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Abstract. We use the trace formula to compute explicitly the trace, over a Hecke eigenbasis, of
the algebraic part of the special values. The case of twisting holomorphic level one modular forms
by a quadratic character modulo q is considered. The result involves both class numbers of binary
quadratic forms with discriminant depending on q, and also the number of points on certain elliptic
curves reduced modulo q.
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0. Introduction

We let K = Q(vq), with ring of integers 0 for an odd prime q - 1 mod4. We

use X to denote (q/*), the quadratic character modulo q. The integral kemel for
the base change lifting f ---&#x3E; 1 from SL(2, Z) cusp forms to those of SL(2,0) is
denoted S2(T, z, z’) (see [12]).

Integrating Q against a Hilbert modular form F in the (z, z’) variable gives a
linear map from Sk (SL(2, 0)) to Sk(SL(2, Z)). Its easy to see this is the adjoint
of the lift SZ, so we denote this linear map Ç2*. What can be said about this map?
From a version of the Strong Multiplicity One theorem due to Ramakrishnan, we
get that the lift is 1-1, and from this follows

EASY LEMMA. Every Hecke eigenform f is also an eigenform of the map n*0,
with eigenvalue equal to (1,1) / (1, f ). If F is a Hilbert modular eigenform which
is not a lift, then Ç2*F = 0.

As we will show below

(Zagier did the analogous result for forms of nebentypus in [12], Corollary 1 to
Theorem 5 by a different method.) Thus the map B, defined on eigenforms by

* This research was supported in part by a grant from the National Science Foundation.
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is in the Hecke algebra. In this paper we will use the trace formula to get an explicit
computation of the trace of B, and more generally the trace of T(n)B for any
Hecke operator T(n). The trace is a sum over 1 of class numbers H(q(l2 - 4q2n))
and H(q(lz - 4n» of orders in complex quadratic fields. These class numbers are
weighted, respectively, by the character x(l) and by the number of points

0.1. WHY IS THIS INTERESTING?

The method of computing the trace of the period is one Zagier suggested in Section 5
of [ 1 2] . He did the analogous trace formula for forms of level D, quadratic character
in Section 6 of that paper; including the technically much more difficult case of
weight 2 forms. (This is implicit in formulae (91) and (98). All that is missing is
to subtract off an appropriate multiple of an Eisenstein series to get a cusp form.)
His interest was in connection with intersection numbers of cycles on the Hilbert
modular surface. Gordon [3] has considered higher weight analogs of intersection
numbers; presumably 0(f) has an interpretation in terms of these intersection
numbers.

The value at s = k (in the standard normalization) of the twisted symmetric
square L-function D(s, f , X) is 6 (f ) (f , f ). This is also the residue of the cor-
responding Asai L-function L(s, f , p 0 X). By the work of Harder, Langlands and
Rapoport, the Asai L-functions occur as factors of the Hasse-Weil zeta function
of the Hilbert modular surface 1-£2/SL(2, O) (for weight 2 forms). There are lots
of conjectures on the arithmetic significance of the special values of such zeta
functions, in the context of higher K-theory and regulators for algebraic varieties.
See [8] and [9] for an exposition.

Notation. The prime q - 1 mod 4 is fixed throughout, as is a positive integer
n indexing a Fourier coefficient. The weight k of SL(2,Z) cusp forms is fixed
throughout, but k is also used sometimes as a subscript in sums. 6(*) is 0 if the
argument is not an integer, and e(*) denotes exp(2Jri *). A denotes a typical non-
primitive discriminant, either l2 - 4n or l2 - 4q2n, written as Df 2 with D primitive.
Subscripts q on L-functions indicate local factors at q omitted, while superscripts
Lq are those local factors.

1. Spécial values of L-series

It will be very useful to view the constant 0 (f ) of (0.1) in terms of L-series. Write

and let fX(T) be the quadratic twist (with level q2 and trivial character.) Note we
have a non-classical normalization of the Fourier coefficients. Letting a+a’ = a (p)
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and aa’ = 1, we write L(s, f x f ) and L(s, f x fx) as degree four Euler products; a
computation then gives the splitting formula L(s, f x f )L(s, f x fx) = L(s, f x f ).
The poles of the Eisenstein series produce poles in the Rankin convolutions

so L(s, f x fx) is entire at s = 1 and

We can also consider the twisted symmetric square L function

Thus L(s, X)D(s, f, X) = L(s, f x fx), and by the above

where Ck = (27r) 2 (47r)’-’ (q2f(k) )-1. We can build a cusp form $g (T) depending
also on s which satisfies

for each eigenform f i . One the one hand, the eigenforms give an orthogonal basis,
so

This implies that the Fourier expansion of -D, (-r) looks like

Plugging in s = 1 and using the above gives

On the other hand we can define the usual the Poincare series Gr (T) which satisfies
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and use the identity (formula (0.2) of [10])

This gives

The series converges absolutely and uniformly on compact subsets of f re(s) &#x3E; 11 x
Ji. Writing out the Fourier expansion of the Poincare series GM2 (T), interchanging
the order of summation, and continuing to s = 1 will give an explicit computation
of the Fourier series coefficients

and b(n, 1) gives an explicit computation of the (algebraic) expression

2. Poisson summation

In computing the Fourier expansion of -*, (,r), we will suppose first 1  re(s) 
k - 1 and then find analytic continuation to include re(s) = 1. It is well known the
Fourier expansion of the Poincare series Gr (T) is

Plugging this into (1. 1) with r = m2 we get

Letting
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we see the nth Fourier coefficient b(n, s) of lfs (T ) in (1.2) satisfies

PROPOSITION. The ’main term’, S is equal

where the special function I(l, n, s) is defined by (2.2), and Kc(r2, n) is a Kloost-
erman sum.

Proof. Put

then 9 equals

Before applying Poisson summation we need to relate the modulus q of X to the
modulus c of the Kloosterman sum Kc. We first break the sum on c into a double
sum of c prime to q and a sum on prime powers qa

Now x(m)Kcqa(m2, n) depends only on m modulo cq’ +e with

We can then replace the sum on m with a double sum over r modulo cqa+£ and m
in Z, m - r. We then consider

and let
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Write the Fourier expansion of B(x) as El cl e (lx). By Poisson summation we have

Thus

which proves the proposition. ~

3. Character sums

We will work towards getting the character sums in braces in (2.1) into a closed
form, to realize the nth Fourier coefficient b(n, s) as an infinite sum over 1 of
Dirichlet series times the special functions I(l, n, s). Consider first when a &#x3E; 1

After interchanging the sums and changing variables r --&#x3E; rx, one sees the character
sum depends on the behavior of the two counting functions (choosing either + or
- and fixed t)

and particularly their difference. Each of these counting functions can be written
as a product of a term depending only on c and a term depending only on a. In
particular the former can be written

while for the latter, the relevant term is the difference

and in this case the dependence on the quadratic is suppressed in the notation. By
direct computation one sees that the character sum (3. 1) simplifies to
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The character sum E9.: 1 X (j) R (j, q) is equal UE -q-1, where £E is the number of
projective points over 7,/qZ of the curve E: yZ = X3 + lx2 + nx with discriminant
(4n) 2 (12 - 4n). We denote this character sum a (1, n). In particular if the curve
is singular, the character sum is -X(1/2). For the general a, it is convenient to
introduce the generating function Fl,n(T) defined by

Here the discriminant of the quadratic l2 - 4n is written A = Df 2 with D a
fundamental discriminant. In the first three cases q’ Il f, while in the last three
cases the factor a(l, n) reduces to -x(L/2). By summing the geometric series one
can write this in the alternative form (with X = x(D/q) when q D)

For the other sum in braces in (2.1), coming from ‘a = 0’, similar methods
show that

4. Zêta functions

We now sum the Dirichlet series
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where - is 0 or 1. This is a convolution of two Dirichlet series, so we have

We will write N,,A instead of N (o, q,x2+lx+ q’n, c), where A == l2 -4q2én is the
discriminant. Elementary considerations tell us that in this case Nc, A is multiplica-
tive. And for k &#x3E; 0, Npk,A = Np,A = 1 + (0/p) whenever the discriminant A is
prime to p. More generally write A = Df2 with D the discriminant of Q(B/A).
One can compute

if A # 0 (resp. 0 = 0).
The term (( 2s ) q 1 in the lemma will be canceled out by the corresponding

«2s)q in (1.1). What remains will simplify if for each A = Df2, we write
qA = D’ f,2 . The term on the right side above is very nearly the one associated to
the non-fundamental discriminant qA

the only local factor missing is the one at q, Lq (s, qA). If (q, A) = 1, this local
factor is 1. We can always assume this is the case for A of the form LZ - 4q2n, since
otherwise q 1 A implies q l. The relevant character sum (3.3) is then zero; these
terms will disappear from the trace. In the other case A = l2 - 4n ; the missing
Euler factor will be obtained from the sum on a in (2.1). We introduce a fudge
factor P (s, A) (which tums out to be related to the q-adic T function) so that

Then (3.2) implies
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5. Spécial functions

After a change of variables the special function

is found in the tables to have an analytic continuation to 2  re ( s )  k. For

example, if n is a square, A will be 0 when l2 = 4n or l2 = 4q2n, and we see from
[1], vol. 2 (19.2.24) on p. 342 that I(2.,,,/n-, n, s) is a quotient of Gamma functions,
and has a simple zero at s = 1.

The general case of this special function is found in [4], (6.561.14) on p. 684 and
(6.699.2) on p. 747, in terms of hypergeometric functions. In particular if l2 &#x3E; 4n,
[2] vol. 2, 2.8 (6) shows that I (l, n, s) has a simple zero at s = 1. If 4n &#x3E; l2 we
can get the value at s = 1 from [7], (1.13.12), p. 67

Here Cl is a Gegenbauer polynomial.

6. Evaluate at s = 1

We retum to consideration of the Fourier expansion. Combine the proposition in
Section 2 with formula (4.1) and (4.3) to see that the Fourier coefficient b(n, s) is
written in closed form as

THEOREM.

For the reader inclined to skim, we recall that L(s, q(l2 - 4n)) is defined by
formula (4.2) to be the Dirichlet series associated to a (non-fundamental) discrimi-
nant, and a(l, n) is defined by (0.2). The special functions I(l, n, s) are defined by
(2.2), and 1, (S @ 12 - 4n) by (4.3).

The infinite sum converges uniformly and absolutely in the strip 1  re(s) 
k - 1, which by Fubini justifies changing the order of summation in Section 2.
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This is as far as we will go with the variable s present; the expression will simplify
when we evaluate at s = 1. In terms of the Eichler-Selberg trace formula, this is
the ’Selberg principle’ that the orbital integrals coming from hyperbolic conjugacy
classes should not contribute to the trace.

PROPOSITION. The terms in the theorem with A # 0 all vanish at s == 1.
Proof. The discriminant A can only be zero if n is a square. We observed in

Section 5 that I(2V1i, n, s) has a simple zero at s = 1, while L(s, 0) has a simple
pole at s = 1. However if d2 - 4q 2n is 0, then is 0 modulo q and so X(l) = 0.
And (4.3 (iii)) shows that r(s, 0) has a simple zero at s = 1. This completes the
A = 0 case. We know from Section 5 that I(l, n, 1) = 0 when A = 12 - 4n &#x3E; 0.
These terms contribute nothing unless L(s, qA) has a pole at s = 1. This happens
exactly when A = q f Z for some f 54 0, then L(s, q 2f2) is «s) times a Dirichlet
polynomial. If l2 - 4q2n = qf2@ then x(l) = 0; these terms drop out. On the other
hand A == l2 - 4n qf2 terms are in one to one correspondence with divisors of
n = vv’, v e 0, v Z. (There will be infinitely many such, if any.) But the simple
zero of I(l, n, s) will cancel the pole of «s), and (4.3 (ii)) shows that r(s, q f 2)
has a simple zero at s = 1, since Dq-1 is a square in this case. D

There are finitely many 1 such that A  0. We use (5.1) in this case to evaluate
the special function I(l, n, s) at s = 1 in terms of Gegenbauer polynomials (see
also [2], vol. 1, Sect. 3.15.1)

which is Pk,l 1 (l, n) in the notation of Zagier ([12] formula (18).) The value of
L ( 1 , qA ) = xH (qA ) / @ is classical, H (qA ) being the number of equivalence
classes of binary quadratic forms 0 of discriminant qA weighted by 1/ Aut( cjJ).
Equivalently, H(qA) is the sum of class numbers of orders of discriminant qA lf2
in Q(JÇ) .

THEOREM. For the map B defined in (0.1), the trace of the Hecke operator
T(n)B is b(n, 1 ) where

COROLLARY. Let/ 
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Proof. This follows from the fact that the Fourier coefficients b(n, 1) of &#x26;i 1 (T)
are rational in the theorem above, and Lemma 4, p. 792 of [11]. 0

7. Examples

To convince ourselves the computations above are correct, we did some examples
using Mathematica. In the case of weight k = 10, there are no cusp forms so
cI&#x3E;s(T) = 0 for all s. With q = 5 we verified b(n, 1) = 0 for 1 x n x 20 . In the
case of weight k = 12, the space of cusp forms is spanned by the discriminant
cusp form, so the Fourier coefficient b(n, 1) == T( n )b( 1, 1), with T( n) Ramanujan’s
tau function, and again the above relation holds for 1 n 20 . The coefficient
b(1, 1) == {3 was then computed (still weight k = 12) for some small primes q

The formula for b(n, s) also reduces to a finite sum for s = 3, 5, .... k - 1, with
a different Gegenbauer polynomial and Cohen’s function instead of the Hurwitz-
Kronecker class number. The computations are analogous to those in [12]. In this
case the Dirichlet series D (s, f, x) converges absolutely, and we computed the first
100 terms of the series with s = 3, 5, 7

Here again q = 5 and k = 12. The value 1.03536205679 x 10-6 for the square of
the norm of the discriminant function was taken from [12].
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