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A SEPARATION THEOREM FOR EXPECTED VALUE

AND FEARED VALUE DISCRETE TIME CONTROL

PIERRE BERNHARD

Abstract� We show how the use of a parallel between the ordinary
����� and the �max��� algebras� Maslov measures that exploit this
parallel� and more speci�cally their specialization to probabilities and
the corresponding cost measures of Quadrat� o�er a completely parallel
treatment of stochastic and minimax control of disturbed nonlinear dis�
crete time systems with partial information	 This paper is based upon�
and improves� the discrete time part of the earlier paper 
��	

�� Introduction

Minimax control� or worst case design� as a means of dealing with uncer�
tainty is an old idea� It has gained a new popularity with the recognition� in
����� of the fact that H��optimal control could be cast into that concept�
Although some work in that direction existed long before �see 	�
��� this
viewpoint has vastly renewed the topic� See 	
� and related work�

Many have tried to extend this work to a nonlinear setup� Most prominent
among them perhaps is the work of Isidori� 	��� ��� but many others have
followed suit � 	��� �� �� and more recently 	��� �
� ���� This has contributed
to a renewed interest in nonlinear minimax control�

If we decide that minimax is an alternative to stochastic treatment of
disturbances� it makes sense to try to establish a parallel� To that end�
we build upon the work of Maslov and coworkers 	��� ��� �
� on Maslov
measures� revisiting in fact Choquet�s capacities 	��� and more speci�cally
on the work of Quadrat and coworkers 	��� �� �� �� who developped the dual
in that parallel to probability theory� introducing a special class of Maslov
measures� cost measures� One can also refer to the work of Del Moral 	�
� ���

Our main aim is to stress how the use of these tools allows one to give
a treatment of minimax control completely parallel to that of stochastic
control� introducing the mathematical fear as a parallel to mathematical
expectation� As an example� we develop two parallel separation theorems�
none really new� the �rst �stochastic� is probably rather classical� and can
be found at least in �manuscript� notes by Michel Viot 	���� and the second
�minimax� is a generalization of results of Whittle 	���� and ourselves 	�� 
��
The case without separation principle is a generalization of our work 	��
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and of 	���� The di�erence with these references� as well as with 	
�� or 	��
where we introduced the wording �mathematical fear�� is in the way the
result is derived� and speci�cally the substitution of a cost measure to the
�informational state� of 	��� or the cost to go of 	
� or the �stress� of 	����
It is thanks to that mild modi�cation that we get a complete parallel�

An example of the use of �a variable end time version of� the theory
of this paper in a nonlinear minimax problem �actually continuous time��
both with and without the conditions for the separation theorem to apply
holding� can be found in 	����

�� Quadrat�s morphism

In a series of papers 	��� �� ��� Quadrat and coauthors have fully taken ad�
vantage of the �morphism� introduced between the ordinary algebra �����
and the �min���� or alternatively the �max���� algebra to develop a de�
cision calculus parallel to probability calculus� It has been pointed out by
Quadrat and coauthors that a possible way of understanding that morphism
was through Cramer�s transform� We shall not� however� develop that way
of thinking here� but merely rely on the algebraic similarity between the two
calculus� as stressed by the theory of Maslov measures�

Let us brie�y review some concepts� based on 	���

���� Cost measure

The parallel to a probability measure is a cost measure� Let � be a
topological space� A a family of open subsets� K � A � R� f��g is called
a cost measure if it satis�es the following axioms �

� K��� � ��
� K��� � 

� for any family of elements An of A�

K��An� � sup
n
K�An� �

�Notice that the probabilist equivalent of the above formula� with a sum�
holds only for disjoint subsets� However� we could state the axiom with that
restriction� the above formula would automatically hold for any family��

The �rst and third axioms are that of Maslov measures� The second
one specializes it as a cost measure� One may notice the parallel with a
probability measure� In the �rst two axioms� the 
 of probability measures�
the neutral element of the addition� is replaced by the neutral element of
the max operator � ��� and the �� the neutral element of the product� is
replaced by the neutral element of the sum� 
� In the third axiom� the sum
of the measures of the disjoint sets is replaced by the max�

In the theory of Maslov measures� the habit is to denote the max as ��
the sum as a product� �� as 

� 
 as �� so that a � 

 � a� and a 	 �� � a�
However� one has a� a � a so that this school refers to idempotent algebra
and idempotent measures� This leads to a theory of integration which is
Esaim� Cocv� July ����� Vol� �� pp� ���	
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equivalent to the penalized supremums that we shall use in the minimax
theory below� but stressing further the parallel with classical measures and
integration� This parallel continues with the following concept�

The function � � �� R� f��g is called a cost density of K if we have


A � A� K�A� � sup
���

���� �

One has the following theorem �Kolokoltsov and Maslov 	���� Akian 	��� �

Proposition ���� Every cost measure de�ned on the open sets of a Polish
space � admits a unique maximal extension to ��� this extension has a
density� which is a u�s�c� function�

���� Feared value

The wording Feared value� is used here to stress the parallel with expected
value�

When a stochastic disturbance is introduced into a problem model� in
order to derive a controller design for instance� it comes with a given prob�
ability distribution� We shall always assume here that these distributions
have densities� Let therefore w � W be a stochastic variable� Let its proba�
bility density be ��	�� Let � be a function of w with values in R� We de�ne
its expected value as

Ew� ��

Z
��w���w� dw

and we omit the subscript w to E when no ambiguity results�
Similarly� let a disturbance w be given together with a cost density ��	��

The feared value of a function � from W into R is de�ned as

Fw� �� max
w

	��w� � ��w��

which is the formula dual to that of the expected value in Quadrat�s mor�
phism�

The �Fear� operator enjoys the linearity properties one would expect in
the �max� �� algebra �

F�maxf�� �g� � maxfF�� F�g �

and if � is a constant�

F�� � �� � �� F� �

Induced measure� Exactly as a measurable function from a probability
space into R

n is called a �vector� random variable� a continuous function
from a cost measured space into Rn is called a �vector� decision variable�
The cost measure of the underlying space induces a cost measure on the
decision variable in a natural way�

Let a decision variable x have a cost density C�x�� It is convenient here
to assume it has a compact domain� Let y � h�x�� say with h continuous�

�In French Frayeur math�ematique parallel to Esp�erance math�ematique
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Then� y is itself a decision variable� with an induced cost measure that can
be deduced from the inspection of the feared value of an arbitrary function
��y��

F� � max
x

	��h�x�� � C�x�� � max
y

�
��y� � max

x�h���y�
C�x�

�
�

Hence we conclude that the cost density of y is

D�y� � max
x�h���y�

C�x����

Observe that this is indeed a cost density� since it is normalized�

max
y

D�y� � max
x

C�x� � 
 �

Conditioning� We may introduce the conditioning by an event�� Let
v � V be a decision variable� B � V be a subset of V� and as usual K�B� �
maxv�B ��v�� Let

��vjB� �

�
��v��K�B� if v � B �
�� if v �� B �

This is the �natural� cost density on v if it is constrained to belong to B�
This yields

K�AjB� �� max
v�A

��vjB� � max
v�A�B

��v��K�B� �

leading to the counterpart of Bayes formula�

K�A 
B� � K�AjB� �K�B� �

Let now a pair of decision variables �v� w� ranging over sets V �W have
a joint cost density ��v� w�� We may de�ne the marginal laws �� and �� for
v and w respectively as

���v� � max
w�W

��v� w� � ���w� � max
v�V

��v� w� �

Let K denote the cost measure generated by � on V � W� One has for
instance� for a subset A � V� K�A �W� � F

	�
v ���A�v��� Here� the symbol

F
	�
v means Feared value with respect to v endowed with the cost density ���

and ��A is the characteristic function of A� equal to 
 if v � A and to ��
otherwise�

We now apply the previous concept of conditioning to the cylindrical
condition set B � V � fwg� This leads to the conditional cost density

��vjw� � ��v� w�� ���w�

and notice that this is indeed a cost density �i�e� normalized�� The decision
variables v and w are said to be independant if ��vjw� � ���v�� which is
thus� as expected� equivalent to ��v� w� � ���v� � ���w��

�This is a �naive� theory of conditioning� based upon Bayes rule	 For an equivalent of
the full stochastic theory of conditional expectations based upon a sigma��eld represen�
tation� see Del Moral 
��� ���
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A sequence of stochastic variables or stochastic process fwtg� t � 
 � � �T �
� also denoted w���T��
� are independant� or constitute a white stochastic
process� if their joint probability density is the product of their individual
probability densities �t�

��w���T��
� �
T��Y
t��

�t�wt�

leading to the following formula� where J is a function of the whole sequence

EJ�w���T��
� �

Z
J�w���T��
�

T��Y
t��

�t�wt� dw���T��
 �

In a similar fashion� a sequence of independant decision variables w���T��
�
or white decision process with cost densities �t will have a joint cost density
� equal to the sum of their individual cost densities�

��w���T��
� �
T��X
t��

�t�wt�

leading to the dual formula

FJ�w���T��
� � max
w���T���

	J�w���T��
� �
TX
t��

�t�wt�� �

�� The discrete time control problem

We consider a partially observed two input control system

xt�� � ft�xt� ut� wt� ����

yt � ht�xt� wt� ����

where xt � R
n is the state at time t� ut � U the �minimizer�s� control�

wt � W the disturbance input� and yt � Y the measured output� We shall
callU the set of input sequences over the time horizon 	
� T���� futgt����T��

usually written as u���T��
 � U� and likewise for w���T��
 �W� The initial
state x� � X� is also considered part of the disturbance� We shall call
� � �x�� w���T��
� the combined disturbance� and � � X� �W the set of
disturbances�

The solution of ��� ��� above shall be written as

xt � �t�u���T��
� �� �

yt � 	t�u���T��
� �� �

Finally� we shall call ut a partial sequence �u�� u�� � � � � ut� and Ut the set
of such sequences �� likewise for wt � Wt and yt � Yt� Also� we write
�t � �x�� wt� � X� �Wt �� �t�

�notice the slight inconsistency in notations� in that our Ut is the cartesian �t � ��
power of U	 Other choices of notations have their drawbacks too	
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The solution of ��� and ��� may alternatively be written as

xt � �t�u
t��� �t��� ��
�

yt � 	t�u
t��� �t� ����

We shall also write

xt � �t�ut��� �t��� ����

yt � 	t�ut��� �t� ����

to refer to the partial sequences solution of ��� and ���
Admissible controllers will be strictly causal output feedbacks of the form

ut � 
t�u
t��� yt���� We denote by M the class of such controllers�

A performance index is given� In general� it may be of the form

J�x�� u���T��
� w���T��
� � M�xT � �
T��X
t��

Lt�xt� ut� wt� �

However� we know that� to the expense of increasing the state dimension by
one if necessary� we can always bring it back to a purely terminal payo� of
the form

J�x�� u���T��
� w���T��
� � M�xT � � M � �T �u���T��
� �� ����

The data of a strategy 
 � M and of a disturbance � � � generates through
������ a unique pair of sequences �u���T��
� w���T��
� � U �W� Thus� with
no ambiguity� we may also use the abusive notation J�
� ��� The aim of
the control is to minimize J � in some sense� �in spite of the unpredictable
disturbances��

We want to compare here two ways of turning this unprecise statement
into a meaningful mathematical problem�

Stochastic control� In the �rst approach� stochastic control� we mod�
elize the unknown disturbance as a random variable� more speci�cally here
a random variable x� with a probability density P��x� and an independant
white stochastic process w���T��
 of known instantaneous probability distri�
bution �t� �We notice that nothing in the sequel prevents �t from depending
on xt and ut�� The criterion to be minimized is then

G�
� �� E�J�
� �� ����

This can be expanded into

G�
� �

Z
M�xT �

�
T��Y
t��

�t�wt�

�
P���� dw���T��
d�

This can be characterized as a weighted average since the perturbation values
are weighted through their probability density�

Minimax control� In the second approach� we are given the cost density
Q� of x�� and the cost densities �t of the wt�s� �Again� �t might depend on
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xt and ut�� The criterion to be minimized is then

H�
� �� F�J�
� �� ���
�

which can be expanded into

H�
� �� max
w���T���

max
�

�
M�xT � �

T��X
t��

�t�wt� �Q����

�
This can be characterized as a penalized max� since the perturbation values
are penalized through their cost density�

Remark ���� If all cost measures of the disturbances are taken constant�
�hence 
 by normalization�� then H�
� is� if it exists� the guaranteed value
given only the sets over which the perturbations range� Therefore� minimiz�
ing it is insuring the best possible guaranteed value�

�� Dynamic programming


��� Stochastic dynamic programming


����� Full information� We quickly recall here for reference purposes
the classical solution of the full information problem via dynamic program�
ming�

In the case where the controller has perfect and instantaneous knowledge
of the current state� and is therefore allowed to use state feedback control
strategies of the form ut � �t�xt�� it is well known that a solution of the
optimal control problem is obtained as follows�

We introduce the full information Bellman return function Vt de�ned by
the classical dynamic programming recursion �


x � Rn� VT �x� � M�x� �����


x � Rn� Vt�x� � inf
u
EwtVt���ft�x� u� wt�� �����

The in�mum of the performance index G��� is EP�x V��x� �where we recall
that the probability density P� of x� is a data�� Furthermore� if the minimum
is reached for all �t� x� in ����� then the argument ��t �x� of the minimum is
an optimal strategy�


����� Partial information� Let us turn now to the �almost as classical�
solution of the partial information� stochastic problem� One has to intro�
duce the conditional state probability measure� and� assuming it is absolutely
continuous with respect to the Lebesgue measure� its density P � Let� thus�
Pt�x� dx be the conditional probability measure of xt given yt��� or a pri�
ori state probability distribution at time t� and P �

t �x� dx be the conditional
state distribution given yt�� and given that yt � 	� or a posteriori state
probability distribution at time t� Notice also that our notations are consis�
tent� in that at time t � 
� with no information available yet beyound the
data of the problem� the probability density of x is P��

Esaim� Cocv� July ����� Vol� �� pp� ���	
��



��� PIERRE BERNHARD

Clearly� Pt is a function only of past measurements and controls� assuming
these are causal� i�e� independant from future disturbances� As a matter of
fact� we can give the �lter that lets one compute it� Starting from P�� at
each step� P �

t can be obtained by Bayes rule� It su�ces here to notice that�
because the information is increasing� �the information algebras are nested��
we have� for any test function ��	� � L��Rn��

Ey

Z
��x�P y

t �x� dx �

Z
��x�Pt�x� dx �� EPt

x ��x� �����

Then Pt�� is obtained by propagating P yt
t through the dynamics� It su�ces

for our purpose to de�ne this propagation by the dual operator� for any test
function ��

EyE
Pt��
x ��x� � E

Pt
x E

�t
w ��ft�x� ut� w����
�

The above calculations also emphasize the dependance of the sequence
fPtg on the control sequence u���T��
 and the observation sequence y���T��
�
Let this de�ne the function Ft as

Pt�� � Ft�Pt� ut� yt� �����

Let Pt be the set of all possible such probability distributions Pt� for all
sequences u���T��
 and all ��

Via a standard dynamic programming argument� we can check that the
Bellman return function U is obtained by the recurrence relation


P � PT � UT �P � � E
P
xM�x� �����


t � 	
� T � �� � 
P � Pt� Ut�P � � inf
u
EyUt�� �Ft�P� u� y�� �����

We can state the following theorem�

Theorem 
��� If there exists a sequence of functions fUtg from Pt into R
satisfying equations ���	��
	� then the optimal cost is U��P���

Moreover� assume that the minimum in u is attained in ��
	 above at
u �  
t�P �� Then ���	 and

ut �  
t�Pt�����

de�ne an optimal controller for the stochastic control problem�

Proof� Consider a causal sequence of controls futg and the associated
sequence fPtg� �The very de�nition and calculation procedure of Pt implies
that ut has to be independant from the future disturbances�� Rewrite ����
as

Ut�Pt� � EytUt���Pt��� �

Apply this at time t � T � �� using ���� and ��
��

UT���PT��� � E
PT��
x E

�T��
w M�fT���x� uT��� w�� �
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We may now iterate�

UT���PT��� �

E
PT��
x EwT��

	
EwT��

M


fT���fT���x� uT��� wT���� uT��� wT���

�
and so on until we get

U��P�� � E
P�
x Ew���T���

M � �T �u���T��
� x�� w���T��
�

And according to formula ���� the rihgt�hand side obove is just EJ � Fur�
thermore� an appropriate choice of ut at each step allows the controller to
be arbitrarily close to equality in each of the inequalities� thus establishing
U��P�� as the in�mum of the criterion� Moreover� if the minimizing control
���� exists� all inequalities are equalities� and the in�mum of the criterion is
reached by that strategy� which is clearly causal� and thus optimal�


��� Minimax dynamic programming


����� Full information� Let us quickly review Isaacs� dynamic program�
ming theory for the full information problem� i�e� for state feedback strate�
gies�

We introduce the full information Isaacs Value function Vt�x� which sat�
is�es the classical Isaacs equation�


x � Rn� VT �x� � M�x� �


x � Rn� Vt�x� � inf
u
FwtVt���ft�x� u� wt�� �

Notice that we have an identical formula with that of subsection 
����� simply
replacing E by F�

Notice also that we do not need that the Isaacs condition� i�e� the exis�
tence of a saddle point in the right hand side above� hold� If it does not� V is
an upper value� which is what is needed in the context of minimax control�


����� Partial information� The theory reviewed here is a modi�cation
of results �rst published in 	���� also derived in 	�� in essentially the same
way as here�

Let us consider now the problem of minimizing H�
�� We have to intro�
duce the conditional state cost measure and its cost density Q �according
to the concepts introduced in section ��� following 	���� It is de�ned as the
normalized maximum possible past cost knowing the past information� as
a function of current state� In the previous papers such as 	���� 	�� �� ���
	���� the authors used the so�called informational state �James et al�� or cost
to go �Ba!sar� Bernhard� which is an un�normalized version of the present
conditional state cost density� The result was a lack of symmetry with the
stochastic case� and as a result less appealing formulas�

To be more precise� let us introduce the following subsets of �� Given a
pair �ut� yt� � Ut � Yt� and a subset A of Rn� let

�t�A j u
t� yt� � f� � � j yt � 	t�ut��� �t�� and �t���u

t� �t� � Ag �����
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For any x � R
n� we shall write �t�x j u

t� yt�� or simply �t�x� when no
ambiguity results� for �t�fxg j u

t� yt�� And likewise for �t���x��
The �conditional worst cost to go� of A �or the �informational state��

is the Maslov measure sup���t���A�	Q��x�� � ��w���T��
��� and hence the
associated Maslov density function is� for t 
 
�

Wt�x� � sup
���t���x�

�
T��X
k��

�k�wk� �Q��x��

�
� sup
���t���x�

�
t��X
k��

�k�wk� �Q��x��

�
�

Initialize this sequence with W� � Q� which constitutes the cost density of
x� before any further information is available�

It is a simple matter to write recursive equations of the form

Wt�� � eGt�Wt� ut� yt� �

In fact� eGt is de�ned by the following� Let for ease of notations

Zt�x j u� y� � f��� v� � Rn�W j ft��� u� v� � x� ht��� v� � yg �

then we have

Wt���x� � sup
���v��Zt�xjut�yt�

	Wt��� � �t�v�� ���
�

As was probably �rst shown in 	���� �also presented in a talk in Santa
Barbara in july ������ one can do simple dynamic programming in terms of
this function Wt� ranging over the space Wt� The value function U will now
be obtained through the following relation


W � WT � UT �W � � sup
x
�M�x� �W �x�� �����


t � 	
� T � ��� 
W � Wt� Ut�W � � inf
u
sup
y
Ut���eGt�W�u� y�� �����

Moreover� assume that the minimum in u is attained in ���� above at u �
 
t�W �� Then it de�nes an optimal feedback analogous to ����� with Wt

now de�ned by ��
�� for the minimax control problem� The optimal cost is
U��Q���

However� the formula ���� is not exactly dual to ���� in that it involves a
supy instead of the expected Fy � The problem stems from the fact that the
cost to go Wt is un�normalized� Introduce thus

Qt�x� � Wt�x��max
�

Wt��� �

Now Qt is indeed a cost density� Let Qt be the space of all possible such
cost densities for every sequence u���T��
 and all ��

Introduce the set

Yt�y� � f��� v� � Rn�W j ht��� v� � yg �
�
x

Zt�xju� y� �����
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Notice that although the rightmost set above seems to depend on u� it actu�
ally does not� since u only enters the de�nition of Z through the constraint
ft��� u� v� � x� LetbQt���x� � max

���v��Zt�xjut�yt�
	Qt��� � �t�v����
�

and

"t�y� � max
���w��Yt�y�

	Qt��� � �t�w�� �����

Because of the last representation formula fo Yt�y� in ����� we have

max
x

bQt���x� � "t�yt��

It follows that

Qt���x� � bQt���x�� "t�yt� �� Gt�Qt� ut� yt��x������

where bQt�� and "t are de�ned by ��
� and ���� respectively�
Moreover� according to the formula � for induced cost measures� "t is the

cost measure induced on yt by Qt and �t� i�e� the conditional cost measure
given the past information �ut��� yt����

Then� we can now derive the analoguous formula to ��
�� For ease of
notations� let in that derivation Qt��	y� � G�Qt� ut� y�� For a given u� we
need to compute for a test function ��x�

FyF
Qt�� �y

x ��x� �

max
y

�
max
x

�
��x� � max

���w��Zt�xju�y�
	Qt��� � �t�w��� "t�y�

�
� "t�y�



�

The "t�s cancel out� and the last two max operations collapse into

FyF
Qt�� �y

x ��x� � max

y
max

���w��Yt�y�
	��ft��� u� w�� �Qt��� � �t�w�� �

or �nally

FyF
Qt�� �y

x ��x� � max

��w
	��ft��� u� w��� Qt��� � �t�w�� �

which is the required formula� that we may write

FyF
Qt��
x ��x� � F

Qt
x F

	t
w ��ft�x� ut� w�� �����

�Compare with formula ��
���
We then easily derive the following theorem�

Theorem 
��� If there exists a sequence of functions fUtg from Qt into R
satisfying the following recursion


Q � QT � UT �Q� � F
QM �����


t � 	
� T � ��� 
Q � Qt� Ut�Q� � min
u
FyUt���Gt�Q� u� y������

then the optimum value of the payo� H�
� is U��Q��� Furthermore� if the
minimum is always reached in �
�	 above� the argument of the minimum�
 
t�Q� constitutes an optimal control strategy�
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Proof� The proof is identical to that of the stochastic case� only replacing
E by F� and invoking equation ���� instead of ��
��

�� Separation theorem

���� Stochastic separation theorem

We are here in the stochastic setup� The performance criterion is G� Vt
stands for the full information stochastic Bellman function as introduced in
subsection 
����� and Pt stands for the conditional state probability density�

We can state the following result�

Theorem ���� Let

St�x� u� �� EwtVt���ft�x� u� wt��Pt�x� �

If there exists a �decreasing	 sequence of �positive	 numbers Rt with RT � 

such that�


t � 	
� T � ��� 
u���T��
 � U� 
� � ��Z
min
u
St�x� u� dx�Rt � min

u

Z
St�x� u� dx� Rt�� �

then the optimal control is obtained by minimizing the conditional expecta�
tion of the full information Bellman return function� i�e� choosing a mini�
mizing u in the right hand side above�

Proof� The proof relies on the following fact �

Lemma ���� Under the hypothesis of the proposition� the function

Ut�P � � E
P
x Vt�x� � Rt��
�

satis�es the dynamic programming equations ���	��
	�

Let us check the lemma� Assume that 
Pt�� � Pt���

Ut���Pt��� � E
Pt��
x Vt���x� � Rt�� �

Z
Vt���x�Pt���x� dx� Rt��

and apply ����� using ��
�� to get

Ut�Pt� � min
u

Z
EwtVt���ft�x� u� wt��Pt�x� dx� Rt�� �

Using the hypothesis of the theorem and Bellman�s equation for Vt� it comes

Ut�Pt� �

Z
Vt�x�Pt�x� dx�Rt �

and the recursion relation holds�
The hypothesis of the theorem sounds in a large extent like wishful think�

ing� It holds� as easily checked� in the linear quadratic case� �In that case�
symmetry properties result in the certainty equivalence theorem�� There is
little hope to �nd other instances� We state it here to stress the parallel
with the minimax case�
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���� Minimax separation theorem

This section is based upon 	�� ��� Essentially the same result appeared
independantly in 	����

We are now in the minimax setup� The performance criterion is H � Vt
stands for the full information Isaacs Value function as introduced in sub�
section 
����� and Qt stands for the conditional state cost density�

Theorem ���� Let

St�x� u� � Fwt
Vt���ft�x� u� w��� Qt�x� �

If there exists a �decreasing	 sequence of numbers Rt� such that�


t � 	
� T � ��� 
u���T��
 � U� 
� � ��

max
x

min
u
St�x� u� �Rt � min

u
max
x

St�x� u� �Rt�� �

then the optimal control is obtained by minimizing the conditional worst cost�
future cost being measured according to the full information Isaacs Value
function� i�e� taking a minimizing u in the right hand side above�

Proof� The proof relies on the following fact �

Lemma ��
� Under the hypothesis of the proposition� the function

Ut�Q� � F
Q
x Vt�x� �Rt

satis�es the dynamic programming equations �
�	�
�	�

Let us check the lemma� Assume that� 
Qt�� � Qt���

Ut���Qt��� � F
Qt��
x Vt���x� �Rt�� � max

x
	Vt���x� � Qt���x�� �Rt��

and apply ����� using ����� to get

Ut�Qt� � min
u

�
max
x�w

	Vt���ft�x� u� w��� �t�w� �Qt�x�� �Rt��

�
� min

u
max
x

St�x� u� � Rt�� �

Then� using the hypothesis of the proposition and Isaacs equation for V � it
comes

Ut�Qt� � max
x

	Vt�x� �Qt�x�� �Rt �

thus establishing the recursion relation�
The hypothesis of the proposition is not as unrealistic as in the stochastic

case� It is satis�ed in the linear quadratic case� but more generally� it can be
satis�ed if S is convex�concave� for instance� with Rt � 
� Moreover� in that
case� the same u provides the minimum in both sides� yielding a certainty
equivalence theorem�
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���� An abstract formulation

It is known that in the stochastic control problem� some results� including
derivation of the separation theorem� are more easily obtained using a more
abstract formulation of the observation process� in terms of a family of ��
�elds Yt generated in the disturbance space� The axioms are that

� the brownian motion wt is adapted to the family Yt�
� the family Yt is increasing�

The same approach can be pursued in the minimax case� Instead of an
explicit observation through an output ���� one may de�ne the observation
process in the following way� To each pair �u���T��
� ��� the observation
process associates a sequence f�tgt����T 
 of subsets of �� The axioms are
that� for any �u���T��
� ��� the corresponding family �t satis�es the following
properties�

� The process is consistant� i�e� 
t� � � �t�
� The process is strictly non anticipative� i�e� � � �t � �t�� � �t��

t

where �t��
t stands for the set of restrictions to 	
� t��� of the elements

of �t�
� The process is with complete recall� 
�u���T��
� ��� t � t� � �t � �t� �

In the case considered above� we have

�t � ��Rn j ut� yt�

but the abstract formulation su�ces� and allows one� for instance� to extend
the minimax certainty equivalence principle to a variable end time problem�
See 	�� for a detailed derivation� and 	��� for an application of �a continuous
version of� theorem � to a free end time problem�

One may think of the subsets �t as playing the role of the measurable
sets of the ���eld Yt�

�� Conclusion

The present setup shows a remarkable parallel between the stochastic and
the minimax case� fully exploiting �Quadrat�s morphism� between proba�
bilities and maximisation� This goes all the way to the more powerfull
abstract formulation for the observation process� and to the separation the�
orem �which we therefore write as a singular��

We may make a further remark� In the linear quadratic theory� it has
been thought that the minimax certainty equivalence theorem of 	
� was
less a �separation� theorem than in the stochastic case because the ��lter�
to compute  x depends on the weighting matrices in the criterion� We see
here that another viewpoint is possible� in which these weighting matrices
are only the counterpart to the gaussian law of the disturbances in the
stochastic case� that also enter the Kalman �lter� Then the exceptional fact
with the LQG case is that it be possible to add a �quadratic� integral term
to the �quadratic� terminal payo��
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