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APPROXIMATE CONTROLLABILITY OF A
HYDRO-ELASTIC COUPLED SYSTEM

JACQUES-LOUIS LIONS AND ENRIQUE ZUAZUA

ABSTRACT. We analyze the controllability of the motion of a fluid by
means of the action of a vibrating shell coupled at the boundary of
the fluid. The model considered is linear. We study its approximate
controllability, i.e. whether the fluid may reach a dense set of final con-
figurations at a given time. We show that this problem can be reduced
to a unique continuation question for the Stokes system. We prove
that this unique continuation property holds generically among analytic
domains and therefore, that there is approximate controllability generi-
cally. We also prove that this result fails when € is a ball showing that
the analyticity assumption on the domain is not sufficient.

1. INTRODUCTION AND MAIN RESULT
1.1. PRELIMINARIES

We consider a bounded domain € of R?, not necessarily simply connected,
with smooth boundary I' = Q. For the main result we will actually assume
that I' is real analytic.

We divide I' in two pieces ' = I'g U I'y. The subset I'g will play the role
of a vibrating shell.

We study a very approximated and simplified linear model of an incom-
pressible viscous fluid flowing in € and, in particular, we analyze the pos-
sibility of controlling its behavior by means of a control function acting on
I.

We give directly the variational formulation of the problem that we will
interpret later on in classical terms. For doing that we need to introduce
some functional spaces.

First of all we define the space V:

v={ve @ ()’ divo=0 9,

v=0 on I't and v|r, is perpendicular to Fo} . (1)

The vector space V is endowed with the norm induced by the Hilbert
space (H(Q2))3.
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2 JACQUES-LOUIS LIONS AND ENRIQUE ZUAZUA

We also introduce the following bilinear form defined on V' x V:

du; Ov;
1 1 d 2

a(u,v) =p

where p is a given positive constant (we use the convention of summation
of repeated indexes).

We will denote by - the scalar product in R?.

We denote by n the unit outward normal vector to €2 and introduce a sub-
space W of V consisting of those elements v of V' whose normal component
v - n satisfies some further regularity properties. More precisely

W={veVv: v-neH*To)nHTo)} . (3)

By H*(I'g) and H(I'g) we are denoting the Sobolev spaces of order s
over L*(T'g) equal to H(I'g) considering I'g as a Riemannian manifold with
boundary (see for instance J.L. Lions and E. Magenes [8] Chap. 1, n® 7.3
and, in particular, Remark 7.5).

By means of the Laplace-Beltrami operator Ap, over I'g, we can rewrite

W as follows:
WI{U€V2 Ar,(v-n) € L*(Iy), v-n=0 on GFO}. (4)

The subspace W is not closed in V. In fact, W is dense in V.
We endow W with the Hilbert structure induced by the bilinear form

a(u,v)+ ar, (u,v) (5)
where

ar, (u,v) = g Ar, (w-n) Ary(v-n)dly . (6)

REMARK 1. Since div v =0 in © and

/divvdw:/v-n-df:/ v-ndly,
Q r Ty

/v-ndFOZO7 YoeV. (7)
Lo

we have

On the other hand, if ¢ is a smooth scalar function defined on I'y that
vanishes on dl'g and satisfying

/ gdTo =10, (8)
Lo

then, there exists v € W such that
v-n=g¢g on Iyg. 9)

(see O.A. Ladyzhenskaya [4], Section 2.1).
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APPROXIMATE CONTROLLABILITY OF A HYDRO-ELASTIC COUPLED SYSTEM 3

1.2. VARIATIONAL FORMULATION

In the sequel, we will denote by (-,-) both the scalar product in L?(€)
and in (L%(€2)).
Given T' > 0 and a scalar function h = h(z,t) we look for u such that

we L?(0,T; V),
t (10)
/ u-nds e L*(0,T; H*(Tg) N Hy(Ty)),
0
and
d t
o)+ e, o ]+ ot o [ Cwnds on) |
=(h, v-n)p,, YoeW, (11)
with
w(0)=0 in €, (12)

w-n(0)=0 on Iy.

This variational problem is not completely standard since there is an
obvious asymmetry between the space of test functions and the space where
the solution is required to be. But we will see later on that nevertheless it
has a unique solution.

In the next section we provide an interpretation of system (10)-(12) in
classical terms.

In (11), h represents the control function. We assume that h runs over
the space of functions such that

h e L*(Tg x (0,T)) . (13)
We will see later on that, when u satisfies (10)-(12), then
{ u(T) is well defined in (L%(2))?,

14
w-n(T)|r, is well defined in L3(To) , (14)

where L23(T'g) denotes the subspace of L?(I'g) of zero mean functions.

1.3. THE MAIN RESULT

The goal of this paper is to prove the following result of approzimated
controllability:

THEOREM 2. Assume that the boundary I' of Q is real analytic and that the
spectrum of the laplacian —A in HL(Q) is simple.
Under these conditions, when the control h runs over the space defined in

(13),
{u(T), u-n(T)|p0} is dense in  (L*(Q))® x L3(To).  (15)

REMARK 3. The hypotheses we have made on €2 and, in particular the an-
alyticity one, are probably too restrictive. We conjecture that the approxi-
mate controllability result (15) holds generically with respect to 2, i.e. given
any domain € of class C? and fixing the subset I'q of I property (15) holds
after a possible arbitrarily small perturbation of I'y.

Esaim : Cocv SEPTEMBER 1995 VoL.1, pp.1-15



4 JACQUES-LOUIS LIONS AND ENRIQUE ZUAZUA

Notice that the simplicity of the Dirichlet spectrum of the Laplacian holds
generically with respect to Q (see J. H. Albert [1], A.M. Micheletti [9] and
K. Uhlenbeck [10]).

Unfortunately, the analyticity assumption on [' excludes the case where
Iy is plane.

REMARK 4. The analyticity assumption on € is not sufficient to guarantee
the controllability property (15). Indeed, as we will see in the last section,
when Q is a ball (15) fails even when [y is the whole boundary.

REMARK 5. Under the hypotheses of Theorem 2, once the approximate con-
trollability is known, given any {w,b} in (L?(2))® x L%(To) and € > 0 we
can look for the optimal control /., among the admissible ones such that

[ropll L2 (Tox(0,1)) = hfél[ijgd 17 2(re x 0,1)) -

with
Ugg = {h satisfying (13) s.t. the solution v of (10)-(12)

satisfies |[(v(T), v-n(T)|r,) = (w, O)ll(z2@)) x12(ry) < 5} -

Such an optimal control exists and is unique. It can be characterized by a
system of optimality that can be derived via duality theory as in J.L. Lions
[7]. This optimality condition allows also to analyze the dependence of the
control with respect to a number of parameters of the problem (see, for
instance, C. Fabre, J.P. Puel and E. Zuazua [3] where a class of semilinear
heat equations is considered).

We do not pursue in this direction in this work.

The rest of the paper is organized as follows. In section 2 we interpret
the variational problem in classical terms. In section 3 we prove the basic
existence and uniqueness result.

In Section 4 we prove the approximate controllability result. In Section 5
we show that the controllability result does not hold when €2 is a ball even
if I'g is the whole boundary.

2. INTERPRETATION OF THE VARIATIONAL PROBLEM
First, taking v € D () in (11) we deduce that
— —pAu=-Vp in Qx(0,7T) (16)

where p is the pressure which is defined up to an additive time-dependent
function.
On the other hand, one can deduce that

vu=0 on Iy, (17)
the tangential components of u vanish on I'y , (18)
u=0 at t=0. (19)

But it remains a condition over the restriction of u - n to I'g that we
describe now.
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APPROXIMATE CONTROLLABILITY OF A HYDRO-ELASTIC COUPLED SYSTEM 5

Multiplying in (16) by v and integrating by parts we obtain

du du
(E,v)—uéo%vdfo+a(u,v):—/Fopv-ndfo. (20)
On the other hand v = (v - n) n on Iy, therefore
du du
—vdly = C— -n)dly . 21
[ Srvaro= [ (a-52) (w-mare @)
Using (20), (21) and (11) we obtain
d €
%(u-n7 v-n)ro—l—,u/FO (n%) (u-n)dly+ ar, (/0 u-nds, v-n)
= (h, v-n)r, —I—/ pv-ndly, YveW. (22)
Lo

But in (22), the test function v appears only through the value of v -n
over ['g. Thus, in view of 1 we can replace v - n by ¢, where ¢ is a smooth

scalar function defined on I'g such that ¢ = 0 on 0I'g and / gdl'g = 0.

Lo
Therefore

J 9 t duy
%(u-n)—l—Aro (/Ou-nds)—l—,u(n-%)_h—l—p—l—c on I'g x (0,7,

(23)
where ¢ is a function which depends only on time.
In (23) we have to add the boundary conditions.
w-n=0, Ary(u-n)=0 on 0y, (24)
and the initial condition
(u-n)(0)=0 1in I'g. (25)
REMARK 6. If we set
aa—f =u-n, (26)
we have
%—I—A%O@—I—u(n-%):h—l—p—l—c. (27)

The function ¢ represents the displacement of ['g in the normal direction n
and therefore (26) states that the normal component of the velocity of the
fluid u - n coincides with the velocity of the deformation of I'y.
REMARK 7. When I’y is flat,

ou

n-— =20

on '
since div u = 0 in € and w is perpendicular to I'g over I'g. In this particular
case (27) becomes

0%

902 —I—A%Ocp:h—l—p—l—c in I'ox (0,7,
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6 JACQUES-LOUIS LIONS AND ENRIQUE ZUAZUA

and Ap, = 0?/dx} + 0?9023 if I'g is parallel to 23 = 0. However, as we said
in Remark 3, the analyticity assumption of Theorem 2 excludes the case
when I'g is flat.

Putting all equations above together we obtain the following system:

w—pAu=-Vp in Qx(0,1),
dive=0 in Qx(0,7),
vu=0 on [Iyx(0,7),

w=@m on L'gx(0,7),

/ pdlyg=0 for te(0,7),

r

c,oozApocpzo on 0lyx(0,7),
w(0)=0 in €,

99(0) = 9975(0) =0 on FO .

REMARK 8. In [6], chapter [.9 asomewhat similar coupled parabolic-hyperbolic
system is analyzed. That system is motivated by the problem of the flow of
blood in arteries as introduced by H. Cohen and S.I. Rubinow [2].

REMARK 9. A completely similar problem can be formulated for a system
like (28) in which the first equation is replaced by

u — Au+b(z,t)Vu=-Vp,

where b(z,t) is given such that divb(-,¢) = 0.

The variational formulation of this new system is similar to (10)-(12)
except that we have to add the term [, (b- V)uvdz in the left hand side of
(11).

We conjecture an analogous of Theorem 2 still to be true but the proof
given here does not apply to this situation.

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS
FOR THE VARIATIONAL PROBLEM

In this section we apply a classical Galerkin method to prove the exis-
tence and uniqueness of solutions of the variational problem (10)-(12). The
method being by now rather standard we only give an outline of the proof.

THEOREM 10. Forany h € L*(Lox(0,T)) the variational problem (10)-(12)
admits a unique solution.

Proof. The uniqueness is standard and for the proof of the existence we
proceed in several steps.

STEP 1. CONSTRUCTION OF THE (FALERKIN BASIS

The construction of the Galerkin basis is not essential for the proof since
we are dealing with a linear problem but the introduction of this basis may
be of independent interest.
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APPROXIMATE CONTROLLABILITY OF A HYDRO-ELASTIC COUPLED SYSTEM 7

We consider the following eigenvalue problem: Find the eigenvalues A;
and the eigenfunctions (w;, 7, ¢;) such that

—pAw; = \jw; —Vr; in Q)

divw; =0 in Q,

w; =0 on I,

w; is perpendicular to I' on I'g,

wy

on

where 7; is the pressure that is determined up to an additive constant and
¢; is a real number.

This problem admits the following variational formulation: Find A; and

w; € V such that

‘n—m;=c¢; on IYp.

alwj,v) = Aj (wj,v), VweV. (29)

It is easy to see that there exists an infinite sequence of positive eigen-
values {A;} (that we repeat according to their multiplity), and that we can
construct an orthonormal base {w;};>; of V with the associated eigenfunc-
tions. -

We apply the Faedo-Galerkin method with the following “special basis”:

{wj, p;} with ¢; =w;-n on TIY.

STEP 2. APPROXIMATED SOLUTIONS

We define u,,(t) as the solution of the finite-dimensional problem:
(U (1), w5) + (i (£) - 1w )
+a(uy,(t), w;) + ar, (/ U (8) - nds, w; - n)
= (h, wj-n)r,, 1< j0§ m, Uy (t) € [wi, ..., wy],
U, (0) = 0.

where [...] denotes the vector space generated by the functions under the
brackets and ’ the derivative with respect to t.

System (30) admits a unique solution which is globally defined for all
teo,T].

On the other hand, the energy identity that the solutions of (28) satisfy
formally, i.e.

1d
s Lt ars [ e+ 1anelyare] = [ recudra, e
Q Fo 1_‘0

allows us to show that

u,, rtemains bounded in  L*(0,7; V)N C([O,T]; (L2(Q))3) ,

(30)

t
/ Uy - nds remains bounded in C([O,T] : H*(Tg) N H&(Fo)) ,
0

U, - remains bounded in C’([O7 Tl LZ(FO)) .
(32)

STEP 3. PASSING TO THE LIMIT
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8 JACQUES-LOUIS LIONS AND ENRIQUE ZUAZUA

From (32) and using the equations that {w.,, w,, - n} satisfy it is easy to
see that

{04ty , Oyt -m}  remains bounded in  L*(0,7; W'y, (33)
where W' denotes the dual of W.

Classical compactness arguments allow us to show that

u,, is relatively compact in  L? (07 T, (HI_E(Q))S) .
t

/ Uy, - nds s relatively compact in L2 (07 T HQ_E(FO)) . (34
0

u,, -n is relatively compact in  L? (07 T H‘E(Fo)) )
for any 0 < e < 1/2.
It is then easy to pass to the limit in (30) to get (10)-(12). O
4. PROOF OF THE APPROXIMATE CONTROLLABILITY RESULT

We proceed in several steps. First, applying Hanh-Banach Theorem we
reduce the approximate controllability problem to a uniqueness property for
solutions of the evolution Stokes system. Then we show that this uniqueness
problem can be reduced to the analysis of the eigenfunctions and eigenpres-
sures of the Stokes system. More precisely, we show that it is sufficient to
prove that the eigenpressures cannot be identically constant. Finally we
show that this property holds generically with respect to the domain €.

4.1. STEP 1. APPLICATION OF HAHN-BANACH THEOREM.
We consider a pair
{f.9y e (1)) < 13(10). (35)
and suppose that
(f.u() + (9. w-n(1)) =0, .
Vh asin (13).
We have to show that (36) implies
f=0, g=0 (37)
For that we introduce the function % such that
b eL?(0,T5 V),
/T¢ cnds € 13(0,T; H¥(Lo) 1 H{ (T)) |
¢

d N . . T .
b @b ] e by, ([0 nds, ) =0
Vi e W .

oT)=f, ¢v-nl)=g. (40)
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APPROXIMATE CONTROLLABILITY OF A HYDRO-ELASTIC COUPLED SYSTEM 9

From Section 3 we know that (38)-(40) has a unique solution. On the other
hand, without loss of generality we may restrict ourselves to analyze (36)
for smooth functions h such that, for instance,

% € L*(0,T; L*(Ty)), h(0)=0. (41)

In this case the solution w of (10)-(12) has, roughly, one more degree of
regularity in time. More precisely,

ou 9 ‘
{ SLELA0,Ti V),

(42)
u-n € L*0,T; H*(To) N Hy (L)) .

This allows us to take ¢ = u(t) as test function in (39) for a.e. t € [0, 7],
provided that we rewrite first the term

@by + @ om, domry] .

I o )
(% ¢)+(E‘"’ ¢) '

We obtain in this way:

_ (%7 u(t)) _ (%_f -, u(t) n) + a(t, u(t))

Lo

T
+ar, (/ P nds, u(t)n) =0.

Integrating this identity with respect to ¢t € [0,7] we get:

_(zb(T),u(T)) - (zb(T) -1, u(T) ‘")ro

T/ ou ou
—I_/O (571#) + (ETW Qb‘n)ro—l_a(u’Qb)] dt
T T
—I—/ aro(/ Qb-nds,u-n) dt =0. (43)
0 t

The last term equals
T t
/ apo(/u-nds,zb-n) dt |
0 0

by integration by parts. On the other hand, taking v = (¢) in (11) and
integrating in (0,7) we get

T\ [ ou Jdu
/0 (Ev ¢)+(En7 Qb‘n)ro—l_a(u’Qb)] dt

T t T
—I—/O apo(/ou-nds,zb-n) dt:/o (h, ¥-n)p, dt . (44)

Combining (36), (40), (43) and (44) we conclude that

as

T
/ (h, ¥-n)r,dt =0, Vh smooth asin (13) and (41) . (45)
0
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10 JACQUES-LOUIS LIONS AND ENRIQUE ZUAZUA
Therefore
p-n=0 on I'yx(0,7). (46)
Since the tangential components of 4 on [’y vanish we deduce that
=0 on I'yx(0,7). (47)
Thus, (39) reduces to

L b raw =0, vhew. (13)

Taking in (48) test functions 1@ with compact support in ©Q we deduce that

_%_Qf_lquﬁ:—Vp i Qx(0,7),
divey=0 in Qx(0,7T), (49)
=0 on I['x(0,7),
W(T)=f.

where p is the pressure that is defined up to an additive time-dependent

function. )
Multiplying in (49) by ¢ € W we deduce that

/ (u%—pn) pdlo =0,
T'o 871

or, since 1 = (QL -n)n on I,

/Fo(u(n-%)—p)qﬁ-ndrozo. (50)

In view of Remark 1, in (50) we can replace 1@ -n by any function in
Li(Ty).
Thus,
0
un-j—p:k(t) on I'gx(0,7), (51)
dan
where k& = k(t) is some time-dependent function.
On the other hand, since ¥ (¢)|r = 0 we have

0
an

for any component 1; of 1. But, since div ¢y = 0 in Q x (0,7"), we deduce
that

Vb, (t) =n

(t) on I'gx (0,7)

0y 0y
n; 8n_n-%_o on ['gx (0,7). (52)

Therefore, from (51) and (52) we obtain that

p=—k(t) on I'pgx(0,7), afunction independent of z . (53)
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APPROXIMATE CONTROLLABILITY OF A HYDRO-ELASTIC COUPLED SYSTEM11

4.2. STEP 2.

In order to simplify the notation, we reverse the sense of time in system
(49). In this way p(z,t) = ¢¥(2,T —t) and o(z,t) = p(z, T —t) satisfy the
Stokes system

899 .
m Ap=-Vo in Qx(0,7),
divp=0 in Qx(0,7), (54)
=0 on I['x(0,7),
e(0)=f in Q.
and the additional boundary condition
o=1Fki(t) on Igx(0,7), afunction independent of (55)

with ky(t) = =k (T —1).

Since the domain € is smooth by the regularizing effect of the Stokes
system we know that for any @ € ' = 09, o(z,?) is a real analytic function
of t € (0,00) (at this level we do not need the boundary I' to be real analytic).
In view of (55) this implies that

o=1ki(t) on TI'gx(0,00) (56)

where ¢ is the pressure obtained by extending the solution of the Stokes
initial-boundary value problem to the whole time interval ¢ € (0,00) and
k1(t) is the real analytic continuation of the function &y : (0,7) — R to R*
determined by the value of the pressure ¢ at any point of € for all ¢t > 0.

4.3. STEP 3.
We introduce now the spectrum of the Stokes system in €2:
—pAw=Aw—-Vo in Q,
divw=0 in Q, (57)
w=0 on T.
We denote by {A;} the sequence of distinct eigenvalues of multiplicity /(7).
Let {w”};en, m=1,..1(j) Pe an orthonormal basis of V' constituted by

eigenfunctions and o7 the corresponding eigenpressure.
Then, the solution ¢ of (54) can be written as

oo 1(J)
¢ = Z et wi . (58)

7=1 m=1

From (58) and system (54) we obtain the following representation for the
gradient of the pressure o:

Iy

= f: eV Vol (59)

7=1 m:l

~—
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12 JACQUES-LOUIS LIONS AND ENRIQUE ZUAZUA

If we denote by V, the tangential component of the gradient on I'; from
(59) we deduce that

Vo= 33 ()N ey o Do), (60)

Z (f,w]) MY, o =0 on Iy x (0,00). (61)

From (61) it is easy to deduce that
1(7)
Z(f,w;n)VTU;n:O on I'g, Vj>1. (62)

m=1
Indeed, multiplying in (61) by e*t! we get
I(1) 1(j)
> () Veop =

m=1 ji=2 m :1

ety o on g x (0,00).

Mg

The right hand side converges to zero, for instance, in L?(['g) as ¢t — oo,
while the left hand side is time-independent. This implies that

I(1)
Z (fiw)V,o"=0 on Iy.

m=1
Repeating this argument, by induction we get (62). Of course, (62) is
equivalent to the existence of a sequence of constants ¢; € R such that

1(7)
=¢; on Iy. (63)
m=1

4.4. STEP 4.

We introduce now

and

We verify that
—pnAw; = Ajw; —Vp; in Q,
divw; =0 in Q, (66)
w;=0 on I.
and
p;=c¢; onlg. (67)
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APPROXIMATE CONTROLLABILITY OF A HYDRO-ELASTIC COUPLED SYSTEM13

The problem is then reduced to showing that (66) and (67) imply (generi-
cally) that
w; =0

ie. (f, wf) =0 forall j,k,ie. f=0.

4.5. STEP 5.

We can drop the index “;” in (66)-(67). We have to show that (generi-
cally) if

—pAw =Aw—-Vp in Q|
divw=0 in Q, (68)
w=0 on T.
and
p = constant on T'g . (69)

then w = 0, p = constant in .

Since p is defined up to an additive constant, we do not restrict the
generality by assuming that p = 0 on [g.

We use here (very likely in a non essential way !) the analyticity of
I'=09Q. (I' is assumed to be real analytic). Then w, p are real analytic up
to the boundary, so that p = 0 on I' and since Ap = 0 in €, it follows that
p=0in Q.

Then (68) reduces to

—pAw =Aw in Q,
(70)
w=0 on I,
and
divw=0 in Q, (71)

and we want to show that it (generically) implies that w = 0.

4.6. STEP 6.

We have assumed that the spectrum of —A for Dirichlet in € is simple.
Let 6 be the normalized eigenfunction of

—pAf=X0 inQ, 6#=0 onl.

Then, since the spectrum is simple, there are real numbers «;, ¢ = 1,2,3
such that w; = o;8, ¢ = 1,2, 3 so that
00
di = — .
ivw Z % oz,
Therefore one has necessarily
00 .
Zaia—xi =0 inQ,
and # = 0 on I', which is impossible except if a;; = 0, V¢, i.e. w = 0, and the
proof is completed.

REMARK 11. The proof in Step 6 does not assume the boundary I' of  to
be real analytic.
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14 JACQUES-LOUIS LIONS AND ENRIQUE ZUAZUA

5 A COUNTER-EXAMPLE

Analyzing the development of section 4 we see that the key point of the
proof of Theorem 2, in addition to the real analyticity of €2, is the following
uniqueness property (see (68)-(69) above):

—Aw=Aw—-Vr in €,

divw=0 in  Q, 0 -
=w=0.
w =10 on 02, v (72)
7 — constant on 02,

We have seen that (72) holds when the spectrum of —A in H}(Q) is
simple.

As we have seen in section 4, since 7 is harmonic in §, (72) is equivalent
to the following:

—Aw=Xdw in Q,
divw=0 in Q, }=>w=0. (73)
w =10 on J0Q,

We are going to show that these uniqueness results do not hold in the
case of the ball Q. This is an old example (see, for instance, H.Lamb [5]).
We present here a simple self contained proof.

Let us consider first the two-dimensional analog of (73) (that can be
formulated exactly in the same terms) and let us see that (73) is false when
Q2 is a ball in R% Of course, this shows that the two-dimensional analog
of Theorem (2) is false if we drop the assumption of the simplicity of the
spectrum of the Dirichlet Laplacian.

Let ¢ = ¢(r) be a radially symmetric eigenfunction of the problem

A2p=—-AAp in Q,
= ¢ =0 on 09Q. (74)
on
Then, the vector field
1% 1%
=, —5— 75
v (8$27 8$1) ( )
satisfies
divw=0 in €, =6
w=0 on J92. (76)
Let us see that
—Aw=2Aw in Q. (77)
One verifies that
i(Aw —I—/\w)—i(Aw + Awy) = A2+ AMAp =0 in Q
974 1 1 B 2 2) =4 ¥ = .
Therefore, there exists a scalar function # such that
—Aw=Aw+Vr in Q. (78)
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It is sufficient to show that 7 is constant in €. This is true since, in view

of (76), (78) and taking into account that ¢ is radially symmetric, we have
Ar=0 in Q,

or J0Ap

=—Aw-n=

an or

=0 on 09.

J
where — denotes the tangential derivative on 9. Therefore # = constant

T
on © and the vector field (75) provides a counter-example to (72) and/or

(73) when Q is a two-dimensional ball.

Let us now consider the three-dimensional problem when € is a ball. Let
1 be a (not identically constant) radially symmetric eigenfuncion of —A in
H'(Q) with Neumann boundary condition:

“Ab=Xp in Q,

oy
%—0 on O .

Then, clearly Vb = 0 on 0€2. Therefore 01/0x; is an eigenfunction of —A in
HJ(Q) with eigenvalue A for j = 1,2,3. Let us now define w = (wy, wq, w3)
by

wy = O /0xy+ 0Y/dws

W9 = —8¢/8$1 + 8¢/8$3 s

w3 = —8¢/8$2 - 8¢/8$1

It is clear that
—Aw=XMw in €,

divw=0 in Q,
w=0 on 990.

This shows that the uniqueness property (73) fails when § is a three-
dimensional ball.
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