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Abstract. A pair of complex projective plane curves of a same degree is said to make a Zariski pair
if the singularities of them have a same topological type, while their embeddings in the projective
plane are topologically different. Such pairs are interesting because they show that an equisingular
family of plane curves may fail to be connected. A method for constructing examples of Zariski pairs
is presented. In our examples, the topological types of the embeddings are distinguished by means
of fundamental groups of complements to the curves. Two infinite series of examples with explicit
defining equations of the curves are given.
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1. Introduction

In [1], Artal Bartolo defined the notion of Zariski pairs as follows:

DEFINITION. A couple of complex reduced projective plane curves CI and C2 of
a same degree is said to make a Zariski pair, if there exist tubular neighborhoods
T(Ci) c P2 of Ci for i = 1, 2 such that (T(CI), Cl) and (T(C2), C2) are diffeo-
morphic, while the pairs (P2, Cl) and (p2, CZ) are not homeomorphic; that is, the
singularities of Ci and C2 are topologically equivalent, but the embeddings of Ci
and C2 into p2 are not topologically equivalent.

The first example of Zariski pair was discovered and studied by Zariski in [12]
and [14]. He showed that there exist projective plane curves Ci and C2 of degree
6 with 6 cusps and no other singularities such that 7rl (p2 B Cl ) and 1fl (p2 B C2)
are not isomorphic. Indeed, the placement of the 6 cusps on the sextic curve has
a crucial effect on the fundamental group of the complement. Let CI be a sextic
curve defined by an equation f2+g3 = 0, where f and g are general homogeneous
polynomials of degree 3 and 2, respectively. Then CI has 6 cusps lying on a conic
defined by g = 0. In [12], it was shown that 7r1 (p2 B CI) is isomorphic to the free
product Z/(2) * Z/(3) of cyclic groups of order 2 and 3. On the other hand, in [14],
it was proved that there exists a sextic curve C2 with 6 cusps which are not lying
on any conic, and that the fundamental group 7r, (p2 B C2) is cyclic of order 6. In
[6], Oka gave an explicit defining equation of C2. In [1], Artal Bartolo presented
a simple way to construct (Cl, ~2) from a cubic curve C by means of a Kummer
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covering of p2 of exponent 2 branched along three lines tangent to C at its points
of inflection.

Except for this example, very few Zariski pairs are known ([1], [10]). In [7], and
independently in [9], infinite series of Zariski pairs have been constructed from the
above example of Zariski by means of covering tricks of the plane.

In this paper, we present a method to construct Zariski pairs, which yields two
infinite series of new examples of Zariski pairs as special cases.
A germ of curve singularity is called of type (p, q) if it is locally defined by

;CP + yq = 0.

Series I. This series consists of pairs ( Ci (q), C2 (q» of curves of degree 3q, where
q runs through the set of integers 2 prime to 3. Each of Ci (g) and C2 (q) has
3q singular points of type (3, q) and no other singularities. The fundamental group
Jri (p2 B Ci (q)) is non-Abelian, while 7r, (P2 B C2(q)) is Abelian. When q = 2, this
example is nothing but the classical one of the sextic curves due to Zariski.

Series II. This series consists of pairs (D1 (q), DZ(q)) of curves of degree 4q,
where q runs through the set of odd integers &#x3E; 2. Each of DI (q) and DZ(q) has 8q
singular points of type (2, q) - that is, rational double points of type AQ_ 1 - and no
other singularities. The fundamental group 7r, (p2 B DI(q)) is non-Abelian, while
7r 1 (p2 B D2 (q» is Abelian.

Our method is a generalization of Artal Bartolo’s method for re-constructing
the classical example of Zariski to higher dimensions and arbitrary exponents of
the Kummer covering. Indeed, when q = 2 in Series I, our construction coincides
with his.

Instead of the computation of the first Betti number of the cyclic branched
covering of P2, which was employed in [1], we use the fundamental groups of
the complements in order to distinguish two embeddings of curves in P2. For the
calculation of the fundamental groups, we use Theorem 1 of [8] and a result of [4]
and [9].

For the Zariski pair (Cl (q), C2 (q) ) in Series I, the non-isomorphism of 7r, (p2
Ci (q)) and 7r, (p2 BC2 (q» can be seen also from the theory of Alexander modules
by Libgober [2]. This argument is sketched in Section 3.

2. A Method of Constructing Zariski Pairs

2.1. NON-ABELIAN MEMBERS

Let p and q be integers ) 2 prime to each other. We choose homogeneous poly-
nomials f e HO(p2,O(pk)) and g C H°(P2, O(qk)), where k is an integer &#x3E;, 1.

Suppose that f and g are generally chosen. Consider the projective plane curve
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of degree pq k (cf. [3]). It is easy to see that the singular locus of this curve consists
of pqk2 points of type (p, q). In [9; Introduction], the following is shown.

PROPOSITION 1. The fundamental group 7rIP2 B Cp,q,k) is isomorphic to the
group (a, b, c 1 aP = bq = c, ck = 1). In particular, it is non-Abelian.

See also [4], in which the fundamental groups of the complements of curves of
this type are calculated. There the groups are presented in a different way.

The calculation of 7r, (p2 B Cp,q,k) has a long history from Zariski’s work on
C2,3,1 in [ 12]. This group had been calculated for C2,3,k by Turpin in [ 11 ], and for
Cp,Q,1 by Oka in [5].

This curve CP,q,k will be a member CI of a Zariski pair.

2.2. ABELIAN PARTNERS

We shall construct the other member C2 of the Zariski pair such that 7r, (P2 B C2)
is Abelian.

Let p, q and k be integers as above. We put n = pk. Interchanging p and q if
necessary, we may assume that n j 3. Let So C Pn-1 be a hypersurface of degree
n defined by Fo (X 1, ... , Xn ) = 0. We consider a linear pencil of hypersurfaces

which is spanned by So and S,,,,, : := {XI’" Xn = 01. We put Hi = {Xi = 01
(i = 1,..., n) . We consider the morphism CPq: pn-l -+ pn-l given by

which is a covering of degree qn-l branched along Soo.

PROPOSITION 2. Suppose that (1) every member St is reduced, and that (2) So
contains none of the hyperplanes Hi. Then 7rl(pn-l B cpql(St)) is Abelian for a
general member St.

Proof. Let Pl be the t-line, and we put Al := Pl B f ool. Let W C pn-l x AI
be the divisor defined by

which is the union of S,,,,, x A’ and the universal family of the affine part f St; t E A’I
of the pencil. For t e A’, we denote by Wt C pn-l the divisor obtained from the
scheme theoretic intersection (ftl x pn-l) n.w, which is equal with the divisor
st + S.-

First, we shall show that Tri (pn-l B Wt) is Abelian for a general t. Remark that
the assumption (2) implies that St contains none of HZ unless t = oo. Combining
this with the assumption (1), we see that Wt is reduced for all t E A’. Hence,
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by Theorem 1 of [8], the inclusion induces an

isomorphism on the fundamental groups for a general t. Therefore, it is enough to
show that, is Abelian. In order to prove this, we consider the
first projection

Since is a pencil whose base locus is contained in 800’ there is a

Consequently, p is a locally trivial fiber space. Moreover, p has a section

which is given by, for example, Hence the homotopy exact

is contained in the center, we see that

This shows that is Abelian.

Note that Wt for every t. Hence the
natural homomorphism

is injective. This implies that 1 is Abelian for a general t. On the

the inclusion induces a surjective homomorphism

Thus ; is also Abelian for a general t.

PROPOSITION 3. Suppose the following; (3) 80 n Hi is a non-reduced divisor
pDi of Hi of multiplicity p, where Di is a reduced divisor of Hi, none of whose
irreducible components is contained in Hi n (Uj#iHj), and (4) the singular locus
of st is of codimension &#x3E; 2 in St for a general t. Then the general plane section

is a curve of degree pqk, and its singular locus consists
ofpqk2 points of type (p, q) for a general t.

Proof. Note that the assumption (3) implies that St n Hi is also equal with pDi
for t -# oo. Let P be a general point of any irreducible component of Di, and
let Q be a point such that Oq(Q) = P, which lies on the hyperplane defined by
Yi = 0. By the assumption (3), Q is not contained in any of the other hyperplanes
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defined by Yj = 0 ( j 54 z). Hence there exist analytic local coordinate systems
(wl, ... , w,,- 1) and (zl , ... , z,,- 1) of P’- with the origins P and Q, respectively,
such that Hi is given by wl = 0, oq 1 (Hi) is given by zl = 0, and Oq is given by

Let t E A’ be general. By the assumption (3), the defining equation of St at P is
of the form

By the assumption (4), St is non-singular at P, because P is a general point
of an irreducible component of DZ . This implies that u (P)  0. On the other
hand, the divisor Di, which is defined by v (w2, ... , wn_ 1 ) = 0 on the hyperplane
Hi = (wi = 01, is non-singular at P, because Di is reduced by the assumption
(3) and P is general. Hence we have

The defining equation of Oq 1 (St) is then of the form

Then, it is easy to see that, in terms of suitable analytic coordinates
with the origin Q, this equation can be written as follows:

Thus, when we cut Oq 1 (St) by a general 2-dimensional plane passing through Q,
a germ of curve singularity of type (p, q) appears at Q.
Since the degree of Di is k = n/p, the inverse image is a reduced

hypersurface of degree qk in the hyperplane defined by Y = 0. Moreover i

these intersection points, because of the assumption (4).

2.3. SUMMARY

Suppose that we have constructed a hypersurface So C Pn-1 of degree n j 3 which
satisfies the assumptions ( 1 )-(4) in Propositions 2 and 3. Let C2 be a general plane
section of cP;;l(St), where t is general. Because of Zariski’s hyperplane section
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theorem [13] and Propositions 1, 2 and 3, we see that the curve C2 has the same

3. Construction of Séries 1

We carry out the construction of the previous section with p = 3, k = 1, n = 3
and q an arbitrary integer j 2 prime to 3.
We fix a homogeneous coordinate system (X : Y : Z) of P2, and put

and

Let P*(r(P2, 0(3))) be the space of all cubic curves on P2, which is isomorphic
to the projective space of dimension 9, and let lF’ C P*(r(P2, 0(3))) be the family
of cubic curves C which satisfy the following conditions:

(a) C intersects Li at RI with multiplicity &#x3E;, 3,
(b) C intersects L2 at R2 with multiplicity j 3, and
(c) C intersects L3 at a point with multiplicity j 3.

(We consider that C intersects a line Li with multiplicity oo, if Li is contained in
C.)

PROPOSITION 4. The family :F consists of 3 projective lines. They meet at one

Proof. Let F(X, Y, Z) = 0 be the defining equation of a member C of this
family F. By the condition (a), F is of the form

where A is a constant, and is a homogeneous polynomial of degree 2.
By the condition (b), we have . , and hence we get

where H(X, Y, Z) is a homogeneous polynomial of degree 1. By the condition (c),
we have F(X, Y, 0) = A(Y + aX)3 for some a. Then a must be a cubic root of
unity, and we get
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where B is a constant. Combining all of these, we get

This curve C = {F = 0} intersects L3 at

with multiplicity &#x3E;, 3. This means that the family lF’ consists of three lines J

the cubic

Hence we get three pencils of cubic curves

tions (2), (3) and (4) in the previous section. Note that the pencil f-(I) does not
satisfy the assumption (1) because C(1)6 is a triple line. However, the other two
satisfy (1). Indeed, if a cubic curve C in the family lF’ is non-reduced, then the
conditions (a)-(c) imply that it must be a triple line. Therefore the three points Ri,
R2 and R3(a) are co-linear, which is equivalent to a = 1. Consequently, C must
be a member of f- (1) -

Now, by using the pencil we complete the construction of
Series 1.

Note that, if C (1),, is a non-singular member of j i
is isomorphic to the free product Z/(3) * Z/(q). Indeed, since C(l),, is defined by

the pull-back is defined by

which is of the form The polynomials f and g are not general by
any means. However, since the type of singularities of is the same as

that of we have an isomorphism.
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We can show that Í are not isomorphic by
showing that the real Alexander modules 7rl /7r" Q9 R, which are the modules over

for the precise definition.) By Theorem 5.1 of [2], these modules decompose into
direct sums of

where r, runs through the constants of quasi-adjunction of the singular point x3 +
yq = 0, and the multiplicity of R(r,) in Jri /xl’ © R can be calculated by the
superabundance of a certain linear system on p2. In the case of the largest constant

the multiplicity is given by the superabundance of the
linear system of curves of degree q passing through every singular point of Ci(q).
Since we have coordinates of the singular points quite explicitly, we can readily
calculate the superabundance. It tums out to be 1 for Ci (q), while it is 0 for C2(q).

4. Construction of Series II

It is enough to show the following:

PROPOSITION 5. The quartic surface

in p3 satisfies the assumptions ( 1 )-(4) with p = 2 and k = 2.
Proof. The assumptions (2) and (3) can be trivially checked. To check the

assumptions ( 1 ) and (4), we put

and calculate the partial derivatives
quadric surface defined by

It is easy to see that Qt is irreducible for all t ~ ~. It is also easy to see that Qt is
the unique common irreducible component of the two cubic surfaces

Suppose that a surface in this pencil contains a non-reduced

vanish on T. Hence T must coincide with . Comparing
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the defining equations of ,S’a and 2Qa, we see that there are no such a. Thus
the assumption (1) is satisfied. To check the assumption (4), we remark that the
condition dim Sing St  0 is an open condition for t. Hence it is enough to prove,
for example, dim Sing S’2 = 0. It is easy to show that Sing S2 consists of four
points (1 : + 1 : 0 : 0), (0 : 0 : 0 : 1) and (0 : 0 : 1 : 0). D
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