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ON £; PERFORMANCE INDUCED BY FEEDBACKS WITH
MULTIPLE SATURATIONS

ANDREW R. TEEL

ABSTRACT. Multi-level saturation feedbacks induce nonlinear distur-
bance-to-state Lz stability for nonlinear systems in feedforward form.
This class of systems includes linear systems with actuator constraints.

Notation e A function v : R>g — IR>g is said to be of class-Ky (v € K1)
if it is continuous and nondecreasing. It is of class-K if, in addition, it is
zero at zero. It is of class-K, if, moreover, it is strictly increasing and
unbounded. For v € K, its inverse is another function of class-K ., and is

denoted y~1.

e By abuse of notation we will often write the vector (27, u")T as (z,u).

e A measurable signal v : [0,00) — IR™ is said to belong to £y or v € Ly
(respectively, belong to L, or v € L) if the quantity

[lvll2 == /0 [o@@)[2dt (resp. [[v]]o = ess. supysolv(?)] )
is finite.
e The function sat : R” — IR™ is defined as sat(z) = S —
(L, Jo])

e More generally, a function ¢ : IR™ — IR™ is said to be a saturation
function if it is differentiable at the origin and there exist K > 0, b > 0 such
that, for all u,v € IR™,

1. |o(u+v) — o(u)| < min {K|v|, b},

2. |o(u) —u| < Kulo(u)

e For a nonlinear control system with state space z € IR, an m-level satu-
ration feedback is any feedback of the form

w=o(Fz+v) (0.1)

where F is a matrix of appropriate dimension, ¢ is a saturation function and
v is an (m — 1)-level saturation feedback. A zero-level saturation feedback
is the identically zero function.

e For a strictly positive real number a and a vector v € IR™, where m is an

v
arbitrary strictly positive integer, 7(v,a) = v —asat (—) Also, 7(v,0) = v.
a
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226 ANDREW R. TEEL

1. INTRODUCTION

Recently, it has been shown that multi-level saturation feedback (see the
notation section) can be effectively used to stabilize the origin of linear
systems subjected to actuator constraints (see [5], [4], [10]). In fact, these
feedbacks have been shown to induce the property that, in the presence
of additive disturbances converging to a sufficiently small ball, the state
converges to a proportionally small ball.

In this paper, we will establish nonlinear disturbance-to-state L5 stability
using multi-level saturation feedback. This duplicates the result of [3] where
nonlinear £y stability is established using a nonlinear controller that stati-
cally schedules a family of linear M., controllers (c.f. [9]). Our result is a
corollary of a nonlinear £y performance result for a general class of so-called
nonlinear feedforward systems. This class of systems includes, for example,
“the ball and beam” (see [6]), the “PVTOL” and “inverted pendulum on
a cart” (see [8]), and linear systems with limits on the magnitude and n
derivatives of the input (see [7]).

The proof of our main result is obtained with two tools. Initially, we use a
Lyapunov argument to establish nonlinear disturbance-to-state L5 stability
for critically stable, stabilizable linear control systems with actuator satura-
tion when a certain passive linear feedback is used. This result draws on the
proof techniques used in [2]. A small gain argument is then used to show
that the stability is robust to input-driven additive, dynamic perturbations
that satisfy certain L stability properties. Ultimately, this robust stabiliza-
tion result is used iteratively in controller design for nonlinear feedforward
systems.

The paper is organized as follows. In section 2 we summarize our main
results on Ly performance while the subsequent sections are dedicated to
the proofs. In section 3 we present a robust stabilization result (lemma
3.2) for critically stable, stabilizable linear systems with additive, dynamic
perturbations driven by the input. This result is the basis for an inductive
proof of our main results (theorems 2.2 and 2.3). Using the proof, we are
able to show how the main results extend to cover, for example, results for
linear systems with exponentially unstable modes. This is done at the end of
section 3. The proof of the robust stabilization result (lemma 3.2) is given
in section 4. Its proof uses a small gain argument together with a result
(lemma 4.1) concerning nonlinear disturbance-to-state Ly stabilization by
passive linear feedback for critically stable, stabilizable linear systems with
actuator saturation. The proof of lemma 4.1 is given in section 5. Finally,
we will provide some concluding remarks.
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ON £, PERFORMANCE OF FEEDBACKS WITH SATURATIONS 227

2. MaAIN RESULTS

Nonlinear feedforward systems: The main result of this paper applies to
nonlinear feedforward control systems, i.e. systems of the form

& = Az + filze, ..., 2p,u,d)
gy = Asxo+ falzs,...,xp,u,d)
(2.1)
Fpo1 = Apapr+ fpo1(2p, 4, d)
By = Aprp+ fp(u,d)
where z; € R™. Define n = n; + ...+ n, and X; = (wZT, . ,wg)T. Tor

system (2.1), our standing assumption will be the following.

ASSUMPTION 2.1. The f; are locally Lipschitz and zero at zero, the Jacobian
linearization at the origin and with d = 0 exists and is stabilizable, the A;
are critically stable, and for each ¢ there exists a class-K function ¢; such
that !

|fi(Xir, u, d) = fi(Xig, u, 0)] < @il[(Xigr, w)])]d] - (22)

With this assumption, the class of systems we are considering is slightly
less general than that considered in [10]. In particular, the condition (2.2)
was not assumed and the z, subsystem was allowed to be more general in
[10]. (See the end of section 3 for a discussion of the case where the z,
subsystem is more general.) Under assumption 2.1, we can show that there
exists a p-level saturation feedback that induces nonlinear £y stability from
d to the state z. For simplicity, we will only consider multiple saturation
feedbacks that are nested, as defined in the notation section of this paper.
But, more general combinations (see [4] and [10]) could also be used to give
the same result. Our result is summarized in the theorem below. The proof
will be given in section 3. A control synthesis algorithm is given after the
statement of the theorem.

THEOREM 2.2. For the system in (2.1) satisfying assumption 2.1, there ex-
ist a p-level saturation feedback o(-) and class-K functions 7S, v§, 42, and
v such that, for each d € Ly and each x, € R”, the trajectory of the system
(2.1) with u = a(z) and z(0) = z, exists for all t > 0 and satisfies:

max { v3 (o]} , v3(Ildl]2) }

l2lloe < max { 72 (zel) , v&(lldll2) } -

This result implies that the origin is globally asymptotically stable when
d = 0. Indeed, global stability follows from the second inequality. Then,
with z,& € L, and & € Ly (from the first inequality) it follows from Bar-
balat’s lemma (see [1, Lemma 4.4]) that @ converges to zero.

We now summarize the control synthesis algorithm. Throughout, ¢ =
1,...,p. The matrices (A;, B;) will represent the linear approximation of

IN

1212

(2.3)

'To make sense out of the case i = p, define X,41 to be a vector of dimension zero.
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228 ANDREW R. TEEL

the X; subsystem with d = 0 (where X, is defined above assumption 2.1),
i.e., with d = 0 and ignoring higher order terms in X; and u we have

X; = AiX; + Biu . (2.4)
Let vi(z) = —BZ»TPZ'XZ' where F; is a positive definite, symmetric matrix
satisfying
AP+ PA; <0 (2.5)
with
4= A X+ B; zp: v; () (2.6)
= ax, | Zj:i+1 ; . .

(One first determines P,, which depends only on (A,, B,), then v,, then
P,_1, then v,_q, etc.) Next let wo(z) =0 and

i) = N (1 =1 l2) ) (2.7

where the o; are saturation functions. With the parameters A; > 0 adjusted
appropriately (guided by the proof of theorem 2.2), the control law a(z) is
the p-level saturation feedback w,(z).

Linear systems with actuator saturation: We now state the corollary of
the above theorem for linear control systems of the form

¥ = Az -+ Bu+ w;
y = Co+w, (2.8)
where 2 € R", w = (w],wl)T € L£;. The result is for stabilizable, de-
tectable systems that may be open loop unstable but are not open loop
exponentially unstable. Open loop exponentially unstable systems will be

discussed at the end of section 3.

THEOREM 2.3. Consider the system (2.8). If (A, B) is stabilizable, (C, A)
is detectable and the eigenvalues of A have nonpositive real part then, with L
chosen so that A+ LC' is Hurwitz, there exists a p-level saturation feedback
a(-) (p < n) and class-K functions 3, v5, v¥, ¥%, 15 and v such that,
using the dynamic feedback
i = Ai4Bu+L(Ci-y)
u = al@)

(2.9)

for each w € Ly, each x, € IR™ and each &, € IR", the trajectory of the sys-
tem (2.8)-(2.9) with (2(0),2(0)) = (2o, 2,) exists for all t > 0 and satisfies

loll: < max{ 35(1zel) » Y5(lz0 = &) , 73 (Ilwll) } (2.10)

lllee < max{ 73 (z0]) s 75 (|20 = Fo|) » i (|wll2) } -
PrOOF. Defining e = z — &, we get

é=(A+ LC)e+wy — Lwsy . (2.11)
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ON £, PERFORMANCE OF FEEDBACKS WITH SATURATIONS 229

Since (A+ LC) is Hurwitz, there exist strictly positive real numbers § and
~ such that

[lellz < max {5[e(0)], 7[[wll2} - (2.12)

Next, since (A, B) is stabilizable and the eigenvalues of A have nonpositive
real part, there exists a coordinate transformation 2 = Tz so that TAT ! is
upper triangular with p critically stable matrices on the diagonal for some
p < n. In the z coordinates, the system is in the form of system (2.1) and
satisfies assumption 2.1. Picking u = « (&) where « is an appropriate p-level
saturation feedback and using the fact that « is globally Lipschitz, the result
follows from theorem 2.2. a

REMARK 2.4. As pointed out in [4], if the result holds for v = a (%) then
the same results holds (qualitatively) for v = Aa (Z/A). This follows by
working in the coordinates # = 2 /\. The consequence of this observation is
that nonlinear £ stability can be achieved with a p-level saturation that is
arbitrarily small in magnitude. In fact, the general feedforward result could
be used to prove a similar result with arbitrarily small bounds on the input
magnitude and any number of its derivatives (c.f. [10]).

REMARK 2.5. The stability gain from w to the state must be, in general,
super-linear at infinity when using a bounded control. Otherwise, a small
gain argument would give Lo stability for small perturbations including
those that moved the open loop poles from the imaginary axis into the
open right half plane. This is not possible since even global asymptotic
stabilization with bounded controls is not possible in this case.

REMARK 2.6. The result is robust to small (dynamic) uncertainty in how
the input affects the dynamics. (Such perturbations cannot move the open
loop pole locations.) We have chosen not to state this result here but the
results should be transparent after digesting the proof. The analogous (re-
stricted) L., stability results have been presented in [10].

3. PROVING THEOREM 2.2

The proof of theorem 2.2 is by induction on a robust stabilization result for
critically stable linear systems with additive, dynamic disturbances driven by
the input. To state this result compactly, we make a preliminary definition.
In the definition, the Lo-norm of a disturbance’s distance to a ball of a
certain radius is related to the Lo-norm of the output’s distance to a ball of
a related radius.

DEFINITION 3.1. The output y of a dynamical system

& = [z, dy,dy)

y = hiedy,dy) (3.1)

with « € R*, y € R™, dy € RP!| dy € IRP? is said to satisfy the induction
hypothesis if there exist strictly positive real numbers 6, M, L and ¥ and
class-K functions ~3, 732, 72 and v% such that, for all @ > 0 and d; satis-
fying ||dq||ec < M and ||7(dy, a)||2 < o0, all dy € Ly and all z, € IR™, the
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230 ANDREW R. TEEL
trajectories of the system (3.1) with z(0) = x, satisfy *:

Ir(yda)lls < max{ 43 (lzel) s Aim(di,@)llz s 757 (ldall2) |}
Illoe < max { 7%, (lwel) , Elldilloe s 7 (ldallz) } -

The following lemma on robust stabilization will be used to prove theorem
2.2. The result parallels [10, Theorem 3] where an analogous result is stated
in terms of L., properties. The proof of lemma 3.2 is in section 4.

IN

(3.2)

A

LEMMA 3.2. Consider the locally Lipschitz control system
T = A$1+Bu+g($27u7d)

Ty = f($27u7d) .
where 1 € R™ and x4 € IR™. Suppose
1. (A, B) is stabilizable and there exists P = PT > 0 such that AT P +
PA <0, i.e., A is critically stable,
2. the state xq satisfies the induction hypothesis with dy := u and dy := d,
3. there exists a function ¢ of class-K4 such that

|g($27 u, d) - g($27 u, 0)| < S‘Q(|($27 u)|)|d| 3
4. lim |g($27u70)|
(@2)=0  |(22, u)]

Let o be a saturation function. Then there exists a strictly positive real
number \* such that, with the control

_RT
U= Ao (W) (3.4)

where A € (0, \*], the output x1 for the (x1,x3) system satisfies the induction
hypothesis with di := v and dy := d.

(3.3)

=0

PROOF OF THEOREM 2.2.

The proof is by induction. Apply lemma 3.2 to the z, subsystem (z, is to
be identified with 21 in the lemma and there is no 25 subsystem in this case)
to see that, with a control of the form (3.4) where B = B, = %|d,u=0 and
A = ), sufficiently small, the state z, satisfies the induction hypothesis with
dy :=v and dy := d. It can be easily shown that A, — BpoTPp is Hurwitz
and, with the properties of a saturation function and the fact that A,_; is
critically stable, it follows that the linearization of the X,,_; subsystem with
v as control is stabilizable and open loop critically stable.

We analyze the X; subsystem, forz = 1,...,p— 1, by first making a copy
of the X;y; subsystem, the state of which we denote by )N(H_l, ie.,

Xit1 = Fip1 (Xig1,v,d) Xit1(0) = X344 (0) . (3.5)
Let (A;, B;) represent the Jacobian linearization of the X; subsystem and
let the function ¢;(X;41,v,d) be given by

gi(Xi-l—h v, d) = Fi(Xi-l—h v, d) — (AZXZ + Bﬂ]) . (3.6)

%See the notation section for the definition of 7 (v, a).
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ON £, PERFORMANCE OF FEEDBACKS WITH SATURATIONS 231

The fact that g; is independent of z; follows from the structure of feedforward

(X, 0
systems. Notice that lim lgi(Xit1, v, 0)]

= 0. We can now write the
|(Xig1.0)]=0  [(Xig1,0)]

X, system as

Xi = AXi+ B+ gi(Xigi,v,d) (3.7)

Xipt = Fpi(Xip,v,d) .

Since (A;, B;) is stabilizable and A; is a critically stable matrix, we can
again apply lemma 3.2 (X is associated with 21, Xi+1 is associated with x5
and v is associated with u) to get that, under a control v of the form (3.4)
with A = A; sufficiently small (and with v on the right hand side of (3.4)
replaced by w), the state X; satisfies the induction hypothesis with d; := w
and dy := d. When ¢ > 2, it follows from the structure of the system (2.1)
and the properties of ¢ that the linearization of the X;_; subsystem with
w as control is stabilizable and open loop critically stable. So, theorem 2.2
follows by induction. a

EXTENSIONS OF THEOREM 2.2.

From the proof of theorem 2.2, we see all that is required for the z,
subsystem is the existence of a control v = a(z,,v) that is differentiable
at the origin, locally exponentially stabilizes the origin of the z, subsystem
when d = 0, the linearization is controllable through v, and the state z,
satisfies the induction hypothesis. So, if we rewrite the x, subsystem in the
more general form

ip = fp(Tp, u, dp) (3.8)

and assume the existence of such an «(z,, v) then we arrive at the conclusion
of theorem 2.2. We will see from the proof of lemma 3.2 that if this feedback
is such that 2, only satisfies the induction hypothesis for |z,(0)| sufficiently
small and d, with sufficiently small £, norm, those restrictions can be carried
through during the iteration to get the conclusion of theorem 2.2 but with
restrictions on |2,(0)| and the Lo-norm of d,,.

A special case where this discussion is relevant is when the z, subsystem
contains the exponentially unstable open loop modes of a linear system and
when the actuators of the linear system saturate, i.e.,

i, = Apz, + Byo(u) + d,, (3.9)

where the eigenvalues of A, have positive real part and o is a saturation
function. In this case, because ¢ is bounded, no feedback exists so that
z, satisfies the induction hypothesis for all 2,(0) and all d, € £,. But, 2,
does satisfy the hypothesis, at least for |2,(0)| sufficiently small and d, with
sufficiently small £ norm, when v = Fz, 4 v where u = Iz, is locally
exponentially stabilizing when d, = 0. So, a local version of theorem 2.3
holds when A has eigenvalues with positive real part.
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232 ANDREW R. TEEL

4. PROVING LEMMA 3.2

The key piece in proving lemma 3.2 is the following result for critically
stable, stabilizable linear systems with input saturation and additive dis-
turbances. It shows that a particular passive feedback induces the type of
stability described in the induction hypothesis.

LEmMA 4.1. Let (A, B) be stabilizable, let A be such that there exists P =
PT > 0 satisfying ATP 4+ PA < 0 and let o be a saturation function. Then
the state of the system

& = Az + Bo (—BT Pz) + d; + d; (4.1)
satisfies the induction hypothesis.

REMARK 4.2. This result for the case where d3 = 0 and @ = 0 (in the
definition of the induction hypothesis) was already reported in [2]. The
proof of lemma 4.1, given in section 5, draws on the proof technique used in
[2].

We will combine lemma 4.1 with small gain arguments to prove lemma
3.2. Before we do, we need some preliminary facts.

Fact 1. Let ¢ > 0. If |w| < max{|wi], |wsl|, |ws|} then
I (w, 0)]2 < ﬁ-max{uﬂwhcm, 7w, &)l ||w<w3,c>||z} .
Proor. We have

] = ol (1- )

c
< max < |wql, |wsl, |w 1-
< max{ al o o} max{c,|w1|,|wz|,|w3|})

= max q|7(wy,c)|, |7(we, )|, |7(ws,c)]
(4.2)
Thus

ol < max{r(on )l et frtus,of

|7 (w, €)|* + |7 (wa, )7 + |7 (ws, ) |

We integrate both sides, use the fact that a + b+ ¢ < 3 - max{a,b, ¢} for
positive numbers a, b, c and then take the square root on both sides to obtain
the result.

(4.3)

IN

Fact 2. If 0 < a1 < ag then ||7(w, ag)||z < ||7(w, a1)l2.
Proor. We have

[m(w,az)] = |wl (1 B maX{171|w|/az})

wl (1 - 1 44
"(1 max {1, [wla) -

= |r(w,a1)] .

IN
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a
Fact 3. Let ¢ > 0 and k& > 0. Then 7(kw, ¢) = kr(w, c/k).
Proor. We have
m(kw,c) = kw — csat (kTM) =k [w — ¢/ksat ( /k)] = kn(w,c/k) .
(4.5)
a

ProOoOF oF LEMMA 3.2.

Let the given saturation function ¢ be parameterized by the strictly pos-
itive real numbers K, and b (see notation section). For the given A, B and
o, let (61, My, L1,71) be the set of constants of the induction hypothesis that
follows from lemma 4.1. For the given x3 subsystem, let (d2, My, La,72) be
the set of constants of the induction hypothesis given by assumption. We
will use v as a generic class-K function. All norms below should be thought
of as norms on truncated signals. The norms on [0, c0), once this is shown
to be the maximal interval of definition, can be obtained from the limiting
process as the truncation time goes to infinity.

We write the z; subsystem as

—-BTPay
A

~BT Pz + ~BTp
4 = B [a (#) Y (%)]
4.7
—I—g((SQAbsat (52/\1)),%0) (4.7)
dy = g(az,u,d)— (52/\bsat (52/\13) U 0) )

Our goal is to find a suitable A* > 0 so that the lemma holds. This will be
achieved by choosing

1 IA$1—|—BAO'( ) —|—d1—|—d2 (46)

where

A* := min {Ah A27 Ag, A4} (48)

where the A; are strictly positive real numbers to be specified.

Let Ay = M3/b. Then X € (0, A*] guarantees that, on the maximal interval
of definition, ||u||cc < Ms. Then, since x5 satisfies the induction hypothesis
and since d € L9, x93 € L., on the maximal interval of definition. This,
together with the form of the differential equation, implies that the maximal
interval of definition is [0, c0).

Let Ay be a strictly positive real number such that, for all 0 < A < Ag,

|$2| < 52Ab7 |u| <Ab = |g(x2,u,0)| < AM; . (49)

Such a A; exists from the fourth assumption of the lemma. Then A € (0, A*]
guarantees that there exists M > 0 such that ||v]|oc < M implies ||d;||oo <
AM;.
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234 ANDREW R. TEEL

Now, with u given in (3.4), there exist a strictly positive real number K,
class-KC4 functions ¢ and ¢y and a class-KC function p such that

max { Kl )l p D

|da < @ ([(22, W) [d] + 2 ([(22, w)]) [7 (22, 62A0)]
So, using facts 1 and 3,

|7 (d1,a)|]2 < \/g-max{KHﬂ (v,%)H , (4.11)

p(AD) ﬂ(xz,ﬁ) - ﬂ(xl,ﬁ) 2} .

Since x4 satisfies the induction hypothesis,
i)}
2

" (= 75w ~(+5m)
(4.12)

Then, combining (4.11) and (4.12) and using (3.4), the fact that o is globally
Lipschitz and fact 2, there exist strictly positive real numbers Ky and Ky

such that
- a
(s, )l < max fy(faa) Ko m (v, )
S|
a
— d .
(g )|, o}

Now, using the scalings @ — a /A, dy — dy /X, dy — dy/A, and using lemma
4.1 and fact 3 we have, for ||v]|. < M,

|d|

IN

(4.10)

p(AD)

< max{7(|$2o|) s
2

: (4.13)

I(Qp(Ab)

z d
7 (21, d1a)]l2 < max{ /\7(| ;') 7w (d, @)l /\7(|| /2\||2) }
x d
ol < max{ 2o (1) i o (1) 4
(4.14)
Let A3 satisfy
1 1
p(Asb) Ky < min {—7 —} : (4.15)
Y1 6

Then, combining (4.13) and the first inequality of (4.14) and using fact 2,
we have for A € (0, A*] that

e dia)lle < max{ 2 (1) 50 o, (4.16)

a _ ||d2]l2
(o )] a0 (B

Using (4.10) and the bound on || (22, d3Ab)||2 from the induction hypothesis
satisfied by z9 we have

Ieall < ¢ (Hazy 0l ) e+ 2 (o )l ) ma o Gaaa (Ul }-
(4.17)

Y1
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ON £, PERFORMANCE OF FEEDBACKS WITH SATURATIONS 235

First inserting into (4.17) the bound on ||23||~ from the induction hypothesis
and, in turn, the bound ||u||sc < Ab and then inserting the resulting bound
on ||dz||z into (4.16), we get the form of bound on ||7 (21, d1a)||2 claimed in
the lemma.

For the bound on ||21||s, We repeat the above argument using

|wmmSmw{Kmmmpuwummmummmm} (1.18)

instead of (4.11) and using, from the induction hypothesis on z3,

IMMmSmM{WMM%LMWmnﬂMM} (4.19)

instead of (4.12). We then can assert, as we did before (4.13), the existence
of strictly positive real numbers Ky and Ky such that (compare with (4.13))

[ld1l]oo SmaX{7(|$20|)71<'1||v||m7Iﬁ'zp(/\b)llﬂﬁllloo m(lldllz)} - (4.20)

Using the second of the inequalities in (4.14) and letting A4 satisfy

1
p(b) Ky < — (4.21)
Ly

we have that A € (0, A*] implies (compare with (4.16))

T
feallo < max{ oy (20) L 2ir(aa (4.22)

¢ d
LJﬁWMm7LWUWWQ,A7(H§b)}‘

Then using the bound on ||dy||2 established above we get the form of the
bound on ||z1]|s claimed in the lemma.

We conclude that the induction hypothesis is satisfied by M, L = L K7,
’:y = 71[(1 and S =0 K. O

5. PROOF OF LEMMA 4.1

Fact 4. Under the conditions of lemma 4.1, there exists P, = PQT > 0 such
that

(A-BBTPYTPy+ Py(A-BBTP)=—1.

A preliminary energy function: Consider a function of the form

V() = /0 T (s + /0 T () (5.1)

where a7 and e« are continuous, nonnegative functions to be specified.
When we consider the time derivative of V() along the trajectories of (4.1)
we find, using ||di||cc < M, completely squares and using the second in-

equality in the definition of a saturation function, that there exists strictly
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236 ANDREW R. TEEL

positive real numbers ¢, ¢; and K such that
V< (2T Pr) [2¢TPBo(~ BT Px) + 22T P(dy 4 da)] +
oz (2T Pa) [—aT2 + 22T P B (o(- BT Pz) + BT Pz)
+ 22T Py (dy + d3)]
—ay (2T Pz) (22T PBo(— BT Pz))
F2M Amax (P)|z| o (2T Pz) + |22 (2T Pz) + ¢1|dy|?
—2Tzay (2 Pyx) + I§|$| (—QxTPBU (—BTPQC)) oy (xTPQx)

+ay (xTPQx) 2Amae (Pa) |z ||de| + a%(xTng)|w|2 + coldy|? .
(5.2)

If M, oy and a9 can be chosen so that the following three inequalities are
satisfied:

IN

K|z|ag(aTPyx) < (2T Pa) (5.3)
QM/\max(P)Oq($TP$) < 0.5|x|042(96TP296)
(T Pz) 4+ 22T Pyx) < 0.2509(2T Pya)

then
V < ay(2! Pya) [— 0.25||* + 2/\max(P2)|x||d1|] +da)*  (5.6)

where é = ¢; + ¢3. To satisfy inequalities (5.3)-(5.5), we choose
1

ay(s) = = (5.7)
A K*s L
NS/\max(PQ)
where
_ Amin (P)Amin (£)
"= Amax(P)Amaac(PZ) (58)
and we choose
s s Amin(P2)s
ap(s) =K o (P) oy ( - ) . (5.9)

1

Notice that if 0 < b < a then ay(a) < as(b) but also ay(ps) < —ay(s) (since
©

p < 1). We then have

. - | 2T Px Amin (P
Klz|oy(zT Pyz) < K \/ o (P Qg (/\max((]j)) wTPx) = oy (2T Pz) (5.10)

so that (5.3) is satisfied. Also,

o AmaaL’]D
041($TP$) S K Aig|$|&2(u$TP2$)
W”(P) : (5.11)
< K f2mems g = Tpa) .
= e )
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So (5.4) is satisfied if M > 0 is such that

= [ Apmaz(P) 1
2MA e (PYK | ———=— < 0.5. 5.12
(P) N (P) 1 (5.12)
Finally,
=2 Amas (P) |2/?
2 TP 2 TP < 1(2 mas el I 1 2 TP
e’ Po) +ad(a Re) < (RIS 41 ) dta” P
K2 M\ (P2), s
< AL . 22 1] a2(TP,
= HS /\max(P2)|x| + 052($ 2$>
K?2 TPy
< — = 41 ]a2IP
< 12 Nan (B2) + )042(95 h )
< 0.25a9 (2T Py)

(5.13)
so that (5.5) is satisfied.

Modifying V' to get an L., bound in terms of £3/L., bounds:
Returning to (5.6), note that for any a > 0 we can write
d
o ()))
a

+ éldy* . (5.14)

V < ag(aT Pya) [—0.25)2]% + 2\ nae (P2)| 2] (|ﬂ(d1,a)| 1+

From this and the fact that ||dy||.. < M it follows, by completing squares,
that

|2] > 16Ap,05 () min {a, M} =: bo(a) (5.15)
implies
V < ay(zT Pyx) [—1—16|av|2 + 16X e (P2)? |7 (dy, @) | +éda]? . (5.16)
Now we define
a(r) = /07’ [o1(s) + az(s)]ds (5.17)

and note that o € K, while there exist strictly positive real numbers ky,
K9 such that

o (Hl|x|2) <V(z)<a (52|x|2) . (5.18)
Define
bi(a) == a (k2bi(a)) (5.19)
let € be a strictly positive real number and define
ba(a) == a (ko (L + €)b3(a)) . (5.20)
Also define

5= 1/%16A7W(132)\/1 Fe. (5.21)
1
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Notice that be(a) > bi(a) for @ > 0 and V(z) < by(a) implies |z| < da.
Define

W(z,a) = as, (V(z)) (5.22)

where as, (s) is a smooth, nondecreasing function such that as, (s) = 0 when
s € [0,b1(a)] and a3, (s) = s when s € [by(a), 00). Notice that V (2) —bs(a) <
W(z,a) < V() and, since by(a) is bounded, the derivative of ag, can be
bounded independent of a. It then follows from (5.16) and considering the
two case || > da and |z| < da that there exist strictly positive real numbers
k3 and k4 such that, for each @ > 0,

W < ay(a! Pya) BT |7 (2, 6a)|> 4 ks |7 (dy, a) || + kalda|? . (5.23)
We let a = ||di||o and we obtain
W < ryldo)? . (5.24)
Integrating both sides we have
W (a(T), ) < wal|dsl3 + W (2(0), a) (5.25)
In other words,
V(2(T)) < kallda]|3 + V (2(0)) + b2(a) (5.26)
or
o (e (D)) < alldalB+a (kalo (@) + ba(a) . (5.27)

Since, on intervals of the form [0, s,] where s, > 0, a; and ay are upper
bounded and «y is positive and bounded away from zero, there exist strictly
positive real numbers 1 and ¢y such that

a~l(s) < lis Vs < 3by(M) (5.28)
and
a(s) < lys Vs < k102 M* . (5.29)

It follows from manipulating (5.27) that, with L = §/3(1(3, there exist
class-K functions v, and 4% such that

o) < max {52 (2O ell) [0~ (Gbata))
< maX{780(|90(0)|)77§§(||d2||2)7\/%304 (6)} 50,
< max {32 (O]) 72 (ldall2), vV300% |
< max {32 (o (O)) 2200l 2) L}

The L, inequality of the induction hypothesis follows from taking the supre-
mum over T on both sides.

Further modifying V' to get the nonlinear L2 bound:
Let 1 and &9 be strictly positive real numbers satisfying

o (/%NCTPQJU) <V(z)<a (/%QxTng) . (5.31)
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where o was defined in (5.17). Define v(s) := and note that v(s) is

az(s)
nondecreasing. Also define

p(s) =7 (%ofl(s)) . (5.32)
Then, since W(z,a) < V(z) it follows that

p(W(z,a))ay(zT Pyz) = (%Q_I(W($7 a))) ay (21 Pya)
y(zT Pyx)aq (2t Pyx) = 1

and since Wz, a) = V(z) when |z| > éa it follows that, when |z| > da,

(5.33)

IN

1
p(W(z,a))az(a" Pyz) = v (ff_za_l(V(OC))) oy (2T Py)
=7 (%xTPﬂ) e ) (5.34)
> Z_;'Y($TP2$)OQ($TP2$)
_ R
= 5
Defining
W(z,a)
Ulw,a) = / p(s)ds (5.35)
0
and using (5.23) we get
A
< gl ) P sl () P p(V ()l - (5.36)

Assuming that 7(dy,a) € Ly and dy € Ly, which from above gives that
V(z) € L, and integrating both sides we get

K1
Kol6

|7 (2, 6a) |[3 < wallm (di, @) |13 + p(||V (2)[]00) Ral [da]]3 + U (2(0), a) -
(5.37)

After using (5.18) and (5.30) to bound ||V (2)||s in terms of |z(0)], ||dz||2
and M (the upper bound on ||d1]|~), and noting that, from the properties
of W{(z,a), there exists ay € Ko such that U(z,a) < aq(|z]), we get that
the L5 inequality of the induction hypothesis holds with
137
SR L (5.38)

K1

a

6. CONCLUSION

In this paper we have constructed a nonlinear disturbance-to-state L4 gain
for systems in nonlinear feedforward form that are controlled using multi-
level saturation feedback. When specialized to linear systems with input
saturation, the results are qualitatively the same as those reported in [3]
where linear systems with saturation are controlled by a static scheduling of
a family of linear H, controllers. It is not yet clear how the L5 performance
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of the two schemes compares quantitatively. It would also be interesting to
see if any general connections can be made between nonlinear L5 stability
and the type of L, stability studied in [10].

(1]
(2]

[10]
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