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UNIQUENESS RESULTS FOR STOKES EQUATIONS

AND THEIR CONSEQUENCES IN LINEAR

AND NONLINEAR CONTROL PROBLEMS

CAROLINE FABRE

Abstract� The goal of this article is the study of the approximate
controllability for two approximations of Navier Stokes equations with

distributed controls� The method of proof combines a suitable lin�
earization of the system with a �xed point argument� We then are

led to study the approximate controllability of linear Stokes systems

with potentials� We study both the case where there is no constraint
on the control and the case where we search a control having one null

component� In both cases� the problems is reduced to prove unique
continuation results� This is done by means of Carleman estimates�

�� Introduction

The goal of this article is the study of the approximate controllability for
two approximations of Navier Stokes equations with distributed controls�
To be more precise� let us state the problem� consider an open bounded
connected and regular set � of IRn� �n � ��� a time T � 	 and an open
subset � of �� We write Q 
 ���	� T �� q 
 ���	� T �� and � 
 ����	� T ��
Let H and V be the closure in L����n and in H�

� ���
n of E 
 fu � C�

� ���n�
div u 
 	 in �g respectively�

Let M � 	 be an arbitrary positive constant that will be �xed all along
the paper� we introduce a mapping TM � C��IRn� IRn��L��IRn� IRn�� such
that TM�s�� � � � � sn� 
 �s�� � � � � sn� if for every i � 
�� n�� one has jsij �M� In
others words� TM coincides with the identity in the hypercube 
�M�M �n�

For v 
 �v�� � � � � vn� � L��q�n� and y� � H� we denote by y 
 y�x� t� 

�y��x� t�� � � � � yn�x� t�� the vector�valued solution of�������

������

y� ��y �
�

�xk
�TM�y�ky� 
 rp� v�q in Q

div y 
 	 in Q

y 
 	 on �

y�	� 
 y� in �

�����

Universit�e Paris ���Val de Marne� U�F�R� Sciences� D�epartement de Math�ematiques�
Av� du G�en�eral de Gaulle� 	
��� Cr�eteil Cedex and Centre de Math�ematiques Appliqu�ees�
�Ecole Polytechnique� 	���� Palaiseau Cedex� France�
Email
 cfabre�cmapx�polytechnique�fr�

This work was supported by the project CHRX�CT	
��
�� of the European Commu�
nity�

Received by the journal February ��� �		�� Accepted for publication September ���
�		��

c� Soci�et�e de Math�ematiques Appliqu�ees et Industrielles� Typeset by TEX�



��� CAROLINE FABRE

where � denotes the derivative with respect to time and �q is the char�
acteristic function of q� System ����� is in fact made of �n � � equations
and

Pn
k��

�
�xk

�TM�y�kyj� is the j
th component of the vector �

�xk
�TM�y�ky�

where TM�y�k is the kth component of TM�z��

System ����� can be viewed as a variant of the classical Navier�Stokes
equations in which the quadratic nonlinearity has been truncated�

As TM � C�IRn� IRn� � L��IRn� IRn�� one can prove �using a �xed point
method� that for every �y�� v� � H � L��q�n� system ����� has a unique
solution �y� p� �

�
C�
	� T ��H�� L��	� T �V �

�
� D��Q� in the sense that y is

unique and the pressure p is de�ned up to a time dependent distribution�
Of course� the solution y 
 yM of ����� depends on the parameter M which
has been �xed here� One can remark that we would get the Navier Stokes
equation if we had TM�yM � 
 yM for some M�

Our purpose is to study the reachable set at time T which is de�ned for
a �xed y� � H by

R�T � 
 fy�x� T �� v � L��q�n� y solution of �����g�

Clearly R�T � is a subset of H for any T � 	 and y� � H� We will prove
the following result�

Theorem ���� For every M � 	� every y� � H and every T � 	� the
reachable set R�T � is dense in H�

Remark ����

�i� In 
��� it has been proved for example that in two space dimensions and
for the Navier Stokes equation� the vector space spanned by the reachable
set is dense in H�

�ii� J�M� Coron proved in 
�� the approximate controllability in a particular
sense for the Navier Stokes equations in two space dimensions with di�erent
boundary conditions �said to be Navier conditions��

�iii� In 
��� several results are proved� �rst� in one space dimension� it
is proved that Burgers equation is not approximatively controllable� Then�
the authors prove a local result which is roughly the following� if there is
a solution of the Burgers equation which starts from y� and goes to y� at
time t 
 T then for initial data close enough to y�� there exists a distributed
control allowing to go to y� at time t 
 T � In this book� this local result is
extended for the Navier Stokes equations in two space dimensions�

We will also replace the nonlinear term by �TM�y��r�y instead of
�
�xk

�TM�y�ky�� In that case� the system becomes �where � denotes the scalar

product in IRn�

�����
����

y� ��y � �TM�y��r�y 
 rp� v�q in Q

div y 
 	 in Q

y 
 	 on �

y�	� 
 y� � H

�����
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CONTROL FOR STOKES EQUATIONS ���

and we will prove�

Theorem ���� We suppose that � is a neighbourhood of the boundary ��
For every M � 	� every y� � H and every T � 	� the reachable set

R�T � 
 fy�x� T �� v � L��q�n� y solution of �����g

is dense in H�

The density in H of the reachable set is� in general �i�e� for any open
non empty subset � of ��� an open problem which is related to the fol�
lowing regularity result concerning the pressure in linear Stokes systems�
which minimum supplementary regularity conditions on f � L��	� T� V ��
are needed in order to ensure the existence of �u� �� � L��	� T� V ��L�loc�Q�
with u�	� 
 	 and u���u 
 r��f� The di�culty comes from the regular�
ity of � with respect to time and the only known result is that f � L��Q�n

implies � � L��	� T�H������

In order to prove Theorems ��� and ���� we use a �xed point method
together with a precise study of the approximate controllability for linear
Stokes equations� As usual in linear cases� the approximate controllability
property can be reduced �using Hahn�Banach theorem� to a unique continu�
ation property concerning the solutions of the adjoint homogeneous problem�

We will set this uniqueness property in a more general setting which
includes systems of linearized Navier�Stokes equations�

More precisely� we consider for � � j� k� l � n� functions ajkl� b
j
kl � L����

��T� T �� and functions u 
 �u�� � � � � un� and � solutions of the system��������
�������

	j� � � j � n�

u�j ��uj � ajkl
�ul
�xk

�
�

�xk
�bjklul� 


��

�xj
in �� ��T� T �

div u 
 	 in �� ��T� T �

�u� �� � L�loc��T� T �H
�
loc����

n � L�loc��� ��T� T ��

�����

where the jth equation� according to the convention of summation of re�
peated indexes� has to be read for � � j � n �

u�j ��uj �
X
k�l

ajkl
�ul
�xk

�
X
k�l

�

�xk
�bjklul� 


��

�xj
�

We prove

Theorem ���� Let ajkl and bjkl be elements of L�loc�� � ��T� T �� for
� � j� k� l � n� If �u� �� is a solution of ����� and if u vanishes in an open
non�empty subset O of �� ��T� T � then it vanishes in the whole horizontal
component of O in �� ��T� T � which is the set

C�O� 
 f�x� t� � �� ��T� T �� 
x� � �� �x�� t� � Og�

Theorem ��� has been �rst proved by Saut and Temam �see 
���� when co�
e�cients ajkl and bkl are C

� and C� respectively� Then it has been extended
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��� CAROLINE FABRE

when ajkl 
 ak�lk � W ��� and bjkl 
 	 �which means that u is solution of
u���u� �a�r�u 
 r� with a 
 �a�� � � � � an�� by Fernandez�Cara and Real
in 
��� These authors applied a Carleman estimate on the heat equation com�
bined with a Carleman estimate for the Laplace operator in order to control
the pressure which then satis�es an equation like �� 
 div ��a�r�u� � L��

In 
��� we also studied the case where u is solution of u���u��a�r�u 
 r�
with coe�cients a � L��Q�n� Note that when a � L��Q�n� one can no
longer use the usual Carleman inequality for the Laplace operator because of
the lack of regularity of a� To overcome this di�culty� we proved a Carleman
estimate for solutions ��� f� � H�

loc � L�loc of �� � L�f � L� where L� is a
�rst order operator �for more details� see 
���� The argument of the proof
of the unique continuation for the Stokes system with a � L��Q�n then
combined this new inequality� the usual one on the heat operator �stated by
Saut and Scheurer in 
���� and a change of scale� In our case� the pressure
satis�es an equation like ���L�f �L�k � L� with functions f and k in L�

�and no more�� L� and L� being �rst and second order operators� Thus� the
pressure will no more be in H�

loc and there is again a lack of estimate on ��
Futhermore� the usual Carleman inequality for the heat operator cannot be
applied on u since the functions bjkl do not possess su�cient regularity �this

would require bjkl � W ��� in space�� One can only say that each component
of u satis�es a heat equation but with a right�hand side in H���Q� �in space
and time� and no more even locally� We therefore need a new inequality in
order to treat u�

Using the unique continuation property of Theorem ���� we will deduce
the approximate controllability for linear Stokes systems� Note that for
y� � H and v � L��q�n� using a variational method� one can show that
there exists a unique vector�valued fonction y � L��	� T �V � � C�
	� T ��H�
and a pressure p � D��Q� �de�ned up to a time dependent distribution� such
that �y� p� is solution of

����������
���������

	j� � � j � n�

y�j ��yj � ajkl
�yl
�xk

�
�

�xk
�bjklyl� 


�p

�xj
� v�� in Q

div y 
 	 in Q

y 
 	 on �

y�	� 
 y� in ��

�����

We prove the following approximate controllability results for system
������

Proposition ���� Let � be a neighbourhood of the boundary �� Let �ajkl� b
j
kl�

� L��Q�� for � � j� k� l � n� For every y� � H� the reachable set at any
time T � 	 de�ned by

R�T � 
 fy�x� T � where y is solution of ���	�
 v � L��q�ng

is dense in H�
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Proposition ���� Let � an open and non�empty subset of �� Let �ajkl� b
j
kl� �

L��Q�� with

�
if n 
 �� 
p� � �����
� 	j� k� l � f�� � � � � ng ajkl � L��	� T�W ��p�����

if n � �� 	j� k� l � f�� � � � � ng ajkl � L��	� T�W ��n�����
�����

For every y� � H� the reachable set at any time T � 	 de�ned by

R�T � 
 fy�x� T �� where y is solution of ���	� v � L��q�ng

is dense in H�

Remark ��	�

�i� The hypotheses on � in Proposition ��� and ����� are made in order to
ensure the existence of a pressure in L�loc�Q� for the adjoint system of ������

�ii� Conditions ����� can be replaced by

�
if n 
 �� 
p� ������
� 	j� k� l � f�� � � � � ng ajkl � H��	� T� Lp�����

if n � �� 	j� k� l � f�� � � � � ng ajkl � H��	� T� Ln�����

Once the approximate controllability of this Stokes system is understood�
one can ask if we can take controls with one component equal to zero� The
problem reduces again to the underlying unique continuation property which
can be formulated as follows� suppose that a solution u of ����� satis�es
u� 
 � � � 
 un�� 
 	 in O then do we have u 
 	 in C�O��

We give a partial result which requires more conditions on the coe�cients
ajkl and bjkl and more regularity on u and �� We will then give a counter�
exemple when one of these conditions is not ful�lled� We consider functions
ajkl and Bj

l in L���� ��T� T �� with

���
��
	k � f�� � � � � ng�

�ank�n
�xn



�Bn

n

�xn

 	

	�j� k� � f�� � � � � n� �g � f�� � � � � ng� ajkn 
 Bj
n 
 	�

�����

We denote by �u� �� a solution of

�����
����
u�j ��uj � ajkl

�ul
�xk

�Bj
l ul 


��

�xj
in �� ��T� T �

div u 
 	 in �� ��T� T �

�u� �� � L�loc��T� T �H
�
loc����

n � L�loc��T� T �H
�
loc�����

�����

We prove

Theorem ��
� If the functions ajkl and Bj
l are in L��� � ��T� T �� and

satisfy ����� and if �u� �� is solution of ����� with u� 
 � � � 
 un�� 
 	 in
an open set O of �� ��T� T � then u� 
 � � � 
 un�� 
 �un

�xn

 	 in C�O��

We will then deduce
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��� CAROLINE FABRE

Corollary ���� Suppose that � is bounded and that u belongs to
L���T� T �H�

�����
n and is solution of ����� with u� 
 � � � 
 un�� 
 	 in an

open set O of Q� Then u vanishes in C�O��

Theorem ��� is false when condition ����� is not ful�lled even in the sta�
tionary case� indeed� let � be the square � 
 � � �� �
� and let
O 
 
x� 	 	� � ��

We consider��������
�������

u��x�� x�� 
 x����x����

u��x�� x�� 
 ��x��x���x���� � � � x�

��x�� x�� 
 �x����x���� � x�

b�x�� x�� 

� � �x�

� � x� � �x��x�
��x���� �

�

� � x�
��x�����

�����

We have �u�� u�� �� b� � H�
loc���

� �H�
loc���� L����� div u 
 	 in � and

u� 
 	 in O�

One can easily compute that

�u� 

��

�x�

and

�u� � bu� 

��

�x�
�

Condition ����� fails since B�
� 
 b and �b

�x�
�
 	�

Remark �����

�i� If � is not bounded� even when a 
 B 
 	� Theorem ��� does not
necessary imply Corollary ��� as one can see for n 
 �� � 
 
�x�� x��� x� � 	��
and u� 
 	� u� 
 x��
� and p 
 x��

�ii� The controllability problem with controls having two zero components
has been studied by J��L� Lions and E� Zuazua in 
��� in three space dimen�
sions for the Stokes system and without potential� They proved a generic
result and gave a counter�exemple to the underlying uniqueness property
when � is a cylinder�

We now describe the plan of this article� in a second section we prove
Theorem ��� and ���� The main tool �that we brie�y recall� is the h�pseudo�
di�erential calculus �as in 
���� The proofs of these theorems are based on
the same idea as the one developped in 
��� we �rst state the Carleman
inequalities by separating the low and high frequencies� In order to be
clear� at each step� we will recall the previously known inequalities and the
new ones� In a third section� using these unique continuation properties�
we will deduce the approximate controllability for linear Stokes systems
and� in particular� the case of the linearized Navier�Stokes equations will
be considered� We then go back to our nonlinear problems and we prove
Theorems ��� and ��� in the last section� The method is now standard and
uses a �xed point argument �see for example 
�� or 
�����
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�� Unique continuation for Stokes equations

���� Preliminaries on pseudo
differential calculus

The results that we recall in this section are classical and we refer to the
books of D� Robert 
�	� and X� St Raymond 
�� for details�

We note Dj 
 h
i �j � ���� 
 �� � j�j��

�
� � for � � IRn� The set Sm �where

m � ZZ� denotes the space of symbols de�ned on IR�n and which satisfy�

	
� � � INn� 
C��� 	x� �� h j��x �
�
	 a�x� �� h�j � C�������

m�j�j

and

	j � IN� 
aj�x� �� � Sm�j � a�x� �� h� �
NX
j��

hjaj�x� �� � hN��Sm�N���

The principal symbol of a is then a�� If a � Sm and if u is C�
� �IRn�� we

de�ne the pseudo�di�erential operator of order m

a�x�D� h�u�x� 

�

���h�n

Z
eix


�
ha�x� �� h� u�

�

h
�d�

�where  u��� 

R
e�ix
	u�x�dx is the Fourier transform of u�� If a � Sm�

a�x�D� h� maps Hs�IRn� in Hs�m�IRn�� We write Em the space of pseudo�
di�erential operators of order m and E�� 
 �m�ZE

m�

We write jvj�� 

R
Rn jv�x�j

�dx� �u� v� 

R
Rn u!v and jvj�� 
 j��D�vj��� Thus

jvj�� 

�

����n

Z
Rn

���h��j u���j�d� 


Z
jvj�dx� h�

Z
jrvj�dx�

We recall that if a � Em and b � El then a�x�D� 
 b�x�D� � Em�l with
a principal part a�b�� On the other hand� i

h 
a�x�D�� b�x�D�� 
 i
h �a�x�D� 


b�x�D�� b�x�D� 
 a�x�D�� � Em�l�� and its principal part is fa�� b�g 

�	a��xb� � �xa��	b��

We recall the Garding inequality�

Proposition ���� Let U be an open set of IRn� If a � E� satis�es



c� � 	� 	�x� �� � U � IRn� Re a��x� �� � c�����
�

then for every compact set K of U 
 there exists hK � 	 such that

	u � H�
� �K�� 	h ��	� hK�� Re�a�x�D� h�u� u��

c�
�
juj���
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��	 CAROLINE FABRE

The following proposition concerns the inversion on the high frequencies
of operators of order � which are elliptic on high frequencies�

Proposition ���� If p � E� satis�es


c � 	 � jp��x� ��j � c����� 	�� j�j � R� 	x � IRn

then there exists e � E�� and 
 � E�� such that e 
 p 
 ��
� hR� where
R � E��� and 
�x� �� 
 	 if j�j � R�

As we are dealing with evolution equations� the operators under consid�
eration will depend on a parameter �the time� and we will need uniform
estimates� Let I 
 
�T�� T�� be a subinterval of IR� We will say that a set of
operators with symbols of order m� fa�t� x� �� h�gt�I� is in L��I� Em� if the
constants C��� appearing in the de�nition of Sm do not depend on t � I�We
recall that �see 
�	�� if �a�t��t�I � L��I� Em� and if �b�t��t�I � L��I� El�
then �a�t� 
 b�t��t � L��I� Em�l� and we have

	s � IR� 
Cs � 	 � 	t � I� 	u � Hs� ja�t�ujs�m � Csjujs�

In the same way� we have the following Garding inequality� if U is an
open set of IRn and if �a�t��t�I � L��I� E�� satis�es


c� � 	 � 	t � I� 	�x� �� � U � IRn� Re a��t� x� �� � c�����
�

then for every compact set K of U � there exists hK � 	 such that

	u � H�
� �K�� 	�t� h� � I��	� hK�� Re�a�t� x�D� h�u� u��

c�
�
juj���

Finally� we have the analogous of Proposition ���� if �p�t��t � L��I� E��
satis�es


c� R � 	 � jp��x� ��j � c����� 	�� j�j � R� 	�t� x� � I � IRn

then there exist �e�t��t � L��I� E��� and �
�t��t � L��I� E��� such that
e�t� 
 p�t� 
 � � 
�t� � hR�t�� with R�t� � L��I� E��� and 
�t� x� �� 
 	 if
j�j � R�

Let now � 
 ��t� x� � C�
� �IRn���� We write �t�x� 
 ��t� x� and p�t� the

operator of E� �
p�t��x�D� h� 
 �h�e

�
h 
� 
 e�

�
h �

p�t� has as principal symbol

p��t��x� �� 

nX
j��

��j � i
��

�xj
���

The adjoint operator p��t� of p�t� is also of order � and its principal symbol
is the conjugate of p��t��x� ��� !p��t��x� ��� We then decompose the operator
p�t� 
 a�t� � ib�t� with �a� denotes the adjoint operator of a�� a�t� 
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p�t��p��t�
�

� L���T� T �E�� with principal part a��t� 
 Re p��t� and b�t� 

p�t��p��t�

�i � L���T� T �E�� with principal part b��t� 
 Im p��t��
Let U� be a bounded and open set of IRn and suppose that there exists

C� � 	 such that �� satis�es

�x� �� � !U� � IRn� a��	��x� �� 
 	 � fa��	�� b��	�g�x� ��� C�� �����

Then there exist �� � 	 and c�� d
� � 	 such that for jtj � ��� �t satis�es��

� �x� �� � !U� � IRn� a��t��x� �� 
 	 � fa��t�� b��t�g�x� �� �
C�

�
�

d�������a��t�
��x� �� � d�b��t�

��x� �� � fa��t�� b��t�g�x� �� � c��
�����

�����

We now de�ne general operators of order � and �� For this let s � IN and
for f 
 �f�� � � � � fs� we write

L��f� 

X

�j�k��f������ng�f������sg

cjk
�fk
�xj

�

with coe�cients cjk � C��IRn� � L��IRn�� We have L� � E��
On the other hand� for k 
 �klm���l�m�s � de�ne

L��k� 

X

�l�m��f������sg���l��m���f������ng�

�

�xl�
�dlml�m�

�

�xm�

klm��

where dlml�m� � C��IRn� �W ����IRn�� We have L� � E��

���� Carleman inequalities

In the sequel c and d will denote positive constants that may change from
line to line and are independent of the parameter h�

As we have already said in the introduction� our problem to prove The�
orems ��� and ��� comes from a lack of regularity on u and �� For clarity�
let us recall what is known� the usual Carleman inequality on the Laplace
operator has been stated by Hormander in 
��� it concerns the stationnary
case and it is the following proposition

Proposition ���� Let U be an open and bounded set of IRn and K be a
compact set included in U� Let � 
 ��x� be in C�

� �IRn�� If r� does not
vanish on U and if


c� � 	� p��x� �� 
 	 and �x� �� � U � IRn � fRe p�� Im p�g�x� �� � c��
�����

where p� is the principal symbol of p 
 �h�e
�
h 
 � 
 e

�
h � then there exists

c � 	 and h� � 	 such that for all 	 	 h 	 h� and all functions y � H�
� �K�

we have Z
K

jyj�e�
�
h dx� h�

Z
K

jryj�e�
�
h dx � ch�

Z
K

j�yj�e�
�
h dx� �����
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In 
�� we could not use this last inequality since the pressure � was not
H� in space �even locally�� We then proved the following �stated here in the
evolution case�

Proposition ���� Let U� be an open and bounded set of IRn� We suppose
that r� does not vanish on U� and that � satis�es ������ Then
 there exists
�� � 	 such that for every compact set K in U�
 there exists c � 	 and
h� � 	 such that for almost every t � ����� ���� and every h ��	� h�
� we
haveZ

K

jyj�e�
�
h dx� h�

Z
K

jryj�e�
�
h dx �hc

Z
K

jf j�e�
�
h dx

� ch�
Z
K

j�y � L�f j
�e�

�
h dx

�����

for every �y� f� � L������ ���H�
��U����L

������� ����U��s with �y�L�f �
L������� ���� U��� all these functions having compact support in K�

If we compare these two inequalities in the stationary case� we see that
we loose in power of h but we need weaker norm of f� Of course� for f 
 	�
we �nd again H"ormander#s inequality ������

In our problem� the pressure will be solution of an equation like �� �
L�f � L�k � L��U�� with L� a second order operator� and thus � will not
be any more in H� in space �even locally� and the above inequalities do not
make sense� We are going to state a Carleman inequality where the only
norm of � appearing is the L� norm� We now prove

Lemma ���� Let U� be a bounded and open set of IRn and U 
 U������� ����
We suppose that r� does not vanish in U� and that � satis�es ������ Then

there exists �� � 	 such that for every compact set K in U�
 there exist h� �
	 and c � 	 such that for every h � �	� h�
� for almost every t � ����� ����
we have Z

K

jyj�e�
�
h dx �ch

Z
K

jf j�e�
�
h dx�

c

h

Z
K

jkj�e�
�
h dx

� ch�
Z
K

j�y � L�f � L�kj
�e�

�
h dx

�����

for every �y� f� k� � L��U��L��U�s�L��U�s
�

with �y�L�f�L�k � L��U��
all these functions having compact supports in K�

Remark ���� This time� for f 
 k 
 	� we do not �nd H"ormander#s
inequality since we loose the gradient of y�
Proof of Lemma ����

Let �� be given by ����� and its consequences� We introduce as usual

the L��functions F 
 �y � L�f � L�k� z 
 yexp�
�

h
�� gj 
 fjexp�

�

h
��

G 
 Fexp�
�

h
� and r 
 kexp�

�

h
�� Equation F 
 �y � L�f � L�k is then

equivalent to

p�t�z 
 �h�e
�
hL��e

��
h g�� h�e

�
hL��e

��
h r�� h�G�
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thus

p�t�z 
 �h�L��g�� h�
e
�
h � L���e

��
h g�� h�L�r � h�
e

�
h � L���e

��
h r�� h�G�

By a simple computation� one has

R�u 
 �h
e
�
h � L��e

��
h u 
 �h
e

�
hL��e

��
h u�� L��u�� 
 cjk

��

�xk
uj

and thus R� � L������ ���E��� In the same way�

R�r 
 �h�
e
�
h � L��e

��
h r


 �h�e
�
h

�

�xl�
�dlml�m�

�

�xm�

�e�
�
h rlm�� � h�

�

�xl�
�dlml�m�

�

�xm�

rlm�


 �h�e
�
h

�

�xl�
�dlml�m�

�rlm
�xm�

e�
�
h � � he

�
h

�

�xl�
�dlml�m�rlm

��

�xm�

e�
�
h �

� h�
�

�xl�
�dlml�m�

�

�xm�

rlm�


 hdlml�m�

�rlm
�xm�

��

�xl�
� h

�

�xl�
�dlml�m�rlm

��

�xm�

�

� dlml�m�rlm
��

�xm�

��

�xl�

and thus R� � L������ ���E��� With iDj 
 h�j � one obtains

p�z� 
 hL��D�g � L��D�r� h�G� hR��g� � R��r�

where L��D� � L���T� T �E��� L��D� � L���T� T �E���
We �rst study the high frequencies� Let

V 
 f� � IRn� 
x � IRn� such that p��t��x� �� 
 	g�

We have V � !BRn�	� c�� where c� 
 jr�jL��Rn���� We consider � �
C�
� �IRn� such that 	 � � � � and � 
 � on a neighbourhood of !BRn �	� �c���

���
The function � 
 �� � is in S� and ��D� 
 p 
 p 
 ��D� � 
��D�� p� with


��D�� p� � hL���T� T �E����
There then exists R� 
 R��t� � L���T� T �E�� such that

p 
 ��D�z 
 h��D� 
 L��D��g� � ��D� 
 L��D�r � h���D�G

� h��D� 
R��g� � ��D� 
R��r� � hR�z�
�����

We have

	x � IRn� 	�� j�j� � �c�� � �� Re��p��t��x� ��� � ������ �����

Using Proposition ���� there exists e�t� � L���T� T �E���� such that
e�t�
p�t� 
 ��
�t��hR���t� with R���t� � L���T� T �E���� Furthermore�

 
 	 on the support of � and thus 
 
 ��D� � hL���T� T �E����
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There then exists R��t� � L���T� T �E��� such that

��D�z 
 h�e 
 ��D� 
 L��D��g� � e 
 ��D� 
 L��D�r � h�e 
 ��D�G

� h�e 
 ��D� 
R��g � e 
 ��D� 
R��r� � he 
R�z � hR��t�z�
�����

Since operators e 
 ��D� 
 L��D�� e 
 ��D� 
 L��D�� e 
 ��D�� e 
 ��D� 

R�� e 
 ��D� 
 R�� and e 
 R� are in L���T� T �E���� L���T� T �E���
L���T� T �E���� L���T� T �E���� L���T� T �E��� and L���T� T �E���
respectively� there exists c � 	 such that

j��D�zj�� � c
�
h�jgj�� � jrj�� � h	jGj�� � h�jzj��

�
� ����	�

Let us now study ��D�z� As � is compactly supported in �� ��D� � E��

and ��D� 
 p�t� � p�t� 
 ��D� � hL���T� T �E����
There then exists R���t� � L���T� T �E���� such that

p 
 ��D�z 
 h��D� 
 L��D�g � ��D� 
 L��D�r� h���D�G

� h��D� 
R��g� � ��D� 
R��r� � hR���t��z��
������

Consider � � C�
� �U� such that � 
 � on K� One has ��D�z 
 ��x���D�z

�
��D�� ��z with 
��D�� �� � hL���T� T �E��� and v 
 ���D�z � C�
� �U��

Using the decomposition of p�t� as a�t� � ib�t�� one has

jp�t��v�j�� 
 ja�t��x�D��v�j��� jb�t��x�D��v�j��

� i
�
�a 
 b� b 
 a�v� v

�
�

������

Futhermore� a 
 b� b 
 a 
 
a� b� � L���T� T �E�� with principal symbol
h
i fa�� b�g�
Using ������ we have for jtj � ���

d�������a��t�
��x� �� � d�b��t�

��x� �� � fa��t�� b��t�g�x� �� � c��
����� ������

We apply Garding#s inequality on U� when K is the support of � and
when the operator is d�a�t� 
 ��� 
 a�t� � d�b�t� 
 b�t� � i

h 
a�t�� b�t���x�D��
We deduce that

i�
a�t�� b�t��v� v��
c�
�
hjvj�� � d�hj��� 
 a�t�vj�� � d�hjb�t�vj��� ������

Taking into account ������� ������ and j���a�t��v�j�� � ja�t��v�j��� we ob�
tain for h small enough

jp�t��v�j�� � h
c�
�
jvj��� ������

Using ������� the fact that v 
 ���D�z and

���
��
j���D�zj�� �

�

�
j��D�zj�� � j
��D�� ��zj�� �

�

�
j��D�zj�� � h�cjzj��

jp���D�z�j�� �
�

�
jp����D�z�j�� � h�cjzj���
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we get for h small enough�

jp���D�z�j�� � h
c�
��
j��D�zj�� � h�cjzj��� ������

On the other hand�

jp���D�z�j�� � �h�j��D� 
 L��D�gj��� �j��D� 
 L��D�rj�� � �h	j��D�Gj��

� �h�j��D� 
R��g�j
�
� � �j��D� 
R��r�j

�
� � �h�jR���t��z�j���

������
As ��D� � E��� all the operators appearing in the right hand side are in

L���T� T �E��� hence there exists c � 	 such that for h small enough ������
et ������ imply

j��D�zj�� � c
hjgj��� h�jGj�� �
�

h
jrj�� � hjzj���� ������

Combining ����	� and ������� we obtain

jzj�� � ��j��D�zj�� � j��D�zj���

� �c
hjgj��� h�jGj�� �
�

h
jrj�� � hjzj���

� �c
�
h�jgj�� � jrj�� � h	jGj�� � h�jzj��

�
�

������

which proves the lemma� tu
We now turn to the heat equation� in 
���� J�C� Saut and B� Scheurer

stated a Carleman inequality for a general heat equation with an explicit
phase � which required for the solution u to be H�

loc in space and for u�

to be in L�loc�Q�� Because of the lack of regularity of the coe�cients bjkl�
there is no hope that our solution u of ����� possesses this regularity� We
are� in the evolution case� in front of the same problem as we had in 
��
in the stationnary case� Again for clarity� let us recall the usual Carleman
inequality for the heat equation �see 
��� for an explicit phase or 
�� for any
phase satisfying �������

Proposition ��	� Let U� be an open and bounded set of IRn� Suppose that �
satis�es ������ Then there exists �� � 	� such that for every compact set K
included in U�
 there exist h� � 	 and c � 	 such that for every h � �	� h���
one hasZ

K����� ����

jzj�e�
�
h dxdt� h�

Z
K���������

jrzj�e�
�
h dxdt �

� h�c

Z
K���������

jz� ��zj�e�
�
h dxdt

����	�

for every z � L������ ���H�
��K�� � H�

� ����� ���L
��K�� with z� � �z �

L������� ���� U���

The inequality that we prove does not require so much regularity and
extends the previous one� Recall that L� is a �rst order operator�
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Lemma ��
� Let U� be a bounded and open set of IRn� We suppose that �
satis�es ������ Then there exists �� � 	� such that for every compact set K
included in U�
 there exist h� � 	 and c � 	 such that for every h � �	� h���
one hasZ

K����� ����

jzj�e�
�
h dxdt� h�

Z
K���������

jrzj�e�
�
h dxdt �

� ch

Z
K���������

jf j�e�
�
h dxdt

� h�c

Z
K���������

jz� ��z � L�f j
�e�

�
h dxdt

������

for every �z� f� � L������ ���H
�
��K��� L��U� � ����� ���� with z� ��z �

L�f � L��U� � ����� ����� all these functions being compactly supported in
K � ����� ����

Remark ���� This is the analogue of Proposition ��� for the evolution case�
Proof of Lemma ����

We write again v 
 ze
�
h � H 
 �z� ��z � L�f�e

�
h and q 
 fe

�
h � We then

have
h�v� � p�t�v 
 h��v � h��v � hL��D�q � hR�v � h�H

where R� 
 �h
e
�
h � L��e

��
h � L���T� T �E��� Again we study separately

high and low frequencies� Operators a�t� �which were de�ned by �p�t� �
p��t��
�� satisfy the hypotheses of Proposition ��� hence they are invertible
on the high frequencies and therefore �in the same way than in the previous
lemma� there exist operators d�t� of order �� such that

d�t� 
 a�t� 
 � � 
�t� � hR�t�

with R�t� � L���T� T �E��� and 
��D� � hL���T� T �E����
Since 
a�t�� ���� � hL���T� T �E��� there exists c � 	 such that

j��D�vj� � jd�t� 
 a�t���D�vj� � chjvj� � c�ja�t���D�vj��� hjvj��

� c�j���a�t���D�vj�� hjvj�� � c�ja�t�������D�v�j� � hjvj���
������

On an other hand� we have

h������D�v� � i�����D�b�t�v � a�t������D�v 


�����D�
h��v � h��v � hL��D�q � hR�v � h�H �� 
�����D�� a�t��v
������

with 
�����D�� a�t�� � hL���T� T �E���

Let u 
 �����D�v� Since v belongs to L������ ���H
�
��K�� and since � is

in L��E���� the function u is in L������ ���H��IRn��� Furthermore� using
the equation satis�ed by u� we can see that u is in H�

� ����� ��� L
��IRn���

Taking the L��IRn����norm� we then get

jh������D�v� � i�����D�b�t�vj��� ja�t������D�vj���

�re�h������D�v�� a�t������D�v� � �re�i�����D�b�t�v� a�t������D�v�


 j�����D�
h��v � h��v � hL��D�q � hR�v � h�H �

� 
�����D�� a�t��vj���
������
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As �����D�b�t� � L���T� T �E�� and a�t������D� � L���T� T �E�� we
get


�����D�b�t�� a�t������D�� � hL���T� T �E��

which easily proves that

j�re�i�����D�b�t�v� a�t������D�v�j


 i�
a�t������D�� �����D�b�t��v� v�j � chjvj���
������

Now�

�re�h�u�� a�t�u� 
 �h�
Z
Rn����� ����

u���h��u� jr�j�u�dxdt


 �h�
Z
Rn���������

juj��jr�j���dxdt � ch�juj��

� ch�jvj���

������

Combining ������� ������� ������ and ������� we obtain

j��D�vj�� � c
hjvj�� � h�jqj�� � h	jH j���� ������

To prove such an inequality on the low frequencies� one just has to follow
what has been done in the previous lemma� the only change is that inte�
grals are taken over IRn � ����� ��� instead of IRn and that the added term
�h�Re���D�v�� a�t���D�v� can be bounded by ch�j��D�vj��� �Remark that
��D�v � L������ ���H

��IRn���H�
� ����� ��� L

��IRn�� thanks to the equation
satis�ed by ��D�v and to ��D� � E����

We then obtain

j��D�vj�� � c
hjqj�� � h�jH j�� � hjvj���� ������

Combining ������ and ������� one can deduce the lemma� tu

���� Proof of Theorem ���

We follow the steps of the proof of the main result in 
��� We denote by
B�r� the open ball in IRn�� centered at �	� 	� with radius r� In order to prove
Theorem ���� it is su�cient to prove that if u 
 	 in a half�neighbourhood
�in IRn��� of �	� 	� such as

f�x� t�� ��x� t�	 	g �B���

where � is C�� ��	� 	� 
 	� rx��	� 	� �
 	� then u vanishes in a neighbour�
hood of �	� 	��

Without loss of generality� one can suppose that rx��	� 	� 
 �	� � � � � 	� ���
As in 
��� we �rst prove a unique continuation property for a $radius# r 
 �
and small potentials ajkl and bjkl� We write

W 
 f�x� t�� jtj 	 �� jxj 	 �g
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and
a 
 max

j�k�l
jajkljL��W �� b 
 max

j�k�l
jbjkljL��W ��

We then have

Lemma ����� There exists M � 	 such that for all �u� �� ajkl� b
j
kl� �

L����� ��H��jxj 	 ���� L��W �� L��W ��n
�

with

�u� �� is solution of �����

sup�a� b� �M

u 
 	 in W � 
xn �M�jx�j� jtj� 	 	�

������

one has u 
 	 in a neighbourhood of �	� 	� in IRn���

Proof of Lemma �����
The choice of � is the same as in 
�� and it is

��x� t� 
 �xn � jx�j� � t� � ����

where � � 	 has to be chosen and � � C�
� �IRn��� satis�es � 
 � on W� We

proved in 
�� �Lemma ���� that


� � 	� 
r� � 	� such that� satis�es ����� on

U� 
 fx� jxj 	 r�g with C� 
 ���
����	�

In what follows� � and r� are chosen such that ����	� holds� We now apply
Lemmas ��� and ��� with U� 
 fx� jxj 	 r�g in order to get the existence
of �� � 	 such that the conclusions of this lemma are satis�ed� We then �x
r� � 	 small enough beside ��� r� et �� such that B��r�� � f�t� x�� jtj 	
��� jxj 	 r�g and we choose � � C�

� �B�r��� with � 
 � on B��r�
��� We
write K 
 fjxj � r�
�g� �� 
 ��
� and

� 
 supp 
rx�t� � fxn �M�jx�j� jtj� � 	g��

Then there exists M� � 	 such that for all M � �	�M��� one has

sup
�x�t��


��x� t� 	 ��	� 	� 
 ��� ������

As r� 
 	 on W � 
xn �M�jx�j � jtj� 	 	�� we can suppose that � 
 	
on that set� We denote by z 
 �u and q 
 ��� Since div u 
 	� one has

�� 

��

�xj�xk
�bjklul� �

�

�xj
�ajkl

�ul
�xk

��

After a simple computation� one can then prove that

�q 
 div ��r�p����p�
��

�xj�xk
�bjklzl��

�

�xj
�bjklul

��

�xk
�

�
�

�xk
�
��

�xj
bjklul� � bjklul

���

�xj�xk

�
�

�xj
�ajkl

�zl
�xk

��
�

�xj
�ajklul

��

�xk
��

��

�xj
ajkl

�ul
�xk

�

������
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So we obtain an equation of the form

�q � L�f � L��jkKjk 
 F � L� ������

with s 
 n� L� 
 div and

f j 
 �
��

�xj
p� bjklul

��

�xk
� bkjlul

��

�xk
� ajkl

�zl
�xk

� ajklul
��

�xk


 ajkl
�zl
�xk

� f j� � L�
������

where f j� is in L� and is supported in �� and L��jk 
 ��

�xj�xk
� Kjk 
 �bjklzl� �

L� and �nally

F 
 ���p�
��

�xj
ajkl

�ul
�xk

� bjklul
���

�xk�xj
� L�

with support in ��

On the other hand� we have for each � � j � n�

z�j ��zj 
 ��u�j ��uj� � uj�
� � �r��ruj ���uj



�

�xj
q �

��

�xj
p� uj�

� � �r��ruj ���uj � ajkl
�zl
�xk

� ajklul
��

�xk

�
�

�xk
�bjklzl� �

��

�xk
bjklul


 Lj��q� g�� � � � � gn�� ajkl
�zl
�xk

�Hj
�

������
with s 
 n��� Lj��g�� g�� � � � � gn� 


�
�xj

g��
�
�xk

gk and gk 
 bjklzl for � � k �

n� and Hj
� 
 �p ��

�xj
� ajklul

��
�xk

� ��
�xk

bjklul � uj�
� � �r��ruj � uj�� � L�

with support in ��
By Lemma ��� and ���� there exist c � 	 and h� � 	 such that for every

h ��	� h��� we have

Z
jzj�e�

�
h dxdt� h�

Z
jrzj�e�

�
h dxdt

� ch�
Z
jajkl

�zl
�xk

j�e�
�
h � ch�

Z
jH�j

�e�
�
h dxdt

� ch

Z
jqj�e�

�
h dxdt� ch

Z
jbjklzlj

�e�
�
h dxdt

������

and Z
jqj�e�

�
h dxdt � ch

Z
jajkl

�zl
�xk

� f j� j
�e�

�
h dxdt

�
c

h

Z
jbjklzlj

�e�
�
h dxdt� ch�

Z
jF j�e�

�
h dxdt�

������

ESAIM� COCV� November ����� Vol��� pp� ��	
���



��	 CAROLINE FABRE

Combining these two inequalities� we deduce that there exist c � 	 such
that for h small enoughZ

jzj�e�
�
h dxdt� h�

Z
jrzj�e�

�
h dxdt � ch�a�

Z
jrzj�e�

�
h dxdt

� cb�
Z
jzj�e�

�
h dxdt� ch�

Z
�jH�j

� � hjF j��e�
�
h dxdt

� ch�
Z
jf�j

�e�
�
h dxdt�

������

We choose M� � �	�M�� satisfying �cM�
� 	 �� in order that for a � M�

and b �M�� we get for h � 	 small enough�Z
jzj�e�

�
h dxdt �

Z
G�e�

�
h dxdt ������

with G� 
 �jF j� � jH�j
�� � jf�j

� � L� and

supp �G� � �� ����	�

Using ������ and letting h� 	� we deduce that z 
 	 in a neighbourhood
of �	� 	� which proves Lemma ���	� tu

We now make a change of scale and for this we note !u�x� t� 
 u�x


� t

�
��

!ajkl�x� t� 
 ajkl�
x

 �

t

� ��

!bjkl�x� t� 
 bjkl�
x

 �

t

� �� !��x� t� 


�

��

x

 �

t

� � and �
�x� t�


 ���x
 �
t

� � with � � 	�

We then have !u 
 	 in �
�x� t� 	 	� As �
�x� t� 
 xn �O� jxj�jtj
 � and

!u�j ��!uj �
ajkl
�

�!ul
�xk

�
�

�xk
�
bjkl
�

!ul� 

�!�

�xj
�

hypotheses of Lemma ���	 are satis�ed for � large enough� We then deduce
that !u �hence u� vanishes in a neighbourhood of �	� 	�� tu

Remark �����

�i� We have already seen in 
�� that even when ajkl 
 bjkl 
 	 and in the
stationnary case� the unique continuation property is false if we suppose that
u � H�

loc��� and u 
 �u
�� 
 	 on � where � is an open part of the boundary

of �� However� one can remark that the natural condition in order to apply
Holmgrem Theorem is u 
 �u

�� � �� 
 	 on ��
Using similar methods� as in the proof of Theorem ���� one can prove the

following extension of Saut and Scheurer#s result �see 
���� concerning the
unique continuation for the heat equation�

Corollary ����� Let �a� b�� � � � � bn� � L��� � ��T� T ��n�� and let u �
L�loc��T� T �H

�
loc���� be solution of the following heat equation

u� ��u� au �
X

k�f������ng

�

�xk
�bku� 
 	 in �� ��T� T �

which vanishes in an open subset O of �� ��T� T �� Then u vanishes in the
horizontal component of O in �� ��T� T ��
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���� Proof of Theorem ��


The steps will be the same as in the proof of the previous theorem but we
won#t apply the Carleman inequalities to the same functions� As div u 
 	
in Q� we have vn 
 �un

�xn

 	 in O� Futhermore vn is solution of

v�n ��vn �
�

�xn
�ankl

�ul
�xk

� �
�

�xn
�Bn

l ul� 

���

�x�n
�

On the other hand� since aikn 
 Bi
n 
 	 for i 	 n� the pressure � is

solution of

�� 

X

i�n�l�n�k

�

�xi
�aikl

�ul
�xk

� �
X

i�n�l�n

�

�xi
�Bi

lul�

�
X
k�l

�

�xn
�ankl

�ul
�xk

� �
X
l

�

�xn
�Bn

l ul��

Thus we have

v�n ��vn 

X

i�n�l�n�k

�

�xi
�aikl

�ul
�xk

� �
X

i�n�l�n

�

�xi
�Bi

lul�����

where ��� is the Laplace operator with respect to the n � � variables
x�� � � � � xn��� With the same notation as in the proof of Theorem ���� we
write pj 


��
�xj

� qj 
 �pj � w 
 �vn and wj 
 �uj for � � j 	 n� We have

�pj 

X

l�n�i�k

��

�xj�xi
�aikl

�ul
�xk

� �
��

�xj�xn
�ankn

�un
�xk

�

�
X

l�n�i�k

�

�xj

�

�xi
�Bi

lul� �
�

�xj

�

�xn
�Bn

nun��

Since ��

�xj�xn
�ankn

�un
�xk

� 
 �
�xj

�ankn
�vn
�xk

� and ��

�xj�xn
�Bn

nun� 
 �
�xj

�Bn
nvn��

we get

�qj 
 ���pj � �div �r�pj�

�
X

l�n�k�i



��

�xj�xi
�aikl

�wl
�xk

��
��

�xj�xi
�aiklul

��

�xk
�

�
�

�xj
�aikl

�ul
�xk

��

�xi
��

�

�xi
�aikl

�ul
�xk

��

�xj
� � aikl

�ul
�xk

���

�xi�xj
�

�
X
k



�

�xj
�ankn

�w

�xk
��

�

�xj
�anknvn

��

�xk
��

��

�xj
ankn

�vn
�xk

�

�
X
l�n�i



��

�xj�xi
�Bi

lwl��
�

�xj
�Bi

lul
��

�xi
�

�
�

�xi
�Bi

lul
��

�xj
� �Bi

lul
���

�xj�xi
�

�
�

�xj
�Bn

nw��Bn
nvn

��

�xj
�

������
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Applying Lemma ��� and since vn � L��H��K��� there exists c � 	 such
that �with jaj� 
 maxk�l�j ja

j
klj� and jBj� 
 maxl�ijB

j
l j��

Z
jqj j

�e�
�
h dxdt �

c

h


X
l�n

�jaj��

Z
jrwlj

�e�
�
h dxdt� jBj��

Z
jwlj

�e�
�
h dxdt��

� ch
jaj��

Z
jrwj�e�

�
h dxdt� jBj��

Z
jwj�e�

�
h dxdt� �

c

h

Z
jGj�e�

�
h dxdt

������
where G � L� does not depend on h� Futhermore� since we have for � � j 	
n� pj 
 vn 
 uj 
 	 on W � 
xn �M�jx�j� jtj� 	 	�� G is supported in ��

We have

�����������
����������

w� ��w 
 ��vn ���vn � div ��r�vn��
X
k�n



�

�xk
�qk��

��

�xk
pk�

�
X

i�n�l�n



�

�xi
�Bi

lwl��
��

�xi
Bi
lul�

�
X

i�n�l�n�k



�

�xi
�aikl

�wl
�xk

��
�

�xi
�aiklul

��

�xk
�� aikl

�ul
�xk

��

�xi
��

������

Using Lemma ���� we deduce that there exists c � 	� such that for h small
enough�

Z
jwj�e�

�
h dxdt� h�

Z
jrwj�e�

�
h dxdt � ch


X
l�n

�

Z
jqlj

�e�
�
h dxdt

� jaj��

Z
jrwlj

�e�
�
h dxdt� jBj��

Z
jwlj

�e�
�
h dxdt� �

Z
jF j�e�

�
h dxdt��

������
where F � L� does not depend on h and is supported in ��

Finally� we have

w�
j ��wj 
 uj�

� � �ruj �r� ���uj � qj �
X
l�n


Bj
l wl � ajkl

�wl
�xk

� ajkl
��

xk
ul��

and thus� applying the usual Carleman inequality on the heat equation� we
get for every j 	 n�

Z
jwjj

�e�
�
h dxdt� h�

Z
jrwjj

�e�
�
h dxdt � ch�


Z
jqj j

�e�
�
h dxdt

�
X
l�n


jaj��

Z
jrwlj

�e�
�
h dxdt� jBj��

Z
jwlj

�e�
�
h dxdt�

�

Z
jH j�e�

�
h dxdt��

������
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where H � L� does not depend on h and is supported in �� Hence� for h
small enough

X
j�n




Z
jwjj

�e�
�
h dxdt� h�

Z
jrwjj

�e�
�
h dxdt�

� ch�

X
j�n

Z
jqj j

�e�
�
h dxdt�

Z
jH j�e�

�
h dxdt��

������

Combining ������ and ������� we deduce that there exists d � 	

X
j�n




Z
jwjj

�e�
�
h dxdt� h�

Z
jrwjj

�e�
�
h dxdt�

� d
h�
X
j�n

jaj��

Z
jrwjj

�e�
�
h dxdt

� h�jBj��
X
j�n

Z
jwjj

�e�
�
h dxdt� h	jaj��

Z
jrwj�e�

�
h dxdt

� h	jBj��

Z
jwj�e�

�
h dxdt� h�

Z
jGj�e�

�
h dxdt

� h�
Z
jH j�e�

�
h dxdt�

������

Thus� for jaj� small enough� there exists d � 	 such that for h small enough

X
j�n




Z
jwj j

�e�
�
h dxdt� h�

Z
jrwj j

�e�
�
h dxdt�

� dh	jaj��

Z
jrwj�e�

�
h dxdt

� dh	jBj��

Z
jwj�e�

�
h dxdt� h�

Z
jG�j

�e�
�
h dxdt�

������

where G� � L� does not depend on h and is supported in ��

Combining now ������ and ������� we have

Z
jwj�e�

�
h dxdt� h�

Z
jrwj�e�

�
h dxdt � d
jaj��

X
j�n

Z
jrwjj

�e�
�
h dxdt

� jBj��
X
j�n

Z
jwjj

�e�
�
h dxdt� h

Z
jF j�e�

�
h dxdt

� h�jaj��

Z
jrwj�e�

�
h dxdt� h�jBj��

Z
jwj�e�

�
h dxdt

�

Z
jGj�e�

�
h dxdt��

������
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Thus� for jaj� small enough� there exists d � 	 such that for h small enough�Z
jwj�e�

�
h dxdt� h�

Z
jrwj�e�

�
h dxdt

� d
jaj��
X
j�n

Z
jrwjj

�e�
�
h dxdt

� jBj��
X
j�n

Z
jwjj

�e�
�
h dxdt� h

Z
jF j�e�

�
h dxdt

�

Z
jGj�e�

�
h �dxdt�

����	�

We �nally combine ������ and ����	� and we obtainX
j�n




Z
jwjj

�e�
�
h dxdt� h�

Z
jrwjj

�e�
�
h dxdt� �

� dh��jaj�� � jBj���jaj��
X
j�n

Z
jrwjj

�e�
�
h dxdt

� dh��jaj�� � jBj���jBj��
X
j�n

Z
jwj j

�e�
�
h dxdt

� d

Z
jG�j

�e�
�
h dxdt�

������

for some d � 	 and where G� � L� does not depend on h and is supported
in �� We deduce that for �d�jaj�� � jBj���� 	 � and for h small enough�X
j�n




Z
jwj j

�e�
�
h dxdt� h�

Z
jrwj j

�e�
�
h dxdt�t � �d

Z
jG�j

�e�
�
h dxdt ������

which proves that wj 
 uj 
 	 in a neighbourhood of �	� 	� for � � j 	 n
and Theorem ��� is proved in the case of small potentials a and B and radius
�� We then end with a change of scale as in the proof of Theorem ���� tu

Let us now prove Corollary ���� Let �x�� t�� � C�O� with �x�� t�� 

�x��� x�n� t�� and x�� � IRn�� � x�n � IR and t� � IR� There exists r � 	 such
that

O� 
 f�x�� xn� t�� jx� � x��j 	 r� jxn � x�nj 	 r� jt� t�j 	 rg � C�O��

Thus �un
�xn


 	 in C�O�� 
 ���t��r� t��r��We write P 
 f�x�� t�� jx��

x��j 	 r� jt� t�j 	 rg and� for every t�  un�t� the extension by zero of un�t�
to IRn� We have�  un � L���T� T �H��IRn��� Let

v�xn� 


Z
P

 u�n�x
�� xn� t�dx

�dt�

Since  un�t� � L���T� T �H��IRn��� we have vn � W ����IR� and we can write
for every z � IR�

v�xn� 
 v�z� �

Z xn

z

�vn
�xn


 	�

As � is bounded� for each xn� we choose z such that �x�� z� � IRn �� for
every x� with jx� � x��j 	 r and this ends the proof of Corollary ���� tu
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�� Approximate controllability for linear systems

���� Internal controllability

with controls without constraint

We �rst prove Proposition ���� Using the Hahn�Banach theorem� it is
su�cient to prove that every solution of

����������
���������

	j� � � j � n�

� ��j ���j � blkj
��l
�xk

�
�

�xk
�alkj�l� 


��

�xj
in Q

div� 
 	 in Q

� 
 	 on �

��T � 
 �� � H�

�����

with � 
 	 in � � �	� T � satis�es �� 
 	�

This will be an easy consequence of Theorem ��� if we prove that there
exists a pressure � � L�loc�Q� solution of ������ We then consider u 

�T � t��� and

fj 
 �j � �T � t�blkj
��l
�xk

�
�

�xk
��T � t�alkj�l� � L��	� T �H������n�

The function u is in L��	� T �V � and satis�es

�u� ��u 
 r��T � t��� � f� and u�T � 
 	�

Furthermore� there exists a compact set K such that � � � � Int�K� �
K � � with supp�f�t�� � K for almost every t� The existence of a pressure
� � L�loc�Q� solution of ����� is then a consequence of the following

Lemma ���� Let K be a compact set included in �� For every f in
L��	� T �H������n such that for almost every t� suppf�t� � K� there ex�
ists a pair �u� p� in L��	� T�H�

�����
n � L��Q� withZ

�

p�x� t�dx 
 	 a�e� t�

solution of �����
����

u� ��u 
 rp� f in Q�

div u 
 	 in Q�

u 
 	 on ��

u�	� 
 	 in ��

�����

Furthermore
 the mapping f � L��	� T �H������n

supp f�t� � K� a�e� in t � �	� T �� �u� p� � L��	� T�H�
�����

n � L��Q�
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is linear continuous�

Proof of Lemma ����
We consider a function � 
 ��x� � D��� such that 	 � � � � in � and

� 
 � on K� We �x an open set U with supp � � U � !U � �� Then we have
��f�t� 
 f�t� 
 �f�t� a�e� in t and system ����� can be written

�����
����

u� ��u 
 rp� ��f in Q�

div u 
 	 in Q�

u 
 	 on ��

u�	� 
 	 in ��

�����

Let fk � L��Q� such that fk � f in L��	� T �H������n� Then �fk � �f 
 f
in L��	� T �H������n and for almost every t� supp ��fk�t�� � U�We consider
solutions �uk� pk� of ����� with right�hand side ��fk �

Using a density argument� it is enough to prove that there exists c � 	�
such that for every f � L��Q�� one can choose a pressure p solution of �����
such that

jpjL��Q� � cj�f jL����T �H�������

If f � L��Q�� the pressure p can be taken in L��	� T �H������Furthermore�
 p�t� 
 p�t� � �

j�j

R
� p�x� t�dx �where j�j is the measure of �� is also in

L��	� T �H����� and �u�  p� is solution of ������ Thus� we can suppose that
for almost every t�

R
� p�x� t�dx 
 	�

For every w � D�	� T �C������ we de�ne  w by

 w�x� t� 
 w�x� t��
�

j�j

Z
�

w�x� t�dx�

We have �p� w� 
 �p�  w� where � � � denotes the scalar product in L��Q��
Furthermore�  w � D�	� T �C������

Suppose for a moment that we have proved that for every  w �
D�	� T �C������ satisfying

R
�
 w�x� t�dx 
 	 for every t� there exists a so�

lution V � L��	� T �H��U��n � L��Q�n of

�����
����

� V � ��V 
 r� in Q�

div V 
  w in Q�

V 
 	 on ��

V �T � 
 	 in ��

�����

and that there exists c � 	 such that for every  w � D�	� T �C������ we have

jV jL����T �H��U��n � jV jL��Q�n � cj  wjL��Q�� �����

We will then have���
��
j�p� w�j
 j�p�  w�j 
 j���f� V �j 
 j��f� �V �j

� cj�f jL����T �H������n j  wjL��Q�

� cj�f jL����T �H������n jwjL��Q�

�����
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and thus we will obtain the existence of a constant d � 	 such that

jpjL��Q� � dj�f jL����T �H������n �

This inequality proves Lemma ���� tu
Now� let us prove the existence of V� For  w � D�	� T �C������ withR

�
 w�x� t�dx 
 	 for all t� there exists �see 
���� � � D�	� T �H�

�����
n

such that div � 
  w and such that � depends continuously on  w� We set
V 
 � � �� �

���
�t

with

�����
����

� ��� ���� 
 r�� � �� in Q�

div �� 
 	 in Q�

�� 
 	 on ��

���T � 
 	 in ��

�����

and �����
����

� ��� ���� 
 r�� � � in Q�

div �� 
 	 in Q�

�� 
 	 on ��

���T � 
 	 in ��

�����

It is classical that �� � L��	� T �H�
�����

n and that the operator

� � L��	� T �H�
�����

n � �� � L��	� T �H�
�����

n

is linear continuous� Let us prove that �� � H��	� T �H��U��n� As � �
L��	� T �H�

�����
n� we know that

���� ��� � H��	� T �L�����n � L��	� T �H�����

with the continuity of the corresponding linear map� We then consider
� � D��� with 	 � � � � on � and � 
 � on U� We multiply equation �����
by ����� and we integrate over Qt 
 �� �t� T �� We obtain��������������

�������������

Z
Qt

�jr���j
� �

�

�

Z
�

�j����t�j
�



�

�

Z
Qt

��j���j
� �

X
j

Z
Qt

r�j�r�
�
��j��

Z
Qt

�������

�

Z
Qt

�����r��r���

Z
Qt

div�����r�� �

Z
Qt

�����r���r�r�

�

Z
Qt

����r�����

�����

Therefore there exists c � 	 such that

j��jL����T �H�
� ����

n � j��jH����T �H��U��n

� cj��jL����T �H������n � j�jL����T �H�
� ����

n

� c�j  wjL��Q��

����	�
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Furthermore� since � � D�	� T �H�
�����

n� the function �� is identically
equal to zero on an interval 
T � �� T � with a � � 	� Hence ����T � 
 	 and
V �T � 
 	� We have constructed V � L��	� T �H��U��n �L��Q�n solution of
����� and ����� and this �nishes the proofs of Lemma ��� and Proposition
���� tu

Remark ���� If � is a function in C���� with compact support K included
in �� we de�ne E 
 ff � L��	� T �H������n� �� � ��f � L��Q�ng with
jf jE 
 jf jL����T �H������n � j�� � ��f jL��Q�n � It is easy to prove that E is
a Banach space� Applying Lemma ���� for every f � E� there exists a
pair �y� p� in L��	� T�H�

�����
n�L��Q� solution of ����� and the application

f � E � �y� p� � L��	� T�H�
�����

n � L��	� T �L����� is linear continuous�
In the same manner �considering u 
 �T � t���� Proposition ��� is a

consequence of

Lemma ���� Let alkj � L��Q� satisfying ������ Then
 for every f � L��Q�n�

there exists �u� q� � L��	� T� V �� L��	� T�H����� solution of

����������
���������

	� � j � n�

u�j ��uj �
�

�xk
�alkjul� 


�q

�xj
� fj in �� �	� T ��

div u 
 	 in Q�

u 
 	 on ��

u�	� 
 	�

������

Remark ���� Considering the function �T � t�u and following the proof of
the previous lemma� one can see that conditions ����� can be replaced by

�
if n 
 � 
p� ������
� 	j� k� l � f�� � � � � ng ajkl � H��	� T� Lp�����

if n � � 	j� k� l � f�� � � � � ng ajkl � H��	� T� Ln�����

Proof of Lemma ���
We write m 
 p� if n 
 � and m 
 n if n � � and we will denote

by d any constant which depends only of � and m� We �rst prove that
there exists c � 	 such that for every f � L��Q�n and regular potentials
alkj � L��	� T� C������ we have

jjujjL����T�H�����n � cjf jL��Q�nexp�
�

�

X
j�k�l

jj
�

�xk
alkj jj

�
L����T �Lm������ ������

If alkj � L��	� T� C������ we can write that u is solution of u�j ��uj �
�
�xk

�alkj�ul 

�q
�xj

� hj where

jhjL��Q�n � d sup
j�k�l

jalkj jL��Q�jf jL��Q�n �

and it is known that u � L��	� T �H�
�����

n�
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Multiplying the equation satis�ed by uj by u�j and adding them for � �
j � n� we obtain with Qt 
 �� �	� t��

����������
���������

�

�

Z
Qt

ju�j j
�dxdt�

�

�

Z
�

jruj�t�j
�dx

�
�

�

Z
Qt

�
�alkj
�xk

��u�l dxdt�

Z
Q

h�jdxdt

�

Z
Q

h�jdxdt�
�

�

Z t

�

jj
�alkj
�xk

�t�jj�Lm���jjul�t�jj
�
L�m��m�������

������

The embedding H���� �� L���� is linear continuous for every � � 
 	
�� if n 
 � and � � 
 � �n

n�� if n � �� Thus� using Poincar%e #s inequality�
we have in both cases

jjul�t�jjL�m��m������ � djrul�t�jL�����

We deduce that

�

�

Z
Qt

X
j

ju�j j
�dxdt�

Z
�

X
j

jruj�t�j
�dxdt

� �

Z
Q

h�jdxdt�

Z t

�

X
jkl

jj
�alkj
�xk

�t�jj�Lm���

X
l

jrul�t�j
�
L�����

Inequality ������ is then a consequence of Gronwall#s Lemma�
If the functions alkj satisfy the hypotheses of the lemma� we construct

sequences of functions Alr
kj which belong to L��	� T� C����� and such that

Alr
kj � alkj weakly�& in L��Q� and in L��	� T �W ��m���� for each j� k� l� For

this� we consider an extension mapping P which maps L���� in L��IRn�
and W ��m��� in W ��m�IRn� with �recall that we suppose � to be regular
and at least C��

jPujL��IRn
� � cjujL����

and
jPujW ��m�IRn

� � cjujW ��m����

We set
Alr
kj�x� t� 
 �r � Pa

l
kj

��
�

where �r 
 �r�x� is a regulazing sequence and the convolution is taken
only in the space variables� We then have Alr

kj � alkj in L��	� T �W ��m����

and since one can easily see that �Alr
kj�r is bounded in L��Q�� they con�

verge � after extraction of a subsequence� in L��Q� weak �& to alkj � The

corresponding solutions ur of ������ are then bounded in L��	� T �V � and
in H��	� T �V ��� Hence they strongly converge in L��Q�n� This allows us to
pass to the limit in ������ and the limit of ur is the solution u of ������
with the potentials alkj � Since ur are bounded in L��	� T� V �� we have

u � L��	� T �V �� If u � L��	� T �V � and alkj � L��Q��L��	� T �W ��m�����
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we have alkjul � L��	� T�H����� and this ensures that the pressure is in

L��	� T�H������ tu

Example� the linearized Navier Stokes equations

The linearized Navier Stokes equation at the point z is

�����
����

y� ��y � �z�r�y � �y�r�z 
 rp� v�� in Q�

div y 
 	 in Q�

y 
 	 on ��

y�	� 
 y� in ��

������

This system is of the form ����� with ajkl 
 �ljzk and bjkl 
 �klzj � We then
have

Corollary ���� Suppose that z � L��Q�n � L��	� T �W ��m����n with
div z 
 	 in Q and where m � � if n 
 � and m 
 n if n � �� Then
 every
solution �y� p� of

�����
����

y� ��y � �z�r�y � �y�r�z 
 rp in Q�

div y 
 	 in Q�

y 
 	 on ��

y�	� 
 y�

������

which vanishes in an open set O of Q vanishes in the horizontal component
of O�

Corollary ���� Suppose that z � L��Q�n � L��	� T �W ��m����n with
div z 
 	 in Q and where m � � if n 
 � and m 
 n if n � �� Then
 the
reachable set

R�T � 
 fy�x� T �� y is solution of ����	� with v � L��q�ng

is dense in H�

���� Internal controllability

with controls having a null component

We study here the approximate controllability of the solutions of the sys�
tem �������

������

y�j ��yj �
�

�xk
�alkjyl� �Bl

jyl 

�p

�xj
� v�q in Q�

div y 
 	 in Q�

y 
 	 on ��

y�	� 
 y� in ��

������

with controls having one null component� Using Theorem ���� we get �since�
in this case� the pair �u� �� solution of the adjoint problem� is in
L�loc�	� T�H

�����n � L�loc�	� T �H
����� by classical results��
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Proposition ��	� Let ajkl and Bj
l be in L��Q� satisfying ������ For every

y� � H
 and T � 	� the reachable set

R�T � 
 fy�x� T ��where y is solution of ������ and

v 
 �v�� � � � � vn��� 	� � L��q�n�� � f	gg

is dense in H�

Remark ��
� Conditions ����� mean �in particular� that only yn appears
in the equation satis�ed by yn�

��� Boundary controllability

We now end with some results on boundary control� We denote by � the
unit exterior normal vector of the boundary �� We consider the solutions y
in L��	� T �H�� C�
	� T �� V �� de�ned by a duality process of����������

���������

	� � j � n�

y�j ��yj � alkj
�yl
�xk

�
�

�xk
�blkjyl� 


�p

�xj
in Q�

div y 
 	 in Q�

y 
 v � L��	� T �H��������n�

y�	� 
 y� � V �

������

when v satis�es for almost every t�

hv�t�� �i 
 	

where h � i is the duality bracket between H�������n and H������n�

Remark ���� Even if one supposes that the initial data y� is in H� the
reachable set is not a subset of H� Furthermore� solutions of the adjoint
problems with initial data in H do not necessarily possess a normal deriva�
tive in L���� �	� T ��� This is why we consider solutions de�ned by a duality
process with initial data in V ��

We prove

Proposition ����� For � � j� k� l � n� let bjkl � L��Q� and ajkl �
L��	� T �W �������� For every y� � V � the reachable set of the solutions
of ������ with controls in L��	� T �H��������n satisfying � for almost every
t � hv�t�� �i 
 	� is dense in V ��

Proof of Proposition �����
We just have to apply Hahn�Banach theorem� if u� � V is orthogonal

�in the duality sense� to the reachable set� we consider the solution u �
L��	� T� V � � C�
	� T ��H� of����������

���������

	� � j � n�

� u�j ��uj � bjkl
�ul
�xk

�
�

�xk
�ajklul� 


��

�xj
in Q�

div u 
 	 in Q�

u 
 	 on ��

u�T � 
 u� in ��

������
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Using the regularity of the coe�cients ajkl and bjkl� we have
u � L��	� T �H�����n and � � L��	� T �H������ Furthermore� we have

u� � V �	 �
�u

��
� �� 
 	 on ��

With this condition� the extension by 	 �in space� of u and � in a ball
B which intersects � are still solutions of the homogeneous system but in
��� �B ��c��� �	� T �� Since they vanish in �B ��c�� �	� T �� Theorem ���
implies that they vanish in Q and thus u� 
 	� tu

�� Approximate controllability for nonlinear equations

��� Proof of Theorem ���

Once one knows that the linear Stokes equations perturbed by lower order
terms are approximately controllable� the �xed point method that we have
developped in 
�� can be applied in order to study the non linear equation
������ Furthermore� Theorem ��� will be proved if we show that the closure
of R�T � contains V� For z � L��	� T �H�� we denote by bk the kth component
of the vector TM�z�� Since bk � L��Q�� for y� � H and v � L��q�n� there
exists y 
 y�z� v� � L��	� T� V � � C�
	� T ��H� solution of

�������
������

y� ��y �
�

�xk
�bky� 
 rp� v�q in Q�

div y 
 	 in Q�

y 
 	 on ��

y�	� 
 y� in ��

�����

As TM�z� � L��Q�n� we know �the unique continuation property needed
here was proved in 
��� that the reachable set at time T of the solutions of
������ is dense in H� Hence for every y� � V� and 
 � 	 there exists a control
v � L��q�n such that the solution y satis�es

jy�T �� y�jH � 
�

Let us consider the control of L��q�� minimum norm� For this� we decom�
pose y as y 
 Y � Y� where Y 
 Y �z� v� and Y� 
 Y��z� are solutions
of �������

������

Y � ��Y �
�

�xk
�bkY � 
 rp� v�q in Q�

div Y 
 	 in Q�

Y 
 	 on ��

Y �	� 
 	 in ��

�����
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and �������
������

Y �
� ��Y� �

�

�xk
�bkY�� 
 rp� in Q�

div Y� 
 	 in Q�

Y� 
 	 on ��

Y��	� 
 y� in ��

�����

It is classical �see 
��� that the control of minimum norm is given by
v 
 v�z� 
 � 
 ��z� where

�����
����

� �� ���� �TM�z��r�� 
 r� in Q�

div� 
 	 in Q�

� 
 	 on ��

��T � 
 �� in ��

�����

and �� � H minimizes the functional Jz over H de�ned by

Jz��
�� 


�

�

Z
q

j�j�dxdt� 
j��jH �

Z
�

�y��x�� Y��x� T ���
��x�dx �����

over the solutions � of ����� with ��T � 
 ���
With this choice of controls v� we introduce the mapping

� � L��	� T �H�� L��	� T �H�

z � y
�����

where y is the solution of ����� with v 
 � 
 ��z��

If we prove that � possesses a �xed point� y� then it will be solution of
����� and it will satisfy jy�T � � y�jH � 
 and thus Theorem ��� will be
proved� For this� let us prove the

Lemma ���� The minimizers ���z� of Jz over H remain uniformly bounded
in H when z describes L��	� T �H��

Proof of Lemma 	���
The proof of such results is classical and we give it for the sake of com�

pleteness� We argue by contradiction� suppose that there exists a sequence
�zn�n of functions in L��	� T �H� such that the corresponding minimizers ��n
of Jzn satisfy j��njH � �� when n� ���

For '��n 
 ��n
j�
�
njH � we write '�n and '�n the solutions of ����� with

'�n�T � 
 '��n� Since j '�
�
njH 
 �� we can extract a subsequence �still denoted by

� '��n�n� which weakly converges in H to an element '�� � H� Since Jzn ��
�
n� �

Jzn�	� 
 	� we have

�

�
j��njH

Z
q

j '�nj
� � 
 � jy�jH � jY�n�T �jH� �����

As the functions bn 
 TM�zn� are bounded in L��Q�n� they weakly �&
converge �after extraction of a subsequence� in this space to an element b �
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L��Q�n� It is then easy to prove that the functions Y�n�z� �associated to the
potential bn� are bounded in L��	� T �V � � C�
	� T ��H� and thus �Y�n�T ��n
is bounded in H� We now let n � �� in ����� and we deduce that '� 

	 in q�

In order to prove that one can pass to the limit in the equation satis�ed
by '�n� we use the continuity of the linear map

f � L��Q�n ��w� p� � �L��	� T �H����n � V ��

H��	� T� L�����n�� L��	� T �H������

where w is solution w���w 
 rp� f in Q and w�	� 
 	� This proves that
�T � t� '�n is bounded in L��	� T �H�����n �H��	� T� L�����n and thus '�n
is bounded in L��	� T � ��H�����n �H��	� T � �� L�����n� After extraction
of a subsequence� they strongly converge in L��	� T � ��H����� to '�� The
equation satis�ed by '�n then passes to the limit on �� �	� T � �� for every
� � 	 and we have for every � � 	�

�����
����

� '�� ��'�� �b�r� '� 
 r� in �� �	� T � ��

div '� 
 	 in �� �	� T � ��

� '�� �� � L���	� T � ���H������ L�loc��� �	� T � ���

'� 
 	 in q

�����

with bk � L��Q��Using Theorem ��� of 
��� we deduce that '� 
 	 in Q� Since
'�n is bounded in L��	� T �H��H��	� T� V ��� we deduce that '��n converges to
	 in V �� Furthermore� '�n is bounded in L��	� T���H���H�����	� T����
for every � � 	� Thus we can suppose that '�n�	�� 	 in H�

We have
Jzn��

�
n�

j��njH
� 
�

Z
�

�y� � Y�n�T �� '�
�
ndx�

Since y� � V and
R
� Y�n�T � '�

�
ndx 


R
� y

� '��n�	�� we have that
R
��y

� �
Y�n�T �� '�

�
ndx goes to zero when n� ��� The proof of Lemma ��� is com�

plete since on another hand� Jzn��
�
n� � 	�

We now end the proof of Theorem ��� applying Schauder#s �xed point the�
orem� Since TM is continuous and bounded� � is continuous on L��	� T �H��
Using Lemma ���� when z describes L��	� T �H�� the controls ��z� are boun�
ded in L��q� and� as the range of TM is bounded in L��IRn�n� one can easily
prove that the range of � is bounded in L��	� T �V �� Using the variational
de�nition of Y� one can easily prove that the functions Y are uniformly
bounded with respect to z in H��	� T� V �� � L��	� T� V � and thus they de�
scribe a compact set K� of L��	� T �H�� This proves that the range of � is
relatively compact in L��	� T �H��We can now apply Schauder#s �xed point
theorem and this ends the proof of Theorem ���� tu
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���� Proof of Theorem ���

The method is the same as for the proof of Theorem ���� For z �
L��	� T �H��we denote by bk the k

th component of TM�z�� Since bk � L��Q��
for y� � H and v � L��q�n� there exists y 
 y�z� v� � L��	� T� V � �
C�
	� T ��H� solution of

�����
����

y� ��y � �TM�z��r�y 
 rp� v�q in Q�

div y 
 	 in Q�

y 
 	 on ��

y�	� 
 y� in ��

�����

As TM�z� � L��Q�n� we know that the reachable set at time T of the
solutions of ����� is dense in H� Hence for every y� � H and 
 � 	 there
exists a control v � L��q�n such that the solution y satis�es

jy�T �� y�jH � 
�

We now consider the control of L��q�� minimum norm� For this� we de�
compose y as y 
 Y � Y� where Y 
 Y �z� v� and Y� 
 Y��z� are solutions
of �����

����

Y � ��Y � �TM�z��r�Y 
 rp� v�q in Q�

div Y 
 	 in Q�

Y 
 	 on ��

Y �	� 
 	 in ��

����	�

and �����
����

Y �
� ��Y� � �TM�z��r�Y� 
 rp� in Q�

div Y� 
 	 in Q�

Y� 
 	 on ��

Y��	� 
 y� in ��

������

The control of minimum norm is given by v 
 v�z� 
 � 
 ��z� where

�������
������

� �� ����
�

�xk
�TM�z�k�� 
 r� in Q�

div� 
 	 in Q�

� 
 	 on ��

��T � 
 �� in ��

������

where �� � H minimizes the functional Jz over H de�ned by

Jz��
�� 


�

�

Z
q

j�j�dxdt� 
j��jH �

Z
�

�y��x�� Y��x� T ���
��x�dx ������

over the solutions � of ������ with ��T � 
 ���
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With this choice of controls v� we introduce the mapping

� � L��	� T �H�� L��	� T �H�

z � y
������

where y is the solution of ����� with v 
 � 
 ��z� and we prove that �
possesses a �xed point y�

Lemma ���� When z describes L��	� T �H�� the minimizers ���z� of Jz over
H remain bounded in H�

Proof of Lemma 	���
Suppose that there exists a sequence �zn�n of functions in L��	� T �H�

such that the corresponding minimizers ��n of Jzn satisfy j��njH � ��
when n� ���

For '��n 
 ��n
j�
�
njH � we write '�n the solution of ������ with '�n�T � 
 '��n�

Since j '��njH 
 ��we can extract a subsequence �still denoted by � '��n�n� which
weakly converges in H to an element '�� � H� Since Jzn��

�
n� � Jzn�	� 
 	�

we have
�

�
j��njH

Z
q

j '�nj
� � 
 � jy�jH � jY�n�T �jH� ������

As the functions bn 
 TM�zn� are bounded in L��Q�n� they weakly �&
converge �after extraction of a subsequence� in this space to an element
b � L��Q�n� It is then easy to prove that the functions Y�n�z� are bounded
in L��	� T �V � � C
	� T ��H� and thus �Y�n�T ��n is bounded in H� We now
let n� �� in ������ and we deduce that '� 
 	 in q�

In order to prove that one can pass to the limit in the equation satis�ed
by '�n� it is su�cient to come back to the variational de�nition of '�n using
that as � '��n� is bounded in L��	� T �V �� and � '�n� is bounded in L��	� T �V ��
we have the strong convergence of � '�n� in L��	� T �H�� We can then write
that '� is solution of

�������
������

� '���'��
�

�xk
�bk '�� 
 r� in Q�

div '� 
 	 in Q�

'� � L��	� T �H������

'� 
 	 in q�

������

with bk � L��Q�� Using Lemma ���� we deduce that � � L�loc�Q�� Then
Theorem ��� implies that '� 
 	 in Q and thus '��n weakly converges in H to
	�

We have
Jzn��

�
n�

j��njH
� 
�

Z
�

�y� � Y�n�T �� '�
�
ndx�

We prove that the term
R
��y

� � Y�n�T �� '�
�
ndx tends to zero when n �

�� � Indeed� we can see that �Y�n�T ��n strongly converges �after extraction
of a subsequence� in H� For this� we decompose again Y�n in Y�n 
 w��w�

n
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with ������
�����

w�� ��w� 
 r�� in Q�

divw� 
 	 in Q�

w� 
 	 on ��

w��	� 
 Y�n�	� 
 y� in ��

������

and ������
�����

w��

n ��w�
n 
 r��n � �bn�r�Y�n in Q�

divw�
n 
 	 in Q�

w�
n 
 	 on ��

w�
n�	� 
 	 in ��

������

The result then comes from the fact that the mapping f � L��Q�n � w �
H��	� T �H�� C�	� T �V �� where w is the solution of w� ��w 
 r� � f in
Q and w�	� 
 	 in � is linear continuous� This �nishes the proof of Lemma
���� tu

In order to complete the proof of Theorem ���� we apply Schauder#s �xed
point theorem� Since TM is continuous and bounded� � is continuous on
L��	� T �H�� Using Lemma ���� when z describes L��	� T �H�� the controls
��z� are bounded in L��q� and as the range of TM is bounded L��IRn� IRn��
one can easily prove that the range of � is bounded in L��	� T �V �� We still
have to prove that this range is relatively compact in L��	� T �H��We have
already written y 
 Y� � Y which we decompose again in y 
 u � w � Y
where �����

����

u� ��u 
 r�� in Q�

div u 
 	 in Q�

u 
 	 on ��

u�	� 
 y� in ��

������

The function w� which is in L��	� T �V � � C�
	� T ��H�� satis�es

w� ��w 
 r�� � �TM�z��r�Y� in Q

and w�	� 
 	 in �� Since the function �TM�z��r�Y� are uniformly bounded in
L��Q�n with respect to z� solutions w stay in a bounded set of H��	� T�H��
L��	� T� V � and thus in a compact set K� of L��	� T �H�� The same argu�
ment proves that functions Y also leave in a compact set K� of L��	� T �H��
Functions y then leave in u � K� � K� which proves that the range of �
is relativly compact in L��	� T �H��We can now apply Schauder#s �x point
theorem and this ends the proof of Theorem ����

Remark ���� If � is any open subset of �� one can see that the only missing
argument in order to prove Theorem ��� is that there exists a pressure � in
L�loc�Q� solution of �������

The regularity of the pressure in Stokes systems is a delicate problem and

I want to thank Y� Achdou� G� Allain� J��P� Puel and J� Simon for fruitful

ESAIM� COCV� November ����� Vol��� pp� ��	
���



��� CAROLINE FABRE

discussions on this topic� I am very grateful to J��L� Lions for his corrections

about this work and for his encouragement�
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