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ON L� PERFORMANCE INDUCED BY FEEDBACKS WITH

MULTIPLE SATURATIONS

ANDREW R� TEEL

Abstract� Multi�level saturation feedbacks induce nonlinear distur�
bance�to�state L� stability for nonlinear systems in feedforward form�
This class of systems includes linear systems with actuator constraints�

Notation � A function � � IR�� � IR�� is said to be of class�K� �� � K��
if it is continuous and nondecreasing� It is of class�K if� in addition� it is
zero at zero� It is of class�K� if� moreover� it is strictly increasing and
unbounded� For � � K�� its inverse is another function of class�K� and is
denoted ����

� By abuse of notation we will often write the vector �xT � uT �T as �x� u��

� A measurable signal v � �	��� � IRm is said to belong to L� or v � L�
�respectively� belong to L� or v � L�� if the quantity

jjvjj� �

sZ �

�
jv�t�j�dt �resp� jjvjj� �
 ess� supt��jv�t�j �

is �nite�

� The function sat � IRn � IRn is de�ned as sat�x� 

x

maxf�� jxjg�

� More generally� a function � � IRm � IRm is said to be a saturation
function if it is di
erentiable at the origin and there exist K � 	� b � 	 such
that� for all u� v � IRm �

�� j��u� v�� ��u�j � min fKjvj� bg�
�� j��u�� uj � KuT��u� �

� For a nonlinear control system with state space x � IRn � an m�level satu�
ration feedback is any feedback of the form

u 
 ��Fx� v� �	���

where F is a matrix of appropriate dimension� � is a saturation function and
v is an �m� ���level saturation feedback� A zero�level saturation feedback
is the identically zero function�

� For a strictly positive real number a and a vector v � IRm � where m is an

arbitrary strictly positive integer� ��v� a� 
 v�a sat
�v
a

�
� Also� ��v� 	� 
 v�
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��� ANDREW R� TEEL

�� Introduction

Recently� it has been shown that multi�level saturation feedback �see the
notation section� can be e
ectively used to stabilize the origin of linear
systems subjected to actuator constraints �see ���� ���� ��	��� In fact� these
feedbacks have been shown to induce the property that� in the presence
of additive disturbances converging to a su�ciently small ball� the state
converges to a proportionally small ball�

In this paper� we will establish nonlinear disturbance�to�state L� stability
using multi�level saturation feedback� This duplicates the result of ��� where
nonlinear L� stability is established using a nonlinear controller that stati�
cally schedules a family of linear H� controllers �c�f� ����� Our result is a
corollary of a nonlinear L� performance result for a general class of so�called
nonlinear feedforward systems� This class of systems includes� for example�
�the ball and beam� �see ����� the �PVTOL� and �inverted pendulum on
a cart� �see ����� and linear systems with limits on the magnitude and n
derivatives of the input �see �����

The proof of our main result is obtained with two tools� Initially� we use a
Lyapunov argument to establish nonlinear disturbance�to�state L� stability
for critically stable� stabilizable linear control systems with actuator satura�
tion when a certain passive linear feedback is used� This result draws on the
proof techniques used in ���� A small gain argument is then used to show
that the stability is robust to input�driven additive� dynamic perturbations
that satisfy certain L� stability properties� Ultimately� this robust stabiliza�
tion result is used iteratively in controller design for nonlinear feedforward
systems�

The paper is organized as follows� In section � we summarize our main
results on L� performance while the subsequent sections are dedicated to
the proofs� In section � we present a robust stabilization result �lemma
���� for critically stable� stabilizable linear systems with additive� dynamic
perturbations driven by the input� This result is the basis for an inductive
proof of our main results �theorems ��� and ����� Using the proof� we are
able to show how the main results extend to cover� for example� results for
linear systems with exponentially unstable modes� This is done at the end of
section �� The proof of the robust stabilization result �lemma ���� is given
in section �� Its proof uses a small gain argument together with a result
�lemma ���� concerning nonlinear disturbance�to�state L� stabilization by
passive linear feedback for critically stable� stabilizable linear systems with
actuator saturation� The proof of lemma ��� is given in section �� Finally�
we will provide some concluding remarks�
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ON L� PERFORMANCE OF FEEDBACKS WITH SATURATIONS ���

�� Main Results

Nonlinear feedforward systems� The main result of this paper applies to
nonlinear feedforward control systems� i�e� systems of the form

�x� 
 A�x� � f��x�� � � � � xp� u� d�

�x� 
 A�x� � f��x�� � � � � xp� u� d�
���

�xp�� 
 Ap��xp�� � fp���xp� u� d�

�xp 
 Apxp � fp�u� d�

�����

where xi � IRni � De�ne n 
 n� � � � �� np and Xi 
 �xTi � � � � � x
T
p �

T � For
system ������ our standing assumption will be the following�

Assumption ���� The fi are locally Lipschitz and zero at zero� the Jacobian
linearization at the origin and with d � 	 exists and is stabilizable� the Ai

are critically stable� and for each i there exists a class�K� function �i such
that �

jfi�Xi��� u� d�� fi�Xi��� u� 	�j � �i�j�Xi��� u�j�jdj � �����

With this assumption� the class of systems we are considering is slightly
less general than that considered in ��	�� In particular� the condition �����
was not assumed and the xp subsystem was allowed to be more general in
��	�� �See the end of section � for a discussion of the case where the xp
subsystem is more general�� Under assumption ���� we can show that there
exists a p�level saturation feedback that induces nonlinear L� stability from
d to the state x� For simplicity� we will only consider multiple saturation
feedbacks that are nested� as de�ned in the notation section of this paper�
But� more general combinations �see ��� and ��	�� could also be used to give
the same result� Our result is summarized in the theorem below� The proof
will be given in section �� A control synthesis algorithm is given after the
statement of the theorem�

Theorem ���� For the system in ����� satisfying assumption ���� there ex�
ist a p�level saturation feedback ��	� and class�K functions ���� �

d
� � �

�
� and

�d� such that� for each d � L� and each x� � IRn� the trajectory of the system
����� with u 
 ��x� and x�	� 
 x� exists for all t 
 	 and satis	es


jjxjj� � max
�
����jx�j� � �d��jjdjj��

�
jjxjj� � max

�
����jx�j� � �d��jjdjj��

�
�

�����

This result implies that the origin is globally asymptotically stable when
d � 	� Indeed� global stability follows from the second inequality� Then�
with x� �x � L� and x � L� �from the �rst inequality� it follows from Bar�
balat�s lemma �see ��� Lemma ����� that x converges to zero�

We now summarize the control synthesis algorithm� Throughout� i 

�� � � � � p� The matrices �Ai�Bi� will represent the linear approximation of

�To make sense out of the case i � p� de�ne Xp�� to be a vector of dimension zero�
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��	 ANDREW R� TEEL

the Xi subsystem with d � 	 �where Xi is de�ned above assumption �����
i�e�� with d � 	 and ignoring higher order terms in Xi and u we have

�Xi 
 AiXi � Biu � �����

Let vi�x� 
 �BTi PiXi where Pi is a positive de�nite� symmetric matrix
satisfying

�AT
i Pi � Pi �Ai � 	 �����

with

�Ai 

	

	Xi

�
�AiXi � Bi

pX
j
i��

vj�x�

�
	 � �����

�One �rst determines Pp� which depends only on �Ap�Bp�� then vp� then
Pp��� then vp��� etc�� Next let w��x� � 	 and

wi�x� 
 
i�i



vi�x� � wi���x�


i

�
�����

where the �i are saturation functions� With the parameters 
i � 	 adjusted
appropriately �guided by the proof of theorem ����� the control law ��x� is
the p�level saturation feedback wp�x��

Linear systems with actuator saturation� We now state the corollary of
the above theorem for linear control systems of the form

�x 
 Ax� Bu � w�
y 
 Cx� w�

�����

where x � IRn� w 
 �wT
� � w

T
� �

T � L�� The result is for stabilizable� de�
tectable systems that may be open loop unstable but are not open loop
exponentially unstable� Open loop exponentially unstable systems will be
discussed at the end of section ��

Theorem ���� Consider the system ������ If �A�B� is stabilizable� �C�A�
is detectable and the eigenvalues of A have nonpositive real part then� with L
chosen so that A� LC is Hurwitz� there exists a p�level saturation feedback
��	� �p � n� and class�K functions ���� �

e
�� �

w
� � �

�
�� �e� and �w� such that�

using the dynamic feedback

��x 
 A�x�Bu � L �C�x� y�
u 
 � ��x� �

�����

for each w � L�� each x� � IRn and each �x� � IRn� the trajectory of the sys�
tem ����������� with �x�	�� �x�	�� 
 �x�� �x�� exists for all t 
 	 and satis	es

jjxjj� � max f ����jx�j� � �e��jx� � �x�j� � �w� �jjwjj�� g
jjxjj� � max f ����jx�j� � �e��jx� � �x�j� � �w��jjwjj�� g �

����	�

Proof� De�ning e 
 x� �x� we get

�e 
 �A� LC�e� w� � Lw� � ������
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ON L� PERFORMANCE OF FEEDBACKS WITH SATURATIONS ���

Since �A� LC� is Hurwitz� there exist strictly positive real numbers � and
�� such that

jjejj� � max f�je�	�j� ��jjwjj�g � ������

Next� since �A�B� is stabilizable and the eigenvalues of A have nonpositive
real part� there exists a coordinate transformation z 
 Tx so that TAT�� is
upper triangular with p critically stable matrices on the diagonal for some
p � n� In the z coordinates� the system is in the form of system ����� and
satis�es assumption ���� Picking u 
 � ��x� where � is an appropriate p�level
saturation feedback and using the fact that � is globally Lipschitz� the result
follows from theorem ���� �

Remark ���� As pointed out in ���� if the result holds for u 
 � ��x� then
the same results holds �qualitatively� for u 
 
� ��x�
�� This follows by
working in the coordinates �x 
 x�
� The consequence of this observation is
that nonlinear L� stability can be achieved with a p�level saturation that is
arbitrarily small in magnitude� In fact� the general feedforward result could
be used to prove a similar result with arbitrarily small bounds on the input
magnitude and any number of its derivatives �c�f� ��	���

Remark ���� The stability gain from w to the state must be� in general�
super�linear at in�nity when using a bounded control� Otherwise� a small
gain argument would give L� stability for small perturbations including
those that moved the open loop poles from the imaginary axis into the
open right half plane� This is not possible since even global asymptotic
stabilization with bounded controls is not possible in this case�

Remark ���� The result is robust to small �dynamic� uncertainty in how
the input a
ects the dynamics� �Such perturbations cannot move the open
loop pole locations�� We have chosen not to state this result here but the
results should be transparent after digesting the proof� The analogous �re�
stricted� L� stability results have been presented in ��	��

�� Proving theorem ���

The proof of theorem ��� is by induction on a robust stabilization result for
critically stable linear systems with additive� dynamic disturbances driven by
the input� To state this result compactly� we make a preliminary de�nition�
In the de�nition� the L��norm of a disturbance�s distance to a ball of a
certain radius is related to the L��norm of the output�s distance to a ball of
a related radius�

Definition ���� The output y of a dynamical system

�x 
 f�x� d�� d��
y 
 h�x� d�� d��

�����

with x � IRn� y � IRm� d� � IRp� � d� � IRp� is said to satisfy the induction
hypothesis if there exist strictly positive real numbers 
� M � L and �� and
class�K functions ��� � �

d�
� � ��� and �d�� such that� for all a 
 	 and d� satis�

fying jjd�jj� � M and jj��d�� a�jj� � �� all d� � L� and all x� � IRn � the
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��� ANDREW R� TEEL

trajectories of the system ����� with x�	� 
 x� satisfy ��

jj��y� 
a�jj� � max
n
����jx�j� � ��jj��d�� a�jj� � �d�� �jjd�jj��

o
jjyjj� � max

�
��� �jx�j� � Ljjd�jj� � �d�� �jjd�jj��

�
�

�����

The following lemma on robust stabilization will be used to prove theorem
���� The result parallels ��	� Theorem �� where an analogous result is stated
in terms of L� properties� The proof of lemma ��� is in section ��

Lemma ���� Consider the locally Lipschitz control system

�x� 
 Ax� �Bu � g�x�� u� d�

�x� 
 f�x�� u� d� �
�����

where x� � IRn� and x� � IRn� � Suppose

�� �A�B� is stabilizable and there exists P 
 PT � 	 such that ATP �
PA � 	� i�e�� A is critically stable�

�� the state x� satis	es the induction hypothesis with d� �
 u and d� �
 d�
�� there exists a function � of class�K� such that

jg�x�� u� d�� g�x�� u� 	�j � ��j�x�� u�j�jdj �

�� lim
j�x��u
j��

jg�x�� u� 	�j
j�x�� u�j 
 	 �

Let � be a saturation function� Then there exists a strictly positive real
number 
� such that� with the control

u 
 
�


�BTPx� � v




�
�����

where 
 � �	� 
��� the output x� for the �x�� x�� system satis	es the induction
hypothesis with d� �
 v and d� �
 d�

Proof of theorem ����
The proof is by induction� Apply lemma ��� to the xp subsystem �xp is to

be identi�ed with x� in the lemma and there is no x� subsystem in this case�

to see that� with a control of the form ����� where B 
 Bp 

�fp
�u
jd�u
� and


 
 
p su�ciently small� the state xp satis�es the induction hypothesis with
d� �
 v and d� �
 d� It can be easily shown that Ap � BpB

T
p Pp is Hurwitz

and� with the properties of a saturation function and the fact that Ap�� is
critically stable� it follows that the linearization of the Xp�� subsystem with
v as control is stabilizable and open loop critically stable�

We analyze the Xi subsystem� for i 
 �� � � � � p� �� by �rst making a copy
of the Xi�� subsystem� the state of which we denote by �Xi��� i�e��

��Xi�� 
 Fi��� �Xi��� v� d� � �Xi���	� 
 Xi���	� � �����

Let �Ai� Bi� represent the Jacobian linearization of the Xi subsystem and
let the function gi�Xi��� v� d� be given by

gi�Xi��� v� d� �
 Fi�Xi��� v� d�� �AiXi � Biv� � �����

�See the notation section for the de�nition of ��v� a��
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ON L� PERFORMANCE OF FEEDBACKS WITH SATURATIONS ���

The fact that gi is independent of xi follows from the structure of feedforward

systems� Notice that lim
j�Xi���v
j��

jgi�Xi��� v� 	�j
j�Xi��� v�j 
 	� We can now write the

Xi system as

�Xi 
 AiXi � Biv � gi� �Xi��� v� d�

��X i�� 
 Fi��� �Xi��� v� d� �
�����

Since �Ai� Bi� is stabilizable and Ai is a critically stable matrix� we can
again apply lemma ��� �Xi is associated with x�� �Xi�� is associated with x�
and v is associated with u� to get that� under a control v of the form �����
with 
 
 
i su�ciently small �and with v on the right hand side of �����
replaced by w�� the state Xi satis�es the induction hypothesis with d� �
 w
and d� �
 d� When i 
 �� it follows from the structure of the system �����
and the properties of � that the linearization of the Xi�� subsystem with
w as control is stabilizable and open loop critically stable� So� theorem ���
follows by induction� �

Extensions of theorem ����

From the proof of theorem ���� we see all that is required for the xp
subsystem is the existence of a control u 
 ��xp� v� that is di
erentiable
at the origin� locally exponentially stabilizes the origin of the xp subsystem
when d � 	� the linearization is controllable through v� and the state xp
satis�es the induction hypothesis� So� if we rewrite the xp subsystem in the
more general form

�xp 
 �fp�xp� u� dp� �����

and assume the existence of such an ��xp� v� then we arrive at the conclusion
of theorem ���� We will see from the proof of lemma ��� that if this feedback
is such that xp only satis�es the induction hypothesis for jxp�	�j su�ciently
small and dp with su�ciently small L� norm� those restrictions can be carried
through during the iteration to get the conclusion of theorem ��� but with
restrictions on jxp�	�j and the L��norm of dp�

A special case where this discussion is relevant is when the xp subsystem
contains the exponentially unstable open loop modes of a linear system and
when the actuators of the linear system saturate� i�e��

�xp 
 Apxp � Bp��u� � dp �����

where the eigenvalues of Ap have positive real part and � is a saturation
function� In this case� because � is bounded� no feedback exists so that
xp satis�es the induction hypothesis for all xp�	� and all dp � L�� But� xp
does satisfy the hypothesis� at least for jxp�	�j su�ciently small and dp with
su�ciently small L� norm� when u 
 Fxp � v where u 
 Fxp is locally
exponentially stabilizing when dp � 	� So� a local version of theorem ���
holds when A has eigenvalues with positive real part�
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��� ANDREW R� TEEL

�� Proving lemma ���

The key piece in proving lemma ��� is the following result for critically
stable� stabilizable linear systems with input saturation and additive dis�
turbances� It shows that a particular passive feedback induces the type of
stability described in the induction hypothesis�

Lemma ���� Let �A�B� be stabilizable� let A be such that there exists P 

PT � 	 satisfying ATP � PA � 	 and let � be a saturation function� Then
the state of the system

�x 
 Ax �B�
��BTPx



� d� � d� �����

satis	es the induction hypothesis�

Remark ���� This result for the case where d� � 	 and a 
 	 �in the
de�nition of the induction hypothesis� was already reported in ���� The
proof of lemma ���� given in section �� draws on the proof technique used in
����

We will combine lemma ��� with small gain arguments to prove lemma
���� Before we do� we need some preliminary facts�

Fact �� Let c 
 	� If jwj � max fjw�j� jw�j� jw�jg then

jj��w� c�jj� �
p
� 	max

�
jj��w�� c�jj� � jj��w�� c�jj� � jj��w�� c�jj�

�
�

Proof� We have

j��w� c�j 
 jwj


�� c

max fc� jwjg
�

� max

�
jw�j� jw�j� jw�j

�

�� c

max fc� jw�j� jw�j� jw�jg
�


 max

�
j��w�� c�j � j��w�� c�j � j��w�� c�j

�
�

�����

Thus

j��w� c�j� � max

�
j��w�� c�j� � j��w�� c�j� � j��w�� c�j�

�
� j��w�� c�j�� j��w�� c�j�� j��w�� c�j� �

�����

We integrate both sides� use the fact that a � b � c � � 	 max fa� b� cg for
positive numbers a� b� c and then take the square root on both sides to obtain
the result�

�

Fact �� If 	 � a� � a� then jj��w� a��jj� � jj��w� a��jj��
Proof� We have

j��w� a��j 
 jwj


�� �

max f�� jwj�a�g
�

� jwj


�� �

max f�� jwj�a�g
�


 j��w� a��j �

�����
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�

Fact �� Let c 
 	 and k � 	� Then ��kw� c� 
 k��w� c�k��

Proof� We have

��kw� c� 
 kw � c sat



kw

c

�

 k

�
w � c�k sat



w

c�k

��

 k��w� c�k� �

�����

�

Proof of lemma ����
Let the given saturation function � be parameterized by the strictly pos�

itive real numbers K� and b �see notation section�� For the given A� B and
�� let �
��M�� L�� ���� be the set of constants of the induction hypothesis that
follows from lemma ���� For the given x� subsystem� let �
��M�� L�� ���� be
the set of constants of the induction hypothesis given by assumption� We
will use � as a generic class�K function� All norms below should be thought
of as norms on truncated signals� The norms on �	���� once this is shown
to be the maximal interval of de�nition� can be obtained from the limiting
process as the truncation time goes to in�nity�

We write the x� subsystem as

�x� 
 Ax� �B
�


�BTPx�



�
� d� � d� �����

where

d� 
 B


�
�


�BTPx� � v




�
� �


�BTPx�



��

� g




�
b sat



x�

�
b

�
� u� 	

�

d� 
 g�x�� u� d�� g




�
b sat



x�

�
b

�
� u� 	

�
�

�����

Our goal is to �nd a suitable 
� � 	 so that the lemma holds� This will be
achieved by choosing


� �
 min f
�� 
�� 
�� 
�g �����

where the 
i are strictly positive real numbers to be speci�ed�
Let 
� 
 M��b� Then 
 � �	� 
�� guarantees that� on the maximal interval

of de�nition� jjujj� �M�� Then� since x� satis�es the induction hypothesis
and since d � L�� x� � L� on the maximal interval of de�nition� This�
together with the form of the di
erential equation� implies that the maximal
interval of de�nition is �	����

Let 
� be a strictly positive real number such that� for all 	 � 
 � 
��

jx�j � 
�
b � juj � 
b 
� jg�x�� u� 	�j� 
M� � �����

Such a 
� exists from the fourth assumption of the lemma� Then 
 � �	� 
��
guarantees that there exists �M � 	 such that jjvjj� � �M implies jjd�jj� �

M��
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��� ANDREW R� TEEL

Now� with u given in ������ there exist a strictly positive real number K�
class�K� functions � and �� and a class�K function � such that

jd�j � max

�
Kjvj� ��
b�jx�j� ��
b�jx�j

�
jd�j � � �j�x�� u�j� jdj� �� �j�x�� u�j� j��x�� 
�
b�j �

����	�

So� using facts � and ��

jj��d�� a�jj� �
p
� 	max

�
K
���� �v� a

K

����
�
� ������

��
b�

�����


x��

a

��
b�

�����
�

� ��
b�

�����


x��

a

��
b�

�����
�

�
�

Since x� satis�es the induction hypothesis������


x��

a

��
b�

�����
�

� max

�
��jx��j� � ���

�����


u�

a

��
b�
�

�����
�

� � �jjdjj��
�

�

������

Then� combining ������ and ������ and using ������ the fact that � is globally
Lipschitz and fact �� there exist strictly positive real numbers K� and K�

such that

jj��d�� a�jj� � max

�
��jx��j� � K�

�����


v�

a

K�

�����
�

� ������

K���
b�

�����


x��

a

K���
b�

�����
�

� ��jjdjj��
�

�

Now� using the scalings x� x�
� d� � d��
� d� � d��
� and using lemma

��� and fact � we have� for jjvjj� � �M �

jj��x�� 
�a�jj� � max

�

�


 jx��j



�
� ���jj��d�� a�jj� � 
�


 jjd�jj�



� �

jjx�jj� � max

�

�


 jx��j



�
� L�jjd�jj� � 
�


 jjd�jj�



� �
�

������

Let 
� satisfy

��
�b�K� � min

�
�

���
�
�


�

�
� ������

Then� combining ������ and the �rst inequality of ������ and using fact ��
we have for 
 � �	� 
�� that

jj��x�� 
�a�jj� � max

�

�


 jx�� j



�
� �����jx��j� � ������

���K�

�����


v�

a

K�

�����
�

� �����jjdjj�� � 
�

 jjd�jj�




��
�

Using ����	� and the bound on jj��x�� 
�
b�jj� from the induction hypothesis
satis�ed by x� we have

jjd�jj� � �



jj�x�� u�jj�

�
jjdjj�� ��



jj�x�� u�jj�

�
max

�
��jx��j� � ��jjdjj��

�
�

������
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First inserting into ������ the bound on jjx�jj� from the induction hypothesis
and� in turn� the bound jjujj� � 
b and then inserting the resulting bound
on jjd�jj� into ������� we get the form of bound on jj��x�� 
�a�jj� claimed in
the lemma�

For the bound on jjx�jj�� we repeat the above argument using

jjd�jj� � max

�
Kjjvjj� � ��
b�jjx�jj� � ��
b�jjx�jj�

�
������

instead of ������ and using� from the induction hypothesis on x��

jjx�jj� � max

�
��jx��j� � L�jjujj� � � �jjdjj��

�
������

instead of ������� We then can assert� as we did before ������� the existence
of strictly positive real numbers K� and K� such that �compare with �������

jjd�jj� � max

�
��jx��j� � K�jjvjj� � K���
b�jjx�jj� � ��jjdjj��

�
� ����	�

Using the second of the inequalities in ������ and letting 
� satisfy

��
�b�K� �
�

L�
������

we have that 
 � �	� 
�� implies �compare with �������

jjx�jj� � max

�

�


 jx��j



�
� L���jx��j� � ������

L�K�jjvjj� � L���jjdjj�� � 
�

 jjd�jj�




��
�

Then using the bound on jjd�jj� established above we get the form of the
bound on jjx�jj� claimed in the lemma�

We conclude that the induction hypothesis is satis�ed by �M � �L 
 L�K��
��� 
 ���K� and �
 
 
�K�� �

�� Proof of lemma ���

Fact �� Under the conditions of lemma ���� there exists P� 
 PT
� � 	 such

that

�A� BBTP �TP� � P��A�BBTP � 
 �I �

A preliminary energy function� Consider a function of the form

V �x� 


Z xTPx

�
���s�ds�

Z xT P�x

�
���s�ds �����

where �� and �� are continuous� nonnegative functions to be speci�ed�
When we consider the time derivative of V �x� along the trajectories of �����
we �nd� using jjd�jj� � M � completely squares and using the second in�
equality in the de�nition of a saturation function� that there exists strictly
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positive real numbers c�� c� and �K such that

�V � ���x
TPx�

�
�xTPB���BTPx� � �xTP �d� � d��

�
�

���x
TP�x�

��xTx� �xTP�B
�
���BTPx� �BTPx



� �xTP��d� � d��

�
� ����xTPx�

���xTPB���BTPx�



��M
max�P �jxj���xTPx� � jxj�����xTPx� � c�jd�j�

�xTx���xTP�x� � �Kjxj ���xTPB� ��BTPx



��
�
xTP�x



���

�
xTP�x



�
max�P��jxjjd�j� ����x

TP�x�jxj� � c�jd�j� �
�����

If M � �� and �� can be chosen so that the following three inequalities are
satis�ed�

�Kjxj���xTP�x� � ���x
TPx� �����

�M
max�P ����x
TPx� � 	��jxj���xTP�x� �����

����x
TPx� � ����x

TP�x� � 	������x
TP�x� �����

then

�V � ���x
TP�x�

�
� 	���jxj�� �
max�P��jxjjd�j

�
� �cjd�j� �����

where �c 
 c� � c�� To satisfy inequalities ������������ we choose

���s� 

�

�

�
�K�s

��
max�P��
� �

� �����

where

� 


min�P �
min�P��


max�P �
max�P��
�����

and we choose

���s� 
 �K

r
s


min�P �
��




min�P��s


max�P �

�
� �����

Notice that if 	 � b � a then ���a� � ���b� but also ����s� � �

�
���s� �since

� � ��� We then have

�Kjxj���xTP�x� � �K

s
xTPx


min�P �
��




min�P��


max�P �
xTPx

�

 ���x

TPx� ����	�

so that ����� is satis�ed� Also�

���xTPx� � �K

s

max�P �


min�P �
jxj����xTP�x�

� �K

s

max�P �


min�P �
jxj �

�
���x

TP�x� �

������
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So ����� is satis�ed if M � 	 is such that

�M
max�P � �K

s

max�P �


min�P �

�

�
� 	�� � ������

Finally�

����x
TPx� � ����x

TP�x� �



�K�
max�P �


min�P �

jxj�
��

� �

�
����x

TP�x�

�
�

�K�

��

min�P��


max�P��
jxj� � �

�
����x

TP�x�

�
�

�K�

��
xTP�x


max�P��
� �

�
����x

TP�x�

� 	������x
TP�x�

������

so that ����� is satis�ed�

Modifying V to get an L� bound in terms of L� L� bounds�

Returning to ������ note that for any a � 	 we can write

�V � ���x
TP�x�

�
�	���jxj�� �
max�P��jxj



j��d�� a�j�

����a sat


d�
a

�����
��

� �cjd�j� � ������

From this and the fact that jjd�jj� � M it follows� by completing squares�
that

jxj 
 ��
max�P��min fa�Mg 
� b��a� ������

implies

�V � ���x
TP�x�

�
� �

��
jxj� � ��
max�P��

� j��d�� a�j�
�
� �cjd�j� � ������

Now we de�ne

��r� 


Z r

�
����s� � ���s��ds ������

and note that � � K� while there exist strictly positive real numbers ���
�� such that

�
�
��jxj�


 � V �x� � �
�
��jxj�



� ������

De�ne

b��a� �
 �
�
��b

�
��a�



� ������

let � be a strictly positive real number and de�ne

b��a� �
 �
�
���� � ��b���a�



� ����	�

Also de�ne


 �


r
��
��

��
max�P��
p
� � � � ������
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Notice that b��a� � b��a� for a � 	 and V �x� � b��a� implies jxj � 
a�
De�ne

W �x� a� �
 ��a�V �x�� ������

where ��a�s� is a smooth� nondecreasing function such that ��a�s� 
 	 when
s � �	� b��a�� and ��a�s� 
 s when s � �b��a����� Notice that V �x��b��a� �
W �x� a� � V �x� and� since b��a� is bounded� the derivative of ��a can be
bounded independent of a� It then follows from ������ and considering the
two case jxj 
 
a and jxj � 
a that there exist strictly positive real numbers
�� and �� such that� for each a 
 	�

�W � ���x
TP�x�

�
� �

��
j��x� 
a�j� � �� j��d�� a�j�

�
� ��jd�j� � ������

We let a 
 jjd�jj� and we obtain

�W � ��jd�j� � ������

Integrating both sides we have

W �x�T �� a� � ��jjd�jj�� �W �x�	�� a� � ������

In other words�

V �x�T �� � ��jjd�jj�� � V �x�	��� b��a� ������

or

�
�
��jx�T �j�


 � ��jjd�jj�� � �
�
��jx�	�j�



� b��a� � ������

Since� on intervals of the form �	� s�� where s� � 	� �� and �� are upper
bounded and �� is positive and bounded away from zero� there exist strictly
positive real numbers �� and �� such that

����s� � ��s �s � �b��M� ������

and

��s� � ��s �s � ��

�M� � ������

It follows from manipulating ������ that� with L 
 

p
������ there exist

class�K functions ��� and �d�� such that

jx�T �j � max

�
����jx�	�j�� �d���jjd�jj���

r
�

��
��� ��b��a��

�

� max

�
����jx�	�j�� �d���jjd�jj���

s
���

��
�



��


�a�
��

� max
n
����jx�	�j�� �d���jjd�jj���

p
�����


�a�
o

� max
�
����jx�	�j�� �d���jjd�jj��� La

�
�

����	�

The L� inequality of the induction hypothesis follows from taking the supre�
mum over T on both sides�

Further modifying V to get the nonlinear L� bound�
Let ��� and ��� be strictly positive real numbers satisfying

�
�
���x

TP�x

 � V �x� � �

�
���x

TP�x


� ������
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where � was de�ned in ������� De�ne ��s� �

�

���s�
and note that ��s� is

nondecreasing� Also de�ne

��s� �
 �



�

���
����s�

�
� ������

Then� since W �x� a� � V �x� it follows that

��W �x� a�����x
TP�x� 
 �



�

���
����W �x� a��

�
���x

TP�x�

� ��xTP�x����x
TP�x� 
 �

������

and since W �x� a� 
 V �x� when jxj 
 
a it follows that� when jxj 
 
a�

��W �x� a�����x
TP�x� 
 �



�

���
����V �x��

�
���x

TP�x�


 �



���
���
xTP�x

�
���x

TP�x�


 ���
���
��xTP�x����x

TP�x�



���
���

�

������

De�ning

U�x� a� 


Z W �x�a


�
��s�ds ������

and using ������ we get

�U � � ���
�����

j� �x� 
a� j� � ��j� �d�� a� j� � ��V �x����jd�j� � ������

Assuming that ��d�� a� � L� and d� � L�� which from above gives that
V �x� � L�� and integrating both sides we get

���
�����

jj� �x� 
a� jj�� � ��jj� �d�� a� jj�� � ��jjV �x�jj����jjd�jj�� � U�x�	�� a� �

������

After using ������ and ����	� to bound jjV �x�jj� in terms of jx�	�j� jjd�jj�
and M �the upper bound on jjd�jj��� and noting that� from the properties
of W �x� a�� there exists �� � K� such that U�x� a� � ���jxj�� we get that
the L� inequality of the induction hypothesis holds with

�� 


r
�������

���
� ������

�

�� Conclusion

In this paper we have constructed a nonlinear disturbance�to�state L� gain
for systems in nonlinear feedforward form that are controlled using multi�
level saturation feedback� When specialized to linear systems with input
saturation� the results are qualitatively the same as those reported in ���
where linear systems with saturation are controlled by a static scheduling of
a family of linear H� controllers� It is not yet clear how the L� performance
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of the two schemes compares quantitatively� It would also be interesting to
see if any general connections can be made between nonlinear L� stability
and the type of L� stability studied in ��	��
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