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DISCRETE FEEDBACK STABILIZATION OF SEMILINEAR

CONTROL SYSTEMS

LARS GR�UNE

Abstract� For continuous time semilinear control systems with con�
strained control values stabilizing discrete feedback controls are dis�
cussed� It is shown that under an accessibility condition exponential
discrete feedback stabilizability is equivalent to open loop exponential
asymptotic null controllability� A numerical algorithm for the computa�
tion of discrete feedback controls is presented and a numerical example
is discussed�

Keywords� Discrete feedback control� stabilization� semilinear control sys�
tems� Lyapunov exponents� discounted optimal control problems�

�� Introduction

In this paper we consider semilinear control systems of the form�
�x�t� 	 A�u�t��x�t�� t � R� x�
� 	 x� � Rd n f
g
u��� � U �	 fu � R� U� measurableg� U � Rm compact

�����

where A � Rm� R
d�d is Lipschitz in some open set containing U �

Control systems of this kind arise e�g� by linearization of nonlinear control
system at a common �xed point for all control functions� In the context of
this paper stabilization always means exponential asymptotic stability of
the origin�

The problem of stabilization of nonlinear control systems has been con�
sidered for a long time by various authors �see e�g� Bacciotti 
�� for an
overview�� During the last years also the more speci�c problem of stabi�
lization of semilinear systems � and especially of bilinear systems which are
covered by ����� � has attracted a great deal of attention�

Chabour et al� 
�� present a Lyapunov function approach for this prob�
lem� Coller et al� 
�� solve a minimum time problem in order to stabilize the
system �which is possible due to the special structure of their system�� In

��� stabilization is also reduced to an optimal control problem� here a dis�
counted optimal control problem is solved in order to approximate minimal
Lyapunov exponents� On the theoretical side e�g� Colonius and Kliemann

�
� describe the domain of exponential asymptotical null controllability of
bilinear systems� i�e� the set of points in Rd that can be asymptotically con�
trolled to the origin exponentially fast� Although all these papers present
results on the stabilization of bilinear systems general feedback stabilization

Institut f�ur Mathematik� Universit�at Augsburg� Universit�atsstr� �� ���	
 Augsburg�
Germany� E�mail� Lars�Gruene�Math�Uni�Augsburg�de�

Received by the journal December �� ���
� Accepted for publication June ��� �����
This work has been supported by DFG�Grant Co �
���
���
c� Soci�et�e de Math�ematiques Appliqu�ees et Industrielles�



��� LARS GR�UNE

techniques seem to be missing up to now� The results cited above make
either use of special structures of the systems considered or are focused on
open loop asymptotic null controllability rather than on feedbacks�

In this paper we will restrict ourselves to the case� where the system is
exponentially asymptotically null controllable by an open loop control for
each initial value x� � Rd� The question that arises then is whether under
this condition there exists a feedback control such that the corresponding
closed loop system is exponentially stable� In general this is not possible by
using a continuous feedback law� cp� 
��� Hence we will use a more general
feedback concept which we will call discrete feedback controls�

In mathematical control theory discrete feedback controls have been inves�
tigated by various authors� Hermes 
���� 
��� makes use of this construction
under the name of modi�ed feedback control applying Lie algebraic meth�
ods to the stabilization problem� Sontag applies the same idea using the
terminology sampled feedback or sample�and�hold control in connection with
nonlinear regulation 
�
� and also with stabilization using neural networks

��� �the term �sampling� has its origin in engineering�� A similar concept
can be found in the context of dynamic game theory �see e�g� Krasovski��
and Subbotin 
����� there the value of a game is de�ned via discrete control
functions �called step�by�step control� where the size of the discretization
step tends to 
� Inspired by this technique Clarke� Ledyaev� Sontag and
Subbotin show in a recent work 
�� using Lyapunov functions that asymp�
totic controllability implies stabilizability of nonlinear control systems by
sampled feedbacks when the discretization step �or sampling rate� tends to

�

The construction made in this paper is based on another concept intro�
duced by Lyapunov� namely the Lyapunov exponents� It has its origin in
the numerical considerations discussed in 
��� which deal with the numerical
calculation of open loop control functions that control ����� asymptotically
to the origin� Like in many numerical algorithms a discretization of ����� is
needed in order to apply the algorithm from 
���� Hence it seems natural
to consider the discrete time system obtained from ����� by discretization
in time� The discrete feedback discussed here can then be interpreted as a
feedback for this discrete time system applied to the continuous time system�
In contrast to the result by Clarke et al� here we obtain stabilizability using
discrete feedback controls with �xed discretization step size� Moreover we
will give a numerical algorithm to calculate the stabilizing discrete feedback
control�

The organization of this paper is as follows� In the second section we
will cite previous results on asymptotic null controllability of semilinear
control systems� de�ne Lyapunov exponents and the discounted optimal
control problem and show the relation between these two concepts� The only
assumption that will be made on the system is an accessibility condition as
described in 
����

In the third section discrete feedback controls will be de�ned and it will
be shown that they are optimal control strategies for the discounted optimal
control problem and discrete time control systems�

Section � then applies this result to the stabilization problem� We will
show that exponential open loop asymptotic null controllability for all x� �
Esaim� Cocv� September ����� Vol� �� pp� 	
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R
d is equivalent to the existence of an exponentially stabilizing discrete

feedback�
In Section � a numerical algorithm for the computation of these stabilizing

discrete feedback controls is developed and �nally in Section � a numerical
example is presented�

�� Problem setup and preliminary results

We consider semilinear control systems of the form�
�x�t� 	 A�u�t��x�t�� t � R� x�
� 	 x� � Rd n f
g
u��� � U �	 fu � R� U� measurableg� U � Rm compact

�����

where A � Rm � Rd�d is Lipschitz in some open set containing U � Let
x�t� x�� u���� denote the solution of ����� for an initial value x� and a control
function u��� � U �

In order to characterize the �open�loop� exponential behaviour of ����� we
de�ne the Lyapunov exponent ��x�� u���� by

��x�� u���� �	 lim sup
t��

�

t
ln kx�t� x�� u����k� �����

and the in�mal Lyapunov exponent with respect to the control by

���x�� �	 inf
u����U

��x�� u����� �����

The following assertion is an easy consequence from the de�nition of the
Lyapunov exponent�

For all x� � Rd� x� �	 
 there exists a control function ux���� � U such
that x�t� x�� ux����� converges to the origin exponentially fast if and only if
���x�� � 
 for all x� � Rd n f
g�

In the following we will restrict ourselves to the case ���x�� � 
 for all
x� � Rd n f
g and turn to the question if this is also a �necessary and�or
su�cient� condition for the existence of a feedback controller that stabilizes
������ Instead of using �classical� feedbacks we will de�ne discrete feedback
controls and show that � under an accessibility condition � the existence of
an exponentially stabilizing discrete feedback control is equivalent to this
condition� Furthermore we will present a numerical algorithm to compute
discrete feedback controls�

In the rest of this section we will collect the facts known about semilinear
control systems�

As a consequence of the semilinear structure of ����� it follows that
��x� u���� 	 ��� x

kxk� u����� Hence for the analysis of the Lyapunov expo�

nents it is su�cient to consider ����� projected to the real projective space
P
d��� We will represent Pd�� by the sphere Sd��� where opposite points
�s and s are identi�ed� Using the chain rule it is easy to verify that the

projected system s�t� �	 x�t�
kx�t�k can be written as

�s�t� 	 h�s�t�� u�t���
where h�s� u� 	 
A�u�� stA�u�s Id�s

�����

Let ��t� s�� u���� denote the solution of ����� with initial value s� � Sd���
The Lyapunov exponent for any initial value x� � Rd with s� 	 x�

kx�k
can
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then be expressed as �see also 
�� Section ���

��x�� u���� 	 lim supt��
�
t

tR
�

g���t� s�� u����� u�t��dt�
where g�s� u� 	 stA�u�s�

�����

The following assumption assures local accessibility of ������ i�e� that the
reachable set for any point up to any time t � 
 has nonvoid interior �cp�

�����

Let L denote the Lie�algebra generated by the vector �elds h��� u�� u � U �
Let �L denote the distribution generated by L in TPd��� the tangent bundle
of Pd��� Assume that

dim�L�p� 	 dimPd�� 	 d� � for all p � Pd�� � �H�

Under this condition there exists a unique invariant control set C with
nonvoid interior of the projected system� i�e� a region of complete con�
trollability which no trajectory can leave� Furthermore for any two points
p� � Pd��� p� � intC there exists a control function up��p���� � U and a
time t such that ��t� p�� up��p����� 	 p�� �For a comprehensive analysis of the
controllability structure of projected semilinear systems see 
���� Using this
control up��p���� for any � � 
 we can de�ne a control function that steers
p� to p� and then realizes the minimal Lyapunov exponent for p� up to ��
This yields �cp� also 
��� Proposition �����

���p�� � ���p�� �

Furthermore by symmetry �� is constant on intC�
Putting this together yields that

 	 �	 max
x��Rdnf�g

���x��

exists�  	 is attained on intC and it holds that

���x�� � 
 for all x� � Rd n f
g
if and only if  	 � 
 �

�����

In order to construct a discrete feedback law we approximate ����� by a
discounted optimal value function v� with discount rate 
 de�ned by

v��s�� �	 infu����U J��s�� u�����
where J��s�� u���� �	

�R
�

e��tg���t� s�� u����� u�t��dt� �����

The following results from 
��� Theorem ��� and Theorem ����� are crucial
for this approximation�

Theorem ���� Consider a semilinear system ����� and its projection ���	�
satisfying �H�� Then

�� 
v� � �� uniformly on compact subsets of intC as 
 � 
�
�� sup

s�Pd��

v��s��  	 as 
 � 
�

�� Let u��� � U and � � R such that the following shift condition is
satis�ed



J����t� s� u����� u�t! ��� � � for all t 	 
�
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Then ��s� u����� ��

The proof of this theorem is essentially based on two arguments� In the
�rst step the relation between averaged functionals �which appear in the
de�nition of the Lyapunov exponent� and discounted functionals has to be
investigated� In the second step a controllability property similar to the one
cited above but in uniform time is used to obtain the assertions�

Theorem ��� states that the maximum �over all initial values� of the in��
mal �over all control functions� Lyapunov exponents of ����� can be approx�
imated by a discounted optimal control problem on the projective space�
Furthermore any control function satisfying the shift condition as de�ned
in �iii� will yield a Lyapunov exponent smaller than or equal to � when
applied to ������ Hence the next section is devoted to the construction of
a discrete feedback law that yields approximately optimal solutions of �����
with respect to ������

�� Discrete Feedback Control

We will now give the de�nition of discrete feedback control�

Definition ���� �Discrete feedback control� A discrete feedback control for
the system ����� is a function F � Rd � U in connection with a time step
h � 
 that is applied to ����� via

�x�t� 	 A�F �x

��
t

h

�
h

�
��x�t�

where 
r� denotes the largest integer less or equal r � R�
Remark ���� The following interpretation gives the motivation for the name
�discrete feedback�� For a given time step h � 
 and constant control values
u � U denote by G � Rd
 U � R

d the solution of ����� at the time h� i�e�
G�x�� u� �	 x�h� x�� u�� This de�nes a discrete time control system via

xi	� �	 G�xi� ui�� �ui�i�N � UN� �����

The discrete feedback as de�ned in De�nition ��� can now be interpreted as
a feedback for the discrete time system ������

In particular this interpretation shows that for any discrete feedback F
and any initial value x� � Rd there exists a unique solution which will be
denoted by xF �t� x��� Note that no regularity conditions on F � not even
continuity � are necessary in order to obtain existence and uniqueness of the
corresponding solution� We will also consider discrete feedbacks FP for the
projected system� the corresponding solutions are again unique and will be
denoted by �FP�t� s���

System ����� corresponds to ����� where only control functions uh constant
on intervals with uniform length h � 
 are admissible� This system can
also be projected to Pd��� We will now investigate how the value of v�
�corresponding to the projected system� changes if we restrict ourselves to
this class of control functions� De�ne

Uh �	 fuh � R� U j uj
ih��i	��h� � constg
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and

vh� �s� �	 inf
u����Uh

J��s� u����� �����

A basic property of the optimal value functions of discounted optimal control
problems is Bellman"s optimality principle �see e�g� 
��� Theorem ������ For
all � � 
 it holds that

v��s� 	 inf
u����U

�Z
�

e��tg���t� s� u����� u�t��dt! e���v������ s� u�����

The value function vh� satis�es a similar equation which is proved similar to

�� Proposition ����� It holds that

vh� �s� 	 inf
u�U

hZ
�

e��tg���t� s� u�� u�dt! e��hvh� ����� s� u���

The main di#erence between these two equalities lies in the fact that in
the second one control values instead of control functions are considered�
The following theorem shows the convergence for h� 
�

Theorem ���� Consider the control system ���	� and the optimal value
functions v� and vh� � Then

kv� � vh� k� � Ch
�

�

where C � 
 is some constant� 
 	 Lh
� for 
 � Lh and Lh is the Lipschitz

constant of h from ���	� with respect to s� Furthermore v� and v
h
� are Hoelder

continuous with exponent 
�

Proof� Similar to 
�� Theorem ����� where we use the metric on Sd��

induced by the norm on Rd�

Remark ���� Under stronger assumptions on the system �i�e� control a�ne
systems� convex control range U� it is possible to obtain the same estimate
with 
 instead of �

� � see 
��� Section ���

The discrete feedback can now be constructed as follows�

Definition ���� Fix h � 
 and de�ne FP � Pd�� � U by� For every s �
P
d�� choose a value u � U such that

hZ
�

e��tg���t� s� u�� u�dt! e��hvh� ���h� s� u��

becomes minimal and let FP�s� �	 u�

The function FP from the de�nition above may not be unique� however
the existence of a control value FP�s� with the desired property is always
guaranteed by the continuity of g� vh� and u �� ��h� s� u� and the compactness
of U �

A discrete feedback for the nonprojected system ����� can easily be derived
from FPby de�ning F �x� �	 FP�x�kxk��

The following theorem shows that this discrete feedback is indeed an
optimal control strategy for vh� �
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Theorem ��	� Consider the system ����� and the optimal value function
vh� � Let FP be the discrete feedback from De�nition ��
� Then for any initial

value s� � Pd�� it holds that
�Z
�

e��tg��FP�t� s��� FP��FP

��
t

h

�
h� s�

�
��dt 	 vh� �s���

Proof� Abbreviate

K�s�� �	

�Z
�

e��tg��FP�t� s��� FP��FP

��
t

h

�
h� s�

�
��dt�

Then the identity

K�s�� 	

hZ
�

e��tg��FP�t� s��� FP�s���dt! e��hK��FP�h� s���
�����

is obvious� On the other hand by the de�nition of FP it holds that

vh� �s�� 	 inf
u�U

��
�

hZ
�

e��tg���t� s�� u�� u�dt! e��hvh� ����� s�� u��

	

�

	

hZ
�

e��tg���t� s�� FP�s���� FP�s���dt

! e��hvh� ����� s� FP�s����� �����

Subtracting ����� from ����� yields

jK�s��� vh� �s��j 	 e��hjK��FP�h� s���� vh� ��FP�h� s���j
which implies

sup
s�P

jK�s�� vh� �s�j � e��h sup
s�P

jK�s�� vh� �s�j�

This implies the assertion since e��h � ��

Corollary ��
� For any � � 
 there exists h � 
 such that the solution
�FP�t� s�� corresponding to the discrete feedback from De�nition ��
 satis�es

j
�Z
�

e��tg��FP�t� s��� FP��FP

��
t

h

�
h� s�

�
��dt� v��s��j � �

for all s� � Pd���
Proof� Follows immediately from Theorem ��� and Theorem ����

This corollary states that a discrete feedback can be used to obtain ap�
proximately optimal solutions for the discounted optimal control problem�

Remark ���� Although for application and numerical analysis the discrete
feedback control has very nice features �as shown in the next sections�� from
the mathematical point of view it would nevertheless be interesting to know
the properties of the closed loop system

�x 	 A�F �x��x�
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Since F is typically discontinuous the existence and uniqueness of trajec�
tories is not clear� It is also not known whether this system preserves the
optimality properties of the discrete feedback system�

Clearly this question leads to the problem of the existence of optimal feed�
back controls for discounted optimal control problems� If one uses dynamic
programming in order to obtain optimal open loop control functions uh���
it has been shown that for h � 
 there exists at least a weakly convergent
subsequence uhn��� for hn � 
� see 
�� Theorem ����� It is still an open ques�
tion whether a similar construction can be obtained for the optimal feedback
control�

�� Stabilization using discrete Feedback control

In this section we will apply the discrete feedback as de�ned in the pre�
vious section to the stabilization problem� Theorem ��� �ii� and Corollary
��� imply that for any � � 
 there exists h � 
 and a discrete feedback such
that




�Z
�

e��tg��FP�t� s��� FP��FP

��
t

h

�
h� s�

�
��dt �  	! ��

Hence it remains to show that the corresponding trajectories also satisfy the
shift property to meet the assumption of Theorem ��� �iii��

Lemma ���� Assume there exists h � 
� a discrete feedback FP and a con�
stant � � R such that

�Z
�

e��tg��FP�t� s��� FP��FP

��
t

h

�
h� s�

�
��dt � �

for all s� � Pd���
Then there exists a constant B � 
 independent of h such that for all T 	 

it holds that

�Z
T

e���t�T �g��FP�t� s��� FP��FP

��
t

h

�
h� s�

�
��dt � �! Bh�

Proof� For T 	 ih� i � N the assertion follows directly from the assump�
tion� For arbitrary T � 
 observe that g�s� u� is bounded by a constant Mg�
Choosing 
 � � � h such that T ! � 	 ih for some i � N it follows that

�Z
T

e���t�T �g��FP�t� s��� FP��FP

��
t

h

�
h� s�

�
��dt

	

T	�Z
T

e���t�T �g��FP�t� s��� FP��FP

��
t

h

�
h� s�

�
��dt

!

�Z
T	�

e���t�T �g��FP�t� s��� FP��FP

��
t

h

�
h� s�

�
��dt

� �Mg ! e���� �
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Now the assertion follows by Taylor expansion of e��� since � � h �note
that � may be negative��

Now we have collected all the facts to prove the following theorem about
the existence of stabilizing discrete feedbacks�

Theorem ���� Consider a semilinear control system ����� satisfying �H��
Then for any � � 
 there exists a h� � 
 such that for any h � h� there
exists a discrete feedback F � Rd� U such that

lim sup
t��

�

t
ln kxF �t� x��k �  	! ��

Proof� Using Theorem ����ii� and Corollary ��� it follows that there exists
h�� � 
 such that for any h � h�� there exists a discrete feedback FP that
satis�es the assumptions of Lemma ��� with � 	  	! ���� Choosing h� � h��

su�ciently small Lemma ��� with h � h� yields the assumption of Theorem
��� �iii� with � 	  	 ! �� Now the assertion follows by de�ning F �x� �	
FP�x�kxk��

In particular we obtain a result about exponential stabilization of semi�
linear control systems with discrete feedback�

Theorem ���� Consider a semilinear control system ����� satisfying �H��
Then there exists a h � 
 and a discrete feedback that steers ����� to the
origin exponentially fast for all initial values x� � Rd n f
g if and only if
���x�� � 
 for all x� � Rd n f
g�
Proof� �
�� The existence of a discrete feedback immediately implies the
existence of a measurable open loop control for any initial value x� � Rd

steering ����� to the origin exponentially fast� Hence ���x�� � 
 is implied�
���� Assume ���x�� � 
 for all x� � Rd n f
g� Then ����� implies  	 � 


and hence there exists � � 
 such that  	!� � 
� Now by Theorem ��� there
exists a discrete feedback with the desired properties�

Remark ���� Note that the equivalence ����� plays an important role in
the proof of this theorem� It prevents the existence of a sequence �xi�i�N
such that ���xi�� 
� In this case the conclusion used in the second part of
the proof would not be possible�

�� Numerical calculation of the discrete feedback

The numerical method proposed follows the ideas described in 
��� which
are based on a discretization scheme by I� Capuzzo Dolcetta� H� Ishii and
M� Falcone 
��� 
��� and 
��� However� in order to construct the discrete
feedback control and ensure convergence we have to modify this algorithm�
Some of the ideas presented here have also been investigated by M� Falcone
and R� Ferretti 
��� in the case of large discount rates�

In fact three steps of discretization apply here�

�i� The measurable control functions in U are replaced by the piecewise
constant control functions in Uh with uniform step size h�

�ii� The integral
�Z
�

e���g����� s� uh����� uh����d�
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is replaced by

h

�X
i��

�ig���ih� s� uh����� uh�ih��

with � 	 �� 
h�
�iii� The trajectory ��t� s� uh���� of the system is replaced by a numerical

approximation  �i�s� uh�����
The discretization error of the �rst step has already been stated in Theo�

rem ���� In the next two lemmas we will investigate the rates of convergence
for the discretization of the integration�

Lemma ���� Let 
 � 
 and h � 
� Let g � R� R be a real valued function
bounded by Mg and Lipschitz on each interval 
ih� �i ! ��h�� i � N� with
Lipschitz constant Lg� Then

j
�Z
�

e��tg�t�dt� h

�X
i��

e��hig�hi�j � e�h�Lg ! 
Mg�



h�

Proof� For t�� t� � 
ih� �i! ��h�� i � N� it holds that
je��t�g�t��� e��t�g�t��j

� je��t�g�t��� e��t�g�t��j! je��t�g�t��� e��t�g�t��j
� �
Mg ! Lg�jt� � t�j�

This implies for all � � 
ih� �i! ��h�� i � N�

j
�i	��hZ
ih

e��tg�t�dt� he���g���j � e��ih�Lg ! 
Mg�h
�

and hence

j
�Z
�

e��tg�t�dt� h
�X
i��

e��hig�hi�j

�
�X
i��

e��hi�Lg ! 
Mg�h
�

� e�h
�Z
�

e��t�Lg ! 
Mg�hdt 	
e�h�Lg ! 
Mg�



h�

Lemma ���� Let � �	 ��
h� Under the assumptions of Lemma 
�� it holds
that

jh
�X
i��

e��ihg�ih�� h

�X
i��

�ig�ih�j � CMgh

for a constant C � 
�
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Proof� It holds that

jh
�X
i��

e��ihg�ih�� h

�X
i��

�ig�ih�j �
����hMg

�
�

�� e��h
� �


h

�����
	

����hMg

e��h � ��� 
h�


h��� e��h�

����
� jhMgCj

where the last inequality is seen by Taylor expansion of e��h�
These two lemmas show that the discretization error for the integration

is of linear order in h�
We will now turn to the approximation of the trajectories by a numerical

algorithm� For this purpose we assume that for any control function uh��� �
Uh the function  �i�s� u� is a numerical approximation of the continuous time
trajectory satisfying

k  ���s� uh����� ��h� s� uh����k � ��h�h �����

with ��h�� 
 as h� 
 and

k  �i�s�� uh�����  �i�s�� uh����k � eLihks� � s�k �����

for all i � N� s� s�� s� � Pd��� all uh��� � Uh and a constant L � 
� In
the numerical analysis of ordinary di#erential equations these are the two
standard conditions consistency and Lipschitz continuity� If ��h� 	 O�hp�
for some p � N the scheme is called consistent with order p� By induction
one can prove that these assumptions imply

k  �i�s� uh����� ��ih� s� uh����k � ��h�

L
�eLih � ��� �����

The following result shows what happens in the third step when the original
system with piecewise constant control functions is approximated by this
numerical algorithm�

Theorem ���� Let 
 � 
 and  �i�s� uh���� be a numerical approximation of
the continuous time system satisfying �
�����
���� Let

 Jh� �s� uh���� �	 h

�X
i��

�ig�  �i�s� uh����� uh�ih���  vh� �s� �	 inf
uh����Uh

 Jh� �s� uh����

and let vh� be the optimal value function from ������ Then  vh� is Hoelder
continuous with exponent 
 and

jvh� �s��  vh� �s�j � C���h�� ! h�

for all s � Pd�� with 
 	 �
L
and C 	 O��

�
� for 
 � L�

Proof� Follows immediately using 
�� Lemma ���� and the preceding lem�
mas�

The value function  vh� is still de�ned for every point s � Pd��� For the
numerical calculation we have to restrict ourselves to a �nite set of points
in Pd��� i�e� using a suitable parametrization of Pd�� we have to compute
an approximation on a grid covering some $ � Rd��� This approximation
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can be calculated e�g� as described in 
���� 
��� or 
���� We will now assume
that  va� gives such an approximation for  vh� satisfying

j va� �s��  vh� �s�j � � for all s � Pd�� �����

and use  va� in order to construct an approximately optimal feedback law for
the discrete time system�

Lemma ���� Let  FP � P
d��� U be a discrete feedback law such that

hg�s�  FP�s�� ! � va� �  �i�s�
 FP�s��� 	 min

u�U
fhg�s� u� ! � va� �  �i�s� u��g

holds for every s � Pd��� Let  � �FP �i
�s� denote the corresponding solution

using this discrete feedback and the numerical approximation of the trajec�
tories� Then

kh
�X
i��

�ig�  � �FP�i
�s��  FP�  � �FP�i

�s���  va� �x�k �
��


h
for all s � Pd���

Proof� Property ����� yields that

 va� �s� 	 hg�x�  FP�s�� ! � va� �  � �FP�i
�s�� ! �e�s�

for all s � Pd�� where j��s�j � �� This immediately implies the asser�
tion�

The following proposition gives an estimate for the error made when the
discrete feedback law  FP is applied to ����� according to De�nition ����

Proposition ���� The solutions � �FP
�t� s� according to the discrete feedback

from Lemma 
�	 satisfy for all s � Pd��

jh
�X
i��

�ig�� �FP
�ih� s��  FP�� �FP

�ih� s���  vh� �s�j �
��


h
! C

�h��h���

h
�
�����

Proof� Abbreviate

K�s� �	 h

�X
i��

g�� �FP
�ih� s��  FP�� �FP

�ih� s���

From the construction of the control it follows that

 vh� �s� 	 hg�s�  FP�s�� ! � vh� �  ���s�  FP�s��� ! ���s�

where j��s�j � �� On the other hand it holds that

K�s� 	 hg�s�  FP�s�� ! �K���h� s�  FP�s����

Putting these two equations together yields

jK�s��  vh� �s�j
	 �jK���h� s�  FP�s����  vh� �  ���s�  FP�s��� ! ���s�j
� �jK���h� s�  FP�s����  vh� ���h� s�  FP�s���j! �� ! C�h��h���

and the assertion follows�
To obtain the main theorem we simply have to put together the estimates

of this section�
Esaim� Cocv� September ����� Vol� �� pp� 	
��		




DISCRETE FEEDBACK STABILIZATION OF SEMILINEAR CONTROL SYSTEMS���

Theorem ��	� Consider the projected system ���	� and the optimal value
function vh� from ������ Let h � 
 be a given time step� Then for every

� � 
 there exists � � 
 and ��h� � 
 such that the discrete feedback  FP
from Lemma 
�	 satis�es

j
�Z
�

e��tg�� �FP
�t� s�� FP�� �FP

��
t

h

�
h� s

�
��dt� vh� �s�j � �

for all s � Pd�� and the results from Section 	 also apply to  FP�

Proof� Follows from Lemma ���� Lemma ���� Theorem ��� and Proposition
����

Remark ��
� Using the results from Section � it follows from this theorem
that for any accessible semilinear system that is open loop exponentially
asymptotically null controllable a stabilizing discrete feedback can be com�
puted numerically� The main limitation for practical purposes lies in the
numerical e#ort that is necessary to obtain su�ciently accurate solutions of
the related optimal value functions � especially in higher dimensions�

Remark ���� The accuracy ��h� from ����� needed for the numerical ap�
proximation of the trajectories strongly depends on the continuity properties
of  vh� � This is easily seen by looking at the second error term in estimate
������
In particular if  vh� is Lipschitz� �i�e� 
 	 ��� a �rst order method for the
calculation of  �i �i�e� ��h� 	 O�h�� is su�cient to obtain convergence�
Although Lipschitz continuity of  vh� could be observed in many numerical
examples even for small 
 � 
� up to now it is not clear if this property can
be proved analytically�

�� A Numerical Example

In this section we will apply the numerical algorithm to a four�dimensional
system �cp� 
����� This semilinear control system consists of two linear
oscillators �in the �x�� x�� plane and in the �x�� x�� plane� respectively� that
are coupled by the control term�


BB�
�x�
�x�
�x�
�x�

�
CCA 	



BB�


 � 
 

�� � u �
�� �u 



 
 
 �

�u�p� 
 ��� u�
p
� �
��p�

�
CCA


BB�

x�
x�
x�
x�

�
CCA

Note that for the given choice of parameters the matrix A�u� has only eigen�
values with positive real parts for all u � 
�
��� 
���� Hence for any constant
control function u��� � u � 
�
��� 
��� the system is unstable� Furthermore

�� Theorem � �i�� implies that there is no continuous feedback law stabilizing
the system�

The following �gures show some trajectories for this system by their pro�
jection into the �x�� x�� plane� The arrows indicate the direction of the
trajectories�

The Figures ��� � ��� show some trajectories for constant control values�
Figure ��� and Figure ��� show trajectories of the system stabilized by a
discrete feedback for di#erent initial values� The Lyapunov exponent of
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these trajectories is �
�
�� which is even smaller than the approximation
of  	 by 
 va� which is �
�
�� This means that the numerical approximation
still contains some signi�cant error� nevertheless the accuracy is su�cient
to calculate a stabilizing discrete feedback�

All trajectories have been computed using the extrapolation method for
ordinary di#erential equations by Stoer and Bulirsch 
��� Section ��������
The discretization of the trajectory  � for the numerical calculation of the
discrete feedback has been done by the Euler method� which was su�ciently
accurate since the value function is Lipschitz� cp� Remark ���� The pa�
rameters of the discretization were 
 	 h 	 
�
� and the approximation  va�
of  vh� has been computed as described in 
��� on an equidistant grid with
�


 nodes� It turned out that for the stabilization it is su�cient to use the
extremal control values u 	 �
�� and u 	 
���
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Figure �� Trajectory for u � 
� x� 	 �� � 
�� 
���T

Figure �� Trajectory for u � �
��� x� 	 �� � 
�� 
���T
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Figure �� Trajectory for u � 
��� x� 	 �� � 
�� 
���T

Figure �� Trajectory with discrete feedback� U	
�
��� 
����
x� 	 �� � 
�� 
���T
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Figure �� Trajectory with discrete feedback� U	
�
��� 
����
x� 	 �
�� 
�� � ��T
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