%$21(x1>0) + 542
w21, 22) = 3271 (4, 50) + 22 (1.8)
1+ 62, 1
b =1 —1 .
(21, 22) 5+ 21 — 3a%as (z1>0) T R (w1 <0)

We have (ug,us, 7,0) € H2 (Q)* x HL () x L>(Q), div v = 0 in Q and
w1 = 0in O.

One can easily compute that

on
Ay = —
“ 8$1
and
AUQ + bUQ = 8—ﬂ-
8$2

Condition (1.6) fails since Bf = b and 88—;2 # 0.
REMARK 1.10.

(i) If ©Q is not bounded, even when @ = B = 0, Theorem 1.8 does not
necessary imply Corollary 1.9 as one can see for n = 2, Q = [(21, 23), 21 > 0],
and u; = 0, uy = 23/2 and p = z,.

(ii) The controllability problem with controls having two zero components
has been studied by J.-L. Lions and E. Zuazua in [15] in three space dimen-
sions for the Stokes system and without potential. They proved a generic
result and gave a counter-exemple to the underlying uniqueness property
when €2 is a cylinder.

We now describe the plan of this article: in a second section we prove
Theorem 1.4 and 1.8. The main tool (that we briefly recall) is the h-pseudo-
differential calculus (as in [8]). The proofs of these theorems are based on
the same idea as the one developped in [4]: we first state the Carleman
inequalities by separating the low and high frequencies. In order to be
clear, at each step, we will recall the previously known inequalities and the
new ones. In a third section, using these unique continuation properties,
we will deduce the approximate controllability for linear Stokes systems
and, in particular, the case of the linearized Navier-Stokes equations will
be considered. We then go back to our nonlinear problems and we prove
Theorems 1.1 and 1.3 in the last section. The method is now standard and
uses a fixed point argument (see for example [2] or [14].)
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2. UNIQUE CONTINUATION FOR STOKES EQUATIONS

2.1. PRELIMINARIES ON PSEUDO-DIFFERENTIAL CALCULUS

The results that we recall in this section are classical and we refer to the

books of D. Robert [10] and X. St Raymond [9] for details.
We note D; = 29;, A(¢) = (1 + €]2)2, for € € R". The set S™ (where
m € Z) denotes the space of symbols defined on R?" and which satisfy:

Yo, 8 € N", 3C,5 Yo, & h [0507a(x,& h)] < Coph(€)™ 17!

and

N
Vi €N, Fa;(z,&) € 5™, a(x,&h) € Zhjaj($7€) 4 pN+1gm=N-1

The principal symbol of a is then ag. If @ € S™ and if u is C§°(R"), we
define the pseudo-differential operator of order m

ﬁ/em_ a(x, &, h)a(

(where @(€) = [e"™%u(z)dx is the Fourier transform of u). If a € S™,
a(xz, D, h) maps H*(R") in H*="(R"). We write £™ the space of pseudo-
differential operators of order m and E=%° =N,,cz E™.

We write [v|§ = [p. [v(2)|*dz, ( = [pn ut and |v[] = [A(D)v]§. Thus
o = — / N2 (hE) (€[ 2de = /| |dac—|—h2/|Vv| de.
AR

We recall that if « € ™ and b € E' then a(z, D) o b(z, D) € E™*! with
a principal part agbg. On the other hand, +[a(z, D),b(z, D)] = £ (a(z, D) o
b(z, D) — b(z, D) o a(z, D)) € E™*'=! and its principal part is {ao,bo} =
8§aoaxb0 - 895@085130.

a(z, D, h)u(z) =

§
P

We recall the Garding inequality:
PRrROPOSITION 2.1. Let U be an open set of R". If a € E* satisfies:

Jey >0, V(z,&) €U xR", Reag(z,&) > 1 A€)?
then for every compact set K of U, there exists hiy > 0 such that
Yu € HE(K), Yhe)o,hg], Re(a(z,D,h)u,u) > %|u|§.

ESAIM: COCV, NoVEMBER 1996, VOL.1, PP. 267-302



274 CAROLINE FABRE

The following proposition concerns the inversion on the high frequencies
of operators of order 2 which are elliptic on high frequencies.

PROPOSITION 2.2. If p € E? satisfies
Je>0: |po(z,&)] > eA(6)* V¢, |€] > R, YxeR"

then there exists e € E=2 and o € E~° such that eop = 1+ o+ hR, where
Re E7Y and a(x,€) =0 if [¢] > R.

As we are dealing with evolution equations, the operators under consid-
eration will depend on a parameter (the time) and we will need uniform
estimates. Let I = [-Tj,T,] be a subinterval of R. We will say that a set of
operators with symbols of order m, {a(t,z,&,h) }er, is in L*(1, E™) if the
constants C'y g appearing in the definition of S do not depend ont € 1. We
recall that (see [10]) if (a(t));es € L°°(I, E™) and if (b(t))ier € L>(1, EY)
then (a(t) o b(t)): € L>°(I, E™*!) and we have

VseR, 3C;>0: Vtel, Yue H®, |a(t)u|s—m < Csluls.

In the same way, we have the following Garding inequality: if U is an
open set of R” and if (a(t));er € L>°(I, E?) satisfies

ey >0: Vtel, V(2,8 €U xR", Reag(t,z,£) > c1A€)?
then for every compact set K of U, there exists hg > 0 such that

Yu € HE(K), Y(t,h)eIx]0,hg], z%m@xem%upi%mﬁ.

Finally, we have the analogous of Proposition 2.2: if (p(t)), € L> (I, E?)
satisfies

de, R>0: |po(z,&)] > c/\(f)2 Ve, 1€l > R, Y(t,z) eI xR"

then there exist (e(t)); € L (I, F~%) and («(t)); € L (I, E~°°) such that
e(t)op(t) =1+ a(t) + hR(t), with R(t) € LI, E~') and a(t,2,£) = 0 if
€l > R.
Let now ¢ = o(t,z) € Cg°(R"1). We write ¢,(z) = ¢(t, ) and p(t) the
operator of F? :
p(t)(z, D, h) = —h*eF o Aoe T,

p(t) has as principal symbol
D126 = Y (6 + 122
’ — J 8$]

of ( ) is also of order 2 and its principal symbol
), Po(t)(z,€&). We then decompose the operator
* denotes the adjoint operator of a): a(t) =

The adjoint operator p*(¢
is the conjugate of po(t)(x
it

p(t) = alt) + ib(t) with (a

ESAIM: COCV, NoVEMBER 1996, VOL.1, PP. 267-302
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CONTROL FOR STOKES EQUATIONS 275

%}?:(1‘) € L°°(=T,T; E?) with principal part ag(t) = Repo(t) and b(t) =
w € L>(=T,T; E') with principal part bo(t) = I'm po(t).

Let Uy be a bounded and open set of R™ and suppose that there exists
Coy > 0 such that g satisfies

($,€) € Uo X Rn, (10(0)($,€) =0 = {(Zo(O),bo(O)}($,f) > Co. (21)

Then there exist po > 0 and ¢3,d" > 0 such that for || < pg, ¢; satisfies

(2,8) € Up x R", ag(t)(2,6) =0 = {ao(t),bo(t)}(x,€) = -,

d'A7* () ao (1) (x,€) + d'bo(t)* (2, €) + {ao (1), bo(1) } (. €) > C3A2(€)(-2 )

We now define general operators of order 1 and 2. For this let s € N and
for f=(f1, -, fs) we write

0
Li(f) = Z Cjk%f};v

(jvk)6{17"'7n}x{17"'75}

with coefficients ¢;, € C°°(R™) N L>(R"). We have L; € E'.
On the other hand, for & = (ki )1<i,m<s, define

0 0
Lo (k) = —(dlml’m’—
8$ll
(l7m)e{17"'75}27(ll7m1)€{17"'7n}2

where dj 0 € C*°(R™*) N WE(R"™). We have L, € 2.

2.2. CARLEMAN INEQUALITIES

In the sequel ¢ and d will denote positive constants that may change from
line to line and are independent of the parameter h.

As we have already said in the introduction, our problem to prove The-
orems 1.4 and 1.8 comes from a lack of regularity on u and . For clarity,
let us recall what is known: the usual Carleman inequality on the Laplace
operator has been stated by Hormander in [6], it concerns the stationnary
case and it is the following proposition

ProposITION 2.3. Let U be an open and bounded set of R" and K be a
compact set included in U. Let ¢ = @(x) be in C§°(R"). If Vo does not
vanish on U and if

dey > 0,po(2,€) =0 and (2,£) € U x R" = {Re po, Impo}(z,£) > c1,
(2.3)
where py is the principal symbol of p = —h%e® o Ao €%, then there exists
¢ >0 and hy > 0 such that for all 0 < h < hy and all functions y € H(K)
we have

ly)2e*Fde + h? | |Vy|**Fde < ch® | |Ay*e*F da. (2.4)
K K K

ESAIM: COCV, NoVEMBER 1996, VOL.1, PP. 267-302



276 CAROLINE FABRE

In [3] we could not use this last inequality since the pressure = was not

H? in space (even locally). We then proved the following (stated here in the
evolution case)
ProPOSITION 2.4. Let Uy be an open and bounded set of R". We suppose
that V¢ does not vanish on Uy and that ¢ satisfies (2.1). Then: there exists
po > 0 such that for every compact set K in Uy, there exists ¢ > 0 and
hi > 0 such that for almost every t € (—po, po), and every h €]0, hy[, we
have

7|y|2e2%dw—|—h2 7|Vy|2e2%dx <he 7|f|2e2%dx

K K K (25)

—|—ch3/ Ay — Ly f]*e*F da
K

for every (y, f) € L*(=po, po; Hy (Uo)) x L*((—po, po) x Uo)* with Ay—Ly f €
L%((=po, po) x Up), all these functions having compact support in K.

If we compare these two inequalities in the stationary case, we see that
we loose in power of h but we need weaker norm of f. Of course, for f =0,
we find again Hérmander’s inequality (2.4).

In our problem, the pressure will be solution of an equation like Ax —
Lyif — Lak € L*(U), with Ly a second order operator, and thus 7 will not
be any more in H! in space (even locally) and the above inequalities do not
make sense. We are going to state a Carleman inequality where the only
norm of 7 appearing is the L? norm. We now prove
LEMMA 2.5. Let Uy be a bounded and open set of R" and U = Uy x (—po, po)-
We suppose that V¢ does not vanish in Uy and that ¢ satisfies (2.1). Then,
there exists pg > 0 such that for every compact set K in Uy, there exist hy >
0 and ¢ > 0 such that for every h € 10, hy[, for almost every t € (—po, po),
we have

ly|?e* % da <ch |f|2e2%dx—|—% |k|>e* % da
K K K (2.6)

+ ch® ; Ay — Ly f — Lok|?e*F da

Jor every (y, f, k) € LE(U) x L2(U)* x L*(U)*" with Ay— Ly f — Lok € L*(U),

all these functions having compact supports in K.

REMARK 2.6. This time, for f = k& = 0, we do not find Hormander’s
inequality since we loose the gradient of y.
Proof of Lemma 2.5.

Let po be given by (2.1) and its consequences. We introduce as usual
the L?-functions F = Ay — L1 f — Lok, 2 = yexp(%)7 g9; = fjexp(%)7
G = Fexp(%) and r = kexp(%). Equation I' = Ay — Ly f — Lyk is then

equivalent to
p(t)z = —h2eF Ly(e™F g) — h2eF Ly(e™F 1) — h2G,
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CONTROL FOR STOKES EQUATIONS 277
thus
p(t)z = —h*Li(g) — h*[e?, Ly])(e” % g) — h2Lyr — h2[eF | Ly](e % r) — h2G.

By a simple computation, one has

dop

Rou = —h[e%,Ll]e_%u = —h[e%Ll(e_%u) —Li(u)] = cjka—
Ty

Uy

and thus Ry € L°(—po, po; F°). In the same way,

®

Ryr = —h? [e% yLole ™ wr
0

° d d
(dimp m (67 Frim)) + B* Dy (dlml'm'a—r“”)

ml

@
e —h2eF

T ® ' 8 8 _e
(dlml’m’—le h>+h€ha$ll (dlml’m’rlma—SOe h)

Tt
J J
2 - Pt ———
‘|‘h 8$11 (dlml m 8$ml rlm)
orym 0 J 1% )
dp Jp

= hdlml’m’ + h (dlml’m’ Tim
8$ml 8$ll

8$ml 8$11 8$ll

0

- dlml’ m!'T'lm

and thus Ry € L>(—po, po; E1). With iD; = hd;, one obtains
p(Z) = hﬁl (D)g —|— ,CQ (D)T‘ — h2G —|— hRo(g) —|— Rl (T‘)

where £1(D) € L>(=T,T; EY), L3(D) € L>=(=T,T; E%).
We first study the high frequencies. Let

V={¢eR" 3z € R", such that po(t)(x,&) = 0}.

We have V' C Bpga(0,¢y) where ¢y = |Vl (rn+1y. We consider x €
C§°(R") such that 0 < y < 1 and x = 1 on a neighbourhood of Bga (0, 2c3+
2).
The function 6§ = 1 — x is in S° and §(D)op = po §(D) + [§(D), p] with
[5(D),p] € hL* (T, T; E=).

There then exists Ry = Ry(t) € L>(—T,T; E°) such that

pod(D)z = hé(D) o Li(D)(g)+ §(D) o Ly(D)r — h*§(D)G 2.7)
+ k(D) o Ro(g) + (D) o Ry(r) + hRzz. '
We have
Vo € R™, V&, |€)* > 2¢3 4+ 1, Re(2po(t)(z,€)) > A2 (). (2.8)
Using Proposition 2.2, there exists e(t) € L>(=T,T;E~?), such that
e(t)op(t) = 1+a(t)+hR_1(t) with R_1(t) € L>(=T,T; E~'). Furthermore,
«a = 0 on the support of § and thus a o §(D) € RL>®(=T,T; E~%).
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There then exists R'(¢) € L>°(=T,T; F~1) such that

§(D)z=h(eod(D)o Li(D)(g)+eod(D)oLy(D)r—h*cod(D)G
+ h(eod(D)o Ry)g+eod(D)o Ry(r) + heo Ryz — hR'(t)=.

Since operators e o §(D) o L1(D), e 0 d(D) o L2(D), eo §(D), eo §(D) o
Ry, € 0 §(D) o Ry, and e o Ry are in L™(=T,T; E~1), L>(=T,T;E°),
Lo(=T,T: E-?), L®(=T,T: E-%), L®(=T,T; E-') and L*(~T,T; E2)

respectively, there exists ¢ > 0 such that
6(D)2[5 < e(R?|glo +[rls + 1Y |Gl + B?|2[5). (2.10)

Let us now study y(D)z. As y is compactly supported in &, x(D) € £~
and x(D) o p(t) € p(t) o x(D) + hL> (=T, T; E~%).
There then exists R_o(t) € L>(=T,T; E~°°), such that

pox(D)z = hx(D) o £:(D)g + x(D) o Lo (D}r — K (D)G
£ h(D) o Rolg) + x(D) 0 Ba(r) + bR (1)),
Consider 3 € C§°(U) such that 5 =1 on K. One has x(D)z = f(z)x(D)=

+[x(D), Blz with [x(D), 8] € hL> (=T, T; E~>) and v = x(D)z € C°(U).
Using the decomposition of p(t) as a(t) 4 ib(t), one has

p(®)(v)]5 = la(t)(z, D) (v)[5 + [b(t) (z, D) (v)]5
+i((aob—boa)v,v).

(2.11)

(2.12)

Futhermore, a 0b — boa = [a,b] € L (=T, T; E?) with principal symbol

%{a(),bo}.
Using (2.1), we have for |t| < po,

d'AT(€)ao(t)? (2, €) + d'bo(1)* (2, €) + {ao(t), bo(1)} (2, €) 2 esA*(€). (2.13)

We apply Garding’s inequality on U, when K is the support of § and
when the operator is d’a(t) o A™% o a(t) + d'b(t) o b(t) + +[a(t), b(t)](x, D).
We deduce that

i[a(t), b(t)]v, v) > Z_?’mvﬁ —d'BA " oa(t)u — d'hb(t)u. (2.14)

Taking into account (2.12), (2.14) and |A7ta(t)(v)|3 < |a(t)(v)|3, we ob-
tain for h small enough

p(t)(v)[5 > h—l i (2.15)

Using (2.15), the fact that v = fx(D)z and

IX(D)z]f = h¥elz[g

[N

(D)2 > SIN(D)=E ~ IIx(D), A)2f >
p(D)2)R > Slp(x (D)) — el
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we get for h small enough:
e3
pOc(D)2)[6 2 helx(D)=] = hel=[g, (2.16)
On the other hand,

[p(x(D)2)[5 < 8h*|X(D) o L1(D)glg + 8Ix(D) o L2(D)r|5 + 85" [\ (D)GI§
+ 8B2[(D) o Ro(g)} + SIx(D) o Fa (1) + 8% Rou (1) ()3
(2.17)
As x(D) € E~°°, all the operators appearing in the right hand side are in
L>(=T,T; E°), hence there exists ¢ > 0 such that for 4 small enough (2.16)
et (2.17) imply

1
X(D)211 < elhlgls + B°GIG + 4 Il + Al=[g)- (2.18)
Combining (2.10) and (2.18), we obtain

215 < 2(Ix(D)z[§ + |6(D)=[3)
1
< 2c[hlglg + P°|G[§ + E|r|3+h|2|3] (2.19)
+2¢(h?|glg + |rl5 + RHGI§ + B*|2[3)

which proves the lemma. O
We now turn to the heat equation: in [11], J.C. Saut and B. Scheurer
stated a Carleman inequality for a general heat equation with an explicit
phase ¢ which required for the solution u to be H?_ in space and for u'
to be in L7 (Q). Because of the lack of regularity of the coefficients bil,
there is no hope that our solution u of (1.3) possesses this regularity. We
are, in the evolution case, in front of the same problem as we had in [3]
in the stationnary case. Again for clarity, let us recall the usual Carleman
inequality for the heat equation (see [11] for an explicit phase or [3] for any
phase satisfying (2.1)):
PROPOSITION 2.7. Let Uy be an open and bounded set of R"™. Suppose that ¢
satisfies (2.1). Then there exists pg > 0, such that for every compact set K
included in Uy, there exist hy > 0 and ¢ > 0 such that for every h € (0, hy),
one has

/ |z|2e2%dxdt—|—h2/ V2|2 T dadt <
K x(=po,po) K x(=po,po)

(2.20)
< h?’c/ 12" — Az?e*% dadt
K x(—po0,p0)
Jor every z € L*(—po, po; HE(K)) N HE (—po, po; L*(K)) with 2/ — Az €
L*((=po, po) x Uo).

The inequality that we prove does not require so much regularity and
extends the previous one. Recall that L is a first order operator:
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LEMMA 2.8. Let Uy be a bounded and open set of R". We suppose that ¢
satisfies (2.1). Then there exists pg > 0, such that for every compact set K
included in Uy, there exist hy > 0 and ¢ > 0 such that for every h € (0, hy),
one has

/ |z|2e2%dxdt—|—h2/ V2|2 T dadt <
K x(=po,po) K x(=po,po)

< ch/ | f12e*E dadt (2.21)
K x(—po,p0)

—|—h30/ 12" — Az — Ly f]*e*F dadt
K x(=po,po)
for cvery (2, £) € L*(—po, pos HL(K)) x L*(Uy X (—poy po)) with & — Az —
Lif € L*(Uy x (=po, po)), all these functions being compactly supported in
K x (—,007,00)-
REMARK 2.9. This is the analogue of Proposition 2.4 for the evolution case.
Proof of Lemma 2.8.

We write again v = ze®, H = (2 — Az — Llf)e% and ¢ = fer. We then
have

o'+ p(t)v = ho'v — hApv + hLy (D)q + hRov + h'H

where Ry = —h[e®,Li]e % € L=(=T,T; E°). Again we study separately
high and low frequencies. Operators a(t) (which were defined by (p(t) +
p*(t))/2) satisfy the hypotheses of Proposition 2.2 hence they are invertible
on the high frequencies and therefore (in the same way than in the previous
lemma) there exist operators d(t) of order —2 such that

d(t)oa(t) =14 a(t) + hR(t)
with R(t) € L°>(=T,T; E7') and ad(D) € hL*> (=T, T; E~1).
Since [a(t), A1) € AL (=T, T; E°), there exists ¢ > 0 such that
8(D)vfs < [d(t) 0 a(t)5(D)v]i + chlv]o < e(|a(t)d(D)v]-1 + hlv]o)
< c(]Aa()3(D)vlo + hlvlo) < e(la(t)(ATH6(D)v)lo + Alvlo)-
(2.22)
On an other hand, we have
REATLS (D)o 4 iAT18(D)b(t)v + a(t) A1 (D)v =

AT (D) [he'v — RA@u + RLy (D)q + hRov + h* H] — [A™18(D), a(t)]v
(2.23)
with [A™18(D), a(t)] € hL>= (=T, T; E°).

Let u = A71§(D)v. Since v belongs to L?(—po, po; Hg (K)) and since X is
in L>(E~1), the function w is in L?(—po, po; H*(R")). Furthermore, using
the equation satisfied by u, we can see that u is in Hg(—po, po, L*(R")).
Taking the L*(R"™!)-norm, we then get

|R*ATLS (D)0 4+ AT (D)b(t)v|g + |a(t) AT (D)v|3+
2re(R*ATLS (DY, a(t)ATIE (D)) + 2re(iAT18(D)b(t)v, a(t) A~ 6 (D)v)
= |\ (D)[h¢'v — RA@v + Ly (D)q+ hRov + h* H]

— [AT1(D), a(®)]vl5.
(2.24)
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As ATL8(D)b(t) € L>=°(=T,T; E® and a(t)A\"'8(D) € L>=(-T,T; E') we
et
* [ATLS(D)b(t), a(t)A\"18(D)] € RL>(-T, T; E°)

which easily proves that

12re(iATLE(D)b(H)v, a(t)ATIS(D)v)|

, } . ) (2.25)
= i([a(t)AT0(D), AT 5(D)b(t)]v, v)| < ch|v|;-
Now,
2re(h*u, a(t)u) = 2h2/ u'(—h* Au — |V|*u)dzdt
R x(=po,po)
- "*/ (V) dedt < ch?|ufy  (226)
R x(=po.po)
< ch?|v)3.
Combining (2.22), (2.24), (2.25) and (2.26), we obtain
6(D)li < c[hlvfg + h*[ql + * HIG): (2.27)

To prove such an inequality on the low frequencies, one just has to follow
what has been done in the previous lemma, the only change is that inte-
grals are taken over R™ x (—pg, po) instead of R" and that the added term
2h*Re(x(D)v', a(t)x(D)v) can be bounded by ch?|x(D)v|3. (Remark that
X(D)v € L*(=po, po; H*(R™))NH{ (—po, po, L*(R")) thanks to the equation
satisfied by x(D)v and to x(D) € E~).

We then obtain

IX(D)v]i < elhlglg + B*[HI[G + hlvl]. (2.28)

Combining (2.27) and (2.28), one can deduce the lemma. 0

2.3. Proor orF THEOREM 1.4

We follow the steps of the proof of the main result in [3]. We denote by
B(r) the open ball in R"*! centered at (0, 0) with radius r. In order to prove
Theorem 1.4, it is sufficient to prove that if « = 0 in a half-neighbourhood
(in R™™1) of (0,0) such as

{(2,1); ¥(a,t) <0}N B(p)

where ¢ is C*, 1(0,0) = 0, V;20(0,0) # 0, then u vanishes in a neighbour-
hood of (0, 0).

Without loss of generality, one can suppose that V.4 (0,0) = (0,---,0,1).
As in [3], we first prove a unique continuation property for a ‘radius’ r = 1
and small potentials a7, and b},. We write

W= {(x,t), [t|<1, |z|<1}
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and
a= r]ngx|akl|Loo wy, b= m?x|bkl|Loo (W) -

1y 1y

We then have
LEMMA 2.10. There exists M > 0 such that for all (u,ﬂ',ail,bil) €
L*(—1,1; HY(Jz| < 1)) x LE(W) x L=(W)2"" with
(u,m) is solution of (1.3)
sup(a,b) < M (2.29)
w=0 in Wz, +M(z'| + |t]) < 0]

one has u = 0 in a neighbourhood of (0,0) in R"*!,
Proof of Lemma 2.10.

The choice of ¢ is the same as in [3] and it is
plr,t) = (2o + 2" +17 = §)*x
where § > 0 has to be chosen and x € C§°(R"!) satisfies x = 1 on W. We
proved in [3] (Lemma 4.5) that
36 > 0, drg > 0, such that ¢ satisfies (2.1) on

2.30
Up={z, |z| <ro} with Cp =5 (2:30)

In what follows, § and ro are chosen such that (2.30) holds. We now apply
Lemmas 2.5 and 2.8 with Uy = {2, |z| < ro} in order to get the existence
of po > 0 such that the conclusions of this lemma are satisfied. We then fix
r1 > 0 small enough beside §2, rq et py such that B(4ry) C {(t,z), |t| <
po, |z| < ro} and we choose ¢ € C§°(B(ry)) with ¢ =1 on B(3ry/4). We
write K = {|z| < ro/2}, p1 = po/2 and

S = supp [V € 1 {itn + M(J2/] + 1)) > 0)].
Then there exists M; > 0 such that for all M € ]0, M;], one has

sup @(z,t) < ¢(0,0) = §°. (2.31)
(z,t)€X

As Ve =0 on WnN [z, + M(z'| +]t]) < 0], we can suppose that # = 0
on that set. We denote by z = Cu and ¢ = (x. Since div u = 0, one has

d* ' 13} Juy

_ j v
Amr = axjé?xk(bklul)—l_ 890]( klawk)

After a simple computation, one can then prove that

d* - 13} ¢

Ag = div (2V(p) — ACp—I—8 er (by,21) — I (b]l“lax)
0 ¢ 0*¢
2.32
Gack(é? ]bkl l)"‘bkzula 9y ( )

0 g duy 0590 9 du

+ 8—90]( klawk) 87],(%1“1 89%) 890] Ay T
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So we obtain an equation of the form
Aq—Lif— Ly Kjy=F¢L? (2.33)

with s =n, Ly = div and

, 0 0 0 .0 G
=2 CP‘H’M Uy ¢ b]l Z_C +a kl - “izul ¢
Oz Oz Oz 8 Oz
o (2.34)

_akla + fler?

where fg is in L% and is supported in 3, and Lq ;) = %, Kj, = (bilzl) €
M
2 and finally

8C J 8%1 J 82C

F=-A I
P~ G, g, TR G Gy €

with support in X.
On the other hand, we have for each 1 < j < n,

z} — Az =(( ; — Auj)+ui¢" = 2V(.Vu; — ACu;

0 ¢ 0z N
_ 87jp+ u;¢' = 2V{.Vu; — Aluj — akl@ + “{““la—xk

J oc .
- 8—9%(%121) + 8—9%%1“1
0z

:L{(qmghmgn) akla ‘I’H]

. , (2.35)
with s = n+1, LJ(go,gl7 . 7gn) = 8?0 go — 8_985,691? and g = by,z for 1 <k <
n, and Hj = —pa— — a{glul ot 88ka b]lul + u;¢" = 2V(.Vu; — u;AC € L?
with support in X.

By Lemma 2.5 and 2.8, there exist ¢ > 0 and hy > 0 such that for every

h €]0, hy], we have
/|z|2e2%dwdt—|—h2/|Vz|2e2%dxdt
3 821 2 2% 3 2 2%
< ch |ak | R+ ch® [ |Ho|*e*® dadt (2.36)

—I—Ch/|q|262%dacdt—|—ch/|bilzl|262%dxdt

and

/|q|2e2hdycdt < ch/|akl 0z + fi12e*F dadt
(2.37)

/|bklzl|2e27dxdt—|—ch3/|F|2e2%d9€dt.
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Combining these two inequalities, we deduce that there exist ¢ > 0 such
that for k small enough

/|z|2e2%dacdt—|—h2/|Vz|2e2%dxdt§ ch2a2/|Vz|2e2%dwdt
+dﬂ/|z|2e2%dxdt+ch3/(|ﬂo|2+h|F|2)62%dxdt (2.38)
+ch2/|f0|2e2%dxdt.

We choose My € (0, M;] satisfying 2¢ME < 1, in order that for a < M,
and b < My, we get for A > 0 small enough,

/|z|2e2%dxdt < /G2e2%dwdt (2.39)

with G* = (|F|* + |Ho|*) + | fo|* € L' and
supp (G) C X. (2.40)

Using (2.31) and letting h — 0, we deduce that z = 0 in a neighbourhood
of (0,0) which proves Lemma 2.10. 0

We now make a change of scale and for this we note u(x,
ak[(x t) - a‘;gl(A? AQ) b‘;l(w t) - b{gl(iv ﬁ)v ($7t) - iﬂ-(§7 %) and ¢A($7t)
= A(E, &) with A > 0.

We then have 2 = 0 in ¥y (2,t) < 0. As ¥y (2,t) =z, —|—O(|x|1—|t|) and

0y o b on
2 Ad % ouy O Uy _ Y
u] + A awk + awk( l) 8$]'7
hypotheses of Lemma 2.10 are satisfied for A large enough. We then deduce
that @ (hence ) vanishes in a neighbourhood of (0, 0). a

REMARK 2.11. , ,

(i) We have already seen in [3] that even when aj, = b7, = 0 and in the
stationnary case, the unique continuation property is false if we suppose that
we HL (Q) and u = % = 0 on v where v is an open part of the boundary
of 2. However, one can remark that the natural condition in order to apply
Holmgrem Theorem is u = % +7v=0o0n v.

Using similar methods, as in the proof of Theorem 1.4, one can prove the
following extension of Saut and Scheurer’s result (see [11]) concerning the
unique continuation for the heat equation:

COROLLARY 2.12. Let (a,by,---,b,) € L=®(Q x (=T,T))"* and let u €

Li (=T, T;H. (Q)) be solution of the following heat equation
u' — Au+ au + Z %(bku)ZOinQX(—T,T)

ke{177n}

which vanishes in an open subset O of Q x (=T,T). Then u vanishes in the
horizontal component of O in Q x (=T,T).
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2.4. Proor oF THEOREM 1.8

The steps will be the same as in the proof of the previous theorem but we
won’t apply the Carleman inequalities to the same functions. As div u =0

in ), we have v,, = gg" =0 in O. Futhermore v, is solution of
J Juy J *r
!
Un_Avn—l_axn(aklax )+8$n(Bl ul) ox 2
On the other hand, since ai, = B! = 0 for i < n, the pressure 7 is

solution of

Ar = Z 8—%(%18—%)4‘ Z 8$i(Bzul)

1<n,l<n,k i<n,l<n
8 8ul
(B
+;8x W G +Za ).
Thus we have
8 i 8u1 8 i '
_AUnI‘ Z T%(akla—m)—l_ Z %(BZUZ)—ATF
i<, d<n,k i<n,l<n

where —A' is the Laplace operator with respect to the n — 1 variables
X1,y Tp_1. With the same notation as in the proof of Theorem 1.4, we
write p; = %, q; = Cpj, w = (v, and w; = Cu; for 1 < j < n. We have

7

. o 2 u,

<n,i,k $]8$2
o 0 o 0
- BZ _ BTL "
+ . 8$]' 8$Z( lul)‘|‘ 8$]' 8$n( nt )
<n,i,k
Since 575~ (ap, 552) = 50 (af, 52 and 575~ (Brus) = 52-(Bjva),
we get
Agj = —A¢p; + 2div (V(pj)
o2 dw A
+ [8$]8$2( l@xk) B 890]8902 (akﬂuawk)

1<n,k,i
a . ou OC d ,; Ou 0C ou;  0*C

‘T%a—xka—xi = 00 gy o) T o Bean

+Z knaxk %(QZ”U”%)_%%gzz] (2.41)
+Z§Z[8x8; (Bjw) — 88 (Bzulgi)
ai(Bl“laaé”Bl 18825 ]
+ g (Bl — B, S
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Applying Lemma 2.5 and since v,, € L*(H'(K)), there exists ¢ > 0 such
that (with |a|eo = maxy i jlal,;|eo and |Bloo = max ;| Bi|eo)

/|q]|2e2hdxdt <0 (el /|vwl|2e2%dxdt+ |B|§o/|wl|262%dxdt)]
l<n
—|—ch[|a|io/|Vw|2e2Fdxdt—|—|B|io/|w|2e2%dacdt]—|—%/|G|2e2%dxdt

(2.42)
where G € L? does not depend on h. Futhermore, since we have for 1 < j <
n,pj =v, =u; =0on Wnlz,+M(|a'| +|t]) < 0], G is supported in X.

We have
wl ~Aw = Clvn + ACUn — div (QVCUn) — Z[—k(qk) - 8—;;])16]

0 ¢
+ ‘ Z [8—96(311”1) - a—mBzul]

i

J Jdw Jd . . aC 4 du; ¢
+ Z [8—%( klaxk)— 8962(%1?”8%) klaxk Da; )

(2.43)
Using Lemma 2.8, we deduce that there exists ¢ > 0, such that for h small
enough,

/|w|2e2hdxdt—|—h2/|Vw|2e2hdxdt< ch /|ql|2e2hd9€dt
<n

‘|‘|a|io/|vwl|2€2%dwdt—l-IBIiO/|wl|2e2Fdxdt)—|—/|F|2e2%dxdt],

(2.44)
where F € L? does not depend on h and is supported in .
Finally, we have
! I i j 8 8C
wi — Aw; = u;¢" = 2Vu;.VQ — ACu; + q; — Z[Bl wy — kl@ Ly akl o w],

l<n

and thus, applying the usual Carleman inequality on the heat equation, we
get for every 7 < n,

/|w]’|2e2%dwdt—|—h2/|ij|2e2%dxdt < Ch3[/|(]]'|2€2%d$dt

+ 3ol [ IV eEeder |BE, [JuPetad) (a5
I<n

+/|H|262%dxdt],
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where H € L? does not depend on h and is supported in ¥. Hence, for h

small enough

Z[/|w]’|2e2%dwdt—|—h2/|ij|2e2%dxdt]

s (2.46)

< ch?[ Z/|q |2e2hdxdt—|—/|H|2e2hdwdt

J<n

Combining (2.42) and (2.46), we deduce that there exists d > 0

/|w |2e2hdxdt—|—h2/|Vw 2e2F dadt]
Jj<n

< dh223|a|2 /|Vw 12e2F dadt

Jj<n

+ R*|B|%, Z/|w]|2e2hdxdt—|—h4 lal?, /|Vw|2e2hdwdt (2.47)

J<n

+h4|B|io/|w|2e2%dxdt+h2/|G|2e2%dxdt
+h3/|H|2e2%dxdt.

Thus, for |a|o small enough, there exists d > 0 such that for h small enough

Z[/|wj|2e2%dwdt+h2/|ij|2e2%dxdt]
Jj<n
< dh4|a|io/|Vw|2e2%dxdt (2.48)
+dh4|B|io/|w|2e2%dxdt+h2/|G1|2e2%dxdt,
where ¢y € L? does not depend on h and is supported in 3.

Combining now (2.42) and (2.44), we have
/ \w|?e*F dadt + h* / \Vw|?e*F dadt < d[] a|2 / |Vw; e dadt
Jj<n

B Y [lufefdndrr i [ PR fdoar

J<n

+h2|a|§o/|vw|2e2%dxdt+h2|3|go/|w|262%dxdt

+ / |G|* 2 dadt].
(2.49)
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Thus, for |a|. small enough, there exists d > 0 such that for A small enough,
/ \w|?e*F dadt + h* / |Vw|?eF dadt
< d[|a|§oz/|ij|2e2%dxdt

Jj<n

1B Y [l ades n [ PRt o

Jj<n

(2.50)

—|—/|G|2e2%]dxdt.
We finally combine (2.48) and (2.50) and we obtain
Z[/|wj|2e2%dwdt+ h? / |ij|2e2%dxdt] <
i<n
< diP(afi+ BRI Y [ [VwyfeEdade
a<n (2.51)
i (a4 BEIBE. Y [l F e
i<n
+d/|G2|2e2%dxdt,

for some d > 0 and where Gy € L? does not depend on h and is supported
in . We deduce that for 2d(|a|?, + |B|%,)* < 1 and for h small enough,

Z[/|w]’|262%dwdt—|—h2/|ij|2e2%dxdt]tg 2d/|G2|2e2%dxdt (2.52)
Jj<n

which proves that w; = u; = 0 in a neighbourhood of (0,0) for 1 < j < n

and Theorem 1.8 is proved in the case of small potentials ¢ and B and radius

1. We then end with a change of scale as in the proof of Theorem 1.4. O

Let us now prove Corollary 1.9. Let (2°,¢°) € C(O) with (2°,¢%) =
(20,29, t0) and 2 € R"™', 2% € R and t, € R. There exists » > 0 such
that

O ={(x' x,,t), |2' =2 <r, |z,—22<r, |t—t <r}cCC(O).

Thus gg" =0in C(O") = QX (to —r,to+7). We write P = {(2',t), |2'—
201 <r, |t —ty] < r} and, for every ¢, i, (t) the extension by zero of u, (t)
to R™. We have: i, € L*(=T,T; HY(R")). Let

U($n):/ljﬂ%($l7$n7t)d$ldt_

Since i, (t) € L*(=T,T; H'(R")), we have v, € W (R) and we can write
for every z € R,

r dvy,
v(z,) =v(z) + e, 0.
As Q is bounded, for each z,, we choose z such that (2',z) € R" — Q for
every ¢’ with |z’ — z{| < r and this ends the proof of Corollary 1.9. 0
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3. APPROXIMATE CONTROLLABILITY FOR LINEAR SYSTEMS

3.1. INTERNAL CONTROLLABILITY
WITH CONTROLS WITHOUT CONSTRAINT

We first prove Proposition 1.5. Using the Hahn-Banach theorem, it is
sufficient to prove that every solution of

Vi, 1<j<n,

6991 6 671 .
{ {

dive=0 1in @ (3.1)
=0 on X
o(T)=¢" € H,

with ¢ = 0 in w x (0,7T) satisfies ©° = 0.

This will be an easy consequence of Theorem 1.4 if we prove that there

exists a pressure m € L? (Q) solution of (3.1). We then consider u =
(T —t)p, and

8991 8 — n
Ji=ei+ (T - t)bija—xk + 8—9%((T — t)aj;e1) € L0, T3 H™H()".

The function u is in L?(0,T;V) and satisfies
—u' = Au=V({(T -t)7)+ f, and u(T)=0.

Furthermore, there exists a compact set K such that Q —w C Int(K) C
K C Q with supp(f(¢)) € K for almost every t. The existence of a pressure
7€ L} (Q) solution of (3.1) is then a consequence of the following

loc
LEmMA 3.1. Let K be a compact set included in Q. For every f in
L2(0,T; H=Y(Q))™ such that for almost every t, suppf(t) C K, there ex-
ists a pair (u,p) in L*(0,T, H}(Q))" x L*(Q) with

/ p(z,t)de =0 a.e. t,
Q

solution of
W —Au=Vp+f in Q,
divu=0 1in Q,
u=0 on X,

uw(0) =0 in Q,

(3.2)

Furthermore, the mapping f € L*(0,T; H=1(Q))"
supp f(t) C K, a.e. int € (0,T) — (u,p) € L*(0,T, Hy ()" x L*(Q)
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1s linear continuous.

Proof of Lemma 3.1.

We consider a function £ = {(z) € D(Q) such that 0 < & < 11in Q and
¢ =1on K. We fix an open set U with supp £ C U C U C Q. Then we have
Ef(t) = f(t) = &f(t) a.e. in ¢ and system (3.2) can be written

w —Au=Vp+Ef in Q,
divu=0 in @,

u=0 on X

w(0)=0 in €,

(3.3)

Let fr € L*(Q) such that f — fin L?(0,T; H~Y(Q))". Then {fy = &f = f
in L2(0,7; H1(Q))™ and for almost every t, supp (£fx(¢)) C U. We consider
solutions (uy, pg) of (3.3) with right-hand side &2 fy.

Using a density argument, it is enough to prove that there exists ¢ > 0,
such that for every f € L?(Q), one can choose a pressure p solution of (3.3)
such that

IPlr2o) < eléflrz0.mm-1(9))-
If f € L*(Q), the pressure p can be taken in L?(0,7; H*(Q)). Furthermore,
pt) = p(t) — ﬁfﬂ p(z,t)de (where |Q| is the measure of ) is also in
L2(0,T; HY()) and (u,p) is solution of (3.3). Thus, we can suppose that

for almost every ¢, [, p(z,t)dz = 0.
For every w € D(0,7;C*(R)), we define w by

w(z,t) = w(x,t) — ﬁ /Q w(z,t)dz.

We have (p,w) = (p, @) where (, ) denotes the scalar product in L?(Q).
Furthermore, w € D(0,1; C*()).

Suppose for a moment that we have proved that for every w €
D(0,T;C*(Q)), satisfying [, @(x,t)dz = 0 for every ¢, there exists a so-
lution V' € L*(0,T; HY(U))" N L*(Q)" of

-V - AV =Vr in Q,
divV =% in @,
V=0 on %
V(T)=0 in Q,

(3.4)

and that there exists ¢ > 0 such that for every w € D(0,7;C*(£2)), we have

|V|L2(0,T;H1(U))" + |V|L2(Q)n < C|QI)|L2(Q). (35)
We will then have
[(p,w)| = |(p, @) = [(€*f, V)] = [(££, V)]

< C|€f|L2(O,T;H—1(Q))"|w|L2(Q) (3-6)
< el flrzo, -1 () [wl2(0)
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and thus we will obtain the existence of a constant d > 0 such that

IplL2(@) < dI€flr20, 151 ()" -

This inequality proves Lemma 3.1. O

NOW let us prove the existence of V. For w € D(0,1;C*(Q)), with
Jo@(x,t)de = 0 for all t, there exists (see [13]) ¥ € D(O T; H&(Q)
such that d1V¢ = w and such that ¢ depends continuously on w. We set
V=246 + 5 892 with

— 0] — AB =Vr +AY in Q,
dive; =0 in @Q,

3.7
=0 on X, (3:7)
01 (T) =0 in Q,
and
—OQ—AOQIVTQ—FQﬁ in Q,
divé, =0 in @Q, (3.5)

;=0 on X,
It is classical that #; € L*(0,T; H3(2))™ and that the operator
¢ e L*(0,T; Hy(Q))" — 6; € L*(0,T; Hy ()"

is linear continuous. Let us prove that 8y € H(0,T; HY(U))". As ¢ €
L*(0,T; Hi(2))™, we know that

(05, 73) € HY(0,T; L*(Q))" x L*(0,T; H(Q))

with the continuity of the corresponding linear map. We then consider
p € D(Q) with 0 < p<1onQand p=1on U. We multiply equation (3.8)
by pAf} and we integrate over Q; = Q x (¢, T). We obtain

1
/ PV + / ol A8 (1)
/ Bol6i =S [ Vuive ot [ s
J Q1 Q1

(3.9)
—I—/ 0&.(V,0.V)¢—|—/ div ¢05.Vp + 2/ 0;.(Vry.V)Vp
-I-/ OQ.VApﬂ'Q.
Therefore there exists ¢ > 0 such that
1011 20,7112 () + 102]E1 (0,711 (1))
< |l AP 20,151 () T |¢|L2(0,T;Hg(9))n (3.10)

< bl 12(g)
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Furthermore, since v € D(0,T; H}(2))", the function 6, is identically
equal to zero on an interval [T — §,T] with a § > 0. Hence 65(T) = 0 and
V(T) = 0. We have constructed V € L%(0,T; HY(U))™ N L*(Q)" solution of
(3.4) and (3.5) and this finishes the proofs of Lemma 3.1 and Proposition
1.5. O

REMARK 3.2. If £ is a function in C'*°(2) with compact support K included
in Q, we define £ = {f € L*(0,T; H1(Q)™; (1 -&)f € L*(Q)"} with
|fle = |fle2,ma-1 @) + (1 = &) flr2(g)»- It is easy to prove that E is
a Banach space. Applying Lemma 3.1, for every f € F, there exists a
pair (y, p) in L*(0,T, H}(2))" x L*(Q) solution of (3.2) and the application
f€FE—=(y,p) € L*0,T, H} ()™ x L*(0,T; L*()) is linear continuous.

In the same manner (considering v = (T" — t)p), Proposition 1.6 is a
consequence of

LEMMA 3.3. Let aﬁw. € L*>(Q) satisfying (1.5). Then, for every f € L*(Q)",
there exists (u,q) € L>(0,T,V) x L*(0, T, H'(Q)) solution of

V1< j <n,
uls — Auj 4+ ——(aju) = 94 + f; in Qx(0,7),
Oy ™ dz
divu=0 in Q, (3.11)
u=0 on X,
u(0) = 0.

REMARK 3.4. Considering the function (T'— t)u and following the proof of
the previous lemma, one can see that conditions (1.5) can be replaced by

if n=2 3py€]2,+o0f, Vj,k,le{l,---,n} al, € HY(0,T,LP(Q))
if n>2 Vjkile{l,---,n} al, € H(0,T,L*(Q)).
Proof of Lemma 3.3
We write m = pg if n = 2 and m = n if » > 2 and we will denote
by d any constant which depends only of € and m. We first prove that

there exists ¢ > 0 such that for every f € L*(Q)" and regular potentials
af; € L*(0,T,C>()), we have

1 d
||| L 0,7, m1(2))» < C|f|L2(Q)”€9€P(§ Z ||8—$ka§cj||2L?(0,T;Lm(Q)))' (3.12)
Jikl
If aj; € L>(0,T,C>(Q)), we can write that u is solution of u, — Au; +

_9 (41 _ 9¢ .
E (akj)ul = 5o + h; where

12| 1200y < dS}iPZ |a};| ()| f1r2(0)
]7 bl

and it is known that u € L°°(0,T; Hg(Q))".
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Multiplying the equation satisfied by u; by u; and adding them for 1 <
Jj < n, we obtain with @, = Q x (0,¢),

1/ [P dedt + - /|Vuj(t)|2dx

4 , Q

<2 Oa, 2dadt hEdzdt

_5/(8k) x +/Qjac (3.13)

/ h2dacdt —|—

The embedding H'(Q) — L*(Q) is linear continuous for every 1 < o <
4ooifn=2and 1 <a< f if n > 3. Thus, using Poincaré ’s inequality,
we have in both cases

||Lm )||Ul(t)||2L?m/<m—2>(Q)-

wr(®)] 2m/en-2(q) < d[Vu(t)|L2(q)

We deduce that
1/ 12 / 2
— u'|“dadt + Vu; ()| dxdt
2 f, 2 Q§,j| i)
(7 m EIVM 720

< 2/ h2dxdt—|—

Inequality (3.12) is then a consequence of Gronwall’s Lemma.

If the functions aﬁw. satisfy the hypotheses of the lemma, we construct

sequences of functions AZ’] which belong to L*(0,7,C*(2)) and such that
AZ’] — aﬁw. weakly-* in L°°(Q) and in L*(0,T; W1 ™(Q)) for each j, k, . For
this, we consider an extension mapping P which maps L*(€) in L*°(R")
and WH™(Q) in WH™(R") with (recall that we suppose © to be regular
and at least C'!)

[Puly o rry < clufr=(q)

and
[Pl Ry < clulwrm )
We set
Afj(@,t) = prx Pag|,
where p, = p.(x) is a regulazing sequence and the convolution is taken

only in the space variables. We then have Ay — aj; in L*(0,T; W™ (Q))
and since one can easily see that (AJ), is bounded in L>(Q), they con-
verge ( after extraction of a subsequence) in L*(Q) weak -* to aj;. The
corresponding solutions wu, of (3.11) are then bounded in L*(0,7;V) and
in H'(0,7T;V'). Hence they strongly converge in L*(Q)". This allows us to
pass to the limit in (3 11) and the limit of w, is the solution w of (3.11)
with the potentials ak Since u, are bounded in L*(0,7,V), we have

w€ L¥(0,T;V). I we L¥(0,T; V) and al, € L=(Q) N L2(0, T; Wh™(Q)),
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we have aj u; € L*(0,T, H'(R)) and this ensures that the pressure is in
L*(0, T, H'()). 0
EXAMPLE: THE LINEARIZED NAVIER STOKES EQUATIONS

The linearized Navier Stokes equation at the point z is

y' = Ay+ (2.V)y+ (y.V)z = Vptuoy, in Q,
divy=0 in @Q,

y=0 on X,

y(0) =1 in Q.

(3.14)

This system is of the form (1.4) with ail = 81525 and bil = 0k12;. We then
have

COROLLARY 3.5. Suppose that z € L°(Q)" N L*(0, T; WHL™(Q))" with
divz =0 in @ and where m > 2 if n =2 and m = n if n > 2. Then, every
solution (y,p) of

y' — Ay+ (2.Viy+ (y.V)z2=Vp in Q,
divy=0 in @,

y=0 on X,

y(0) = ¢°

(3.15)

which vanishes in an open set O of () vanishes in the horizontal component

of O.

COROLLARY 3.6. Suppose that = € L*(Q)™ N L*(0,T; WY™(Q))" with
divz =0 in @ and where m > 2 if n =2 and m = n if n > 2. Then, the
reachable set

R(T) = {y(z,T),y is solution of (3.14) withv € L*(¢q)"}
is dense in H.

3.2. INTERNAL CONTROLLABILITY
WITH CONTROLS HAVING A NULL COMPONENT

We study here the approximate controllability of the solutions of the sys-
tem

0 J .
yh — Ay + ——(aj;y) + Biyi = —? +uxy in @,
J

8$k 8x
divy=0 in@Q, (3.16)
y=0 onX,
y(0) =y inQ,

with controls having one null component. Using Theorem 1.8, we get (since,
in this case, the pair (u,7) solution of the adjoint problem, is in
L7 (0,7, H*(Q))™ x L7 (0, T; H'()) by classical results).

loc loc

ESAIM: COCV, NoVEMBER 1996, VOL.1, PP. 267-302



CONTROL FOR STOKES EQUATIONS 295

ProprosiTION 3.7. Let ail and Blj be in L>=(Q) satisfying (1.6). For every
Yy e H, and T > 0, the reachable set

R(T) =A{y(z,T), where y is solution of (3.16) and
v=(vi, ", v,_1,0) € L*(¢)"' x {0}}
is dense in H.

REMARK 3.8. Conditions (1.6) mean (in particular) that only y, appears
in the equation satisfied by y.,.

3.3 BOUNDARY CONTROLLABILITY

We now end with some results on boundary control. We denote by v the
unit exterior normal vector of the boundary I'. We consider the solutions y
in L2(0,T; HYN C([0,T],V") defined by a duality process of

Vi<j<m,
Iy d dp .
] ]
y; — Ayj + akja—xk + 8—3%((’@'91) = 8—% in @,
divy =0 in @, (3.17)
y=wveL*0,T; H'*T))",
y(0) =y’ eV’

when v satisfies for almost every t,

(v(t),v) =0
where (, ) is the duality bracket between H~%/2(I')* and H/?(I")".

REMARK 3.9. Even if one supposes that the initial data y° is in H, the
reachable set is not a subset of H. Furthermore, solutions of the adjoint
problems with initial data in H do not necessarily possess a normal deriva-
tive in L?(I' x (0,7)). This is why we consider solutions defined by a duality
process with initial data in V.

We prove

ProposiTION 3.10. For 1 < j,k,1 < n, let bil € L>®(Q) and ail €
L0, T; Whe2(Q)). For every y° € V' the reachable set of the solutions
of (3.17) with controls in L*(0,T; H=Y*(T'))" satisfying ( for almost every
t )(v(t),r) =0, is dense in V.
Proof of Proposition 3.10.

We just have to apply Hahn-Banach theorem: if u® € V is orthogonal
(in the duality sense) to the reachable set, we consider the solution u €

L2(0,T,V)NC([0,T]; H) of

V1< j<n,
; 8u1 0 ; on .
— u; — Au] — bila—xk — a—xk(ailul) = 8—% mn Q,
divu =0 1in Q, (3.18)
u=10 on2
u(T) =4’ in Q,
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Using the regularity of the coefficients ail and bil, we have
u € L*(0,T; H*(2))" and 7 € L*(0,T; H'(Q)). Furthermore, we have

UOEVU‘@?—I-TVIO on .
v

With this condition, the extension by 0 (in space) of u and 7 in a ball
B which intersects I' are still solutions of the homogeneous system but in
(QU (BNQ%)) x(0,7T). Since they vanish in (BN Q)N (0,7), Theorem 1.4
implies that they vanish in ) and thus u® = 0. O

4. APPROXIMATE CONTROLLABILITY FOR NONLINEAR EQUATIONS

4.1 Proor orF THEOREM 1.1

Once one knows that the linear Stokes equations perturbed by lower order
terms are approximately controllable, the fixed point method that we have
developped in [2] can be applied in order to study the non linear equation
(1.1). Furthermore, Theorem 1.1 will be proved if we show that the closure
of R(T) contains V. For z € L*(0,T; H), we denote by by the k" component
of the vector Ths(z). Since b, € L>(Q), for y° € H and v € L*(q)", there
exists y = y(z,v) € L*(0,T,V) N C([0,T]; H) solution of

d )
Yy — Ay + (bry) = Vp+ vy, inQ,

Dy
divy=0 in@Q, (4.1)
y=0 onk,

y(0) =¢° in Q.

As Ty(z) € L*>(Q)", we know (the unique continuation property needed
here was proved in [3]) that the reachable set at time 7" of the solutions of
(3.19) is dense in H. Hence for every y! € V, and & > 0 there exists a control
v € L?(q)" such that the solution y satisfies

y(T) = y'lg < o

Let us consider the control of L%(¢)— minimum norm. For this, we decom-
pose y as y = Y + Yy where Y = Y (z,v) and Yy = Yp(z) are solutions
of
0
Y'— AY + —(byY) = Vp+ouy, in @Q,
8$k
divY =0 in @, (4.2)
Y=0 onX,

Y(0)=0 inQ,
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and
Yy — AY, + 8—(ka0) =Vpo in@Q,
Tg
divYg =0 in @, (4.3)
Yo=0 on X,

YO(O) = yO in Qv
It is classical (see [8]) that the control of minimum norm is given by
v=u0(2) = ¢ = ¢(z) where
— ¢ = Ap— (Tm(2).V)g=Vr inQ,
dive =0 in Q,
=0 onX,
p(T)=¢" inQ,

(4.4)

and ¢° € H minimizes the functional J, over H defined by
L) = 5 [ wltdedt+ ol - [ (@) ~ Yola, T)@)de (4.5)
z — 2 H o y\xr ol T, x)ax .
q

over the solutions ¢ of (4.4) with ¢(T) = ¢°.
With this choice of controls v, we introduce the mapping

A L*0,T;H) — L*(0,T; H)
Ly (4.6)

where y is the solution of (4.1) with v = ¢ = ¢(z2).

If we prove that A possesses a fixed point, y, then it will be solution of
(1.1) and it will satisfy |y(T) — y'|g < « and thus Theorem 1.1 will be
proved. For this, let us prove the

LEMMA 4.1. The minimizers ©°(z) of J, over H remain uniformly bounded
in H when z describes L*(0,T; H).

Proof of Lemma 4.1.

The proof of such results is classical and we give it for the sake of com-
pleteness. We argue by contradiction: suppose that there exists a sequence
(2)n of functions in L?(0,7; H) such that the corresponding minimizers ¢
of J, satisfy |¢% |y — +oo when n — +o0.

For @2 = ¢%/1¢% |y, we write ¢, and 7, the solutions of (4.4) with
@n(T) = @2 . Since |@%| iy = 1, we can extract a subsequence (still denoted by
(#%),,) which weakly converges in H to an element ¢° € H. Since .J,, (¢2) <
J., (0) =0, we have

1 N
S168lir [ 120 + @ < 1y + Won (D)l (4.7
q

As the functions " = Ta(z,) are bounded in L*(Q)", they weakly -*
converge (after extraction of a subsequence) in this space to an element b €
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L>=(Q)™. It is then easy to prove that the functions Yy, (2) (associated to the
potential b") are bounded in L*(0,7;V)NC([0,T]; H) and thus (Yo, (T))x
is bounded in H. We now let n — +oo in (4.7) and we deduce that ¢ =
0 in g¢q.

In order to prove that one can pass to the limit in the equation satisfied
by ., we use the continuity of the linear map

feL*Q)" —=(w,p) € (L*(0,T; H*(Q)"NnV)N
HY0,T,L*(Q)") x L*(0,T; H(Q)),

where w is solution w’' — Aw = Vp+ f in @ and w(0) = 0. This proves that
(T — )@y, is bounded in L*(0,7; H*(Q))" N HY(0,T, L*(2))" and thus @,
is bounded in L*(0,7 — &; H2(Q)) NHY(0,T -6, L*(2))". After extraction
of a subsequence, they strongly converge in L*(0,7 — §; H*(Q)) to ¢. The
equation satisfied by ¢,, then passes to the limit on Q x (0,7 — §) for every
§ > 0 and we have for every ¢ > 0,

— @' —Ap— (b.V)g=Vr in Qx(0,T-9)
divg=0 in Qx(0,7-9)

(@, 7) € L((0,T = 8); H'(Q)) x Li,o(Q x (0,T = 4))
=0 in ¢

(4.8)

with by € L*(Q). Using Theorem 1.1 of [3], we deduce that ¢ = 0in Q). Since
@y, is bounded in Lo (0, T; HYNHY(0, T, V"), we deduce that ¢ converges to
0in V'. Furthermore, ¢, is bounded in L>*(0,7—¢&; HY YN H'(Qx (0,7 —4))
for every § > 0. Thus we can suppose that ¢, (0) — 0in H.

We have

0
el s [0 = Yo (1)

Since y' € V and [, Yoo (T)@0dx = [, 4°@%(0), we have that fQ
You (T))@%dz goes to zero When n — +o0o. The proof of Lemma 4.1 is com-
plete since on another hand, J,, (%) < 0.

We now end the proof of Theorem 1.1 applying Schauder’s fixed point the-
orem. Since Ty is continuous and bounded, X is continuous on L?(0,7T; H).
Using Lemma 4.1, when z describes L*(0,T; H), the controls ¢(z) are boun-
ded in L*(q) and, as the range of Ths is bounded in L>°(R")", one can easily
prove that the range of A is bounded in L?(0,T;V). Using the variational
definition of Y, one can easily prove that the functions Y are uniformly
bounded with respect to z in H1(0,7, V") N L*(0,T,V) and thus they de-
scribe a compact set Ky of L?(0,T; H). This proves that the range of X is
relatively compact in L?(0,7; H). We can now apply Schauder’s fixed point
theorem and this ends the proof of Theorem 1.1. O
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4.2. ProoF or THEOREM 1.3

The method is the same as for the proof of Theorem 1.1. For z €
L%(0,T; H),we denote by b, the k' component of T (). Since by, € L*°(Q),
for y° € H and v € L*(q)", there exists y = y(z,v) € L*(0,T,V) N
C'([0,T]; H) solution of

y' — Ay+ (Tam(2).V)y = Vp+ vy, inQ,

divy =0 in @, 40
y=0 on}, (4.9)
y(0) =y in Q.

As Ty(2) € L™=(Q)", we know that the reachable set at time 7' of the
solutions of (4.9) is dense in H. Hence for every y! € H and « > 0 there
exists a control v € L%(q)™ such that the solution y satisfies

y(T) = y'lg < o

We now consider the control of L?(¢)— minimum norm. For this, we de-
compose y as y = Y + Yy where Y = Y (z,v) and Yy = Yy(z) are solutions
of

Y'— AY + (Tm(2). V)Y = Vp+ oy, inQ,

divy =0 in@Q,

v in @ (4.10)
Y=0 onX,
Y(0)=0 inQ,

and
YOI - AYO + (TM(Z)V)YO = Vpo in Q,
divYg =0 in Q,
° @ (4.11)

Yo=0 on X,
Yo(0) =¢° in Q.

The control of minimum norm is given by v = v(z) = ¢ = ¢(z) where

—¢' —Ap— %(TM(Z)MP) =Vr inQ,
dive =0 inQ, (4.12)
=0 onX,
p(T)=¢" inQ,
where ¢©° € H minimizes the functional .J, over H defined by

1) = 5 [ ofdedte alil = [ (60 = Yolo, D) @)ds - (413)

over the solutions ¢ of (4.12) with ¥(T) = ¢°.
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With this choice of controls v, we introduce the mapping

A L20,T;H) — L*(0,T; H)
e (4.14)

where y is the solution of (4.9) with v = ¢ = ¢(z) and we prove that A
possesses a fixed point y.

LEMMA 4.2. When z describes L*(0,T; H), the minimizers ©°(z) of J., over
H remain bounded in H.

Proof of Lemma 4.2.

Suppose that there exists a sequence (z,), of functions in L*(0,7T; H)
such that the corresponding minimizers ¢% of J, satisfy |2y — +oo
when n — 4o00.

For @° = 0 /|0 | 57, we write @, the solution of (4.12) with ¢, (T) = ¢°.
Since |@? |y = 1, we can extract a subsequence (still denoted by (3%),,) which
weakly converges in H to an element @° € H. Since .J,, (¢%) < .J. (0) =0,
we have

1 N
168l [ 12 + a < 1y + Won Dl (1.1
q

As the functions " = Ta(z,) are bounded in L*>(Q)", they weakly -*
converge (after extraction of a subsequence) in this space to an element
be L>(Q)". It is then easy to prove that the functions Yy, (z) are bounded
in L*(0,7;V)NC[0,T]; H) and thus (Yo, (7)), is bounded in H. We now
let n — 400 in (4.15) and we deduce that ¢ = 0in ¢.

In order to prove that one can pass to the limit in the equation satisfied
by ,, it is sufficient to come back to the variational definition of @, using
that as (¢}) is bounded in L*(0,7; V") and (¢,) is bounded in L*(0,T;V),
we have the strong convergence of (¢,,) in L*(0,T; H). We can then write
that ¢ is solution of

- - 0 - )
—@—A@—a—xk(bk@)—VT in Q,

dive=0 in @, (4.16)
¢ e L*0,T; H'(Q)),
$=0 ing,

with by € L>(Q). Using Lemma 3.1, we deduce that = € L% (Q). Then
Theorem 1.4 implies that ¢ = 0 in @ and thus @ weakly converges in H to
0.
We have
- (o) .
i) > 0 [ (0 = Yo (1) .

We prove that the term [, (y' — Y0, (T))@%dx tends to zero when n —
+oo : Indeed, we can see that (Yo, (7)), strongly converges (after extraction
of a subsequence) in H. For this, we decompose again Yg,, in Yy, = w! + w%
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with ,
w! — Aw' =Vrl inQ,
d. 1 — 0 . 7
ivw in Q (4.17)
w!=0 onX,
w' (0) = Yo, (0) = 3° in Q,
and ,
wl — Aw? = V7l — (b,.V)Ys, inQ,
divw? =0 in Q, (4.18)

2 _
wy, =0 on X,

w2 (0) =0 inQ,

n

The result then comes from the fact that the mapping f € L*(Q)™ — w €
HY0,T; HYNC(0,T;V), where w is the solution of w’' — Aw = V7 + f in
() and w(0) = 0 in Q is linear continuous. This finishes the proof of Lemma
4.2. 0

In order to complete the proof of Theorem 1.3, we apply Schauder’s fixed
point theorem. Since Ty is continuous and bounded, A is continuous on
L*(0,T; H). Using Lemma 3.1, when z describes L?(0,T; H), the controls
¢(z) are bounded in L%(q) and as the range of Ty is bounded L*>°(R", R"),
one can easily prove that the range of X is bounded in L*(0,7T;V). We still
have to prove that this range is relatively compact in L?(0,7; H). We have
already written y = Yy + Y which we decompose again in y = v+ w+Y
where

W — Au=Vrl inQ,

divu =0 1in Q, 419
u=10 on2 (4:19)
u(0) = y° in Q.

The function w, which is in L2(0,T;V) N C([0,T], H), satisfies
w — Aw=Vr? — (Ty(2).V)Yy in Q

and w(0) = 0in €. Since the function (Ta(z).V)Y are uniformly bounded in
L?(Q)™ with respect to z, solutions w stay in a bounded set of H(0,7, H)N
L*(0,T,V) and thus in a compact set K of L*(0,7; H). The same argu-
ment proves that functions Y also leave in a compact set Ky of L(0,T; H).
Functions y then leave in uw + Ky + K5 which proves that the range of A
is relativly compact in L?(0,T; H). We can now apply Schauder’s fix point
theorem and this ends the proof of Theorem 1.3.

REMARK 4.3. If w is any open subset of {2, one can see that the only missing
argument in order to prove Theorem 1.3 is that there exists a pressure 7 in
L% _(Q) solution of (4.16).

The regularity of the pressure in Stokes systems is a delicate problem and
I want to thank Y. Achdou, G. Allain, J.-P. Puel and J. Simon for fruitful
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discussions on this topic. I am very grateful to J.-L. Lions for his corrections
about this work and for his encouragement.
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