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A SEPARATION THEOREM FOR EXPECTED VALUE
AND FEARED VALUE DISCRETE TIME CONTROL

PIERRE BERNHARD

ABSTRACT. We show how the use of a parallel between the ordinary
(4, x) and the (max,+) algebras, Maslov measures that exploit this
parallel, and more specifically their specialization to probabilities and
the corresponding cost measures of Quadrat, offer a completely parallel
treatment of stochastic and minimax control of disturbed nonlinear dis-
crete time systems with partial information. This paper is based upon,
and improves, the discrete time part of the earlier paper [9].

1. INTRODUCTION

Minimax control, or worst case design, as a means of dealing with uncer-
tainty is an old idea. It has gained a new popularity with the recognition, in
1988, of the fact that H.,-optimal control could be cast into that concept.
Although some work in that direction existed long before (see [10]), this
viewpoint has vastly renewed the topic. See [4] and related work.

Many have tried to extend this work to a nonlinear setup. Most prominent
among them perhaps is the work of Isidori, [16, 17] but many others have
followed suit : [27, 5, 6] and more recently [19, 20, 21]. This has contributed
to a renewed interest in nonlinear minimax control.

If we decide that minimax is an alternative to stochastic treatment of
disturbances, it makes sense to try to establish a parallel. To that end,
we build upon the work of Maslov and coworkers [23, 22, 24] on Maslov
measures, revisiting in fact Choquet’s capacities [12] and more specifically
on the work of Quadrat and coworkers [25, 3, 2, 1] who developped the dual
in that parallel to probability theory, introducing a special class of Maslov
measures, cost measures. One can also refer to the work of Del Moral [14, 15]

Our main aim is to stress how the use of these tools allows one to give
a treatment of minimax control completely parallel to that of stochastic
control, introducing the mathematical fear as a parallel to mathematical
expectation. As an example, we develop two parallel separation theorems,
none really new: the first (stochastic) is probably rather classical, and can
be found at least in (manuscript) notes by Michel Viot [28], and the second
(minimax) is a generalization of results of Whittle [29], and ourselves [8, 4].
The case without separation principle is a generalization of our work [7]
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192 PIERRE BERNHARD

and of [21]. The difference with these references, as well as with [4], or [9]
where we introduced the wording “mathematical fear”, is in the way the
result is derived, and specifically the substitution of a cost measure to the
“informational state” of [21] or the cost to go of [4] or the “stress” of [29].
It is thanks to that mild modification that we get a complete parallel.

An example of the use of (a variable end time version of) the theory
of this paper in a nonlinear minimax problem (actually continuous time),
both with and without the conditions for the separation theorem to apply
holding, can be found in [26].

2. QUADRAT’S MORPHISM

In a series of papers [25, 3, 2], Quadrat and coauthors have fully taken ad-
vantage of the “morphism” introduced between the ordinary algebra (+, X)
and the (min,+), or alternatively the (max,+), algebra to develop a de-
cision calculus parallel to probability calculus. It has been pointed out by
Quadrat and coauthors that a possible way of understanding that morphism
was through Cramer’s transform. We shall not, however, develop that way
of thinking here, but merely rely on the algebraic similarity between the two
calculus, as stressed by the theory of Maslov measures.

Let us briefly review some concepts, based on [2].

2.1. CoST MEASURE

The parallel to a probability measure is a cost measure. Let  be a
topological space, A a family of open subsets, K : A — RU {—o0} is called
a cost measure if it satisfies the following axioms :

o K()=—o0

e K(2)=0

e for any family of elements A, of A,

K(UA,) =sup K(A,).

(Notice that the probabilist equivalent of the above formula, with a sum,
holds only for disjoint subsets. However, we could state the axiom with that
restriction, the above formula would automatically hold for any family.)

The first and third axioms are that of Maslov measures. The second
one specializes it as a cost measure. One may notice the parallel with a
probability measure. In the first two axioms, the 0 of probability measures,
the neutral element of the addition, is replaced by the neutral element of
the max operator : —oo, and the 1, the neutral element of the product, is
replaced by the neutral element of the sum, 0. In the third axiom, the sum
of the measures of the disjoint sets is replaced by the max.

In the theory of Maslov measures, the habit is to denote the max as &,
the sum as a product, —oc as @, 0 as 1l so that e $® = @, and a - 1 = «a.
However, one has a ¢ a = a so that this school refers to idempotent algebra
and idempotent measures. This leads to a theory of integration which is
Esamm: Cocv, JuLy 1996, VoL. 1, pp. 191-206



EXPECTED VALUE AND FEARED VALUE DISCRETE TIME CONTROL 193

equivalent to the penalized supremums that we shall use in the minimax
theory below, but stressing further the parallel with classical measures and
integration. This parallel continues with the following concept:

The function I' : @ - RU {—o00} is called a cost density of K if we have

VAe A, K(A)=supl'(w).
wEQ

One has the following theorem (Kolokoltsov and Maslov [22], Akian [1]):

PRrROPOSITION 2.1. Every cost measure defined on the open sets of a Polish
space 0 admits a unique mazimal extension to 2%, this extension has a
density, which is a u.s.c. function.

2.2. FEARED VALUE

The wording Feared value' is used here to stress the parallel with ezpected
value.

When a stochastic disturbance is introduced into a problem model, in
order to derive a controller design for instance, it comes with a given prob-
ability distribution. We shall always assume here that these distributions
have densities. Let therefore w € W be a stochastic variable. Let its proba-
bility density be I1(-). Let 1 be a function of w with values in R. We define
its expected value as

Eyv = /Qb(w)ﬂ(w) dw

and we omit the subscript w to E when no ambiguity results.
Similarly, let a disturbance w be given together with a cost density I'(-).
The feared value of a function % from W into R is defined as

0 = max(i(w) + I (w)]

which is the formula dual to that of the expected value in Quadrat’s mor-
phism.

The “Fear” operator enjoys the linearity properties one would expect in
the (max, +) algebra :

F(max{¢,v}) = max{F¢, Fy} ,

and if A is a constant,
FA+¢¥)=A4+Fp.

INDUCED MEASURE. Exactly as a measurable function from a probability
space into R" is called a (vector) random variable, a continuous function
from a cost measured space into R™ is called a (vector) decision variable.
The cost measure of the underlying space induces a cost measure on the
decision variable in a natural way.

Let a decision variable z have a cost density C'(z). It is convenient here
to assume it has a compact domain. Let y = h(z), say with A continuous.

'In French Frayeur mathématique parallel to Espérance mathématique
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194 PIERRE BERNHARD

Then, y is itself a decision variable, with an induced cost measure that can
be deduced from the inspection of the feared value of an arbitrary function

o(y):

o = max(o(h()) + C(z)] = max |o(y) + _max C(s)]

Hence we conclude that the cost density of y is
1) D)= max C(a)
z€h~1(y)
Observe that this is indeed a cost density, since it is normalized:

max D(y) = maxC'(z) =0.
y z

CONDITIONING. We may introduce the conditioning by an event.? Let
v € V be a decision variable, B C V be a subset of V, and as usual K(B) =
max,ep ['(v). Let

el = ST SR

This is the “natural” cost density on v if it is constrained to belong to B.
This yields

K(A|B) := rgleaj(F(MB) = max, I'(v) = K(B),

leading to the counterpart of Bayes formula:
K(ANB)=K(A|B)+ K(B).

Let now a pair of decision variables (v, w) ranging over sets V x W have
a joint cost density ['(v, w). We may define the marginal laws 'y and I'; for
v and w respectively as

I'y(v) = gleav)éf(v, w) , Iy(w) = rqfleagf(v, w) .

Let K denote the cost measure generated by I' on V x W. One has for
instance, for a subset A C V, K(A x W) = FL1 (1l 4(v)). Here, the symbol
FI1 means Feared value with respect to v endowed with the cost density I'y,
and 14 is the characteristic function of A, equal to 0 if v € A and to —o0
otherwise.

We now apply the previous concept of conditioning to the cylindrical
condition set B =V x {w}. This leads to the conditional cost density

I'(v|w) = (v, w) — Iz (w)

and notice that this is indeed a cost density (i.e. normalized). The decision
variables v and w are said to be independant if I'(v|w) = I'1(v), which is
thus, as expected, equivalent to I'(v, w) = I'1 (v) + 'z (w).

2This is a “naive” theory of conditioning, based upon Bayes rule. For an equivalent of
the full stochastic theory of conditional expectations based upon a sigma-field represen-
tation, see Del Moral [14, 15]
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EXPECTED VALUE AND FEARED VALUE DISCRETE TIME CONTROL 195

A sequence of stochastic variables or stochastic process {w;},t =0...T —
1 also denoted wpy r_1), are independant, or constitute a white stochastic
process, if their joint probability density is the product of their individual
probability densities Il;:

H 0T1 HHtwt

leading to the following formula, where J is a function of the whole sequence
T-1
EJ(w[O,T—l]) = /J(w[O,T—l]) H IT; (wy) dw[o,T—1]-
=0
In a similar fashion, a sequence of independant decision variables wp 7_1,
or white decision process with cost densities I'; will have a joint cost density
I' equal to the sum of their individual cost densities:

F Wio,T - 1 Zrt wt

leading to the dual formula
T

FJ (wio,r—yy) = max [J(wor_y) + Y Ti(wy)].

w —
[0,7-1] P

3. THE DISCRETE TIME CONTROL PROBLEM
We consider a partially observed two input control system

(2) Ter1 = ft($t7ut7wt)7
(3) Yy = ht(wtth)v

where 2; € R” is the state at time ¢, uy € U the (minimizer’s) control,
wy € W the disturbance input, and y; € Y the measured output. We shall
call U the set of input sequences over the time horizon [0, T—1]: {w:},e0 71
usually written as up r_q) € U, and likewise for wyg7_;; € W. The initial
state g € Xg is also considered part of the disturbance. We shall call
w = (@0, wp,r—1)) the combined disturbance, and Q = Xo x W the set of
disturbances.
The solution of (2) (3) above shall be written as

Ty = ¢t( Ulo,T—1]s )
ye = ni(u U, T-1]y % w) .

Finally, we shall call u! a partial sequence (ug, u1,...,u:) and U’ the set
of such sequences 3, likewise for w! € W and y* € Y!. Also, we write

wh = (29, w") € Xg x Wi =: Q.

Fnotice the slight inconsistency in notations, in that our U’ is the cartesian (t+1)
power of U. Other choices of notations have their drawbacks too.
Esaim: Cocv, JuLy 1996, VoL. 1, pp. 191-206



196 PIERRE BERNHARD

The solution of (2) and (3) may alternatively be written as

(4) v o= p(uThw' T,
(5) ye = n(u .
We shall also write

(6 R )
(7) y'o= (oY),

to refer to the partial sequences solution of (2) and (3)
Admissible controllers will be strictly causal output feedbacks of the form
wy = pe (w1 y'=1). We denote by M the class of such controllers.
A performance index is given. In general, it may be of the form
T-1
T (w0, upo,r—13 wio,r—1)) = M(xr) + Y L, g, wy) -
=0
However, we know that, to the expense of increasing the state dimension by
one if necessary, we can always bring it back to a purely terminal payoff of
the form

(8) J (o, Ulo,T—1]s w[o,T—l]) =M(zp)= Mo ¢T(U[0,T—1]7w) .

The data of a strategy p € M and of a disturbance w €  generates through
(2)(3) a unique pair of sequences (up r_1], wjo,7—1]) € U X W. Thus, with
no ambiguity, we may also use the abusive notation J(u,w). The aim of
the control is to minimize .J, in some sense, “in spite of the unpredictable
disturbances”.

We want to compare here two ways of turning this unprecise statement
into a meaningful mathematical problem.

STOCHASTIC CONTROL. In the first approach, stochastic control, we mod-
elize the unknown disturbance as a random variable, more specifically here
a random variable z¢ with a probability density Fy(z) and an independant
white stochastic process wpy 7_1) of known instantaneous probability distri-
bution I1;. (We notice that nothing in the sequel prevents II; from depending
on x¢ and wug.) The criterion to be minimized is then

(9) Gp) =By J (p,w) .
This can be expanded into

T-1

G(Iu) = /M($T) (H Ht(wt)) Po(f) dw[07T_1] df
=0

This can be characterized as a weighted average since the perturbation values

are weighted through their probability density.

MINIMAX CONTROL. In the second approach, we are given the cost density
Qo of xg, and the cost densities ['; of the w;’s. (Again, I'; might depend on
Esaim: Cocv, JuLy 1996, VoL. 1, pp. 191-206
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z and wu;.) The criterion to be minimized is then
(10) H(p) :=FoJ (1, w)
which can be expanded into

T-1
H(p):= max max |M(xr)+ Z Ie(we) + Qo(§)

wio,7—1] £ o

This can be characterized as a penalized mazx, since the perturbation values
are penalized through their cost density.

REMARK 3.1. If all cost measures of the disturbances are taken constant,
(hence 0 by normalization), then H(u) is, if it exists, the guaranteed value
given only the sets over which the perturbations range. Therefore, minimiz-
ing it is insuring the best possible guaranteed value.

4. DYNAMIC PROGRAMMING
4.1. STOCHASTIC DYNAMIC PROGRAMMING

4.1.1. FuLL INFORMATION. We quickly recall here for reference purposes
the classical solution of the full information problem via dynamic program-
ming.

In the case where the controller has perfect and instantaneous knowledge
of the current state, and is therefore allowed to use state feedback control
strategies of the form wu; = ¢;(zy), it is well known that a solution of the
optimal control problem is obtained as follows.

We introduce the full information Bellman return function V; defined by
the classical dynamic programming recursion :

(1) Ve € R, V() = M(x).
(12) Ve e R", Vi(z) = i%f By, Vigr (fe(z,u, wy)) .

The infimum of the performance index G(¢) is EL® Vy(z) (where we recall
that the probability density Py of z¢ is a data). Furthermore, if the minimum
is reached for all (¢,2) in (12), then the argument ¢} (2) of the minimum is
an optimal strategy.

4.1.2. PARTIAL INFORMATION. Let us turn now to the (almost as classical)
solution of the partial information, stochastic problem. One has to intro-
duce the conditional state probability measure, and, assuming it is absolutely
continuous with respect to the Lebesgue measure, its density P. Let, thus,
Py(z) dx be the conditional probability measure of ; given y'~! or a pri-
ori state probability distribution at time ¢, and P/’ (z) dz be the conditional
state distribution given y'~! and given that y; = 7, or a posteriori state
probability distribution at time ¢. Notice also that our notations are consis-
tent, in that at time ¢ = 0, with no information available yet beyound the
data of the problem, the probability density of x is Fp.

Esaim: Cocv, JuLy 1996, VoL. 1, pp. 191-206



198 PIERRE BERNHARD

Clearly, P, is a function only of past measurements and controls, assuming
these are causal, i.e. independant from future disturbances. As a matter of
fact, we can give the filter that lets one compute it. Starting from Fp, at
each step, P’ can be obtained by Bayes rule. It suffices here to notice that,
because the information is increasing, (the information algebras are nested),
we have, for any test function ¢(-) € L'(R"),

(13) B, [0 @) do = [ 00 P de =5 B b (o).

Then P,y is obtained by propagating P/* through the dynamics. It suffices
for our purpose to define this propagation by the dual operator: for any test
function 1,

(14) E,Ejt+ v (2) = BBy o (filw, ur,w))

The above calculations also emphasize the dependance of the sequence
{P} on the control sequence ujg 7_1] and the observation sequence yio 7_1]-
Let this define the function F; as

(15) Piy1r = Fi(Pryug, yt) -

Let P; be the set of all possible such probability distributions P, for all
sequences up 7_q) and all w.

Via a standard dynamic programming argument, we can check that the
Bellman return function U is obtained by the recurrence relation

(16) VP e Pr, Ur(P) = EIM(z),
(17) Vi € [OvT_ 1] 7VP € P, Ut(P) = i%nyUt-l-l (ft(Pvuvy)) :

We can state the following theorem:

THEOREM 4.1. If there exists a sequence of functions {U;} from Py into R
satisfying equations (16)(17), then the optimal cost is Uy(Fy).
Moreover, assume that the minimum in u is attained in (17) above at

w= fi(P). Then (15) and
(18) ur = fir(Fy)
define an optimal controller for the stochastic control problem.

Proor. Consider a causal sequence of controls {u;} and the associated
sequence {F;}. (The very definition and calculation procedure of P implies
that u; has to be independant from the future disturbances). Rewrite (17)
as

Ue(Br) < By, U1 (Prga) -
Apply this at time ¢t =7 — 1, using (16) and (14):

Ur_1(Pr—y) < ik HT_IM(fT—1($7UT—17w)) .
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We may now iterate:
Ur_y(Pr_z) <

E."E,,_, [Ewp s M (fr—1(fr—2(z, ur—g, wr—2), ur—1, wr_1))

and so on until we get
Uo(Py) < ELP B, r—y M 0 ¢1 (o, 7-1]: To, Wio,7-1])

And according to formula (8), the rihgt-hand side obove is just EJ. Fur-
thermore, an appropriate choice of u; at each step allows the controller to
be arbitrarily close to equality in each of the inequalities, thus establishing
Up(Fo) as the infimum of the criterion. Moreover, if the minimizing control
(18) exists, all inequalities are equalities, and the infimum of the criterion is
reached by that strategy, which is clearly causal, and thus optimal.

4.2. MINIMAX DYNAMIC PROGRAMMING

4.2.1. FULL INFORMATION. Let us quickly review Isaacs’ dynamic program-
ming theory for the full information problem, i.e. for state feedback strate-
gies.

We introduce the full information lsaacs Value function Vi(2) which sat-
isfies the classical Isaacs equation:

Ve e R", Vr(z)=M(z),
Ve e R", Vi(z) = i%f Fu, Vigr (fe(z, u,wy)) .

Notice that we have an identical formula with that of subsection 4.1.1, simply
replacing E by .

Notice also that we do not need that the Isaacs condition, i.e. the exis-
tence of a saddle point in the right hand side above, hold. If it does not, V' is
an upper value, which is what is needed in the context of minimax control.

4.2.2. PARTIAL INFORMATION. The theory reviewed here is a modification
of results first published in [21], also derived in [7] in essentially the same
way as here.

Let us consider now the problem of minimizing H (p). We have to intro-
duce the conditional state cost measure and its cost density ¢ (according
to the concepts introduced in section 2.1 following [2]). It is defined as the
normalized maximum possible past cost knowing the past information, as
a function of current state. In the previous papers such as [21], [7, 8, 9],
[13], the authors used the so-called informational state (James et al.) or cost
to go (Basar, Bernhard) which is an un-normalized version of the present
conditional state cost density. The result was a lack of symmetry with the
stochastic case, and as a result less appealing formulas.

To be more precise, let us introduce the following subsets of 2. Given a
pair (u',y") € U' x Y, and a subset A of R", let

(19) (A | ut,yt) ={weQly = nt(ut_l,wt), and q§t+1(ut,wt) € A}.

Esaim: Cocv, JuLy 1996, VoL. 1, pp. 191-206



200 PIERRE BERNHARD

For any z € R"™, we shall write Q;(z | u',y"), or simply Q;(z) when no
ambiguity results, for Q;({z} | ', y"). And likewise for Q;_;(z).

The “conditional worst cost to go” of A (or the “informational state”)
is the Maslov measure sup,cq,_,(4)[@Qo(z0) + I'(wpr_1))]; and hence the
associated Maslov density function is, for ¢t > 0,

T-1 i—1
Wi(z) = sup Z I (wr) + Qo(%)] = sup [Z I (wr) + Qo(%)] :

wEQs_1(x) =0 wEQ—1(x) k=0

Initialize this sequence with Wy = Q¢ which constitutes the cost density of
xg before any further information is available.
It is a simple matter to write recursive equations of the form

Wt-l—l = gt(Wt7 U, yt) .
In fact, G: is defined by the following. Let for ease of notations
Zi(x | u,y) ={(&v) ER" X W fi(§ u,v) =2, he(§,v) =y},

then we have

(20) Wigi(z) = sup [Wi(§) + Te(v)] -
(§v)EZi(xlur,ut)

As was probably first shown in [21], (also presented in a talk in Santa
Barbara in july 1993), one can do simple dynamic programming in terms of
this function Wy, ranging over the space W,. The value function U will now
be obtained through the following relation
(21) VYW e Wr, Ur(W) = sup(M(z)+ W(z)),

xr

(22) Yt € [0, T —1,YW € Wy, U, (W) = infsup Ui (Gi(W,u,y)).
vy

Moreover, assume that the minimum in w« is attained in (22) above at u =
ft(W). Then it defines an optimal feedback analogous to (18), with W;
now defined by (20), for the minimax control problem. The optimal cost is
Uo(Qo)-

However, the formula (22) is not exactly dual to (17) in that it involves a
sup, instead of the expected F,. The problem stems from the fact that the
cost to go W, is un-normalized. Introduce thus

Qi(z) = Wi(z) — mg&LXWt(f) .

Now (); is indeed a cost density. Let Q; be the space of all possible such
cost densities for every sequence ufg 7_1) and all w.
Introduce the set

(23)  Yely) = {(&v) eR" X W | he(&,0) = y} = | Ze(elu, y).
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Notice that although the rightmost set above seems to depend on u, it actu-
ally does not, since u only enters the definition of Z through the constraint

fi(€,u,v) = . Let
(24) Qug1(2) = max  [Q¢(§) + T (v)]

(¢ w)eZe(z|ut,ye)

and

(25) Ai(y) = max [Q:(E) + ' (w)].

(Ew)€eYi(y)

Because of the last representation formula fo Y¢(y) in (23), we have
m;;LX@t-I-l(QC) = Ae(w1),

It follows that

(26) Qi1(2) = Qupr () = Ailye) = Ge(Quy e, yi) (),

where Q41 and A; are defined by (24) and (25) respectively.

Moreover, according to the formula 1 for induced cost measures, A; is the
cost measure induced on y; by ()¢ and 1';, i.e. the conditional cost measure
given the past information (u!=! y'=1).

Then, we can now derive the analoguous formula to (14). For ease of
notations, let in that derivation Qu4+1[y] = G(Q¢, us, y). For a given u, we
need to compute for a test function ()

B, F9: bl (r) =
ma fmax [o0)+max (@) + 1)) - )| + o)}
Y x (ng)ezt(ﬂuvy)
The A;’s cancel out, and the last two max operations collapse into

I%F?tﬂ[ﬂqﬁ(x) = m;LX (£7$€:5L\)((t(y)[¢(ft(f7 w,w)) + Q&) + 'y (w)],

or finally
B B (o) = max((fo(€ w w)) + Qi(€) + Tu(w)]

which is the required formula, that we may write
(27) F, T2+ (2) = B2 FL (ol ue, w)) -
(Compare with formula (14).)
We then easily derive the following theorem:
THEOREM 4.2. If there exists a sequence of functions {U;} from Qy into R
satisfying the following recursion
(28) vQ € Qr, Ur(Q) = FOM,
(29) Vte[0,T-1,¥Q€ Q, U(Q) = minF,U1(G:(Q, u,y))

then the optimum value of the payoff H(u) is Ug(Qo). Furthermore, if the
minimum is always reached in (29) above, the argument of the minimum,
f4(Q) constitutes an optimal control strategy.
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ProOOF. The proof is identical to that of the stochastic case, only replacing
E by F, and invoking equation (27) instead of (14).

5. SEPARATION THEOREM
5.1. STOCHASTIC SEPARATION THEOREM

We are here in the stochastic setup. The performance criterion is G, V;
stands for the full information stochastic Bellman function as introduced in
subsection 4.1.1, and P; stands for the conditional state probability density.

We can state the following result.

THEOREM b.1. Let
Se(x,u) == Ey, Vigr (fe(2, u, wy) ) Pe(2) .

If there exists a (decreasing) sequence of (positive) numbers R, with Ry =0
such that,

Vt € [07T — 1]7VU[07T_1] € U,Vw € 97
/min Si(z,u)de + Ry = min/S,g(av7 w)de 4+ Ritq,

then the optimal control is obtained by minimizing the conditional expecta-
tion of the full information Bellman return function, i.e. choosing a mini-
mizing u in the right hand side above.

ProOOF. The proof relies on the following fact :
LEMMA 5.2. Under the hypothesis of the proposition, the function
(30) Uy(P) = E; Vi(2) + R
satisfies the dynamic programming equations (16)(17).
Let us check the lemma. Assume that VP41 € Py,

Urg1(Prg1) = BDH Vi (2) + Rigy = /Vt+1($)Pt+1($) do + Reya

and apply (17), using (14), to get
Ul(P) = muin / By, Vigr1 (fe(z, uy wy)) Pi(2) do 4+ Riqq
Using the hypothesis of the theorem and Bellman’s equation for V4, it comes
Ul(P) = /Vt(x)Pt(x) dr + Ry,

and the recursion relation holds.

The hypothesis of the theorem sounds in a large extent like wishful think-
ing. It holds, as easily checked, in the linear quadratic case. (In that case,
symmetry properties result in the certainty equivalence theorem.) There is
little hope to find other instances. We state it here to stress the parallel
with the minimax case.
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5.2. MINIMAX SEPARATION THEOREM

This section is based upon [7, 8]. Essentially the same result appeared
independantly in [18].

We are now in the minimax setup. The performance criterion is H, V;
stands for the full information Isaacs Value function as introduced in sub-
section 4.2.1, and (); stands for the conditional state cost density.

THEOREM 5.3. Let
Si(w,u) = Fo, Vigr (fe(z, u, w)) 4+ Qi ()
If there exists a (decreasing) sequence of numbers Ry, such that,

Vt € [07T — 1]7VU[07T_1] € U,Vw € 97

max min S¢(z, u) + R; = min max S¢(z, u) + Rit1,

then the optimal control is obtained by minimizing the conditional worst cost,
Sfuture cost being measured according to the full information Isaacs Value
function, i.e. taking a minimizing v in the right hand side above.

ProOOF. The proof relies on the following fact :
LEMMA 5.4. Under the hypothesis of the proposition, the function

U(Q) = F2Vi(2) + R,

satisfies the dynamic programming equations (28)(29).
Let us check the lemma. Assume that, VQi11 € Qi41,

Up1(Qi41) = FEH Vg (2) + Rig = max[Viy1(2) + Qo1 ()] + Rea

and apply (29), using (27), to get

U

Q) = min (maxlVisa(f(e, 0, 0)) + Tol) + Qo)) + P

= min max.S¢(z,u) + Ritq .
u X
Then, using the hypothesis of the proposition and Isaacs equation for V| it
comes

Ui(Qy) = mgx[‘/t(x) + Qi(2)] + Ry,

thus establishing the recursion relation.

The hypothesis of the proposition is not as unrealistic as in the stochastic
case. It is satisfied in the linear quadratic case, but more generally, it can be
satisfied if S is convex-concave, for instance, with R; = 0. Moreover, in that
case, the same u provides the minimum in both sides, yielding a certainty
equivalence theorem.
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5.3. AN ABSTRACT FORMULATION

It is known that in the stochastic control problem, some results, including
derivation of the separation theorem, are more easily obtained using a more
abstract formulation of the observation process, in terms of a family of o-
fields Y; generated in the disturbance space. The axioms are that

e the brownian motion w; is adapted to the family Y,
e the family ), is increasing.

The same approach can be pursued in the minimax case. Instead of an
explicit observation through an output (3), one may define the observation
process in the following way. To each pair (ujg7_1],w), the observation
process associates a sequence {€;};¢cjo,7] of subsets of 2. The axioms are
that, for any (u[oj_l], w), the corresponding family €2, satisfies the following
properties.

e The process is consistant, i.e. Vi, w € Q.

e The process is strictly non anticipative, i.e. w € Q; & W=t € Qi_l
where Q/~! stands for the set of restrictions to [0, ¢ — 1] of the elements
of Qt.

e The process is with complete recall: ¥(up r_q1),w), t<t' = Q D Q.

In the case considered above, we have
&= Q(Rn | ut7 yt)

but the abstract formulation suffices, and allows one, for instance, to extend
the minimax certainty equivalence principle to a variable end time problem.
See [8] for a detailed derivation, and [26] for an application of (a continuous
version of) theorem 2 to a free end time problem.

One may think of the subsets €2; as playing the role of the measurable
sets of the o-field Y.

6. CONCLUSION

The present setup shows a remarkable parallel between the stochastic and
the minimax case, fully exploiting “Quadrat’s morphism” between proba-
bilities and maximisation. This goes all the way to the more powerfull
abstract formulation for the observation process, and to the separation the-
orem (which we therefore write as a singular).

We may make a further remark. In the linear quadratic theory, it has
been thought that the minimax certainty equivalence theorem of [4] was
less a “separation” theorem than in the stochastic case because the “filter”
to compute & depends on the weighting matrices in the criterion. We see
here that another viewpoint is possible, in which these weighting matrices
are only the counterpart to the gaussian law of the disturbances in the
stochastic case, that also enter the Kalman filter. Then the exceptional fact
with the LQG case is that it be possible to add a (quadratic) integral term
to the (quadratic) terminal payoff.
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