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The reduction number of an algebra
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Abstract. A complexity of an algebra A over a field k is a measure of comparison to a polynomial
ring over k. Here we bring to the fore the reduction number of a graded algebra A, and study its
relationship to the arithmetic degree of A. The relationship between the reduction number and the
Castelnuovo-Mumford regularity has been object of previous studies, but a presumed relationship
CM regularity and arithmetic degree breaks down.
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1. Introduction

Let A be a finitely generated, positively graded algebra over a field k,

where Ai denotes the space of homogeneous elements of degree i. We further
assume that A is generated by its 1- forms, A = k [A1 , in which case Ai = Ali. Such
algebras are said to be standard. Among the complexities of A are the Castelnuovo-
Mumford regularity reg(A) of A and various degrees - multiplicity deg(A) and
arithmetic degree arith-deg(A). Another is the reduction number r(A) of A which
occurs in the study of the distribution of the degrees of the generators of A as a
module over its Noether normalizations (see below for all definitions). Here we
introduce two techniques, one theoretical and the other computational, to examine
the relative strengths of these numbers.

There have been several comparisons between these numbers. In addition, [2]
is a far-flung survey of reg(A) and arith-deg(A) in terms of the degree data of a
presentation A = k [x 1, ... , x,,] II. Moreover, [12] carries out a detailed compar-
ison between the degrees of an ideal and the degrees of some associated ideal of
initial forms.

From the study of reg(A) (see [5], [9] and particularly [13]), one has

Here we will show (Theorem 7) that for any standard algebra A

* The author was partially supported by the NSF.
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if k has characteristic zero. Actually, Theorem 7 deals with general affine algebras
and the estimate above is one of its applications for standard algebras. The approach,
an elementary combination of linear and homological algebras, may be suited to
obtain other estimates for r(A) .

The author is grateful to Jürgen &#x26; Maja Herzog and Bemd Ulrich for several
enlightening conversations.

2. The degrees of a module

We recall the settings of three definitions, two of which may not be in basic
references. If &#x26; is sufficiently large and dim A = d, there are forms XI, Xd E
AI, such that

is a Noether normalization, that is, the xi are algebraically independent over k
and A is a finite R-module. Let bl, b2, ... bs be a minimal set of homogeneous
generators of A as an R-module

We will be looking at the distribution of the ri, particularly at the following integer.

DEFINITION 1. The reduction number rR (A) of A with respect to R is the supre-
mum of all deg(bi). The (absolute) reduction number r(A) is the infimum of rR(A)
over all possible Noether normalizations of A.

One of our aims is to make predictions about these integers, but without availing
ourselves of any Noether normalization. We emphasize this by saying that the
Noether normalizations are invisible to us, and the information we may have about

A comes from the presentation A = S/l.
The integer r(A) may be understood as a measure of complexity of the algebra

A. Taken this way, it has been compared to another index of complexity of A:

DEFINITION 2. Let S be a polynomial ring, let A = S/I and let

be a minimal graded free resolution of A. The Castelnuovo-Mumford regularity of
A is the integer
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Another way to size A is given in [2] and [8] through the notion of the arithmetic
degree of a module. Let A be a Noetherian ring and let M be a finitely generated
R-module. For each prime ideal p of A, let Pp (M) denote the set of elements of the
localization Mp annihilated by some power of p. Note that rp (M) is an Artinian
module over Ap that vanishes unless p is an associated prime of M. We denote the
length ofr?(M) by multM(p).

DEFINITION 3. The arithmetic degree of M is the integer

The definition (see how these sums are calculated in Proposition 5, even though
the individual summands are not always available) applies to arbitrary modules,
not just graded modules, although its main use is for graded modules over a
standard algebra A. If all the associated primes of M have the same dimension,
then arith-deg(M) is just the multiplicity deg(M) of M, which is obtained from
its Hilbert polynomial.

EXAMPLE 4. In the following families of examples, we explore possible relations
between arith-deg(A) and reg(A).

(a) In dimension 1, we have reg(A)  arith-deg(A). Indeed, let R = k[x] be a
Noether normalization of A and let

be the decomposition of A as the direct sum of cyclic R-modules.
We have

while the minimal number of generators of A as an R-module is

Because A is generated by elements of degree 1, there must be no gaps in the
sequence of degrees of its module generators, which implies bj  v(A), and no
gaps either in the degrees of its torsion-free part so that ai  e. This proves that
for each integer Ê,
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and therefore

(b) In dimension greater than 1, the inequality reg(A)  arith-deg(A) does
not always hold, according to the following example of Bemd Ulrich. Let A =

k [z , y, u, v]1 l, with I = «x, y)2, xut + yvt). If t &#x3E;, 3,

(c) Despite the preceding example, it is significant that the inequality reg(A) 
arith-deg(A) has been established for large classes of algebras (see [12]).

We now show how a program with the capabilities of Macaulay ([3]) can be used
to compute the arithmetic degree of a graded module M without availing itself of
any primary decomposition. Let ? = k[xi, ... 1 X,l and suppose dim M = d  n.
It suffices to construct graded modules Mi, i = 1 ... n, such that

For each integer 1 # 0, denote Li = Ext9 (M, S). By local duality ([4]), a prime
idéal p C S of height i is associated to M if and only if (Li)p -# 0; furthermore
R((Li).,) = multM(p).

This gives what is required: Compute for each Li its degree e (Li) and codi-
mension ci . Then choose Mi according to

In other words:

PROPOSITION 5. For a graded S-module M and for each integer i denote by ci
the codimension of Exts(M, S). Then

Equivalently,

The amusing of this formula (one sets [ô, = 1) is that it gives a sum of sums
of terms some of which may not be available.

One consequence of this formulation of the arithmetic degree is the follow-
ing. Let T be a term order on S = k [x 1, - - - , zn] and let I be a homogeneous
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ideal of S. Denote by in(I) the initial ideal of I for the term order. For each
integer r, Exts(S/I, S) is a submodule of a quotient of Exts(S/in(I), S). This
arises from the spectral sequence induced by the attached filtration (see [6], [11]).
Consequently, we have

giving Theorem 2.3 of [12].

3. Integrality equations

From now on A is a standard graded ring and R = A;[z] y A is a fixed Noether
normalization. To determine r(A), we look for equations of integral dependence of
the elements of A with respect to R.
A simple approach is to find graded R-modules on which A acts as endo-

morphisms (e.g. A itself). The most naive path to the equation is through the
Cayley-Hamilton theorem working as follows. Let E be a finitely generated R-
module and let f : E -+ E be an endomorphism. Map a free graded module over
E and lift f :

Let

be the characteristic polynomial of c.p, n = rank(F). It follows that Pw (f ) = 0. The
drawback is that n, which is at least the minimal number of generators of E, may
be too large. One should do much better using a trick of [1]. Lift f to a mapping
from a projective resolution of E into itself:

Define

This rational function is actually a polynomial in R[t] ([1]). If E is a graded
module and f is homogeneous, then PI (t) is a homogeneous polynomial, deg E =
deg PI (t).
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PROPOSITION 6 (Cayley-Hamilton theorem). If the rank of E over R is e, Pf (t)
is a monic polynomial of degree e. Moreover, if E is torsion-free then Pf (f) . E = 0.
Furthermore, if E is a faithful A-module and f is homogeneous of degree 1, then

Proof. Most of these properties are proved in [1]. Passing over to the field of
fractions of R, the characteristic polynomial of the vector space mapping

is precisely Pf (t) .
The existence of an equation

and the fact that HomR(E, E) is graded implies that there is a similar equation
where ci E (z)B

Without the torsion-free hypothesis the assertions may fail. For instance, if
A = k [x, y] / (xy, y’), f is multiplication by y on A, then Pf (t) = t, but Pf (f ) :, 0.

In case the module E is A itself, we do not need the device of Proposition 6,
as we can argue directly as follows. For u e AI, R[u] ri R[t]1 l, where I = f - J,
height(J) &#x3E; 2. But if A is torsion-free over R, R[u] will have the same property
and necessarily J = (1). This means that the rank of R[u], which is the degree of
f, is at most e(A).
A question of independent interest is to find R-modules of small multiplicity

that afford embeddings

For example, the relationship between their multiplicities may be as large as

minimal primes is at most 3, then deg(

4. Arithmetic degree of a module and the reduction number of an algebra

Let A be an affine algebra, not necessarily standard. We now bound the degrees
of the equations satisfied by the elements of A with respect to any of its ’optimal’
Noether normalizations. These simply mean those normalizations that can be used
to read the degrees.

THEOREM 7. Let A be an affine algebra over an infinite field k, let k[z] be an
optimal Noether normalization of A, and let M be a finitely generated graded,
faithful A-module. Then every element of A satisfies a monic equation over k [z] of
degree at most arith-deg(M).



195

Proof. Let

be an equidimensional decomposition of the trivial submodule of M, derived from
an indecomposable primary decomposition by collecting together the components
of the same dimension. If Ii = annihilator (MlLi), then each ring 4/Ii is unmixed,
equidimensional and

Since k is infinite, there exists a Noether normalization k[ZI, ..., Zd] of A such that
for each ideal Ii, a subset of the IZI, - - - , Zdj generates a Noether normalization
for AI li.

First, we are going to check that arith-deg(M) can be determined by adding the
arithmetic degrees of the factors of the filtration

at the same time that we use the Cayley-Hamilton theorem.
We write the arithmetic degree of M as

where ei is the contribution of the prime ideals minimal over Ii . (Waming: This
does not mean that ei = arith-deg(M/Li ) .) We first claim that (set Lo = M)

Indeed, there is an embedding

showing that Fi is equidimensional of the same dimension as Mi. If p is an

associated prime of Ii, localizing we get (L n... n Lj )p = (0) which shows that

while the converse is clear. This shows that the geometric degree of the module Fi
is exactly the contribution of e2 to arith-deg(M).
We are now ready to use Proposition 6 on the modules Fi. Let f e A act on

each Fi. For each integer i, we have a polynomial

with Consider the polynomial
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and evaluate it on f from left to right. As

meaning that Pi ( f ) maps (Li n... nLi-1) into (Li n... n Li), a simple inspection
shows that Pf (f ) = 0, since M is a faithful module.

Observe that if A is a standard algebra and f is an element of AI, then Pf(t)
gives an equation of integrality of f relative to the ideal generated by z.

COROLLARY 8. Let A be a standard graded algebra and denote

edeg(A) = inff aàth-deg(M) ) 1 M faithful graded module}.
For any standard Noether normalization R of A, every element of A satisfies an
equation of degree edeg(A) over R.

5. Reduction equations from integrality equations

If A is an standard algebra, for a given element u E AI, a typical equation of
reduction looks like

which is less restrictive than an equation of integrality. One should therefore expect
these equations to have lower degrees. Unfortunately we do not yet see how to
approach it.

The following argument shows how to pass from integrality equation to some
reduction equations, but unfortunately injects the issue of characteristic into the
fray.

PROPOSITION 9. Let A = k[Al] be a standard algebra over a field k of char-
acteristic zero. Let R = k[z] y A be a Noether normalization, and suppose
that every element of Ai satisfies a monic equation of degree e over k[z]. Then
r(A) e - 1.

Proof. Let u 1, ... , un be a set of generators of A 1 over k, and consider the
integrality equation of

where the xi are elements of k. By assumption, we have

where ai e (z)’. Expanding ue we obtain
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where a = (cx1, ... , an ) is an exponent of total degree e, aa is the multinomial
coefficient (â) , and ma is the corresponding ’monomial’ in the xi . We must show

for each a.

To prove the assertion, it suffices to show that the span of the vectors (aama),
indexed by the set of all monomials of degree e in n variables, has the dimension
of the space of all such monomials. Indeed, if these vectors lie in a hyperplane

we would have a homogeneous polynomial

which vanishes on kl. This means that all the coefficients ca aa are zero, and

therefore each Co; is zero since the a« do not vanish in characteristic zero.
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