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Abstract. A quantum analogue of the dual pair (.s[2, on) is constructed and its detailed investigation
is worked out. The main results include a quantum version of the theory of spherical harmonics, the
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elements of the twisted q-deformed algebra Uq(On) is given in relation to the Reflection Equations.
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Introduction

At the earliest stage of quantum group theory, as an analogue of the Schur-Weyl
reciprocity, a dual pair already appeared in the study [J]. Further developement
of Howe duality nevertheless seems to have been only implicit in the context of
quantum groups since then. In this paper, we present a new step, an example of
q-deformed dual pair (s 12 , on ) and its Capelli Identity.

Attempting once to define a q-analogue of the dual pairs, however, we must
face first the widely-known fact that the standard process of q-deformations of
the universal enveloping algebras of Lie algebras is not compatible with inclusion
maps. Against this difficulty, we proceed with the following principle: start from the
oscillator representation w ; make its n-fold tensor power representation w(j9n; then
see what appears as the commutant of the representation. Applying this strategy
to Uq(S[2), we get as a result in the commutant of w(j9n, a representation of a q-
deformation of U(on), which is different from the standard one that Drinfeld and
Jimbo defined. The q-deformed algebra Uq(on) appeared here tums out to be what
Gavrilik and Klimyk defined in [GK]. This algebra is not a Hopf algebra but plays
an important role also in the study of quantized homogeneous spaces (cf. [N4]).
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Incidentally for the Howe duality (SP2m, on ) in the case of Yangian, similar twisted
objects introduced in [0] naturally come into the story [Na2].

There are quite a few various points of view to look at this new dual pair, as
this is a quantum counterpart of the spherical harmonics. Our main focus here is
on the Capelli identity, which is an explicit identity between two central elements
of these two algebras in duality. Through this study, we are naturally led to basic
investigation about the irreducible decomposition of the q-commutative algebra
under Uq(on) as well as the description of the central elements of U q ( on ) . Our
argument is first along the classical theory, and give yet another invariant-theoretic
reasoning as in the spirit of [H 1 ] . We note that we encounter non-classical compu-
tations there. Whereas the Capelli identity we treat here is classically the easiest,
for example, its quantum counterpart shows unexpected interest and difficulty both
in the formulation and proof.

Here is an overview of our paper. The first two sections are to give our formu-
lation and the statement of main results. In Section 1 we introduce the oscillator

representation of the quantized S[2 and realize its tensor power on the space of
q-commutative ring. In Section 2 we observe that the q-deformed algebra Uq (on )
of Gavrilik and Klimyk appears in the commutant of n-fold tensor power of the
oscillator representation. Further we define the Casimir operator for this algebra
and state our Capelli identity in this case. The sections that follow are mainly devot-
ed to its proof. First in Section 3, we describe the irreducible decomposition of the
q-commutative ring under the action of U q ( on ) . This is along a quite analogous
way to classical discussion using the zonal spherical polynomials. One key here is
a Frobenius reciprocity, which is formulated with the notion of almost homogene-
ity introduced in [U]. In Section 4, we show that the Casimir element is central.
With these preliminaries, we prove the Capelli identity in Section 5. The proof is
representation theoretic and is done by the comparison of eigenvalues of the two
operators in question. This shows a clear contrast with the proof of another type
of the Capelli identity treated in [NUWI]. In Section 6, we look at the situation
from the dual pair point of view as in [Hl] and discuss the double commutant
property. Our guiding principle here is the first fundamental theorem of invariants,
and we establish it in a special form under the formulation of algebras with Hopf
algebra symmetry. A further discussion on the central elements of Uq(on) is given
in Section 7. There reflection equations control the commutation relations among
the elements of U q ( o n ) . In the Appendix, we give a similar-looking identity to
the Capelli identity we gave. This itself does not represent as clear meaning as
the Capelli identity does. But it is related to another realization of q-deformed
orthogonal Lie algebra in [N4] so that it should play some role in the analysis of
quantum homogeneous spaces. In some sense, this mock one, which has a simpler
form, may be regarded as a first approximation to the real one.
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1. The oscillator représentation and its tensor powers

We first recall the definition of Uq2(S[2). This is an associative algebra over the
ground field K = Q(q) generated by the elements e, f, kxl with the relations

Here [2] stands for the basic number q + q-1.
Their comultiplication rule is given by

The oscillator representation of Uq2 (S[2) is realized on the polynomial ring K[x]
of one variable. For this definition we introduce some notations. Let, be the algebra
automorphism of 1K[x] given by q: z e qx. The q-difference operator 8 = g9q is
then defined as

Using these, we define the following three operators:

An easy calculation shows that the commutator ] and x2 yields
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so that the cv above gives us a left Uq2(s[2)-module structure on K[x]. We call this
the oscillator representation, or more precisely a q-oscillator representation. Note
that this is not irreducible but breaks into two irreducible components which consist
of the polynomials respectively of even and odd degrees.

Since the algebra Uq2(S[2) has a Hopf algebra structure, we can thereby define
the n-fold tensor power w(i9n of the representation w. It is convenient, and even
natural from the geometrical point of view, to identify the representation space of
w(i9n with the q-commutative ring of n variables.
We denote simply by , the q-commutative ring with the

Then using the multiplication in A, we identify
naturally

Through this identification and the action w on : . we have an action

on A by the following comultiplication rule :

In order to describe this action, we introduce the notations on q-difference
operators as follows. Let -y2 be the algebra automorphism of A given by ,i: Xj --

The q-difference operator Oi = 8j,q is defined as

Here for an element a E A, we denote its left or right multiplication operator by a
or a° respectively. We put for brevity

With this notation, we have

Let us introduce here a notation
From the defining relations above, for a positive integer s,

we can easily derive the following commutation formula:
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In fact, by the derivation rule, we have

Applying this to the representation wQ"n , we obtain

LEMMA 1.1 (b-function)

Remark. We have actually several choices for the realization of the tensor
power w(i9n, depending both on the comultiplication rule of U q2 (.sl2 ) and on the
way of identification of the algebra A with the representation space of w(i9n. These
alternatives give us essentially the same objects but a slight modification in the
form of operators.

2. A q-deformed enveloping algebra and the Capelli identity

In this section we state our main results. For their proofs, we indiate the exact
places to look in the sections that follow.

On the space A of the q-commutative ring, we have another action p of the
quantized enveloping algebra Uq(gln) from the left. Let L

acting on the tensor product of two vector representations of U9(gln). Explicitly
they are given by
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Here eij is the matrix units with restpect to the standard basis of n-dimensional
vector space. For more detailed definition of U q (gln ) and L-operators, see [NUW1] .
In terms of L-operators, the action p is written as

Note that under this action, the multiplication
homomorphism.

where S is the antipode and From the definition of S, we see

so that we have another expression of E)j as

These elements represent the generators of the q-deformed algebra U q ( on) which is
discussed in [GK] and [N4]. To be precise, we define here Uq( on) as the associative
algebra with n - 1 generators Hj (j = 1, ... , n - 1) subject to the relations

For the proof that ej’s satisfy these relations, see Theorem 7.4.
If we let them act on A through p and put 0 j = p(Oj), then they take the form

This is seen from the definition and the formula (2.3) above. We will give a direct
proof in Proposition 4.3.1 that these Oj’s satisfy the relations (2.4).

The point is that they commute with the action

PROPOSITION. The operators 0j ’s commute with the action of
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Proof. See Section 3.1, Proposition 3.1.6.

Furthermore in a suitable big subalgebra of q-difference operators, Uq(on)
forms essentially the commutant of the action w(i9n of Uq2(Sl2), and vice versa (see
Section 6, Theorems 6.1 and 6.3 for details). With this fact we may well regard the
pair (Uq2(Sl2), Uq(on)) as a quantum analogue of the dual pair (Sl2, On) -

To define the Casimir element of Uq(on), we make appropriate elements corre-
sponding not only to the generators but also to the whole Lie algebra on. Let us
define the elements flt for 1  i  j  n inductively as

The choice of k does not affect on the definition as long as i  k  j, hence
well-defined (see Proposition 4.2). When we consider the acion of Uq(on) on the
space A, we denote by 0i the corresponding operator for Ht. Though their explicit
form is a bit complicated, we can write them down (cf. Proposition 4.3.1 (2)):

From this we can see that 0£ is no more ’first order’ but is a ’second order’
difference operator if i - j ] &#x3E; 1. With these elements, the (second order) Casimir
element C of Uq(on) and its representation CA are defined as

THEOREM. The element C is in the center of U q ( on ) .

The proof is given in Theorem 4.2 (see also Section 7). Further details about the
Casimir element together with fl £ ’s and their representation O]i’ s will be discussed
in Section 4 and Section 7.
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Our Capelli identity is now in order (see Section 5 for its proof).

THEOREM (Capelli Identity). The following equality holds:

Here we used the notation

Note that the left-hand side of the identity is essentially the Casimir element of
Uq2(Sl2) modulo Euler operators. In other words, this identity expresses explicitly
the coincidence of the central elements of the two algebras Uq2(S[2) and Uq(on)
which are in duality. This looks quite analogous in its form to the classical case
(see e.g. [HU], [Wy, p. 292]). Note, however, in checking it by a straightforward
calculation based on the explicit formulas above, which can be carried out in
principle, we come across quite a few tricky cancellations. The proof we give in
this paper is instead based on representation theory, so that we need to develop it
for clarity.

The proofs of the statements above will be given in the following four sections.

3. Spherical harmonics under the q-deformed algebra Uq(On)
In this section, we describe the Uq(on)-module structure of the q-commutative
algebra A = K[x 1 , ... , xn] . This is exactly an analogy of the theory of spherical
harmonics. Later we will give some double commutant discussion, which gives us
a slightly different reasoning from what is going to be done this section. The way
we proceed here is along a quite similar discussion to the classical case.

Let us introduce the space of harmonics :

This breaks up into graded pieces according to the grading of A:

The following three facts are our first goal, which is an analogy with the
elementary part of theory of spherical harmonics:

THEOREM (Analogue of spherical harmonics).

( 1 ) The fixed point algebra AUq (In) is generated by the element Q if n &#x3E;, 2.
(2) The algebra A is decomposed into the tensor product of the harmonics H and

the fixed point algebra A Uq(On):
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or more precisely

(3) The space Hm of harmonics of homogeneous degree m is irreducible under
the action of U q (On) for n &#x3E; 3. Furthermore H m’s are mutually distinct.

Remark. For the case n = 1, since the algebra Uq (on) is trivial, the assertion ( 1 )
of the Theorem is not true. In this case, the harmonics are just of the form ax + b,
and other two assertions are not literally true.

For n = 2, the harmonies Hm are two dimensional except for m = 0, and
break into two irreducibles when we extend our based field K by adjoining Î.
Explicitly we have for m &#x3E; 1,

These exceptions are parallel to the classical case, where the difference from
the cases n &#x3E; 3 disappears when we consider the orthogonal group On instead of
its Lie algebra.

3.1. ANALOGUE OF FISCHER INNER PRODUCT

To pursue a further analogy with the classical theory, we introduce here an inner
product on A = K[x 1 , ..., xnl. For this purpose, we define another set of difference
operators aî defined by

Its difference from the operator 8j lies in the direction from which division by xi
is made: a2 is from the left whereas âi is from the right. Explicitly it makes aî =

also that ai’s are q-commutative while ai’S are q-1-commutative:

Let us dénote this homomorphism by (
analogue of Fischer inner product by

where Ix==o stands for the linear form that takes out the constant term. Note that it
is a well-defined ring homomorphism from A to K
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It is not hard to see that the monomials form an orthogonal basis. To be explicit,
we can compute the inner product as

Here we used an abbreviated notation x

symmetric. Furthermore, since the function field K = Q(q) is formally real, or
by an argument of specialization of q, we can prove that the inner product is
anisotropic. When we extend our base field as K = C(q), we make the bilinear
form into hermitian form with respect to the complex conjugation.

With respect to this inner product, we consider the adjoint at for an operator
a e EndK(A) defined by (a t cpl’l/J) = (cpla’l/J). It is clear that (ab)t = btat. Since
the inner product is symmetric (or hermitian), the adjoint is involutory: (at)t = a.

LEMMA 3.1.1. We have the following formulas for the adjoint.

In particular,

Proof. The first three formulas are obvious from the definition. The next
two follow from them and the relations ai = âiwi- 1 and Xi = x2 wi with
Wi - ,11 ...,i=-B,i+1 ...,n. The assertions for Q and A are clear from these.
The formula for 0j is also easy to see, because we have an expression 0j =
(Xj+1aj - Xjaj+1),l ...,i-1,i+12 ...,;1. The last assertion is shown by induc-
tion from the recursive definition of the O]i’s. The first step is just ° J = -Oj. Taking
the adjoint of the recursive formula, we have for i  k  j

Plugging the induction assumption
into this formula, we see

as desired.
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From this lemma, we obtain the following two important conclusions:

PROPOSITION 3.1.2. The representation of Uq(on) on A = 1K[X1,..., xn] is

completely reducible.
Proof. Since the generators Oi 1 s of Uq(on) are skew-symmetric with respect to

the inner product, the orthogonal complement of a Uq(on)-submodule is also a
Uq( on)-submodule.

PROPOSITION 3.13. The space Am of homogenesous polynomials of degree m
breaks into the direct sum Am = Hm ~ QAm-2. Furthermore the direct sum is
orthogonal direct sum with respect to the inner product (.1.).

Proof. Recall Hm = Ker(0: Am - Am-2). Then the assertion follows from
Ot = qn-1 Q. In fact, from this we see easily Hm = Im(Q : Am-2 - Am)-L. Since
our inner product is anisotropic, this shows Am = Hm ~ QAm-2.

COROLLARY 3.1.4. The dimension of the space Hm of harmonics is the same as
in the classical case:

This number is strictly increasing in m,

Remarks 3.1.5. ( 1 ) We have a more general inner product for the finite dimen-
sional representations of Uq(gln) (cf. [N4]). Using this fact, the complete reducibil-
ity can be seen to hold in the following form: if V is a representation of U 9 ( o n )
liftable up to U q then V is completely reducible.

(2) By a successive use of Proposition 3.1.3, we get the second assertion of
Theorem.

(3) The Proposition 3.1.3 can be proved actually without using the inner product.
We have only to prove Im Q n KerA = {0}. In fact, this implies A : Am - Am-2
is injective on QAm_2 ^_ Am_2, hence surjective. In other words, QAm-2 gives a
section for A : As - Am_2, so that Am is a direct sum of QAm_2 and the kemel
H m of the Laplacian.

Suppose now cp e QAm-2 n Hm and take the maximal integer s such that
cp = QS’ljJ with some ’ljJ =1- 0. Using the identity ( 1 ) in Lemma 1.1, we see

This shows, as [2s] [2s - 2 + n + 2(m - 2s)} is non-zero, 1b can be divided by Q
once again, which contradicts the maximality of the integer s.
We complete here the proof of the following

PROPOSITION 3.1.6. The operators Oj’s commute with the action ofUq2(sl2):
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In particular, Oi - QS = 0 for any non-negative integer s.
Proof. The last assertion is obvious. To see the first one, we note for cp E A,

from the comultiplication rule for 0j ,

or as operators [0j, Q] = (0j. Q),l,j+1. We have thus only to show Oj. Q = 0
for the first assertion. This is easily checked by a simple calculation. In fact, it
reduces to the case for n = 2 and essentially to (X2al - X102) - (X2+ q-1x2) =
[2](X2XI - q-’X1X2) = 0. The second assertion comes from the first, because A
and Q are mutual adjoint up to constant multiple.

Remark. We have another reasoning of the fact that the second assertion follows
from the first one and vice versa. The proof is clearly reduced to the case for n = 2,
where the Capelli identity is easy to prove, as we will see in Section 5. The Capelli
identity then shows the product of Q and A commutes with 0.

3.2. INVARIANT POLYNOMIALS AND ALMOST HOMOGENEITY

Let us consider a little bit bigger algebra Uq(gon), which is, by definition, gotten

is almost homogeneous in the sense of [U]. In fact, denoting by xn the algebra
homomorphism from A to K given by the ’evaluation’ at the point (0, ... , 0,1), we
can show that xn (ap) = 0 for all a E Uq (gon) implies cp = 0 (see Proposition 11
in [U]). This fact will be essentially used later for the proof of assertion (3) of the
Theorem, i.e., the irreducibility of the harmonics Hm. Also we see this to be of use
for the first assertion of the Theorem.

PROPOSITION 3.2. The fixed point subalgebras are determined as follows.

Proof. For ( 1 ), take a homogeneous Then cp is a relative invariant
1 .. .

uniquely determined from m up to constant multiple, i.e., Am °’’ is at most one
dimensional. When m is even, by the Proposition 3.1.6 above, the power Qm/2
certainly gives a non-zoro element in 

.

What remains to show is now ,

from this, ri p is also fixed by L
our p is a joint eigenvector for ri’s. Since r2 is involutory, the eigenvalue of ri is
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:El. Note then the product r 1... rn changes cp into -p, as m is odd, whence there
exists an ri such that ricp = -cp. This means that cp contains only odd degree terms
with respect to Xi. We may thus assume the form of cp as

where m = 2l + 1 and does not contain xi . Compute 0ip (if i = n, use Oi-1 1
instead, and make suitable changes):

We see now from this 
because OiV = 0. Thus all the coefficients pj must be zero. Hence

the first assertion.

we come to the conclusion.

Remark. More general discussions are given in Theorem 3.1 in [N4] for the
irreducible representations of Uq(gln) with fixed vectors by certain q-deformations
of on or sPn. Later in Section 6.1, we will use a special case of this theorem.

3.3. ZONAL POLYNOMIALS AND IRREDUCIBLITY OF HARMONICS

For the assertion (3) of our Theorem, we prove the following two propositions.

PROPOSITION 3 .3 .1. For every non-zero finite dimensional Uq (on)-submodule Z
of A, its fixed point space ZUq (on-1 ) under Uq (on_ 1) is non-zero.

PROPOSITION 3.3.2. Assume n &#x3E; 3. Then the space of zonal polyno-
mials of homogeneous degree m is one dimensional.

The assertion clearly follows from those two together with the complete reducib-
lity of the Uq(on)-module A. The fact that Hm’s are mutually distinct comes from
the comparison of the dimensions (see Corollary 3.1.4). For Proposion 3.3.1, we
make use of the almost homogeneity. Though the discussion below is essentially
the same as Proposition 6 in [U], we will give it for completeness.
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Using the inner product above, we can embed A into its dual A’, on which U 9 (gln )
acts by contragredient action. Pulling this back, we have another action v of U q (gln.)
on A as: (v (a) p, Ç) = (p ) S(a) .Ç) , where cp, 03C8 E A and a E Uq(gln,), and S is the
antipode. Roughly speaking, what we get is v(a) = S(a)t. To distinguish these
two acions, we denote the new module by A". Recall the comultiplication rule
A(Oj) = Oj qé:j-é:j+l + 1 ~ Oj, whence the antipode is S(Oj) = -Ojq-é:j+é:j+l.
From these, the explicit action of 0j on the tensor product A 0 A" is given by

LEMMA 3.3.3. Let Z be a finite dimensional Uq (on)-submodule of A. Take any
basis ea and its dual basis e
is invariant under Uq(gon).

Proof. It might seem obvious from the definition of contragredient. However,
since Uq(gon) is not a Hopf algebra, we give a proof to make sure. It is clear for
the action of qé, because 1 , we have by definition

Note that we have no reason to expect -, to sit inside Z. However, for fixed

On the other hand, we have Plugging these into the sum-
mations, we get respectively ; for the first summation
and its negative for the second, hence it vanishes in total.

Now consider a linear map

Proposition 3.3.1, it suffiecs to show the following two:

(B) The map r is injective on the space of fixed points.
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The first one is easv to see. Note first from the definition

xn (cp) and xn (0j p) = 0 for j + 1  n. In fact, OjCP contains positive powers of xj
or Xj+1 in this case. Then as we saw above OjIz = 0, so that for

Thus

in Z.
For the second assertion, we employ Theorem 5 in [U]. Note the assumption

there that U is a left coideal of a Hopf algebra is just to make sense for the tensor
product. In our case both A and Av are actually Uq(gln)-modules, so that the proof
of Theorem 5 is applicable here without any change. One thing to be cleared is that
A’ is also almost homogeneous under Uq(gon). Its direct proof is quite parallel to
Proposition 11 in [U].
We now determine the space HUmq (on-1) of zonal polynomials and show that it

is one dimensional for n &#x3E; 3. Let us take cp E Hmq (on-1) . By Proposition 3.2, it is
of the form

where cj E K and i

for non-negative integers s, t:

Here we used the formula for b-function (see Lemma 1.1 (2)). From this computa-
tion, comparing the coefficient of QI -1 M-2j in the equation 0 (p) = 0, we get
the relations between the adjacent coefficients:

Since does not vanish for j &#x3E; 1, as we have assumed

n &#x3E; 3, all the coefficients cj’s are completely determined from co by these relations.
is one dimensional.
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Remark 3.3.4. To be more explicit, the coefficients are determined as

where . Thus with the notation (a; q)j =
we have the zonal polynomial Pm normalized as

Using the relation we can

rewrite this as

If we write this zonal spherical polynomial pm in terms of Q and xn as

then the relations between coefficents are seen from Lemma 1.1 (2) as

From this we have another expression of pm as

4. The Casimir élément of Uq(on)
4.1. PRELIMINARY CALCULATIONS

In this section, we complete the proofs of the facts on the Casimir element of
Uq (on) stated in Section 2. We start with some formulas on commutators. For
a e K, define the ’a-commutator’ by [x, Y]a = xy - ayx. As usual, we omit the
subscript in the notation of the commutator bracket for a = 1.
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LEMMA 4.1.1. For a, b, c E K we have

Proof. The first formula is just an easy calculation. For the second, replace y and
z together with a and b in the first one. Then subtract it multiplied by c from the first.
The third one is the same as the second, because a [y,

In the first stage, we proceed in a little bit abstract way.

PROPOSITION 4.1.2. Assume we are given a set of elements .i
satisfying ] inductively by

Then

then the elements 4jk and Ali commute with each other.

definition of Aji, we are allowed to take any k in between j and i.

Proof. We prove the assertion (1) by induction on
first step h = 2 is nothing but our assumption. For h &#x3E; 2, by changing the letter if
necessary, we may assume l - i &#x3E; 2 and &#x3E; l or i &#x3E; j without loss of generality.
From the formula (2) in the Lemma 4.1.1 above, we see

Then by the induction assumption, the inner commutator brackets vanish in both
terms.

For (2), suppose j &#x3E; k j é &#x3E; i. Then it suffices to show [’4jk, ’4ki]q =
[Ajl, Ali]q by induction on j - i. The first step j - i = 2 is trivial, because it implies
k = l. For j - i &#x3E; 2, we may assume 4ki = [,4kl, 4ti] q and Ajl = [Ajk, Akl] q .
Plugging the first one in the left-hand side then using the second, we see

Here we used the formula with a = c = q, b = 1. The second term vanishes by the
assertion (1) because k &#x3E; Ê. This completes the proof.

Up to here, what we used is only the first defining relations of Uq(on). The
second relations (Serre relations) yield the Proposition 4.1.3 below. To prove
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that the Casimir element is central, however, we need only ( 1 ) and (2) in the
Proposition.

PROPOSITION 4.1.3. We keep to the assumptions and notation on Aj and 4ji in
the previous Proposition. We assume in addition for Ji - j ) = l,

Then

we have the following.

(2) Assume q2 :j:. -l hereafter. then the elements Aji and
Ak+1 k commute with each other.

(3) For j &#x3E; k &#x3E; i, we have in general

(4) Furthermore for j &#x3E; k &#x3E; Ê &#x3E; i, the elements Aji and Akl commute with each
other.

Proof. Note that our assumption above can be written as

for j = i ± 1. These formulas give us the first step of the induction for ( 1 ). Taking
an Ê with &#x3E; l &#x3E; i, we have

Here we have put a = q-1, b = 1, c = q in Lemma 4.1.1 (2). Use then the induction

term vanish by the previous Proposition 4.1.2( 1 ). Then we come to the conclusion
for the first formula of ( 1 ). The proof of the other formula is similar.

For (2), assume j &#x3E; k + l, k &#x3E; i. Putting a = b = q-1, c = q in Lemma 4.1.1
(2), we have
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Here we used the first formula of ( 1 ) for the second term. For the first term, we
continue by applying the Lemma 4.1.1(3) with a = q-1, b = c = q as

Here we used the second formula of ( 1 ) for the first term. With these two calcula-
tions, we obtain

This means i Hence the assertion (2).
We prove the first formula of (3) by induction on

, we see from ( 1 ) and (2),

as desired. The other formula can be similarly shown.
Now that the formulas in (3) are proved, the assertion (4) can be derived in a

quite parallel way as (2). To avoid the repetion, we give a slightly different-looking
proof instead. For j &#x3E; k &#x3E; l &#x3E; i, we compute the commutator [Ajl, Aki] in two
ways. Putting a = q-1, b = c = q, or a = b = q, c = q-1 in the formula (2) in
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Lemma 4.1.1, we get respectively

and

We have thus the conclusion.

4.2. CENTRALITY OF THE CASIMIR ELEMENT

With these preliminaries, we prove the Casimir element is central in Uq (on ) . Note
that in the above, replacing q with q-1 if necessary, we already have the commu-
tation relations for Ih in our hands.

THEOREM 4.2. In the algebra Uq(on), the following two elements are central.

Here 1-Ij’s are the generators and Ih for 1  i  j  n are inductively defined by

Proof We show IIk = IIt+1 k = IIk+1 k commutes with C for 1  k  n. From

the Propositions, the element II]ji commute with TIk if its indices satisfy either one
of the conditions 1 &#x3E; k + 1 or k &#x3E; j or j &#x3E; k + 1 , k &#x3E; i. The commutator [IIk, C]
thereby reduces to
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To compute these, use the formulas 1
qy[x, zJ q-1. Then from the Proposition 4.1.3 ( 1 ), we see

From these, the first two and the latter two summations are respectively seen to
cancell out. Hence C is central. The proof is quite similar for C’. Thus proved the
Theorem.

Remarks. (l) We see C and G’ are transformed to each other by an automorphism.
Actually two elements C and C’ should be identical.

(2) In the proof above, we used Proposition 4.1.3, where q2 #- -l is assumed,
so that the same condition is implicitly posed in Theorem 4.2. This restriction,
however, can be actually removed. See Corollary 7.5(2) and Remark 7.9(2).

4.3. EXPRESSION OF 0:+ji AS q-DIFFERENCE OPERATORS
In the rest of this section, we prove that the elements

1 certainly give the representation of
and compute the explicit form of See Section 6.3, for the meaning

of those from the invariant theoretic point of view.

PROPOSITION 4.3.1. ( 1 ) The elements
the following

satisfies

(2) For the elements 0:ji inductively defined as
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we have the following expressions:

For the proof, we prepare some calculations:

LEMMA 4.3.2. For i # j, j -f- 1, the element Oj commutes with all the 
ai and ai. For i = j, j -f- l, we have the following relations:

and also

Furthermore we have

Proof. From the comultiplication rule of Oj, we have for V, 0 e A,

which gives the commutation relation between Oj and left or right multiplication
operators. In particularnoting Oj . xj = xj+1, Oj . xj+1 - -Xj, we get the foumu-
las for multiplication by xj and x j + 1. The formulas for q-differance operators are
seen from these by making the adjoint t with respect to the Fischer inner product
(see Lemma 3 .1.1 ).
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The commutation relations of 0j and are just simple calculations.
Actually they form pairs which can be transformed to each other by the adjoint
j-. Moreover the relation [0j, -yÎ 1-yj+,] = 0 reduces the number of formulas to be
checked into 2. With this reason, it suffices to show the first two, and their proofs
are easy.

The last three formulas are applications of these. First one is immediate:

Noting then , we prove the

second one as

The last formula is proved similarly. In fact, starting from

we have
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Here we used

Remark. See also Remark 6.3.1(3) for a meaning of the first eight foumulas
from the representation-theoretic point of view.

Proof of Proposition 4.3.1. For the assertion (1), since the first formula in (1)
is clear, we have only to show the second. It amounts to the same as the following
two equalities:

The first one is proved by using the formulas in Lemma 4.3.2 as

The latter can be shown similarly again by Lemma 4.3.2,

We now prove the assertion (2). Let us show the first formula by induction.
Since aî and xiyî commute with Oj, we have from the Lemma above

Similarly, since commutes with Oj, we see
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Summing up those results with suitable factors, we get the desired expression for
The latter formula can be obtained from the first by making the

adjoint t with respect to the Fischer inner product (see Section 3.1).

5. Proof of the Capelli identity

5.1. CAPELLI IDENTITY FOR n = 2

We treat first the case for n = 2 separately. This case is quite simple and the
direct computation will not meet any difficulty. Recall the operators in question:
Q = X2 + q-IX2 and A = qâi + ai. Furthermore we denote the Euler degree
operator {-y } by E. Note that this can be written as E = XI al + X2 a2. The generator
of Uq(o2) is the element Bl = B = X201 - z1 82 (see the formula in Section 2).
The commutation relations between (left) multiplication operators and q-difference
oprerators are

LEMMA 5.1. (Capelli identity for n = 2)

Proof. We prove the equality Since E and 0 commute, the

right-hand side has a factorization as .
each factor is then further factorized into

Using the commutation relations X 1 X2 = qX2X and qOI ’o’2 = â2â1, we have the
following factorization:

From the commutation relations between multiplication and q-difference operators
above, we see
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Then our assertion follows from those factorization formulas.

Remarks. (l) By the commutation relations above, we can of course check the
formula by direct high-school calculations:

(2) There is another a little bit more sophisticated proof of this formula based
on the exterior calculus (see the Appendix). Note also

5.2. HIGHEST WEIGHT VECTORS IN HARMONICS

In Section 3, we saw the irreducible decomposition of the space A = 1K[x1 , ... , xn]
of q-commutative ring under the action of Uq ( on ) . For n &#x3E; 3, the space of harmonics
Hm is shown to be irreducible. We give here a special element in Hm, a highest
weight vector in a suitable sense. Later we will use this vector for the comparison
of two central elements, hence for the Capelli identity.

PROPOSITION 5.2.1. The shifted power

For this proof, we prepare a lemma.

LEMMA 5.2.2. The actions of aj’S on the shi, fteâ power are given by
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Proof. It suffices to prove these formulas for n = 2. Recall the following
(twisted) Leibniz rule:

Then we can immediately see our assertions from these by noting y1 1 zr -
q- 1Zr+ 1; Y2 zr = Zr+ 1 . In fact, with the convention that the empty product repre-
sents 1,

and similarly

Proof of Proposition 5.2.1. Since the last equalities Oj .z[m] = 0 for j &#x3E; 3 are
obvious, we may assume n = 2 for the computations. For ( 1 ), as seen above, we

For (2), recalling 01 = x281 - Xl a2, we see from the Lemma that

as desired. Thus completes the proof.



254

Remark 5.2.3. There are several different ways to prove the formulas (1) and
(2) in Proposition 5.2.1. For example, we have the commutation relations zTzs =
zs+lzr-1 and O.zr =: --f-1 qr Z-r. Together with these, using the (non-standard)
Leibniz rule 0 (VO) = (’12cp) (O’l/;) + (Op) (-yV», we get the formula (2).

Another way to prove is through the binomial expansion.

5.3. PROOF OF THE CAPELLI IDENTITY - GENERAL CASE

With these preparations, we now give a proof of the Capelli identity. As we have
proved it for the case n = 2 above, we assume n &#x3E; 3 hereafter. Recall that the
space of harmonics Hm is irreducible under Uq(on) for n &#x3E; 3, so that the space
M m = E)j&#x3E;,O QjHm is irreducible under the joint action of U q ( o n ) and Uq2(Sl2).
Since both sides of the Capelli identity commute with this joint action, by Schur’s
lemma, they must be constant on the space Mu. (Note the irreducibility did not
depend on the base field. To apply the Schur’s lemma correctly, we at first need
to make a field extension, which process eventually tums to be unnecessary. Other
way to see this is: note first there is only one Ug(on-1)-fixed vector, the zonal
spherical polynomial in Hm-, so that it is an eigenvector of the two central elements.
Since Mm is generated from that zonal spherical polynomial under the joint action
of Uq(on) and U q2 (£Î 12), the central elements must be scalar on this space.)

For our Capelli identity, it thus suffices to show the eigenvalues of the two

Casimir operator C with an emphasis of its representation space A. The computa-
tion (QA - {’y}{qn-2’y})z[m] is easy, because we have already seen that z[m] is
harmonic :

On the other hand, since z[m] is an eigenvector for CA with a form xm + ...
(see the binomial expansion in the Remark above), it is sufficient to look at only
the coefficient of this top term xm in the computation of CAZ[m]. Now recall the
definition
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and the expression Proposition 4.3.1 (2)

Then in those many terms, what we need for CAZ[m] are only the terms 0à whose
indices includes 1 or 2. In fact, otherwise they contain the difference operators with
respect to Xi with i &#x3E; 2, so that their actions end up with zero. We have actually
a further reduction to the terms 011 ’s, because we have concentrated on looking at
the coefficient of x’, for in the expression of 0- with i &#x3E; 2 contains only xi with
z &#x3E; 1 as multiplications. With these reasonings, our computation now reduces to

and further to

The first term can be computed by the Capelli identity for
From the second summation, the contribution to the term xm

amounts to

because

we come to the conclusion from a simpe identity
Hence the proof of our Capelli identity.

Remark. The identity
holds quite similarly.

6. A quantum analogue of the dual pair, the commutant of wOn

be the ring of q-difference oper-
ators. It is no doubt natural to ask whether the double commutant property holds
between the two algebras LU (sl2) and U q ( o n ) within this 0. However, not alike
the classical cases, the adjoint action contains infinite dimensional parts, so that the
problems become more complicated. This kind of difficulty occurs quite commonly
when one considers quantum group actions.
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In this section, we will not attack the double commutant problem in the above
form itself, but choose suitably big subalgebras of1) consisting of only finite dimen-
sional parts under U q2 (-sl2) or U q ( on ) and determine their fixed point subalgebras.
Instead of loosing a most generality, we will gain a clarification of the meaning
of the elements Oji through this approach. We note also that our result below will
suffice for the analogy of spherical harmonics from an operator-theoretic approach.

In the discussions below, we follow an analogous way as classical ones. Since
we have not yet got well-developed general theories there, our discussion still have
to go slightly longer ways.

6.1. A DETERMINATION OF Uq(On)-INVARIANT DIFFERENCE OPERATORS

Let us take a subalgebra Po = K[x1, ... , Xn, â1 , ... , ôn] of 0. This is an algebra
with Uq(gln)-symmetry under the adjoint action, and is generated by the vector
representation and its contragredient. We denote by V(À) the irreducible repre-
sentation of Uq(gln,) with highest weight À. Then é1, ... , En being the canonical
basis for the weight lattice, vector representation or its contragredient is V (é 1) or
V( -én), respectively.
We will show the following.

THEOREM 6.1. The invariant difference operators in Po = K[x1,...,xn,
a1, ... , an] under Uq (On) are determined as follows:

( 1 ) When n &#x3E;, 3, we have

(2) When n = 2, we have

Remark. Since U q ( o n ) is a right coideal of the Hopf algebra U,, (g 1.), the fixed
point algebra 0 uq (0.) under the adjoint action coincides with the set of operators0

in Do commuting with the action of Uq(on) on A = 1K[x1,..., xn].
Proof First we consider a little bit smaller algebra Doo = K[x 1, ... , xn, ,81, ... ,

-yan]. Note K[xi, ... Xn, ,al, ... , yân, y+1 = K[x 1, ... , Xn, al, ... , On] and, is
invariant under Uq (On), so that algebra Doo will suffice for our purpose. The reason
why we make use q8j instead of aj is in the commutation relations:
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Giving the degree 1 both to xj and ,aj, we make
a filtered algebra. Recall the decomposition

and that the multiplication gives the isomorphism
. Then transferring to the graded algebra, we have the isomorphism for every

degree d

as Uq(g[n)-modules. Using the Clebsch-Gordan rule

we have essentially obtained the irreducible decomposition of Poo under the action
of Uq(gln). More explicitly, the description of irreducible component is as follows.
It is easy to find the highest weight vector Pl,m,k in Doo corresponding to this
V((f - k)t1 - (m - k)En ) in degree d =l + m part as:

For 0  k  min(f, k), we write VL,m,k as the U q-module generated by Pf,m,k.
These are the irreducible components of Doo.

Next step is to find the fixed vectors under Uq(on) in the irreducible represen-
tation V(À) of Uq(gln). It is determined in Theorem 3.1 in [N4] as

(A) In every irreducible representation V(À) of Uq(gf,,), the fixed vectors

V(À)Uq(On) under Uq (on) is at most one dimensional.
(B) The fixed vectors V(À)Uq(On) are non-zero if and only if Àj - Aj+l is even for

all j.

Applying this criterion to V(f£l - m£n), we see its U q ( on ) -fixed vectors is one
dimensional if and only if

(i) for n &#x3E; 3, both f and m are even;
(ii) for n = 2, the parity of Ê and m are the same.

Assume now first n &#x3E; 3. Our criterion tells that
contains non-zero Uq(o,,)-fixed vectors only when both 2 - k,
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m - k are even. In this case, we can give the fixed vector in "Vl,m,k explicitly
as

Thus the assertion (1) of the Theorem is proved.
For n = 2, since Uq( 02) = K[0] is commutative, V(é1 - -2) has another typical

invariant q0 = q(x27â1 - ziq82). Then in the irreducible component Vf,m,k
with the same parity of l - k and m - k, we can find the fixed vector as

This completes the proof.

6.2. THE FIRST FUNDAMENTAL THEOREM FOR Ug (S12)
Here we establish an analogy of the first fundamental theorem of invariants for ,sl2.
For the later use, we first recall the comultiplication rule of Uq(sl2):

Correspondingly the antipode ,S’ is given by

Let 21 be a left U q (,S (2) -module. Then for lF e EndK (21) and a e .Uq(Sl2),- the
adjoint action ad(a) on -* is in general defined by ad(a;
where the comultiplication is given as . We note by definition

When a left Uq(xC2)-module 2t is an algebra, we call it with Uq(Sl2)-symmetry if
the unit K ----&#x3E; 3 and the multiplication 2t 0 2[ --&#x3E; 2l are Uq(xC2)-homomorphisms.
Our setting for the first fundamental theorem is the following. Assume we are
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given an algebras -symmetry such that
bears the standard 2 dimensional (vector) representation for all

We have then typical invariants, the q-1-determinant of 2 x 2 minors,
the subalgebra of 2l

generated by these invariants. Our theorem is now stated as

THEOREM 6.2. In addition to the setting above, we assume the property

Then the set of invariants under U q (s l2 ) in 21 is genetated by the typical invariants

Proof. We will describe the set of highest weight vectors in % in two steps.

First Step. Denote by V (é) the (Ê + 1 )-dimensional irreducible representation of
Uq(Sl2) of highest weight 2. Translating the Clebsch-Gordan rule V ( 1 ) 0 V (2) -

to our algebra 2!, we introduce the following two operators:

Here {a} == (a - a-1 ) / (q - q-1 ) and ej and i7j are considered as left multiplication
operators. It is easily checked that for a highest vector u with weight l, the resulting
vector Ej u or Fj u is either zero or a highest weight vector respectively with weight
l + 1 or l 2013 1. Recall 2l is generated by the vector subspace Vi + ... + Vn and
consider a filtration on 2t induced from these generators. With this filtration, it is
inductively shown from the meaning of Ej and Fj that all the possible highest
weight vectors in 3 are obtained by successive applications of operators Ej’s and
Fj’s to 1. Thus we have proved

Claim (1). The subalgebra of 2l killed by e is spanned by the elements
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Second Step. So far the assumption (C) in the theorem has not been used. From
(C), for fixed a, i, j, we can find CP{3 E 23 such that

Applying here the adjoint action ad( f ) of f to this equality, we also get

In fact, note ad( f )
any p e 93. From the two formulas above, we see first i«

This implies

An easy calculation shows the following commutation relations among
and the typical invariants i

Using this, in a polynomial in Ej’s and Fj’s with coefficients in 0153[k, k-1], we can
rearrange the order of product of Ej’s and Fj’s. Together with (C’), we then have

As we have shown in the first step, a highest weight vector is a linear span
of elements of the form

By the above reduction, we can rewrite into a sum of elements in

Taking account of the weight, we have obtained
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Claim (2).Under the assumption (C), the set of highest weight vectors of weight l
in 3 coinscides with

In particular, the fixed point subalgebra 2( Uq (sl2) coincides with the algebra ? of
typical invariants.

Hence the assertion of the first fundamental theorem.

6.3. A DETERMINATION OF Uq2 (s12 ) -INVARIANT DIFFERENCE OPERATORS

We will here apply the first fundamental theorem above to determine the commutant
of wOn (U q2 (Sl2)) in a suitable subalgebras of P . Note under the adjoint action, 1)
is an algebra with Uaz (s12 ) -symmetry, whereas A = K[X1, ... , Xnl is not so under

Let us specify subalgebras of 0, which are generated by n copies of standard
representation of Uq2(S[2). One choice is to start from the q-difference operators

, which clearly commute with ai’ s, so does with
We have therefore,

a lowest weight vector, which possibly generates the standard representation. Note

, we show the right-hand side vanishes. Using the notation
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we have first 1

Here in the first three terms, expand them and look at the coefficients. Then

see all those terms vanish. The remaining terms devided by q-j+1 sum up to

in which the sum of the first or latter three terms respectively ends up to zero.
Hence the assertion.

An easier calculation shows

We denote by 0+ the subalgebra of 0 generated by thèse &#x3E;

here in 2)+ is calculated from

by a bit complicated but similar calcualtion to the above. The result is for i  j,
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Thus we naturally meet with the elements Ot again. We see from the definition
and the computations in Section 4 that the ring 23+ of typical invariants in D+ is
generated by Oj ’s.

Another choice is to start from the right multiplication xj, which clearly com-
mutes with Q. Putting çj = 1 we see

From the definition, we sexe 
With respect to the Fischer inner product in Section 3, this is essentially

1) - the algebra generated by these 2n elements. The expression ouf i
is observed from

Thus hold and the relation of typical invariants
between the D+ and S- are given b00FF

From the computations of the typical invariants for 1) + and Lemma 3.1. l, we obtain
for i  j

By the same reason as for 1)+, the ring B- of typical invariants in 1)- is generated
by Oj’s, whence it coincides with B+.
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To apply the first fundamental theorem established above, we need to check the
condition (C) for the algebras D+, D-. This is seen from Lemma 4.3.2, which tells

the condition (C) for the algebra 1)-, and also

which assures the condition (C) for 0+, because nj’s and ej’s are transformed with
each other by the adjoint action of Uq2(Sl2).

Thus by the first fundamental theorem, we come to the following

THEOREM 6.3. The set of invariant difference operators in D + or 0 - is generated
by the typical invariants:

Remarks 6.3.1. (1) In the above, when we transfer from 0+ to 1)-, we utilize
the adjoint t with respect to the Fischer inner product. Note, however, they are not
transferred by t with the action of Uq2(S[2).

(2) There are several choices for the comultiplication rule of U q2 (S[2). If we use
other comultiplication rule, then the adjoint action accordingly changes, so that the
corresponding subalgebras 1) + and 1) - also get changed.

For example, if we adopt the comultiplication 0 as

then the realization of the tensor power of the oscillator representation gets accord-
ingly changed as
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with

Also the adjoint action ad changes as

With this change, we have another sublagebras D+ and D- generated respectively
by

The typical invariants in this case are defined as
(3) In checking the condition (C) for 1)+ and 1)-, we made use of the commu-

tation relations in Lemma 4.3.2. Here we look at those formulas in relation to the

adjoint action of Uq(g[n).
Recall first that A = K[X1 , ... , xn] is an algebra with Uq(g[n)-symmetry. Then

the usual adjoint action on EndK(A) is compatible with the original action on A
under the identification to the left multiplication operators: ad(a)cp = a. cp for
cp C A. Also for the ’left’ q-difference operators aj, this adjoint action gives the
contragredient representation.

To get a harmony with the right multiplications, however, we need to make a flip
on the comultiplication of Uq(g[n). Denote by ad’ the adjoint action on EndK(A)
under the flipped comultiplication:

by cp° the right multiplication operator. Recall the action of U q (0n) on A is defined
through Uq(g[n) and the generators are given by
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Applying the formula above, we see for example

This gives some formulas in Lemma 4.3.2.
With a quite similar reasoning, since the set of ’right’ q-difference operators 19jo

bears the contragredient of the standard representation of Uq(g[n) under ad’ action,
we get other formulas in Lemma 4.3.2.

7. Central éléments of Uq(on) and reflection equations
Behind the fact that the Casimir element C is central, we have a multiplicative
structure and reflection equations. In this section, we explain that mechanism and
apply it to get further higher degree central elements of Uq(on).

In this section we work in the algebra Uq(g[n). Let us introduce the following
four matrices:

Here LI. is the L-operators of Uq(g[n) in matrix form and J is diag (
which corresponds to the quadratic form defining the quantum on. Since Li- (resp.
L-) is upper (resp. lower) triangular, the matrices K+, k- (resp. K-, Ê+) are
upper (resp. lower) triangular. It is also readily seen’that their diagonal components
coincide with J. The first claim is that the subdiagonal elements of these matrices
K:1=’s coïncide with the elements

introduced in Section 2:

LEMMA 7.1. Let denote the (i, j)-component of the matrices K+
and À+ respectively. Then

Proof. As the proofs are all parallel, we only prove one case. By definition we
have
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Then the expression (2.3) of 8j proves the assertion.
As we will see later in Theorem 7.4, these K;’s give a realization of U q ( on ) in

Uq(g[n). The basis of this fact is in the following reflection equations, which also
play the central role over the rest of this section.

PROPOSITION 7.2. (Reflection Equations). We have the following:

and

Here denotes respectively the transposition of R 2 with respect to
the first or the second component in the tensor product space. Also we followed the
convention on subscripts to indicate the tensor components.

The following Lemma gives the reflection equations satisfised by J, which we
use in the proof of Proposition 7.2. Its proof is just a calculation using the explicit
form of the R-matirces, so we omit it.

LEMMA 7.3. The constant matrix J satisfies the following two equations:

Proof of Proposition 7.2.
For (7.2.1)-(7.2.3): Since their proofs are all similar, we will only prove the

equation (7.2.3). We recall the commutation relations (Yang-Baxter equations) for
the L-operators:

Based on these relations, our calculation goes as follows:
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In the course of the above calculation, we freely used the fact that il commutes
with M2 for any operator M, because J is a constant matrix. For the proof of
(7.2.1 ) and (7.2.2), use the formula (7.3.1 ) instead of (7.3.2).

For (7.2.4): This follows from (7.2.1) and a simple relation K- K+ - J2. In
fact, (7.2.4) is derived from (7.2.1 ) by conjugation under K2 . Recall a basic fact
on the square of the antipode ,S’ (cf. [RTF, Th 4]):

These together with the relations

This proves our assertion.

Remark. There are other types of reflection equations among kx themselves,
.K- and K- and so on. Since they are not necessary for our later discussion, we
will not write them down here.

The above reflection equations have many important consequences. The first
one is the following:

THEOREM 7.4. The map

can be extended to an algebra homomorphism ofUq( on) to Uq(g[n). More precisely,
8i’s satisfy the following:

Further if we define the elements 

they are expressed by, as follows:
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Proof. The components of the R-matrices are by definition given as

and the others are all zero. Here we used the notation:

Let us compute the both sides of the reflecton equation (7.2.1): the (tl’)-component
of the left-hand side reads as 

’

and the right-hand side is

Equating these two with we see that 8{3 and O a
commutes wtih each other for /3 2013 a &#x3E; 1, because K- is a lower triangular matrix

as shown in Lemma 7.1. Similarly, putting

proved the first assertion.
From the first assertion, we see that the image E)j of II]i under the homomor-

phism 8 are recursively given by

Then the second assertion will be proved if K:’s and Àj ’s with suitable correction
factors are shown to satisfy the same recursion formula above. This is also a
consequence of the reflection equation: put m &#x3E; /3 = l &#x3E; a, then the relation

comes out. Since Ki/3 = qn-(3, this coincides with the recursion above. This
proves (7.4.2). The proof for (7.4.3) is similar.
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COROLLARY 7.5. ( 1 ) The subalgebra generated by the elements K# ’s coincides
with the image 8(Uq( on)), whence generated by 8j ’s. 

(2) The image of the Casimir element C in Uq(g[n) is expressed as

Remark. Those KX and kT- are actually transformed to each other under an
involution that transforms

automorphism defined by Then we have

Note that this * gives a Hopf *-structure on Uq(g[n) with q ’real’.

Another important consequence of the reflection equations is a description of
central elements of higher degrees.

THEOREM 7.6. For a positive integer m, put.
K-K+. Then the following equality holds:

As before tl R 2 or 12 RG denotes respectively the transposition of R± with respect
to the first or the second component in the tensor space. Taking the trace Tr(l) of
the both sides with respect to the first component, we have

In particular, Tr XI’] commutes with the subalgebra

The following two lemmas are small calculations for the theorem.

LEMMA 7.7. The following commutation relations between the R-matrices and J
hold:

LEMMA 7.8. For any n x n matrix X we have
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Proof of Lemmas 7.7 and 7.8. The equality (7.7.1) follows from the commuta-
tivity of JI J2 and R+, which is easy to see.

For any n x n matrix X, by a direct computation we obtain

For (7.7.2), put here X = J. Then the sum of geometric progression leads to the
desired result.

For (7.8 .1 ), putting z = x, we get

From this we have

This completes the proof of (7.8.1). The proof of (7.8.2) is similar.

Remark. Similar type of trace identities also hold for the quantum trace Trq
defined by Trq X = Tr JX .

Proof of Theorem 7.6. We observe first that

Hence we have

Using a formula which is equivalent to (7.7.2), we see the
right-hand side of this formula tums to
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Thus we get to the first formula

as desired.
The second formula in Theorem 7.6 follows from the first one and (7.8.2). It then

proves that Tr XI’] commutes with all the elements K;, because they are written
by 8j’s which are the subdiagonal components of the matrix K+ (see Lemma 7.1
and Corollary 7.5 ( 1 )).

Remark 7. 9. ( 1 ) The homomorphism 8: U q (on ) - Uq(glBn) is actually injective.
This can be proved by a careful discussion based on the Diamond Lemma (cf. [B]).
The elements we gave in Theorem 7.6 are, therefore, said to be central in U q ( on ) .

(2) Noting the formula in Corollary 7.5 (2),

and the Remark ( 1 ) above, we see an altemating proof via Theorem 7.6 that the
Casimir is in the center.

Appendix: Mock Capelli identity

The Capelli identity we got has the definite meaning that it equates two central
elements of the algebra in duality. As we saw, however, its right-hand side seems
pretty complicated when it is written down in terms of q-difference operators. It
contains ’fourth order’ operators in general. Here we give some similar-looking
identity, which contains only ’second order’ difference operators in both sides.
Though it has some relations with additive realization of the analogue of on in
[N4], its meaning is still obscure. Instead it has certainly a merit of simplicity. It is
interesting to compare these two formulas.

Let us put These are sort of ’principal
part’ for the 0:ji. We have then a mock Capelli identity as follows.
PROPOSITION. (Mock Capelli identity)
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Proof. We give here a proof partly based on an exterior calculus. First we
show a fake Capelli identity, which can be derived naturally from an exterior
calculus, though it still needs a further computations to reach the mock Capelli
identity. Let us consider the exterior algebra A generated by the two elements e, f:
e2 = 0, f2 = 0, ef + fe = 0. We extend this to EndK (A) 0 A endowed with the
natural algebra structure: the elements in EndK(A) commute with e and f. Put
wi = ’11 ...,i=-B’i ...,n for i = 1,..., n + 1. The following are easily seen from
the definition

Let us introduce elements with shifts in the

exponents. Then the fake Capelli identity is

LEMMA (Fake Capelli identity).

Then from the definition, it is not hard to see

Here we used the equality which is easily checked
(see below). Multiplying these u and v, we get on one hand

On the other hand this should be expressed through w2’s. To carry it out, we need
some calculations:

LEMMA. Putting in general we have the following.
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In particular, we have

Proof. Except for (3), those formulas can be checked directly from the defini-
tions. For (3), recall first aiXi - q-1xiai = Wi and 8jzj - qxiai = Wi+1. We see
from this

Multiply wi from the right and note ewi = âi ef . Then we have

Hence the Lemma.

Given these formulas, we can proceed now to the computation of uv as
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This proves the fake Capelli identity.

Transition from the fake to mock Capelli identity : Note first

Plugging this into the part of of the right-hand side of
fake Capelli identity, we get

Here sum up the following two in the second summation:

Then with the cancellation of the terms for it tums up to

Let us first add up with respect to j in this double summation, namely compute

Using 1
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Note here wi = q and wn+ 1 = -y-1. Then the second summation Zi xi a2 s2 in the
right-hand side of fake Capelli identity becomes

We have thus obtained the identity from these

An easy calculation shows that which

concludes the mock Capelli identity.
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