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DISCRETE FEEDBACK STABILIZATION OF SEMILINEAR
CONTROL SYSTEMS

LARS GRUNE

ABSTRACT. For continuous time semilinear control systems with con-
strained control values stabilizing discrete feedback controls are dis-
cussed. It is shown that under an accessibility condition exponential
discrete feedback stabilizability is equivalent to open loop exponential
asymptotic null controllability. A numerical algorithm for the computa-
tion of discrete feedback controls is presented and a numerical example
is discussed.
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1. INTRODUCTION

In this paper we consider semilinear control systems of the form

H1) = A@u)e(0), tER, #(0) = ro € R\ {0}

{ u(-) €U :={u: R — U, measurable}, U C R™ compact (1.1)
where A : R”™ — R%*? is Lipschitz in some open set containing U.

Control systems of this kind arise e.g. by linearization of nonlinear control
system at a common fixed point for all control functions. In the context of
this paper stabilization always means exponential asymptotic stability of
the origin.

The problem of stabilization of nonlinear control systems has been con-
sidered for a long time by various authors (see e.g. Bacciotti [1] for an
overview). During the last years also the more specific problem of stabi-
lization of semilinear systems — and especially of bilinear systems which are
covered by (1.1) — has attracted a great deal of attention.

Chabour et al. [5] present a Lyapunov function approach for this prob-
lem. Coller et al. [7] solve a minimum time problem in order to stabilize the
system (which is possible due to the special structure of their system). In
[14] stabilization is also reduced to an optimal control problem, here a dis-
counted optimal control problem is solved in order to approximate minimal
Lyapunov exponents. On the theoretical side e.g. Colonius and Kliemann
[10] describe the domain of exponential asymptotical null controllability of
bilinear systems, i.e. the set of points in R? that can be asymptotically con-
trolled to the origin exponentially fast. Although all these papers present
results on the stabilization of bilinear systems general feedback stabilization
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208 LARS GRUNE

techniques seem to be missing up to now. The results cited above make
either use of special structures of the systems considered or are focused on
open loop asymptotic null controllability rather than on feedbacks.

In this paper we will restrict ourselves to the case, where the system is
exponentially asymptotically null controllable by an open loop control for
each initial value zo € R% The question that arises then is whether under
this condition there exists a feedback control such that the corresponding
closed loop system is exponentially stable. In general this is not possible by
using a continuous feedback law, c¢p. [2]. Hence we will use a more general
feedback concept which we will call discrete feedback controls.

In mathematical control theory discrete feedback controls have been inves-
tigated by various authors: Hermes [15], [16] makes use of this construction
under the name of modified feedback control applying Lie algebraic meth-
ods to the stabilization problem. Sontag applies the same idea using the
terminology sampled feedback or sample-and-hold control in connection with
nonlinear regulation [20] and also with stabilization using neural networks
[21] (the term “sampling” has its origin in engineering). A similar concept
can be found in the context of dynamic game theory (see e.g. Krasovskii
and Subbotin [18]); there the value of a game is defined via discrete control
functions (called step-by-step control) where the size of the discretization
step tends to 0. Inspired by this technique Clarke, Ledyaev, Sontag and
Subbotin show in a recent work [6] using Lyapunov functions that asymp-
totic controllability implies stabilizability of nonlinear control systems by
sampled feedbacks when the discretization step (or sampling rate) tends to
0.

The construction made in this paper is based on another concept intro-
duced by Lyapunov, namely the Lyapunov exponents. It has its origin in
the numerical considerations discussed in [14] which deal with the numerical
calculation of open loop control functions that control (1.1) asymptotically
to the origin. Like in many numerical algorithms a discretization of (1.1) is
needed in order to apply the algorithm from [14]. Hence it seems natural
to consider the discrete time system obtained from (1.1) by discretization
in time. The discrete feedback discussed here can then be interpreted as a
feedback for this discrete time system applied to the continuous time system.
In contrast to the result by Clarke et al. here we obtain stabilizability using
discrete feedback controls with fized discretization step size. Moreover we
will give a numerical algorithm to calculate the stabilizing discrete feedback
control.

The organization of this paper is as follows. In the second section we
will cite previous results on asymptotic null controllability of semilinear
control systems, define Lyapunov exponents and the discounted optimal
control problem and show the relation between these two concepts. The only
assumption that will be made on the system is an accessibility condition as
described in [17].

In the third section discrete feedback controls will be defined and it will
be shown that they are optimal control strategies for the discounted optimal
control problem and discrete time control systems.

Section 4 then applies this result to the stabilization problem. We will
show that exponential open loop asymptotic null controllability for all zq €
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DISCRETE FEEDBACK STABILIZATION OF SEMILINEAR CONTROL SYSTEMS 209

R? is equivalent to the existence of an exponentially stabilizing discrete
feedback.

In Section 5 a numerical algorithm for the computation of these stabilizing
discrete feedback controls is developed and finally in Section 6 a numerical
example is presented.

2. PROBLEM SETUP AND PRELIMINARY RESULTS

We consider semilinear control systems of the form

H1) = Au(t)a(t), (€R, 2(0) =z € R'\ {0)
{ u(-) €U :={u: R — U, measurable}, U C R™ compact (2.1)
where A : R™ — R%*? is Lipschitz in some open set containing U. Let
x(t, g, u(-)) denote the solution of (2.1) for an initial value z¢ and a control
function u(-) € Y.

In order to characterize the (open-loop) exponential behaviour of (2.1) we
define the Lyapunov exponent A(zq,u(-)) by

Ao, u() = lim sup 1 I [, 20, u(), (2:2)

and the infimal Lyapunov exponent with respect to the control by
A (zo) == inf A(zo,u(+)). (2.3)
u(-)eU

The following assertion is an easy consequence from the definition of the
Lyapunov exponent:

For all zg € R? x9 # 0 there exists a control function u,,(-) € U such
that @ (¢, zo, uy,(-)) converges to the origin exponentially fast if and only if
M (z0) < 0 for all o € R?\ {0}.

In the following we will restrict ourselves to the case A\*(zq) < 0 for all
zo € R\ {0} and turn to the question if this is also a (necessary and/or
sufficient) condition for the existence of a feedback controller that stabilizes
(2.1). Instead of using “classical” feedbacks we will define discrete feedback
controls and show that — under an accessibility condition — the existence of
an exponentially stabilizing discrete feedback control is equivalent to this
condition. Furthermore we will present a numerical algorithm to compute
discrete feedback controls.

In the rest of this section we will collect the facts known about semilinear
control systems.

As a consequence of the semilinear structure of (2.1) it follows that
Alz,u(-)) = /\(j:ﬁ,u(-)). Hence for the analysis of the Lyapunov expo-
nents it is sufficient to consider (2.1) projected to the real projective space
P41, We will represent P?~! by the sphere S%~!, where opposite points
—s and s are identified. Using the chain rule it is easy to verify that the
projected system s(t) := % can be written as

$(0) = his(e), u(t). -
where h(s,u) =[A(u) — s'A(u)s Id]s '

Let o(t, so, u(+)) denote the solution of (2.4) with initial value sy € S
The Lyapunov exponent for any initial value zo € R% with so = ”i—g” can
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then be expressed as (see also [9, Section 2])

Mz, u(+)) = lim supt_mo%oftg (t, so, u(-)), u(t))dt, (2.5)
where g(s,u) = s'A(u)s.

The following assumption assures local accessibility of (2.4), i.e. that the
reachable set for any point up to any time ¢ > 0 has nonvoid interior (cp.
[17).

Let L denote the Lie-algebra generated by the vector fields (-, u), u € U.
Let A7, denote the distribution generated by L in TP4~!, the tangent bundle
of P4=1. Assume that

dimAp(p) = dimP* ' =d—1 for all pe P!, (H)

Under this condition there exists a unique invariant control set C' with
nonvoid interior of the projected system, i.e. a region of complete con-
trollability which no trajectory can leave. Furthermore for any two points
p1 € P71 py € intC there exists a control function uy, ,,(-) € U and a
time ¢ such that (¢, p1, up, p, (+)) = p2. (For a comprehensive analysis of the
controllability structure of projected semilinear systems see [8].) Using this
control wy, ,,(+) for any € > 0 we can define a control function that steers
p1 to po and then realizes the minimal Lyapunov exponent for py up to e.
This yields (cp. also [14, Proposition 2.6])

A (p1) < X (p2) -

Furthermore by symmetry A* is constant on int C.
Putting this together yields that
R:= max A"(zg)
zo€RA\{0}
exists, & is attained on intC and it holds that

M(z0) < 0 for all x5 € R\ {0}

if and only if K <0. (2.6)

In order to construct a discrete feedback law we approximate (2.5) by a
discounted optimal value function vs with discount rate § defined by

vs5(s0) = inf (.) uJé(Sovu('))v

where Js(sg, u fe_‘gt (t, 50, u(-)), u(t))dt. (2.7)
The following results from [14, Theorem 2.1 and Theorem 2.11] are crucial
for this approximation.

THEOREM 2.1. Consider a semilinear system (2.1) and its projection (2.4)
satisfying (H). Then
1. dvs — X* uniformly on compact subsets of intC' as § — 0.

2. sup dvs(s) = K as 6 — 0.
Se]pd—l

3. Let u(-) € U and o € R such that the following shift condition is
satisfied:

0Js(p(t, s, u(v)),u(t++)) < a for all t > 0.
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DISCRETE FEEDBACK STABILIZATION OF SEMILINEAR CONTROL SYSTEMS 211
Then A(s,u(+)) < a.

The proof of this theorem is essentially based on two arguments: In the
first step the relation between averaged functionals (which appear in the
definition of the Lyapunov exponent) and discounted functionals has to be
investigated. In the second step a controllability property similar to the one
cited above but in uniform time is used to obtain the assertions.

Theorem 2.1 states that the maximum (over all initial values) of the infi-
mal (over all control functions) Lyapunov exponents of (2.1) can be approx-
imated by a discounted optimal control problem on the projective space.
Furthermore any control function satisfying the shift condition as defined
in (iii) will yield a Lyapunov exponent smaller than or equal to o when
applied to (2.1). Hence the next section is devoted to the construction of
a discrete feedback law that yields approximately optimal solutions of (2.4)
with respect to (2.7).

3. DISCRETE FEEDBACK CONTROL

We will now give the definition of discrete feedback control.

DEFINITION 3.1. (Discrete feedback control) A discrete feedback control for
the system (2.1) is a function F : RY — U in connection with a time step
h > 0 that is applied to (2.1) via

(1) = A(F(a ([ﬂ h)))x(t)

where [r] denotes the largest integer less or equal r € R.

REMARK 3.2. The following interpretation gives the motivation for the name
“discrete feedback”. For a given time step h > 0 and constant control values
u € U denote by G : R? x U — R? the solution of (2.1) at the time h, i.e.
G (2o, u) := z(h, zo,u). This defines a discrete time control system via

zip1 o= G(riw),  (w)en € UM (3.1)

The discrete feedback as defined in Definition 3.1 can now be interpreted as
a feedback for the discrete time system (3.1).

In particular this interpretation shows that for any discrete feedback F
and any initial value zo € R? there exists a unique solution which will be
denoted by zp(t,20). Note that no regularity conditions on F' — not even
continuity — are necessary in order to obtain existence and uniqueness of the
corresponding solution. We will also consider discrete feedbacks Fp for the
projected system; the corresponding solutions are again unique and will be
denoted by ¢r,(t, so).

System (3.1) corresponds to (2.1) where only control functions uj constant
on intervals with uniform length » > 0 are admissible. This system can
also be projected to P4~'. We will now investigate how the value of v;
(corresponding to the projected system) changes if we restrict ourselves to
this class of control functions. Define

Up = {up : R = Ul ulpp 410 = const}
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and

vf(s) = inf Js(s,u(-)). (3.2)
u(-) €U
A basic property of the optimal value functions of discounted optimal control
problems is Bellman’s optimality principle (see e.g. [19, Theorem 1.2]): For
all 7> 0 it holds that

T

vﬂ@:=ug&%/e‘&g@xusmw»»u@»dr+e—&va@wnau«».

The value function v? satisfies a similar equation which is proved similar to
[3, Proposition 1.1]. It holds that

h

(e = inf [ e gltts ) w4 ol (rs, ).

0
The main difference between these two equalities lies in the fact that in
the second one control values instead of control functions are considered.
The following theorem shows the convergence for h — 0.
THEOREM 3.3. Consider the control system (2.4) and the optimal value
functions vs and v?. Then

s — ol loc < C13

where C' > 0 is some constant, v = LTh for § < Ly and Ly, is the Lipschitz
constant of h from (2.4) with respect to s. Furthermore vs and v? are Hoelder
continuous with exponent .
ProoF: Similar to [4, Theorem 4.1], where we use the metric on S%!
induced by the norm on R [l
REMARK 3.4. Under stronger assumptions on the system (i.e. control affine
systems, convex control range U) it is possible to obtain the same estimate
with v instead of 3, see [12, Section 5].

The discrete feedback can now be constructed as follows:
DEFINITION 3.5. Fix A > 0 and define Fp : P! — U by: For every s €
P41 choose a value u € U such that

h

[ ottt s it el ol s )
0

becomes minimal and let Fp(s) := u.

The function Fp from the definition above may not be unique, however
the existence of a control value Ip(s) with the desired property is always
guaranteed by the continuity of g, v? and u — ¢(h, s, u) and the compactness
of U.

A discrete feedback for the nonprojected system (2.1) can easily be derived
from Fp by defining F(z) := Fp(z/||z|]).

The following theorem shows that this discrete feedback is indeed an
optimal control strategy for v?.
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DISCRETE FEEDBACK STABILIZATION OF SEMILINEAR CONTROL SYSTEMS 213

THEOREM 3.6. Consider the system (2.4) and the optimal value function
v?. Let Fp be the discrete feedback from Definition 3.5. Then for any initial
value so € P it holds that

[ atonie.o. eton ([H rso )t = ot

ProoF: Abbreviate

7 9(em(t, s0), Fe(or (H h, 80)))dt.

Then the identity

h
K(so) = [ € glon (t,50). Fr(sol)d + e K (g (o)
0 (3.3)
is obvious. On the other hand by the definition of Fp it holds that
h
o) = inf § [T alelt snu)u)dt+ e (e(r s )
0

h
= /_‘” @(t, s0, Fe(s0)), Fp(so))dt

+ el (o(r, s, Fi(s0))). (3.4)
Subtracting (3.4) from (3.3) yields

K (s0) = 0 (s0)| = ™| K (¢ry (R, 50)) = 0f (23 (Ry 50))|
which implies
sup K (5) = v ()] < =5 sup K (5) — vl (5)].
seP seP
This implies the assertion since e=%" < 1. [l

COROLLARY 3.7. For any € > 0 there exists h > 0 such that the solution
R, (t, so) corresponding to the discrete feedback from Definition 3.5 satisfies

| / N e [ [ DI

for all sy € P71,
ProoOF: Follows immediately from Theorem 3.3 and Theorem 3.6. [l

This corollary states that a discrete feedback can be used to obtain ap-
proximately optimal solutions for the discounted optimal control problem.
REMARK 3.8. Although for application and numerical analysis the discrete
feedback control has very nice features (as shown in the next sections), from
the mathematical point of view it would nevertheless be interesting to know
the properties of the closed loop system

&= A(F(2))x.
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Since F' is typically discontinuous the existence and uniqueness of trajec-
tories is not clear. It is also not known whether this system preserves the
optimality properties of the discrete feedback system.

Clearly this question leads to the problem of the existence of optimal feed-
back controls for discounted optimal control problems. If one uses dynamic
programming in order to obtain optimal open loop control functions uy(-)
it has been shown that for h — 0 there exists at least a weakly convergent
subsequence uy, () for h, — 0, see [4, Theorem 5.1]. It is still an open ques-
tion whether a similar construction can be obtained for the optimal feedback
control.

4. STABILIZATION USING DISCRETE FEEDBACK CONTROL

In this section we will apply the discrete feedback as defined in the pre-
vious section to the stabilization problem. Theorem 2.1 (ii) and Corollary
3.7 imply that for any ¢ > 0 there exists & > 0 and a discrete feedback such
that
t

5/ e_étg(@FnD(tv 50)7 FP(QOFHD ( |:h
0

h,SO)))dt < K-+e.

Hence it remains to show that the corresponding trajectories also satisfy the
shift property to meet the assumption of Theorem 2.1 (iii).

LEMMA 4.1. Assume there exists h > 0, a discrete feedback Fp and a con-
stant o« € R such that

t
/ e_étg(@Fﬂu (t7 80)7 FP(SOFHD ( |:ﬁ:| h7 80) ))dt S a4
0
for all sy € P71,
Then there exists a constant B > 0 independent of h such that for all'T > 0
it holds that

7 t
/ 6_5(t_T)g(99F]1D(t7 80)7 FP(S‘QFHD ( |:E:| h7 80) ))dt Sa+ Bh.

ProOOF: For T = ¢h, i € N the assertion follows directly from the assump-
tion. For arbitrary 7' > 0 observe that g(s, u) is bounded by a constant M.
Choosing 0 < 7 < h such that T+ 7 = ¢h for some ¢ € N it follows that

Ze—w—“g(%(a80>7Fﬂ»<% ([5] o) e

) ?—Teg(tT)g(@F]P(t? s0), Fp(¢R, ([%] h, 50)))dt
+TZ e Dg(op, (L, 50), Fe(en, ([%] h, 50)))6”

< M, + e .
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DISCRETE FEEDBACK STABILIZATION OF SEMILINEAR CONTROL SYSTEMS 215

Now the assertion follows by Taylor expansion of e™%7 since 7 < h (note

that o may be negative). U
Now we have collected all the facts to prove the following theorem about
the existence of stabilizing discrete feedbacks.

THEOREM 4.2. Consider a semilinear control system (2.1) satisfying (H).
Then for any ¢ > 0 there exists a h' > 0 such that for any h < h' there
exists a discrete feedback F :R% — U such that

1
limsup —In |z p(t, zo)|| < A+ €.
tooo L

Proor: Using Theorem 2.1(ii) and Corollary 3.7 it follows that there exists
R > 0 such that for any h < h” there exists a discrete feedback Fp that
satisfies the assumptions of Lemma 4.1 with & = &+ /2. Choosing h' < h”
sufficiently small Lemma 4.1 with & < &’ yields the assumption of Theorem
2.1 (iii) with & = & + <. Now the assertion follows by defining F(z) :=
Fe(e/z]).

In particular we obtain a result about exponential stabilization of semi-
linear control systems with discrete feedback:

THEOREM 4.3. Consider a semilinear control system (2.1) satisfying (H).
Then there exists a h > 0 and a discrete feedback that steers (2.1) to the
origin exponentially fast for all initial values xo € R\ {0} if and only if
AN (x0) < 0 for all o € R\ {0}.
PrOOF: “=": The existence of a discrete feedback immediately implies the
existence of a measurable open loop control for any initial value zo € R?
steering (2.1) to the origin exponentially fast. Hence A*(zg) < 0 is implied.
“7: Assume A\*(29) < 0 for all 29 € R\ {0}. Then (2.6) implies & < 0
and hence there exists € > 0 such that £ +¢ < 0. Now by Theorem 4.2 there
exists a discrete feedback with the desired properties. [l

REMARK 4.4. Note that the equivalence (2.6) plays an important role in
the proof of this theorem: It prevents the existence of a sequence (z;)ien
such that A*(z;) 0. In this case the conclusion used in the second part of
the proof would not be possible.

5. NUMERICAL CALCULATION OF THE DISCRETE FEEDBACK

The numerical method proposed follows the ideas described in [14] which
are based on a discretization scheme by I. Capuzzo Dolcetta, H. Ishii and
M. Falcone [4], [11] and [3]. However, in order to construct the discrete
feedback control and ensure convergence we have to modify this algorithm.
Some of the ideas presented here have also been investigated by M. Falcone
and R. Ferretti [12] in the case of large discount rates.

In fact three steps of discretization apply here:

(i) The measurable control functions in U are replaced by the piecewise
constant control functions in U, with uniform step size h.
(ii) The integral

[ e atotrs ), )
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is replaced by

WY gl unl-), unin)

with 8 =1 — éh.
(iii) The trajectory ¢(t,s,un(-)) of the system is replaced by a numerical
approximation @;(s, up(-)).

The discretization error of the first step has already been stated in Theo-
rem 3.3. In the next two lemmas we will investigate the rates of convergence
for the discretization of the integration.

LEMMA 5.1. Let § > 0 and h > 0. Let g : R — R be a real valued function
bounded by M, and Lipschitz on each interval [th, (i + 1)h), i € Ny with
Lipschitz constant L,. Then

[ S Sh(L, +6M
|/e—5fg(t)dt— Ry e Mg(hi) < %h.
0 =0

Proor: For tq,t; € [th, (i + 1)h), i € Ny it holds that

e g(ty) — e 722 g(ty)]
|€_5tlg(t1) _ 6_5t2g(t1)| T |€—5tzg(t1) — e—5t2g(t2)|
(0M + Lg)lty — taf.

ANVAN

This implies for all 7 € [ih, (¢4 1)h), ¢ € Ny
(i+1)h

| / e~Stg(t)dt — he 7 g(7)| < e~ (L, 4+ 6M,)h?
th

and hence

\8

eg(t)dt — h Y e Mg(hi)
1=0

e (L, 4+ SM,)h?

IN
Mg -

-
Il
=]

eéh(Lg + 6 M,)
)

IN
(o5

e h/e_&(Lg + SM,)hdt = h.
0

O

LEMMA 5.2. Let §:=1—6h. Under the assumptions of Lemma 5.1 it holds
that

B et (ih) — by Bg(ih)| < CM,h
=0 =0

for a constant C' > 0.
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Proor: It holds that

—&th -1\ T < -~
|h ;:0 e""g(ih) —h ;:0 Bt < WMy | — = — 57

— (1 =14h)
— |nM, S
gz e
< JhM,C
where the last inequality is seen by Taylor expansion of e~%". [l

These two lemmas show that the discretization error for the integration
is of linear order in h.

We will now turn to the approximation of the trajectories by a numerical
algorithm. For this purpose we assume that for any control function wuy(-) €
Uy, the function ¢;(s, u) is a numerical approximation of the continuous time
trajectory satisfying

[@1(s, un () = @Ry s, un ()| < e(h)h (5.1)
with €(h) \,0 as . — 0 and
i (51, un () = Gilsz, un())I] < " ls1 = sa| (5.2)

for all i € N, 5,571,890 € P! all up(-) € Uy, and a constant L > 0. In
the numerical analysis of ordinary differential equations these are the two
standard conditions consistency and Lipschitz continuity. If e(h) = O(hP)
for some p € N the scheme is called consistent with order p. By induction
one can prove that these assumptions imply

[2i (s, un(-)) — @(ih, s, un())[| < LLh)(@M - 1. (5.3)

The following result shows what happens in the third step when the original
system with piecewise constant control functions is approximated by this
numerical algorithm.

THEOREM 5.3. Let § > 0 and @;(s,up(+)) be a numerical approzimation of
the continuous time system satisfying (5.1)-(5.3). Let

Jh (s, un( —hZﬂ 9(@ils (). wilim), #(s) = ink TF (s, ()

and let v? be the optimal value function from (3.2). Then TJ? is Hoelder
continuous with exponent v and

|0 (s) = 53 ()| < Ce(h) + )
for all s € P41 with'y:% and C' = O(}) for 6 < L.

Proor: Follows immediately using [4, Lemma 4.1] and the preceding lem-
mas. [l

The value function ﬁ? is still defined for every point s € P!, For the
numerical calculation we have to restrict ourselves to a finite set of points
in P41, i.e. using a suitable parametrization of P4~! we have to compute
an approximation on a grid covering some Q C R?!. This approximation
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can be calculated e.g. as described in [11], [14] or [13]. We will now assume
that 0§ gives such an approximation for ﬁ? satisfying

168(s) — 0l (s)| < n for all s € P41 (5.4)

and use 0§ in order to construct an approximately optimal feedback law for
the discrete time system.

LEMMA 5.4. Let Fp : P¥' = U be a discrete feedback law such that
hy(s, Fp(s)) + 50 (i (s, Fo(s))) = minihg(s, u) + 805 (Pi(s, u))}

holds for every s € P41, Let @Fw(s) denote the corresponding solution
using this discrete feedback and the numerical approzimation of the trajec-
tories. Then

00 ) ~ 2
I3 50(Pr1(5), il o)) = @) < =L Jor all s e B,

ProorF: Property (5.4) yields that
08 (s) = hy(w, Fe(s)) + B0 (2, ,(5)) + 2¢(s)

for all s € P?! where |5(s)] < 5. This immediately implies the asser-

tion. U
The following proposition gives an estimate for the error made when the

discrete feedback law Fp is applied to (2.4) according to Definition 3.1.

ProprosiTION 5.5. The solutions Cp, (t,s) according to the discrete feedback
from Lemma 5.4 satisfy for all s € P41

o0 ) . ~ . ] 2
|h;ﬂlg(¢ﬁﬂp(lh, s), Fe(pg (ih, s)) — ol (s)] < £ + CT_ s

PRrOOF: Abbreviate
K(s):=hY_ g(ep,(ih, s), Fe(pp (ih, 5)).
=0
From the construction of the control it follows that
03 (s) = hg(s, Fi(s)) + 595 (@1 (s, F(s))) + 20(s)
where |7(s)| < n. On the other hand it holds that
K (s) = hy(s, Fe(s)) + BK (p(h, 5, Fe(s))).
Putting these two equations together yields
K (s) — 05 (5)]
= ﬁ|l((99(h787FP(8))) - 1
< BIE(p(hy s, Fe(s))) = 05 (p(h, s, Fi(s)))| 4 20 + C(he(h))?

and the assertion follows. [l
To obtain the main theorem we simply have to put together the estimates
of this section.
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THEOREM 5.6. Consider the projected system (2.4) and the optimal value
function v? from (3.2). Let h > 0 be a given time step. Then for every
£ > 0 there exists ) > 0 and £(h) > 0 such that the discrete feedback Fp
Sfrom Lemma 5. satisfies

t

|7e-5tg<sopﬂp<as>,Fp<soF@ (|5] s na =i < =

for all s € P41 and the results from Section 4 also apply to Fp.

ProoF: Follows from Lemma 5.1, Lemma 5.2, Theorem 5.3 and Proposition
5.5. a

REMARK 5.7. Using the results from Section 4 it follows from this theorem
that for any accessible semilinear system that is open loop exponentially
asymptotically null controllable a stabilizing discrete feedback can be com-
puted numerically. The main limitation for practical purposes lies in the
numerical effort that is necessary to obtain sufficiently accurate solutions of
the related optimal value functions — especially in higher dimensions.

REMARK 5.8. The accuracy £(h) from (5.1) needed for the numerical ap-
proximation of the trajectories strongly depends on the continuity properties
of 17?. This is easily seen by looking at the second error term in estimate
(5.5).

In particular if ﬁ? is Lipschitz, (i.e. v = 1), a first order method for the
calculation of ¢; (i.e. (h) = O(h)) is sufficient to obtain convergence.
Although Lipschitz continuity of ﬁ? could be observed in many numerical
examples even for small § > 0, up to now it is not clear if this property can
be proved analytically.

6. A NUMERICAL EXAMPLE

In this section we will apply the numerical algorithm to a four-dimensional
system (cp. [22]). This semilinear control system consists of two linear
oscillators (in the (21, 22) plane and in the (x3, 24) plane, respectively) that
are coupled by the control term.

il 0 1 0 0 €T
Ty | —1—-—u -0.2 —1U 0 T
ig o 0 0 0 1 xrs
iy —u/V2 0 —2—u/V2 —0.2V2 T4

Note that for the given choice of parameters the matrix A(u) has only eigen-
values with positive real parts for all u € [—0.6,0.6]. Hence for any constant
control function u(-) = u € [—0.6,0.6] the system is unstable. Furthermore
[2, Theorem 1 (i)] implies that there is no continuous feedback law stabilizing
the system.

The following figures show some trajectories for this system by their pro-
jection into the (21, z3) plane. The arrows indicate the direction of the
trajectories.

The Figures (1) — (3) show some trajectories for constant control values.
Figure (4) and Figure (5) show trajectories of the system stabilized by a
discrete feedback for different initial values. The Lyapunov exponent of
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these trajectories is -0.052 which is even smaller than the approximation
of £ by 00§ which is -0.03. This means that the numerical approximation
still contains some significant error; nevertheless the accuracy is sufficient
to calculate a stabilizing discrete feedback.

All trajectories have been computed using the extrapolation method for
ordinary differential equations by Stoer and Bulirsch [23, Section 7.2.14].
The discretization of the trajectory ¢ for the numerical calculation of the
discrete feedback has been done by the Euler method, which was sufficiently
accurate since the value function is Lipschitz, cp. Remark 5.8. The pa-
rameters of the discretization were § = h = 0.01 and the approximation o§
of o} has been computed as described in [14] on an equidistant grid with
8000 nodes. It turned out that for the stabilization it is sufficient to use the
extremal control values v = —0.6 and u = 0.6.

Esamm: Cocv, SEPTEMBER 1996, VoL. 1, PP. 207-224



DISCRETE FEEDBACK STABILIZATION OF SEMILINEAR CONTROL SYSTEMS 221

X3

“ox10’

“ox10’

Ficure 1. Trajectory for v =

X3

“ox108

o108

A}

.
[ S R N

“1x10/

0 1x10’ %107

X

0, z0=(110.10.1)7

N,

-1x10

8

FiGUre 2. Trajectory for u

0 1x108 w108

X

0.6, 2= (1 1 0.1 0.1)7

Esamm: Cocv, SEPTEMBER 1996, VoL. 1, PP. 207-224



222 LARS GRUNE

2“08””””‘HHHH“HHHHHHHH‘

X3
=)

N S T D R

o108 “1x108 0 1x108 210

X

8

1

FIGURE 3. Trajectory for u = 0.6, zo = (1 1 0.1 0.1)7

0.5

N I R

0.0

-0.5

-1.50. P T P P P I
-1.5 -1.0 -0.5 0.0 0.5 1.0

X

w

FiGURE 4. Trajectory with discrete feedback, U=[-0.6, 0.6],
zo= (1 10.1 01)T

Esamm: Cocv, SEPTEMBER 1996, VoL. 1, PP. 207-224



DISCRETE FEEDBACK STABILIZATION OF SEMILINEAR CONTROL SYSTEMS 223

0.5

X3

0.0

-0.5

-1.501. | . P T P P I
-1.5 -1.0 -0.5 0.0 0.5 1.0

X

W

FiGurE 5. Trajectory with discrete feedback, U=[—-0.6, 0.6],
zo= (0.1 0.1 1 )T

I would like to thank Fritz Colonius for his constant help and advice.

REFERENCES

[1] A. Bacciotti: Local Stabilizability of Nonlinear Control Systems, World Scientific,
Singapore, 1992.

[2] R. W. Brockett: Asymptotic stability and feedback stabilization, in Differential Geo-
metric Control Theory, R.W. Brockett, R.S. Millman, and H.J. Sussmann, eds., 181—
191, Birkhauser, Boston, 1983.

[3] I. Capuzzo Dolcetta and M. Falcone: Discrete dynamic programming and viscosity
solutions of the Bellman equation, Ann. Inst. Henr:t Poincaré, Anal. Non Linéaire, 6
(supplément), 1989, 161-184.

[4] 1. Capuzzo Dolcetta and H. Ishii: Approximate solutions of the Bellman equation of
deterministic control theory, Appl. Math. Optim., 11, 1984, 161-181.

[5] R. Chabour, G. Sallet, and J. Vivalda: Stabilization of nonlinear systems: A bilinear
approach, Math. Control Signals Syst., 6, 1993, 224-246.

[6] F. Clarke, Y. Ledyaev, E. Sontag, and A. Subbotin: Asymptotic controllability and
feedback stabilization, in Proc. Conf. on Information Sciences and Systems (CISS
96), Princeton, NJ, 1996. To appear, full version submitted.

[7] B. D. Coller, P. Holmes, and J. L. Lumley: Control of bursting in boundary layer
models, Appl. Mech. Rev., 47, 1994, 139-143.

[8] F. Colonius and W. Kliemann: Linear control semigroups acting on projective space,
J. Dyn. Differ. Equations, 5, 1993, 495-528.

, Maximal and minimal Lyapunov exponents of bilinear control systems, .J.

Differ. Equations, 101, 1993, 232-275.

, Asymptotic null controllability of bilinear systems, in Geometry in Nonlinear

Control and Differential Inclusions, Banach Center Publications Vol. 32, Warsaw,

1995, 139-148.

EsamM: Cocv, SEPTEMBER 1996, VoOL. 1, PP. 207-224



224

[11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

[23]

LARS GRUNE

M. Falcone: A numerical approach to the infinite horizon problem of deterministic
control theory, Appl. Math. Optim., 15, 1987, 1-13. Corrigenda, ibid. 23, 1991, 213~
214.

M. Falcone and R. Ferretti: Discrete time high-order schemes for viscosity solutions
of Hamilton-Jacobi-Bellman equations, Numer. Math., 67, 1994, 315-344.

L. Grune: An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equa-
tion, Numer. Math., 1996. To appear.

———, Numerical stabilization of bilinear control systems, STAM J. Control Optim.,
1996. To appear.

H. Hermes: On stabilizing feedback attitude control, J. Optimization Theory Appl.,
31, 1980, 373-384.

——, On the synthesis of stabilizing feedback control via Lie algebraic methods,
SIAM J. Control Optim., 18, 1980, 352-361.

A. Isidori: Nonlinear Control Systems: An Introduction, Springer Verlag, Berlin,
1989.

N.N. Krasovskii and A.I. Subbotin: Game-Theoretical Control Problems, Springer
Verlag, New York, 1988.

P.-L. Lions: Generalized solutions of Hamilton-Jacobi equations, Pitman, London,
1982.

E.D. Sontag: Nonlinear regulation: The piecewise linear approach, TFEE Trans.
Autom. Control, AC-26, 1981, 346-358.

E.D. Sontag: Feedback stabilization using two-hidden-layer nets, IEEF Trans. Neural
Networks, 3, 1992, 981-990.

N. Sri Namachchivaya and H.J. Van Roessel: Maximal Lyapunov exponents and
rotation numbers for two coupled oscillators driven by real noise, J. Stat. Phys., 71,
1993, 549-567.

J. Stoer and R. Bulirsch: Introduction to Numerical Analysis, Springer Verlag, New
York, 1980.

Esamm: Cocv, SEPTEMBER 1996, VoL. 1, PP. 207-224



