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Abstract. We give a rigorous proof of Aspinwall-Morrison formula, which expresses the cubic
derivatives of the Gromov—Witten as a series depending only on the number of rational curves in each
homology class, for a Calabi—Yau threefold with only rigid immersed rational curves.
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1. Introduction

Let X be a Calabi-Yau variety of dimension three, and let ¢: P! — X be a holo-
morphic immersion: the normal bundle Ny = ¢*T'x /¢, Tp: splits into the direct
sum of two line bundles, Ny = Opi(a) @ Op1(b), and by the adjunction formula
a + b = —2. We will assume that ¢(P!) is infinitesimally rigid, that is Ny has no
holomorphic section, or equivalently a = b = —1. In this case, for any holomor-
phic map : P! — P! of degree k, the deformations of the map ¢ o 1) consist of
maps ¢ o ', where ¥': P! — P! is a deformation of . It follows by compactness
of the Chow variety of curves in X of bounded degree, or by [4], that for any
a € Ho(X,Z), there is a neighbourhood V' of P! in X such that the only rational
curves of class « such that d®« < kd®A are supported on ¢(P'), where the degree
is counted with respect to any ample line bundle on X, and A = ¢.([P']).

Now consider a small general perturbation J, of the pseudocomplex structure J
of X and let v be small general C* section of the bundle prl QO (P ® pr3 (T )
on P! x X, where Q%! denotes complex (0, 1)-forms, and TX denotes vector ﬁelds

of type (1,0) for the pseudocomplex structure Je. Then it is known (cf. [4], [9],
[12]) that the space Wi 4., of solutions to the equation

O = (Id,9)*v (1.1)

fory: P! — X suchthat,([P!]) = kA, is smooth, naturally oriented of dimension
six and can be compactified with a boundary of dimension < 4. By compactness,
for (Je,v) close enough to (J,0), and for V as above the subspace W}, Jow Of
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Wi a,J.,» consisting of maps 1) whose image is contained in V' is a component (non
necessarily connected) of Wi g, ..
Let x1, =7, z3 be three distinct points of P!, and consider the evaluation map

¥ = (Y(1), (Y(22), ($(23)). 1.2)

Again the image of ev is six dimensional oriented, and can be compactified with
a boundary of dimension < 4, so has a homology class in Hg(X?) (which in fact
is in the image of Hg(V?) — Hg(X?) , which is generated by A x A x A). This
paper gives a proof of the following

THEOREM 1.1 This class is equal to A x A x A € Hg(X?).

In [10], Manin already proved this statement, admitting the possibility to apply
Bott formula to stacks ( which may be only a formal point to verify) and using
some ideas due to Kontsevich ([5]). It may be nevertheless interesting to have a
proof close to Aspinwall and Morrison argument ([1]), and justifying a posteriori
their computation.

This theorem is, as in the paper by Aspinwall and Morrison [1], a consequence
of a more precise statement, namely that as a space of curves in P! x X, the
component W,XL"JE’V is homologous to any cycle in My, := P(H%(Opi1,p1(k, 1)),
Poincaré dual to the top Chern class of the bundle with fiber at 1 : P! — P!, the
space H'((¢ o ¥)*Tx). Here we view Mj, as a compactification of the space MY
parametrizing degree k coverings 1: P! — P!, and we identify it to a set of curves
in P! x X, via ¢. This statement is quite natural, since this vector bundle, at least
on M ,?, is exactly the excess bundle for the too large family of holomorphic curves
M. However, the proof shows that one has to be careful with the singular curves
in P! x X parametrized by M, — M, ,? , and especially with non reduced curves: for
a special choice of v (and for J. = J) we will exhibit a section s of this bundle
on M, ,8 C M}, such that W/Xq, J,» 1dentifies naturally to the zero set of s. However,
this section is not even continuous at non reduced curves in Mj. The result is that,
nevertheless, the closure of the zero locus of s in M}, has for homology class the
Poincaré dual of the top Chern class of this bundle.

We mention at this point an essential difference between Manin’s computa-
tion [10] and ours: Manin works with the moduli space of stable maps to get a
complicated, but more satisfactory from the point of view of moduli spaces, com-
pactification of the space of smooth ramified covers of P!. Asin [1], we work with
the naive compactification Mj, = P?*+!, on which the Chern classes computations
are quite easy, but which is not a good moduli space at the boundary.

The Theorem 1.1 is one version of Aspinwall-Morrison formula [1], which we
now explain: let w € H*(X,Z) such that Rew = « is a sufficiently large kihler
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class on X. The Gromov—Witten potential is the function on H®¥*"(X) defined by
the series (expected to be convergent for large o)

1 _
D)= . i waéA(n,n,nln---n) 1.3)
Aebl!cz(;(,l) : 3
2

([7], [13]) where the mixed Gromov—Witten invariants ® 4(n,n, 7|7 . 77) (12n
k 3

are defined as follows: for (J, v) generic, J a pseudocomplex structure, v a section

of pri Q% (P') ® pr3 (T)l(’?) onP! x X and A € H,(X,Z), consider the evaluation

map

k-3
evg—3:Wa ju X P! — x*

(¥, 21, .-y 21-3) = (P(@1),%(2),%(23),¥(21), - - . , (2-3)), (1.4)

the points z; being fixed on P!. Then Im evy,_3 is as before oriented, smooth of real
dimension 6 + 2(k — 3), and can be compactified with a boundary of codimension
two, so defines a homology class in X* on which one can integrate 7®¥, which
gives the invariant. For A = 0,k > 3, one has ®4(n,n,n| 7 ...n) = 0, essentially
k-3

because the map evi_3 has positive dimensional fibers, at least when v = 0, and
for A =0, k = 3 one has ®4(n,n,n) = [x n° because Wy ;¢ identifies to the
constant maps, and ev(W 4, s0) is then simply the diagonal in X?.

Now assume that all generically immersed rational curves in X are immersed
and infinitesimally rigid, and let n(A) be the number of immersed rational curves
of class A # 0. Then all rational curves on X are multiple covers of immersed
infinitesimally rigid curves, and we can apply the Theorem 1.1, which says that
forl > 1, A # 0, W4 5, is made of n(A) components whose contribution to

®14(n,mm| m...n) is equal to
——

k-3
k-3
lk——3 (J[ 77) u/" n@93 (1.5)
A AxAxA
It follows that
1 k
Py(n) = / o+ n(A) e ha k3 ( / n)
6 k! A

A€H,(X, Z) {0}
k23,121

_ /,, + l3 n(A)edia =+ (1.6)

AEHZ(X Z) {0}
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modulo a quadratic term in 7. So if we consider the cubic derivatives 0°¥,,/0t;
Ot;Ot,(n) w.rt. linear coordinates on H®*"(X) corresponding to a basis 7; of
H®*"(X), we find

P,/ 8t;0t;0tx(n)

n(A) f —w+n / / /
= i Ani Ang + E elia i i
/X i NN N\ Tk 3 A i A N5 A Mk

A€H(X,Z)-{0}
I>1

=/ ni Anj Ak + 3 n(A)ef’A_‘”+"/ m/ nj/ Nk
X A€ Hy(X,Z)~{0} A J4 ~JA
I>1

2

= / mi A A+ n(A)ela =1 )(1 — eJa—otn)
X A£0

IRIRIRE (1.7)

which is Aspinwall-Morrison formula for the Yukawa couplings of the ‘A-model’
of X, at the point w — 7 (see [1], [15], [3],[12]).

2. Choice of the Parameter v

We will assume in this section that ¢: P! — X is an embedding, and consider the
general case in Section 4. We will use the following result ([8])

THEOREM 2.1. Let ¢ : P! < X such that Ny = Opi(—1) @ Opi(—1); then a
neighbourhood V of P! in X is holomorphically isomorphic to a neighbourhood
of the zero section of the total space W of the bundle Opi(—1) & Op1(—1) on P'.

Since the Theorem 1.1 is a local statement, we may assume from now on that
X = W.Nowletn: W — P! be the natural projection, with fiber 71 (z) = N¢( )’
we get an inclusion

™ (Opi(=1) ® Opi(—1)) C Tw (2.8)

as the vertical tangent space of 7 (T is the bundle of (1, 0)-vector fields on W).
We choose now two C* sections a1, o of pri Q% (P!) @ pr3 Opi(—1)) on P! x P!,
and we define v = (vy,1,) where v; = (Id X 7)*0;. v is then a C* section of
priQ%(P!) ® pr3Tw via the inclusion (2.8).

We study now the solutions to the equation

Oy = (Id x ¥)*v (2.9)

for ¢ : P! — W a C*® map such that 1, ([P']) = kA, where A is the homology
class of the zero section. Since by construction 7,(v) vanishes as a section of
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priQO (P ®@prion* Tpi on P! x W, we get d(motp) = 0, so o1 is holomorphic,
of degree k. Let 9’ = m o 1); then 1 is described by a couple (11, 1, ), where 1; are
C® sections of the bundle 1)"* Op1(—1). The equation (2.9) rewrites then simply as

O = (ld x ¢')*os,i=1,2 (2.10)

Since HO(3'*Op1(—1)) = {0}, 4; are determined by %' and exist if and only
if (Id x %')*o;, which are (0, 1)-forms with values in 9)'*Opi(—1), vanish in
H' (¢ Opi(-1)).

As in [1], let us introduce My = P(H°(Og(k,1))), where Q = P! x P!,
Og(k,1) = priOpi(k) ® pr;Opi(1). My, is a compactification of the family of
holomorphic maps of degree k from P! to P!: indeed the general member of M is
a smooth curve in Q, isomorphic to P! by the first projection, and of degree k over
P! by the second projection.

In M}, x Q) we consider as in [1] the universal divisor D defined as the zero set of
the natural section of p}, O, (1) ® P Oq (k, 1) corresponding to the identification
HO(Op, (1))* = H%Og(k, 1)), where py and pg are the projections to My
and @ respectively. Let prp : Q — P! be the second projection, and let E :=
R'pur.(pr2 © p@)*(Opi(—1)),p; then since R'pay, (pry o p@)*(Opi(—1)) = {0}
and R%ppy, (pr2 0 pg)* (Op1(—1)) = {0} we conclude by the long exact sequence
associated to

0 — (pr2 0 pQ)*(Opi1(—1)) ® Ip — (pr2 0 pQ)* (Opi(—1))
— (p’l"2 OpQ)*(opl(—l))|D—)0 2.11)

that E = R’pp,((pr2 o pg)*(Opi(—1)) ® Ip). Since Ip = p3,On (1) ®
pO0q(—k, —1), we get
LEMMA 2.2. ([1]) E = Oy, (1) ® H*(Q,Og(—k,~2)). In particular E is a
vector bundle on My of rank k — 1.

Let M} be the open set parametrizing smooth curves in @, that is maps ':
P! — P! of degree k; in M, we have two sections of E, denoted by s, 84,, defined
by s4; (1) = class of (Id x 9')*(03) in H! (¢'*(Op1(—1)) = Eys. We have shown
that the solutions of (2.9) in M, ,? are in bijection with the zeroes of the section
(So,5 So,) Oof E x E; since dimcMy, = 2k + 1, rankcE = k — 1, the zero set of
(S0, 84,) is expected to be of real dimension 6, as we want.

3. Study of the Section s,

The behaviour of the section s, of E on M, for o a C*® section of pr;Q%! (P!) ®
pr3Opi(—1) on Q = P! x P! is easily described by the following
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LEMMA 3.1. s, is of class C°° on M (‘c

Proof. By definition, for (C) +((C)) is represented by a (0, 1)-form on
C, which varies in a C*® way w1th (C’) Now we have the isomorphism B¢y =
H'(C,pr;(Opi(—1),¢)), where C C Q corresponds to (C) € My, and we have
shown that the rank of this space is independant of (C). This implies that s, is of
class C*, because we have then the isomorphism E* = ROp,,, (K /M, ® (pra o
p0)*Opi(—1)) =2 HY(Q, Og(k — 2,0)) ® Oy, (1), and it is immediate to see that
for a holomorphic section 7 of the right hand side, the function (s,,7) is given by
integrals over the curves C of forms varying in a C* way with (C).

It is unfortunately not true that s, extends continuously over M. The rest of
this section is devoted to the study of the singularities of s, and to the proof of the
following

THEOREM 3.2. Let 01, 02 be general C* section of pr; Q%! (P!) @ pr3 Opi(—1) on
Q= P! x P!; let Valm be the closure in My, of the zero locus V (s4,, $5,) C M| ,?
of the section (S4,,30,) Of E x E on M}; then V (s4,, S5,) is smooth of dimension
6, and 7(,1 02— V(84,5 Sg,) can be stratified by subsets contained in locally closed
subvarieties of dimension < 4 of My, so le,ﬂz has a homology class in Hg(My),
which is Poincaré dual to the top Chern class of E X E.

The proof of this theorem will be based on the following Proposition 3.3, for
which we introduce a few notations: for any (C) € M}, one can write C = C'UV,
where C' C @ is a smooth member of |Og(l,1)|,! < k and the vertical part
Ve =pry Y(D¢) for some divisor D¢ of degree k — I on P'. We will denote by
DY the intersection C’ N V¢, and by 1cr : C' — P! the second projection, which is
a morphism of degree {; writing D; = X;n;p; for distinct points p; of C' we will
denote by B the divisor X;(n; —1)p; that we will view as a divisor either on C’ or on

T‘_I
P! pé C'. There is a natural structure of scheme on Z := Ugepg, D C My X P!
defined as follows: choosing homogeneous coordinates Yy, Y7 on P!, a section of
Oq(k, 1) can be written as pr} Py pr3Yo + pri Pipr3Yy, where P; € HO(Opi(k))
depend algebraically on (C) € Mj; Z is then defined by Py = P; = 0. This
induces immediately a scheme structure on B := Ugep, Bc C My x P!, the
ideal being generated by the partial derivatives of Fy, P; w. r. t. homogeneous
coordinates on P!,
We have already used the isomorphism

E* = Rpu.(Kpjm, ® (P20 pQ)*Opi(—1))
H°(Q,0q(k —2,0)) ® Op, (1) (3.12)

1%

which depends essentially on the choice of an isomorphism K¢g = Og(-2, —2).
Since H(Q, Og(k — 2,0)) = H(P!, Op1(k — 2)) we get

E* = Romtpr, (15.:0p1(k — 2)) ® O, (1), (3.13)
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where 7z, 7 are the projections of M}, x P! onto its factors. We have then the
following

PROPOSITION 3.3. Let ¢ be a holomorphic section of R°m s, (75:10p1(k —2) ®
ZB) @ Opm, (1) on an open set U of My. Then the function < sy, ¢ > defined on
UnNM, ,8 extends continuously on U.

Proof. Let (Cp) € U and Fg, an equation for Cy C Q. One can write Fg, =
pri P, - F¢, where Pg, is an equation for D¢, and F¢, € |0q(k — lo, 1)| defines
a smooth curve in Q, ly = d°Dg,. Using a partition of unity on Q, one may
assume that o is compactly supported in a product of disks D; x D, with affine
coordinates zj, z; such that D; = {z;, |z;| < 1} and (0,0) € Cy N Dy x Dy, and
the inhomogeneous polynomials corresponding to Pc,), Féo satisfy

pcy = z{qco(zl% gc,(z1) # 0 on D,
16,(21) = hay(#1) + 2aficy(21), (3.14)

where one of the polynomials fco, dc, does not vanish on D, since féo =0
has no vertical component. We assume gc, # 0 on D, the other case working
similarly. By shrinking D; we may even assume |gc,dc,| = ¢ > 0 on Dy. Let
hc, = qcyhcy, 90, = 4cydc,; @ small generic deformation fe of fc, can be
written as

fc = pc(z1)(hc(21) + 229c(21)) +re(21), (3.15)

where we can normalize fc by imposing the condition g¢(0) = 1, and d%p¢ =
I, pc(z1) = 24 + Siqauzt, ¢ < 1-1,d%¢ < k=1, d%c < k—1; the
polynomials pc, hc, gc, Tc vary holomorphically with (C) in a neighbourhood
(that we still call U) of (Cy), and pg, = 2}, rc, = 0. The variety Z NU x D is
described by the equations pc(z1) = r¢(z1) and the variety BNU x D is described
by the equations pc(z1) = r¢(z1) = dpc/0z1(21) = Orc/0z1(z1) = 0. The
restriction to U x D of a section ¢ of 75,0p1(k — 2) ® Ip can then be written as

#1,(0)) = dhtape + ) L + o

ore

where @7, Y., ¢, YL are holomorphic functions of ((C),2;). We can write
o = Y(z1,2)dz;, where 1 is a compactly supported function of class C*® in
Dy x D,. The couplings ¥((C)) := (sq, ¢) defined on U N MY are obtained by
taking the residue along C of the pr3(Opi(1))-valued meromorphic form ¢.n/ fc,
and integrating over C the cup-product of this form with o|¢; hence y((C)) has
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the following form

Y((C)) = & + 9% + 76 + 76

_ —rc —pche) 1
_/qu%(zl)w <z1’ pcygc ) gc(=1)

-rc — pchc) 0.,pc
bcgc bcgc

B ()9 (zl,

-rc —:Dchc) rC

+oc(21) (Zl,
C( ) Pcac bcgc

—-rc — Pchc> 0., rC
bcgdc bcdc

—HIJrc(Z] )'k,/) <21, dz; Adz (3.17)

/
and it suffices to show that each function 'y(’}, e, v, 'yg extends continu-
ously at (Cp) € U. This is in fact obvious for 7% and 77, since the functions

Pe(21)¥(21, (=rc = pchc)/(pcgc))/9c(z1) and ¢p(21)P(z1, (—rc — pche)
/(pcgc))re/(pcge) are bounded by a constant independant of (C) and are con-

tinuous along (Cp) x D}. To show that %, extends continuously at (Cp), consider the
degree | coveringU — U, U C U x D! obtained by taking the roots of p¢ (which
are all in D; for (C) close to (Cp)), thatis U = {((C), A1, .., N)|pc = Hi(z —
Ai)}. It suffices to show that r* (751 ) extends continuously at ((C),0, ...,0) € U;
but

! P —_— —
ey = [ Yel) (z1 _Tc_pohg)
Dy 9c(z1) pcygc

1=l
X (Z(l/zl - ,\i)) dz Adz. (3.18)

=1

For (C) close enough to (Cp), the A}s are close to zero, so we may assume that
¥(21,22) = 0 outside |z; — \;| < 1. It follows that

o Yolz+X)

) = ~Jp; go(z1 + )
—r¢ — pche ) 1 _
2+ A - dz A dE. 3.19
¢( LT oac)m + N) ) A (3.19)

But the function (4% /g¢) (21 + Ai) (21 + Niy (—rc —pche) [ (pcge) (21 + X)) is
bounded by a constant on D, and the function 1/2) is L' on Dy; since for z; #0,
one has
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. 1 (4 < —~rc — pchc )
1 — | —= A Ass
(c;;infgo) 21 (gc) (o1 + 2 21+ 4 (pcgc)(z1 + Ns)
Pe h 1
= = (z)y ( 1,—ﬂ(z1)) -, (3.20)
9cy ac, z21

one may apply Lebesgue dominated convergence theorem in order to conclude that

limcy_, gy T ('Yc) exists and is equal to
A;—0

P

h 1

l —%(Zl)’lﬁ (Z1,-—Cg(zl)) - —dz A dZ;. 3.21)
D, gc, gc, 21

The proof that 'yg extends continuously at (C) works similarly: in fact, using the

result for fyg it suffices to prove it for

—rc —pche
Yo (z1) (Zl, >8
/ c(=1) pcyc “
v rc + pc
bcgc
Now we can write
—r¢ — pchc
© = [ olew (=, L)
D, Dbcgc

rc + pc rc +pc
21 X
rc + pe(ge) pc

dz; Adz. (3.22)

dz; Adzy, (3.23)

and because v is compactly supported in D x D, the function

—-rec — pchc) rc +pc

W (21) (zl,
¢ pcgc pcgc

is bounded in D;. But d’r¢ < I — 1 and llm(C)_,(CO) rc = 0 so the polynomial
pc + rc is normalized of degree [ and has all its roots in D; for (C) close to (Cp);
as before we can introduce the cover U - U parametrizing an ordering of the
roots of ¢ + pc, so T * (r¢ + pc) = =4 (21 — X;), and we get

—rc — pch
= Z/Dl Yoz + M)y (Zl + A, C;)Tgp:g(zl + Az‘))
1
« Tc +PC(

1
z1 + X)) X —dz; Adzy, 3.24
o ) P 1 (3.24)
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and we can apply Lebesgue dominated convergence theorem since the integrand is
bounded by M/|z| and converges weakly to the L' function

1
ZlgCO(zl)

e, (21) (zl, —hay ) (3.25)

gc,(21)

outside 0, when (C') tends to (Cp). So the proposition is proved.

In fact, the proof of the proposition gives as well the interpretation of the
limit of the functions (s,, ¢): we have the decomposition Co = C4 U pry!(Dg,),
with C{ smooth and D’C.0 = X;n;p;, n; Z 0, where D’C0 is the inverse image
of D¢, under the isomorphism pry:Cy — PL. Let Dgo := 3; p;; denote by
C%",CO (pr3Op1(—1)) the space of C* sections T of pr;Opi(—1)|c; which satisfy

the condition: 7(p;) = 7(p;) = --- = (8,)™ V7 (p;) = 0 for all p; and for any
coordinate z on C at p;; 51m11arly, letC% by, (pr3Opi1(—1)) the space of C*° sections

7 of pr; Opi(—1)|c; which satisfy the condltlon 7(p;) = 0, Vp;. We have

LEMMA 3.4. There are natural isomorphisms
H' (Co, pr3 Opi(=1)ic,) = Ag, (pr3Oe1(=1)i;) /0CEs. (pr3Opa(—1)),
H'Y(Cp,pr;O(=1)ic5 ® Iy, )
= Ay (pr30(=1)10;) /8Cy (prO(=1); (3.26)
Proof. Consider the exact sequence of coherent sheaves on C
0— PT;OPI(—1)|C(, ® IDICO = pry0pi(=1)|c,
— pré‘Opl(—l)WCO — 0. (3.27)
It is easy to see that the last sheaf has trivial cohomology, and it follows that
H'(Co,pr;Opi(—1)i,) = H' (Cp,pr3O0p1(~1)ic; ® Iy, ) (3.28)
so we are reduced to prove the existence of natural isomorphisms
H'(Cp, pr3Opi(—1)ic; ®Ipy, )
= Agy (pr3Opi(= 1)) /0CE, (pr30e1(=1),
H'(Cg,pr;0(=1)ic; ® Ipy )

= Ay (rr30(=1)1cy) /9CE;, (pr3O(-1)) (3:29)
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which is immediate because we have the fine resolution

0 = pryOpi(—1)icy ‘X’ID'C0 - A%'c‘, (pr20p1(—1))

k «4%2 (pr30p1(—1)cy) — O, (3.30)

where A9 DL, A% are now the sheaves of C%  sections and of (0, 1)-forms respec-

tively. One gets similarly the second 1somorphlsm

Now, by the Lemma 3.4, 0|y gives a class s,(Co) € HI(C(’),pT;OPI(—l)IC(’) ®
T Déo)’ and this group is naturally a quotient of E(g,y = H'(Co,pr3Opi(—1)|c,)-
It is immediate to verify that H'(C}, pr3 Opi(—1) \c; ® Iprg, ) identifies to the dual
of H(Op1(k—2)®Zp,,) C H®(Opi(k—2)) (modulo the choice of aisomorphism
K¢ = Og(—2,—2) and of an equation for Cp) and the computation of the limits
in the proof of the Proposition 3.3 shows

LEMMA 3.5. Let ¢ be a local holomorphic section of ROmpr,(n5,0p1(k — 2) ®
) ® O, (1) near (Cy); then

(sa,9) = (s5((Cv)), $((Co)))- (331

(© )—)(C )

Now we can show the following Proposition 3.6, which shows the first part of the
Theorem 3.2; for each sequence d. = (dy,...,dx) of integers, with X;id; < k,
we denote by M,?‘ the smooth locally closed subvariety of M} consisting of
curves C = C' U Vg, such that C’ is a smooth member of |Og(k — X;id;, 1)
and Vg = prl_l(DC) where D¢ has d; points of multiplicity ¢ for each i. The
M, ,‘f ’s form a stratification of My, and M;; 0 - = M, 0.9 O each M, d‘, o gives a
section of the bundle E% with fiber at C the space H'! (C’ ,pr3(Opi1(—1) ® Ipy),
that we will denote by s . As in Lemma 3.1, it is immediate to prove that s¢: is of
class C*° on M ,‘f‘. We have

PROPOSITION 3.6. Let 01, 03 be two C*® secttons of priQY1(P!) ® pr3Opi(—1)
on Q. Then V4, o, is contained in UV (s& ,s%,); if o; are general, for each
d., V(s& s ) is smooth of real dimension 6 — 22 d;.

Proof. Let (C) € M,c ,and let D¢ = ¥;n;p;, Bo = X;(n; — 1)p;. Consider
HOpi(k—2)®Ip,)® Om, (1)) C E{cy- In a neighbourhood U of (C), we
can find a holomorphic subbundle F' of E* whose sheaf of sections is contained
in RO, (% Opi(k — 2) ® Ip) ® Opy, (1) and such that Fgy = H(Opi (k —
2) ® Ip,) ® Ou, (1)(c)- Let E/(FL) = F* be the corresponding quotient; the
Proposition 3.3 shows that the projection pr(s,) of s, in F'* extends continuously.

Furthermore, by definition of F' and by the Lemma 3.5, we have | Md = E,’f'
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and we have the equality in U N M, ,‘ci'
PF(So)jppe = s (3.32)

Now we have on U N MY, V (S5,,85,) C V(pF(Ss,),PF(Ss,)) for 01,02 as above
and by continuity of pr(sg,), we get

Voo NU C V(pr(ss,),pF(ss,)) (333)
Finally, the equality (3.32) gives

Voo NUNME CV (s, s&)nU (3.34)
which shows the first part of the proposition.

Now note that the real dimension of M, ,‘:' isequal to 2(2(k — X;id; + 1) — 1 +
¥ d;), and the rank over R of E% x E% is equal to 4(k — 1 — ;(i — 1)d;). Since
s are of class C* over M, ,‘:' , the fact that V(sﬁ'l ) sg'z) is smooth of real dimension

6 — 2(X; d;) for general 01, o, follows from the following

LEMMA 3.7. There exists a finite number of C* sections o; of priQ®!(P') ®
pryOpi(—1) on Q such that the corresponding sections sg'i generate E4 on M, ,‘ci'
for any sequence d..

Proof. Since M}, is compact, it suffices to check it locally on Mj. Now let
(C) € My; for o supported away from Sing C, one shows exactly as in 3.1 that
s, extends as C™ section of E at (C). Next, using Lemma 3.4, one checks easily
that the values at (C') of such sections s, generate the fiber E(¢). So they generate

E in a neighbourhood U of (C) and its quotients E* in U nM, ,f‘.
It follows from this proposition that for general (o1, 02), V4,0, has a homology
class [V 4, 4,] € He¢(My, Z), which is defined using the natural orientation of V, 5,

coming from the complex structure on My and E x E. Now we have

PROPOSITION 3.8. [V 4, 4,] is Poincaré dual to the top Chern class of E x E.
Proof. We show first the existence of a continuous section (s}, s5) of E x E
with zero locus equal to Lig. V' ((sZ , s&)): consider the coherent subsheaf (E*)' =
ROmps (731 0p1(k—2)®ZB)®0O), (1) C E*;let F be aholomorphic vector bundle
on Mj, such that there exists a surjective morphism ¢': F — (E*)’. We denote by ¢
the composition of ¢’ with the inclusion (E*)’ C E*. Putting hermitian metrics on
F and E*, we construct a C*® complex linear endomorphism ® = ¢ot¢: E* — E*,
which has the property: V(C) € Mg, Im®cy = Im¢c) = HY(Opi(k — 2) ®
I8.)®Ou, (1)(c)- Also, by construction, for any C* section T of E*, ®(P) can be
written locally as X; f;7; where f; are C* complex functions and 7; are sections of
(E*)'. It follows from the Proposition 3.3 that for any such 7, the function (s, 7)
is continuous on M}, which means that s' = ®*(s,) is a continuous section of

E. Furthermore, for (C) € M, ,?', s’ vanishes at (C) if and only if s¢ vanishes at
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(C), by Lemma 3.5. Applying this construction to the couple (o1, 072) we get a
continuous section (s}, 32) of E x E which vanishes exactly on L, V((Sa, ,sE).

Notice that (31,52) is smooth when (sg,, S5,) is, s0 (s},s5) is smooth on
M,?, furthermore, since the map ®* is C-linear the orientation of V'(sg,, ss,)
corresponding to the section (s}, s5) coincides with the one given by the section
(30 1 302)'

Now, using approximation by smooth sections, we can construct a C* sec-
tion (s{,s5) of E x E, which is equal to (s},s}) outside an arbitrarily small
neighbourhood of M) — Mp, and such that the zero locus V(s/,s}) is con-
tained in the umon of V(86,,50,) and of an arbltranly small neighbourhood
of Ug.£(... O)V(( l,s )). Using the fact that dim V ((s;,s%)) < 4 for d. #
(0,...,0), by Proposmon 3.6, any homology class of dimension 2dim M, — 6
can be represented by a subvariety W of M}, which does not meet a small neigh-
bourhood of Lig x(... O)V(( e s&:)). So W may be choosen to meet V (s, , Ss,)
transversally and only in the open set where (s,,,5,,) and (s{, s3) coincide, and
then the intersection number W - V4, ,, = W - V (s, s4) is simply the top Chern
class of E x F evaluated on W, which proves the Proposition 3.8, hence also the
Theorem 3.2.

4. Proof of the Theorem 1.1

The homology class that we want to compute is defined as follows: let (J,,v) be
a small general deformation of (J,0), where J is the original complex structure;
there is a component W,X‘L Jew Of Wia ., made of curves contained in a given

small neighbourhood V of P! C X (cf. Introduction); one can construct a compact-
ification W,‘:A’ Jew Of W,X“, J.,v» Such that the points of the boundary parametrize

curves in P! x X, which are limits of graphs of functions v € WIX% Jep- One has
then a family of curves

D) plyycplyx

”m

=V
Wi (4.35)
which induces the family of threefolds

(3,93
—_—

DxpleplD ]I"l3><V3C]P’13><X3

pfl

oV
Wiagw (4.36)
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The class that we want to compute is the class of p3((p3)~!((z1, z2,23))), for
T, T2, 3 three distinct generic points of P'. Now we do this computation with
W,XLL J.,» Teplaced by V(sg,, So,), that we have identified set theoretically to a

component of W,&’ J,» for special v in Section 2; as before we identify V' to
a neighbourhood of the zero section of the bundle Opi(—1) & Opi(—1), and
call m:V — P! the projection; we may assume that 7 induces an isomorphism
me: H,(V) = H,(P') hence an isomorphism 3: H,(V3) — H,(P'*). Now, by
construction, for (C) € V (s4,, 84, ), the associated map 1: P! — V solution of the
equation (2.9), satisfies 7 0 1) = 1, where ¢(¢): P' — P! is the map determined
by C C Q = P! x P!. It follows that the image under (Id, 7) of the family (4.35)
is simply the restriction to V (s4,, S¢,) C M, ,? of the divisor D of Section 2.

(p2,mop3) 1 1
D|V(Sa[,saz) —— P xP

d

V(S0,» 50,)- 4.37)

Since we know that V4, 5, C Mj, has for homology class the Poincaré dual of the
top Chern class of E X E, with E = (’)ﬁ,,_kl ® O, (1), we find as in [1] that [V 5, 5]
is the homology class of a P> C M}, = P?*+1 1t is then immediate to conclude that

(0 p3)3([P3 " ((z1, 72, 73))]) is equal to the fundamental homology class of P'°.

In order to complete the proof of the Theorem 1.1, it remains to verify that the
computation of the class of p3((p3) ™! ((z1, 22, x3))) (for generic J, v/) can be done
using V' (s4,, So,), that is we have to verify the following points

LEMMA 4.1. W,? A7, 18 smooth along V(84,5 S5,), for v as in Section 2 and
generic ;.
In other words we have to identify ‘schematically’ W,:;’ g ad V (s, 8q,).
LEMMA 4.2. The orientation of V (s4,, S+,) as the zero set of a section of a complex
vector bundle on My, coincide with the natural orientation of Wk‘;’ J,p (defined in
[9], Chapter 3).
LEMMA 4.3. For (Jp, vy,) a sequence of generic deformations of (J, 0) converging
to (J,v), WkVA, Jn,vm CONVETgEs to Vo, .
(That is we have to exclude the existence of a limit component which would be
made of curves in P! x X with a vertical component).

Proof of Lemma4.1. We want to show that for (C) € V (s, 85,) defining 3¢):
P! — P! suchthat (Id x () * (01, 02) = (941, 0%2), ¥ € C®(W{cy (Opi(-1)),
and:P' =V, ¢ = (z/)(c), 11,%2), where V' is identified to an open set of N as

in Section 2, the tangent space at (C') of V (s4,, S4,) and at ¢ of W,XL‘, J,» coincide.
But the last space is the kernel of the linearized equation
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Dy := D(8 — (Id,)*v): C®°(¢*Tx) — A¥ (4" Tx). (4.38)
The bundle T'x |y fits into the exact sequence
0 = 7 (Op1(~1) ® Opi(—1)) = Txjy = 7 (Tp1) = 0 (4.39)

and v = ((Id x m)*oy,(Id x 7)*02). Since m 0 ¢p = 1)¢ is holomorphic, it is
immediate to verify that D1/J| coo _(’_/’fm (0,1(~1)@0, (~1)) 18 simply the 0 operator, and
that the induced quotient map Dy: C°°(¢E‘C) (Tp1)) — A% (1/12*0) (Tp1)) is also the
H-operator. Since 9: CP (%) (Opi(—1) ® Opi(—1))) — Aofl(zpz‘c)((’)lpl(—l) )
Opi(—1))) is injective, and 8: C°°(1/)E*C) (Tp1)) — A°’1(1/JE‘C) (Tp1)) is surjective,
we get an exact sequence

0 — Ker Dy — Kerdyzr,, — Cokerd(y: _(0,,(-160,(-1)=0 (440)

and identifying the second term to Ty, ) and the last term to H 1 (z/)z‘c) (Opi(-1)®
Opi(—1))) = (ExE) c),itis immediate to verify that ( is equal to the linearization
of (4,, S5,) at (C), which proves Lemma 4.1.

Proof of Lemma 4.2. The orientation of the variety W,c .7, at the point 3
corresponding to (C) is described as follows (cf. [9]): Replacmg C® sections of
the bundles ¢*Tx, Q%! (4*Tx) by sections with L! derivatives up to order k, the
operator Dy, gives a Fredholm operator (surjective at a smooth point)

Dy: Whl(p*Tx) = WELH(QO% (y*T)). 4.41)

The observation is that both spaces have natural (continuous) complex structures
and that the C-antilinear part of Dy, is of order 0, hence is compact So there
is a natural (linear) homotopy from Dy, to its C-linear part D¢ in the space of

Fredholm operators from W¥!(p*Tx) to W*=11(Q01(4)*Tx)). The orientation
on TkaA Lat the point ¢ is obtained by using the real line bundle Det; :=

¥ Ker Dy @ (Ag™ Coker Dy)* on [0, 1], where Dy = (1 —t)Dy, + th/;. Since

fort=1,D; = DL is complex linear Det; is naturally oriented, hence Dety =
AR™ TWv is also naturally oriented.

Now as mentloned above, the operator Dy, induces the complex linear operators

WS () (Opi(=1)%)) = WEBHQY (90 (Opr(—1)%))) (4.42)
and

- WHh (o) Tpr) = WEHH QM () Tpr)).- (4.43)
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So its complex linear part satisfies the same property, as do all the operators Dy. It
follows that for each ¢ we have an exact sequence

— ,Bt p—
0 — KerD; — Ker a¢E-T,pl — COkerad,EC)(opl(_l)z)
— CokerD; — 0, “4.44)

hence a canonical isomorphism

max _ max . *
Det; = /\ Ker 61/’671@1 ® (/\ COkerawzc)(opl(_l)z)) , 4.45)
R R

which is easily seen to be continuous. The right hand side has a natural orientation
coming from the complex structure on Kerd and Cokerd. But for t = 1, the
exact sequence (4.44) is an exact sequence of complex vector spaces and complex
linear maps, so the isomorphism (4.45) for t = 1 is compatible with the complex
orientation. On the other hand, for ¢ = 0, the isomorphism (4.45) induces on the
left hand side (which is equal to AR™ Ty, , aty) the orientation of V(sey50,)

given by the complex structure on M, and the complex structure on E x E. So
Lemma 4.2 is proved.

Proof of Lemma 4.3. We use the following version of the compacity theorem
(ctf. [4], [12])

THEOREM 4.4, Assume (J,,, vy,) convergesto (J,v) and let {,, € WIX4, T then

one can extract a subsequence 1y, such that the graph of vy, in P! x X converges
to the connected union of the graph of 1y € W,;’/ Jp» and of a vertical components

ti x C;, where t; € P! and C; C U is holomorphic.

Necessarily C; must be equal to P! C X since its class may take only finitely
values, and we may assume that there is no rational curve in V' having one of
these classes, excepted for P!, So we must have n = A, | < k and the “limit”
4o corresponds to (Cp) € Vi(ss,,805,) C M. Now assume that there is a six
dimensional family of limit graphs consisting of reducible curves; this would
imply that for some [ < k, there is an open set K of Vi(sy,, Ss,) such that for
(C) € K, the corresponding map v: P! — V meets P!; writing ¥ = (¥¢, 1, %2)
as above, this means that (11,,) vanishes at some point ¢ € C. But then, since
by definition dv; = (Id X 1¢c)*o; we would have (Id x ¢¢)*(o1,02) = 0 in
HY(C, %% (0p1(—1) @9 (Opi(—1))(—t)), and by Lemma 3.4 the curve CU? x P!
would be in the zero set of the section (s, S5,) on M. (Notice that by the
Proposition 3.3, (s4,, Sg,) is continuous at reduced curves of M ). On the other

hand, CUt x P! belongs to the stratum M, 1(41-’10 ) of M, 1, and we have proved that

for general (01, 07) the intersection Val oM, Hl_’l »0) is at most four dimensional,
which contradicts the fact that it would contain a 6 dimensional subvariety of M ;.
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So we have proved the Theorem 1.1 for embedded rigid P' C X. It remains to
see what happens if P! —.5 X is only an immersion: but we can replace X by a
neighbourhood V of P! in its normal bundle, with the complex structure induced
by an exponential map V' — X, which is a local diffeomorphism. The only thing
that we have to verify is that we can choose the parameter v on P! x V, of the
form ((Id x m)*(o1), (Id x m)*(02)), as in section 2, satisfying the transversality
conclusion of the Proposition 3.6, and coming from P! x X : but it suffices to choose
o; on P! x P! vanishing over pry ! (Up) for an adequate (small) neighbourhood U,
in P! of any p € P! such that 51(5(p)) # {p}. It is not difficult to show that the
conclusion of the Proposition 3.6 still holds for a general couple (o1, 07) satisfying
such a vanishing assumption.
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