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1. Introduction

Let K be an algebraic extension of Qp and let (9 be its integer ring with maximal
ideal M and residue field k. If K is an algebraic closure of K, we denote by 0
and NL the integral closure of 0 in K and the maximal ideal of 0, respectively.

When f (x) e 0[[x]], but not all coefficients of f (x) are in M, then the lowest
degree in which a unit coefficient appears will be called the Weierstrass degree
of f (x), denoted wideg( f ). According to the Weierstrass Preparation Theorem
there exist a unit power series U(x) E 0[[x]] and a distinguished polynomial
P(x) E 0[[x]] such that f(x) = P(x)U(x) and deg(P) =wideg( f ). All roots of
P (x) are in M. If wideg( f ) = d, then, counting multiplicity, there are d of them
and they exhaust all roots of f that are in M.

The set of all power series over 0 without constant term is a monoid (non-
commutative, associative, with unit) under composition. A series u(x) E 0[[x]]
without constant term is called invertible if there exists a series w(x) E 0 [[x]] such
that u o w(x) = x. A necessary and sufficient condition for u (x) to be invertible is
that u’(0) e 0*. Let u(x) be an invertible series without constant term in 0[[x]].
Since wideg(u) = 1, u (x) has no other roots than 0 in M. We denote u" (x) the
n-fold iteration of u(x) with itself. The point a e .M is a fixed point for u(x) if
u(a) = a. The point a is a periodic point of period n if u°n (a) = a.

If f (x) e 0[[x]] without constant term and f’(0) E M, then we call f (x) a
noninvertible series. A noninvertible series can have no other fixed points than 0,
but the roots of iterates are of serious interest. In the invertible series case, the

periodic points now play a role parallel to the roots of a noninvertible series. These
two studies become no longer disjoint in case an invertible series commutes with a
noninvertible series (Lubin [6]). In the case that a dynamical system over the ring
of local integers 0 arises from a formal group, i.e. when we are discussing the
properties of the iterates of an endomorphism of a formal group defined over (9,
the full commuting family contains both invertible and noninvertible series. Lubin
conjectures that for an invertible series to commute with a noninvertible series,
there must be a formal group somehow in the background. Lubin’s Main Theorem
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in [6] supports this conjecture, in that it says that the only possible finite Weierstrass
degree for such a noninvertible series is a power of p.
We assume that the series u(x) always satisfies u’(0) e 1 + M ; finiteness of the

residue field guarantees that any invertible series has an iterate with this property.
We also assume that u’ (0) is not a root of 1. Let p lm. It is important to know
that if a is a periodic point of period pnm, then it is a periodic point of period pn
(see Li [2, Corollary 2.3.2]). We define the number of fixed points of uopn (x) (i.e.
the number of periodic points of period pn)@ counting multiplicity, by in (u). Thus
in(u) = wideg(uOpn(x) - x). In [3], the main theorem (Theorem 3.9) says that
if u(x) commutes with some noninvertible power series, then there exists m such
that for all n &#x3E; m,

for some a, b and À. This theorem gives us an effective method to compute the
number of periodic points of these invertible series. It tums out that this computation
lends support to the conjecture of Lubin.

When a noninvertible series, f (x), commutes with an invertible series, a root
of iterates of f (x) is not always simple (for example in the condensation case [3]).
However, if f (x) is a noninvertible endomorphism of a formal group, then it’s easy
to prove that all the roots of iterates of f (x) are simple. Therefore it seems to be
the right setting to consider the case which all the roots of iterates are simple.

If u(x) is an automorphism which commutes with f(x), then in(u) is a power
of p for all n (Li [3, Proposition 2.2]). In this paper, we shall prove the following:

THEOREM. Let u(z) , f (x) be invertible and noninvertible, respectively, in

0[[x]], with f o u = u o f. Suppose further that all the roots of iterates of f (x) are
simple. Then every x-coordinate of the vertices of the Newton polygon of f(x) is
a power of p. Further more, we have that in ( u) is a power of p for n sufficiently
large.

By this theorem, we shall prove that many phenomena are the same as endo-
morphisms of a formal group. We shall use this theorem to find the absolute
endomorphism ring of a Lubin-Tate formal group.

2. Newton ploygons and Newton copolygons

In this paper, we consider the set of power series f (x) E 0[[x]] such that f (0) = 0
and f’(0) is neither 0 nor any root of 1. We denote it by So (0).

The Newton polygon is a natural tool to study the roots of p-adic power series
(see Koblitz [1]). If f(x) = E’()aixi e K[[x]], the Newton polygon of f (x),
denoted N( f ) is constructed by erecting vertical half lines on all the points of the
form (i, v (ai» in the Cartesian plane, and then taking the convex hull of the union
of these lines. The basic property of the Newton polygon is the following:
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LEMMA 2.1 If a segment of the Newton polygon of f(x) E K[[x]] has finite width
N and slope À, then there are, counting multiplicity, precisely N values of x E K
for which f(x) == 0 and v(x) == -À.

If f(x) E 0[[x]] and wideg(f)  oc, then since there are only finitely many
roots in M, N( f ) only has finitely many segments with negative slope and finite
width. In this paper when we talk about Newton polygon we restrict it to the

segments of negative slopes.
Let f(x), g(x) E 0[[x]]. If for some a &#x3E; 0 the set f a E M 1 f(a) = 0, v(a) &#x3E;

a} is equal to the set {a E M ) 1 g (a) = 0, v(a) &#x3E; a} (counting multiplicity), then
for every segment of N( f ) with slope less than -a, there exists a segment of N(g)
with same slope and same width. This implies the following:

LEMMA 2.2 Let f (x) and g(x) be power series in 0[[x]] such that their roots
satisfy the condition described above, and suppose that every segment of N(f) on
the left of the vertical line x = b is of slope less than -a. Then (e, n) is a vertex of
N( f ) with fl  b, if and only if (ç, q + v (g’(0» - v(f’ (0))) is a vertex of N(g).

Another geometric object, which contains the same information as the Newton
polygon, is the Newton copolygon. Let f(x) = E’ 1 an xn. The Newton copolygon
of f(x), denotedN*(f), is defined to be the intersection in the Cartesian plane of
all half planes defined by the inequalities y  ix + v (ai). It is easy to see that two
power series have the same Newton copolygon if and only if they have the same
Newton polygon: indeed, the polygon and copolygon are essentially dual convex
bodies. We have the following facts. The detail is available in [4].

LEMMA 2.3 The vertices of N(f) are in one-to-one correspondence with the
segments of N* ( f ); if (P, S* ) is a corresponding pair, the x-coordinate of P is
the slope ofs* and the y-coordinate of P is the y-intercept of S*.

LEMMA 2.4 The nonvertical segments of N(f) are in one-to-one correspondence
with the vertices of N* ( f ); if (S, P* ) is a corresponding pair, the x -coordinate of
P* is the negative of the slope of S and the y-coordinate of P* is the y-intercept
of s.

The valuation function of f (x), denoted by w¡(x), is a real-valued polygonal
function defined for nonnegative values whose graph is the upper boundary of the
Newton copolygon. We know that for any a E .M if v (a) is not the x-coordinate
of any vertex of the Newton copolygon, then the relation v(f(a)) == W j (v(a) )
holds. It follows that if g(x) is another series without constant term, then

If f (x) E O[[x]],j(O) = 0 and 1  wideg( f ) = d  oc, then W j (z) is apolygonal
function with finitely many segments. The leftmost segment is the line y = dx and
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the rightmost segment is the line y == x + v(f’ (0)). Bl1 f is strictly increasing and
all the segments of Bl1 f lie entirely above the line y = x.

To study the roots of iterates of f(x), we have to study the Newton polygon
(or Newton copolygon) of fon(x) for every n. Let (çà, Bl1 f(çà)) be the rightmost
vertex of N*(f), i.e. Bl1 f(x) == x + v(f’(0)) for all z j çà. Let çî satisfy that
Bl1 f(çî) _ çà. Then Bl1 f02(X) == Bl12(x) == Bl1 f(x) + v( f’(0)) for all z j çî. This
means that the graph of N* ( f °2) above the line y == çà + v ( f’ (0) ) can be obtained
by moving the graph of N* ( f ) above the line y == çà along the y-axis by v(f’ (0))
unit-length. By induction, we find çi such that Bl1 foi (çi) == Bl1i(çi) == çà and the
graph of N* ( f °i+1 ) above the line çà + v(f’ (0)) is obtained by moving the graph
of N*(fOi) above the line y == çà along the y-axis by v( f’(0)) unit-length.

PROPOSITION 2.5 Let f (x) e So(O) be a noninvertible power series. Then there
exists A such that for every i the graph ofN( f °i+1 ) above the line y = A+v ( f’ (0) )
is obtained by moving the graph of N( f °Z) above the line y = A along the y-axis
by v(f’ (0)) unit-length.

Proof. By the observation above and by the duality between the Newton poly-
gon and the Newton copolygon (Lemma 2.3 and Lemma 2.4), we have that a part
of the graph of N(foi+1) is obtained by moving the part of the graph of N( f °Z)
with segments of y-intercept greater than çà. Since every segment of the Newton
polygon is of negative slope, our proof is complete by setting A = çà. D

Remark. By the çi constructed above, it implies that if f °i+I (a) - 0 and
v(a) &#x3E; çi, then fOi(a) == O.

Suppose that there is a segment of N* ( f ) whose slope is not a power of p (this is
equivalent to the condition that there is a vertex of N(f) whose x-coordinate is not
a power of p). It is easy to prove that for every A there exists j such that there is a
vertex of N* (foj) above the line y = A whose right hand side segment is of slope
not a power of p. For simplicity, we replace foj with f. Let çÎ be an x-coordinate
of the vertex of N* (f) such that Bl1 f ( çÎ) A and the right derivative of Bl1 f (x) at
çÎ is not a power of p. Let Ç2 satisfy that Bl1 f (Ç2) == çÎ. Because Bl1 f o Bl1 f = W jo2 ,
it implies that Ç2 is an x-coordinate of the vertex of N* (f02) such that the right
derivative of Bl1 f02 (x) at Ç2 is not a power of p. By induction, we can find çi which
is an x-coordinate of the vertex of N* (foi) such that the right derivative of W joi (x)
at çi is not a power of p and Bl1 foi (çi) == W ) (flg ) = Bl1 f (çÎ). This means that for
any i, (çi , Bl1 f (çÎ)) is a vertex of N* (foi) such that the right derivative of Bl1 foi (x)
at ç; is not a power of p.

PROPOSITION 2.6 Let f(x) e So(O) be a noninvertible power series. If there is
a vertex of N(f) whose x-coordinate is not a power of p, then for every A there
exists M such that for every sufficiently large n there exists a vertex, (çn, ’TJn), q/
N (fon) with A z qn # M and Çn not a power of P.
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Proof. Without loss of generality, we can assume that ’Pf (*) &#x3E; A. Therefore,
for every n, (ç, W (çî)) is a vertex of y* (f n) and the right derivative of  fon at
n is not a power of p. By the duality between the Newton polygon and the Newton
copolygon (Lemma 2.3 and Lemma 2.4), we have that (ç, W (çî)) corresponds
to a segment of jV(f,n) with slope -* and y-intercept  f (i ). This segment
intersects another segment of N (fon) at the vertex (en, 77n), where en is equal to
the right derivative of W jon at . Since the segment is of negative slope, it implies
that qn  f(1 ). Therefore our proof is complete by setting M == W ( çÎ) . D

Proposition 2.5 and Proposition 2.6 are true for general noninvertible series
(without the assumption that f (x) commutes with an invertible series). For every
n, one can argue from the graph of Af (f ) to find Af(f n) (using the Newton
copolygon would be easier). To study the periodic points of an invertible series
ic(x), we have to study the Newton polygon of uopn (X) - x. Usually, it is almost
impossible to find N ( u opn (x) - x) by just arguing from the graph of Af (u (x) - x).
However, if u(x) commutes with f (x), then by using the results in next section,
we can find JV(U,,pn (X) _ X) fromN(uOpn-l(x) -x) for n sufficiently large. Here
we only need the following properties.

PROPOSITION 2.7 Let u(x) E So(O) be an invertible power series with

u’(0) - 1 (mod M). Then there exist B &#x3E; e such that for sufficiently large
n, the graph of N ( uopn (x) - x) above the line y = e + B can be obtained by
moving the graph of N(uOpn-l (x) - x) above the line y = B along the y-axis by
e unit-length.

Proof. This can be obtained by the following elementary observation:
Let 7r be a prime element in M and let w (x) e O [[z] ] , with w(x) = x + 7rr g (x)

where g(x) E O[[x]]. Then w°P(x) - x + p7rT g(x) (mod M2T). D

3. Counting periodic points

We begin by recalling some of the notations and results from [3]. Recall that K is a
field which is complete with respect to a valuation, v. We normalize the valuation
v such that v (7r) = 1, where 7r is a generator of M. There is a unique extension of
v to K, and this will likewise be denoted v. We denote the ramification index v (p)
by e.

NOTATION. u(x) E So( 0) is an invertible series with u’(0) - 1 (mod M) which
commutes with a noninvertible series f (x) E SO(O). Since we only discuss the
case modulo .MT for a finite number T, after taking some iterates of u(x), we can
always suppose that u’ (0) - 1 (mod MT).

Set mn(0) = in(u) = wideg(uOpn(x) - x) and mn(r) equal to the lowest
degrees of terms of U,pn whose coefficients are in Mr B Mr+l. Thus if Uopn (x) -
x = E’lbix then Mn (r) = inf{i v(bi) = r}.
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We also set Sn,(r) equal to the set of degrees of terms of fan (x) whose coeffi-
cients are in MT B M’+ 1. Thus if fan (x) = E°°lai2, then Sn (r) == Ji 1 v (ai) -
rl. For any t E Q, define o(t) E Z being the order of p at the factorization of
t. Suppose that m = inf{o(t) 1 t E Sn(r) }. Let sn(r) be the smallest number in
Sn(r) with o(sn(r)) = m, i.e. sn(r) = inf fi v(ai) = r, o(i) = ml.

Let t a, 1 n {bn}n be two séquences. Denote {an}n » {bn}n, if lim inf an/bn &#x3E;
n-&#x3E;oo

1. Denote tanin - {bn}n, if liminf an/bn = 1.
n--+ 00

LEMMA 3.1 For every M and r there exists M’ such that for eveçy j z r,

0 (Sn (j» &#x3E; M when n  M’.
Proof. See Li [3] Proposition 3.4. D

Given T, by this lemma, there exists i such that o(si ( j ) ) &#x3E; T + e for all j  T.
By replacing f with f °Z, we may assume that o(s (j» &#x3E; T + e for aIl j T. For
convenience, we also replace s 1 ( j ) with s ( j ) .

Choose T sufficiently large. We make o(s( j)) &#x3E; T + e for all j  T, so that we
can compute the lowest degrees of f a u°P" - f and uopn a f - f mod Mi easily.
In fact, when r  e, because for v(a) = 0, pXt and s sufficiently large,

we have that in f 0 u°P" - f modM’+’ 1 the lowest degree contributed by the
monomial aix’ of f (x) with v (ai)  ris po(i) (mn(O) -1) + i. By the definition of
s(j), the lowest degree of f 0 U,opn - fmodMr+1 is min f pO(s(j» (mn(0) - 1) +
s (j) ; j , r} when Mn (0) is large enough. Therefore if we set

then the lowest degree of f 0 uopn - fmodMr+1 1 is pdr(mn(O) - 1 ) + cr, for
sufficiently large mn (0) .

When e  r  2e, write r = e + r’ where 0  r’  e. Because for v (a) = 0,
p X t and s sufficiently large,

we have that in f 0 uopn - f modMT+1 the lowest degree contributed by the
monomial ai xi of f (x) with v (ai)  r’ is PO(i) - 1 (Mn (0) - 1) + i and the low-
est degree contributed by the monomial ajxl of f (x) with r’  v(aj)  r is
PO(j) (Mn «» - 1) + j. Therefore if we set



47

then the lowest degree of f 0 uopn - fmodMr+1 is pdr(mn(O) - 1) + cr, for
sufficiently large mn (0).

Inductively, when r = 2e + r’ where 0 x r’  e, we set

Set dr and cr inductively for all r  T. Then we have that the lowest degree of
f 0 Uopn - f mod Mr+l is pdr (mn (0) - 1) + cr, when Mn (0) is sufficiently large.
Notice that these dr’s have the properties that dr  dr- 1 and dr+,  dr - 1.

LEMMA 3.2 Suppose that dr  dr - 1 == ... = dr,  dr’-l’ If r &#x3E; j &#x3E; r’, then
when mn(O) is sufficiently large the lowest degree ofuopn o f - fmodMj+1 is
pdo Mn (r’) - (cr’ - cj) and we have that mn ( j ) &#x3E; Mn (r’) - Br’, where Br, is

independent of n.
When mn (0) is sufficiently large, the lowest degree ofuopn o f - fmodMr+1

is pd«mn (r) and we have that {mn(r)}n« Imn (j) In for every j  r.

Proof. This can be proved by using induction on r and by comparing the lowest
degrees of U,pn o f - f and f 0 uopn - f mod Jlilr+1. See Li [3] Lemma 3.8 for
detail. D

Notice that dr  dy.-i if and only if {mn (r)}n « (rnn (j)}n for every j  r.

According to Lubin [6] Corollary 4.3.1, we have that if rnn (0) = oo for some
n, then u has only finitely many periodic points in M. If u commutes with some
noninvertible series, then u(x) has infinitely many periodic points (Lubin [6] Propo-
sition 3.2). Hence Mn (0)  oo and limn,,&#x3E;,, mn (0) = oo. It implies that mn (0)
is sufficiently large when n is sufficiently large. Since f o u = u o f implies
f 0 u°pn - f = U,pn - f - f, by Lemma 3.1 and Lemma 3.2 we have the following.

PROPOSITION 3.3 Suppose that r  T and dr  dr - 1. Then pdr (mn (0) - 1 ) +
cr = pdomn(r), if n is sufficiently large (or if mn (0) is sufficiently large).

Proposition 2.7 is true for general invertible series, i. e. without the assumption
that u(x) commutes with a noninvertible series. For the next Proposition, we
use the assumption that u(x) commutes with a noninvertible series f (x) to find
N(uOpn (x) - x). Keep the notations about dr and cr as above. We call dT a jump,
if dr  dr-le From Lemma 3.2, fmn (r) In « {mn (j)}n for every j  r, if dr is
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a jump. Since Af (u’P’ (x) - x) is constructed by erecting vertical half lines on all
the points (mn (i), i) and then taking the convex hull of the union of these lines,
we have the following result.

PROPOSITION 3.4 Let u(x), f(x) E So(O) be invertible and noninvertible,
respectively. Then for n sufficiently large, (mn(j), j) is a vertex of N( uopn (x) - x)
only if dj is a jump. 

of U,pn (X)Proof. If (mn(j),j) is a vertex of the Newton polygon of - x and
dj is not a jump, then we consider the points (Mn (r), r) and (mn (t), t) where
dr  d,-, =... = dj - - - - = dt  dt-l. Since (mn(j),j) is a vertex, the

slope of the segment which connects (mn(r), r) and (mn(t), t) must be smaller
than the slope of the segment which connects (mn(j),j) and (mn(t),t) and
Mn (3)  Tnn (t) . Lemma 3 .2 shows that rnn (r) « mn(t) and Mn (j) &#x3E; Mn (t) - C
of which C is some constant independent of n. The slope of the segment which
connects (Mn (j), j) and (Mn (t), t) is smaller than or equal to - 1 IC, but the slope
of the segment which connects (mn(r), r) and (mn(t), t) tends to 0 as n - oo,
because mn (r) « Mn (t) . We get a contradiction. Therefore for n large enough,
(Mn (j), j) is not a vertex of N( uon (x) - x) if dj is not a jump. See Figure 1 for
illustration.

Figure 1.

Remark. By Proposition 3.3 we obtain that if dr is a jump, then for n sufficiently
large

Proposition 3.4 combining with the fact that mn+l (0) - m. (0) = P, (m. (0) -
Mn-1 (0» for a fixed À (Li [3, Theorem 3.9]) implies that for n sufficiently large,
(mn (r), r) is a vertex of N(uOpn (x) - x) if and only if (mn+1 (r), r) is a vertex of
N(uOpn+l(x) - x).

4. Main theorem

In this Section, we assume that f (x) commutes with an invertible series, u(x), and
all the roots of iterates of f (x) are simple. Since f (x) commutes with an invertible
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power series, every root of f 1(x) is a root of f " (x) for some m (Lubin [6]).
fom (x) has only simple roots for all m E N, so f ’(x) has no root in M. (In this
case it’s easy to check that all the roots of iterates of f (x) are simple if and only if
f ’(x) has no root in M.) Hence wideg( f’) is either 0 or infinity. Since f’(0) E M,
it implies wideg( f’) = 00. Therefore f ’(x) = f ’(0) - h(x), for some h (x) E 0 [ [x] ]
with wideg(h) = 0. Thus f’(z) / f’(0) E 0[[x]]. By the same reasoning we see
(f on)’(X)/(f,(O»n C 0[[x]]. Let f,n(x) = E’laix’. Then we have that

Let (mi (r), r) be a vertex of N(UOpi (x) - x) with r &#x3E; B (B as in Proposition
2.7). We know that the graph of jV(u’P’+’(x) - x) above the line y = r + e can
be obtained by moving the graph of N(u°P2 (x) - x) above the line y = r along
y-axis by e unit-length. If the segment of jV(uoP’(x) - x) on the left of x = mi (r)
which contains the vertex (mi (r), r) is of slope - À, then all the periodic points
of u(x) of period pi with valuation greater than or equal to À correspond to
the segments of Af (uoP’(x) - x) on the left of x = mi(r). Since for i’ &#x3E; i,

Af (uoP" (x) - x) on the left of x = mi (r), has the same shape as N(uopt (x) - x)
on the left of x = mi (r), this means that the segments of N(u°p2(x) - x) on
the left of x = mi (r) correspond to all the periodic points of u(x) with valuation
greater than or equal to À. Since u(x) commutes with f (x), we have that all the
periodic points of u(x) are simple (Li [3]) and the set of roots of iterates of f (x)
is equal to the set of periodic points of u(x) (Lubin [6]). By Proposition 2.5, all
the roots of iterates of f (x) with valuation greater than or equal to À correspond to
some segments of jV(f 0’) for n sufficiently large. By Lemma 2.2, mi (r) is the x-
coordinate of a vertex of N (fon) for all n sufficiently large and there is a one-to-one
correspondence between the vertices of Af (UOP’(x) - x) on the left of x = mi (r)
and the vertices of jV(f on) on the left of x = mi(r). Suppose that there exists a
sequence {ni} in N such that limi_ce ni = oc and SuPi fv (mni (r) ) ) x M  00.

For every ni, there exists ni such that Y(uoP" (x) - x) on the left of x = mni (r)
is of the same shape as N( f °ni ) on the left of x = mn.(r). By (*) above, we
have that all the vertices of N (foni) on the left of x = mni (r) should locate
inside the band {(x, y) 1 n v (f ’(0» - M  y  niv( f’(0))}. Only finitely many
vertices of Newton polygon can locate inside the band with width M. Because
limi_ce mni (r) = oo and f (x) has infinitely many roots of iterates, we get a
contradiction. This means that limi-+oo o(mi (r» = limi_ce v (rni (r) ) = oo.
We claim that if (mj (t), t) is a vertex of Y(uoPj (x) - x) with t  B for j

sufficiently large, then we also have that limi,,, o(mi(t)) = oo. Define An(f) =
{z E M 1 fon(z) == 0 and fon-l (z) :/= O}. For any M, since wideg(f) is a power of
p, one may argue from the shape of Newton copolygon to get that o(v(a))  -M,
da E An( f ) and for n sufficiently large. Suppose that (mj (r), r) be the lowest
vertex of N(uopj (x) - x) above or on the line y = B and (rnj (r’) , r’) be the
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highest vertex of Af (u’Pj (x) - x) below the line y = B. When i is large enough,
the roots of UOpi(X) - x, which correspond to the segment of Af (u’P’(x) - x)
which connects the vertices (mi (r), r) and (mi (r’), r’), are in An (f ) for some
n sufficiently large. Therefore, this segment has slope -1 with o(Z-I) very large.
Since mi(r’) = mi(r) + (r - r) /1 and limi-+oo o(mi(r)) = 00, we deduce that
limi,,, o(mi(r’)) = oo. By induction, our claim follows. It also follows that

limi-+oo o(mi (0)) = oo. In summary, we have proved that if (mi (r), r) is a vertex
of N (uoi (x) - x) for i sufficiently large, then limi,,,c, o(mi(r)) = oo.

By Proposition 2.5 and Proposition 2.7, we obtain that there exists C such that the
graph of N(fOi) (resp. M (u°P’ (x) - x» above the line y = C + v (f ’ (0)) (resp. y =
C + e) is obtain by moving the graph of jV(f Oi- 1) (resp. Af(uoPj -’(x) - x)) above
the line y = C along y-axis (setting C = max { A, BI where A and B as defined in
Proposition 2.5 and Proposition 2.7). Now we are ready to prove our main theorem.
By Proposition 2.6, our goal is to prove that for any T, there exists a sufficiently
large i such that every x-coordinate of the vertices of Af (f 0’) which is under the
line y = T and above the line y = C is a power of p.

THEOREM 4.1 Let u(x), f(x) be invertible and noninvertible, respectively, in
So (0) with f o u = u o f. Suppose further that all the roots of iterates of f (x) are
simple. Then every x-coordinate of the vertices of the Newton polygon of f (x) is
a power of p. Further more, we have that in (u) is a power of p for n sufficiently
large.

Proof. Given T, by Lemma 3.1, there exist i such that O(Si(t)) &#x3E; T + e for

all t z T. We also choose i large enough such that v (( f°?1’ (0) ) = iv(f’(O)) ==
v (U’ (0) P 1) for a sufficiently large j. (This can be done because u’(0) is not a
root of 1.) By replacing f with f 0’, we want to prove that every x-coordinate of
the vertices of Y(f ) which is under the line y = T and above the line y = C is a
power of p.

Since v ( f’ (0) ) = v(u’(O)P’ - 1), by the choice of C and by Lemma 2.2 we obtain
that for q à C, (ç, 17) is a vertexofN(f) if and only if it is a vertex ofm (u°’ (x) - x).
If (g, q) = (mj (q) , 17) is a vertex of N( f ) with T j 7y C, then since we choose
j large enough, by Proposition 3.4 and by the remark following it, we have that
(mn(17),17) is a vertex of N(uon(x) - x) for all n &#x3E; j and dry is a jump. Since
rl  T, by using Proposition 3.3 we obtain thatpd17 (mn(0) - 1) + Cry = pdOmn(17).
Because limn_ce 0(mn (Ti» = limn_ce o( mn (0)) = oc, it implies that cT} = pd17 .
Since (ç, 7/) is a vertex of M(f ) we have that g x cq = pdn and by the definition
of c1J we have that o( ç) &#x3E; o(cn) = dry. This implies that g = pd17. This proves our
first assertion.

For sufficiently large n, let (mn(r),r) be a vertex of N(uon(x) - x) with
T &#x3E; r &#x3E;, C. Then we know that mn (r) is the x-coordinate of a vertex of N (fon’) for
some n’. Therefore m,, (r) is a power of p. Since pdr (mn(O) -1) + C, = pdomn(r),
we conclude that Mn (0) = in (u) is a power of p (because dr is a jump and
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Let u (x) be an automorphism of a formal group with u’(0) - 1 (mod M).
Then there exists an endomorphism f (x) such that the set of fixed points of u(x)
is equal to the set of roots of f (x). In our case, we have the following:

COROLLARY 4.1.1. Suppose that wideg(u (x) - x) is large enough and v(f’(O)) ==
v(u’(0) - 1). Then wideg( f ) = wideg (u (x) - x)

Proof. As discussed in the proof of Theorem 4.1, choose r &#x3E; C such that

(mo (r), r) is a vertex of N(u(x) - x). Because (mo(r), r) is also a vertex of

N( f ), we have that mo(r) = pdr. Since pdr (mo(0) - 1) + cT = pd°mo(r) and
cr = pdr, it implies that wideg(u(x) - x) = mo(0) = pdo = wideg( f ). 1:1

COROLLARY 4.1.2. Let f (x) be a noninvertible power series in So( 0) such that
N( f ) has only one segment. Suppose that f(x) commutes with an invertible series
u(z) with wideg(u(x) - z) sufficiently large. If v( u’ (0) - 1) = rv(f’(0», then
N( f °T ) is the same as N(u(x) - x). Furthermore, for a E M u(a) = a if and
only if f "(ce) = 0.

Proof. If (ç, q) is a vertex of N(fOT) with ri &#x3E;, C, we have that rno (q) = ç, by
the assumption that v(u’(0) - 1) = rv ( f’(0) ) . Since mo(0) == wideg(u(x) - x) is
large enough, by Corollary 4.1.1 we have that wideg(f ’l) wideg(u(x) - x) ==
rrao(0). Since N(f) has only one segment, by arguing from the shape of the New-
ton copolygon of f (x), it is easy to check that Va, (3 E An (f ), v(a) = v (0) and
v(ai) # v(a2), if al E An(f) and a2 fi. An(f). This implies that for q  C,
(ç, q) is a vertex of N (faT) if and only if (Tno (q) , q) is a vertex of N ( u (x) - x). If
(ç, q) is a vertex of N (faT) with r  C, then since ç is a power of p, by Proposition
3.3, we have that gTno (0) = wideg(f ")mo(71). This implies that g == mo(n). Our
proof is complete. 0

In Li [3, Theorem 3.9], we know that for n sufficiently large, there exists À such
that

If u (x) is an automorphism of aformal group F(x, y) and f (x) is an endomorphism
of F (x, y) with v( f’(0)) = v(p) = e, then we have that wideg( f ) = pÀ. In our
case, we have the following:

COROLLARY 4.1.3. If f o u = u o f and wideg( f ) = Pl, then À = el /v (f ’(0».
Proof. Choose a sufficiently large n such that v (U (O)n - 1) = rnv( f’(0)),

for some m (notice the assumption that u’ (0) is not a root of 1). By Corollary
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4.1.1, it implies that in(u) = mn (0) = wideg( f °"’ ) = pml. Choose another
n’

n’ &#x3E; n such that v (U , (O)pn’ _ 1) = m’v(f’(O)), for some m’. We have that
in,(u) == mn’(O) == wideg(fom’) == pm’l. in+I(U) == pÀ(in(u) - in-I(U)) +
in (u) = PA+ml - PÀin- 1 (u) + pml. Since in+ 1 (u) and in- 1 (u) are powers of p
and in+ 1 ( u) &#x3E; in-l (u), it implies that in+ 1 ( u) == pÀ+ml. By induction, it follows
that in, ( u) = P(n’-n)A+ml. This implies pm’l == p( n’ -n )À+ml, i.e. (rn’ - m) l =
(ni - n) A.

When n is large enough, v(u’(O)P" _ 1) - v(u’(O)pn - 1) - (n’ - n)v(p) ==
(n’ - n)e. By assumption, we have that (m’ - m) v (f ’(0» (n’ - n)e. Our claim
follows. 0

5. Fields of torsion points

Let f (x) be a Lubin-Tate power series, i.e. f(x) == 7rx (mod x 2) and f(x) ==
Xq (mod M), where 7r is a generator of M and q = #(k) _ #(OIM). Then
there exists a unique formal group law :F(x, y) e 0[[x]] satisfying the condition
:F(f(x), f(y)) = f(F(x, y». F(x, y) gives M a formal 0-module structure. We
denote the field of f on-torsion points by Kn(f) = K(An(f»- In [7], it says that
Kn (f ) is a totally ramified abelian extension over K. In this section, we shall get
a similar result, if f (x) -= 7rX (mod x 2) , and the set of noninvertible series which
commute with f (x) is sufficiently large.
LEMMA 5.1 Let f (x) e Su (0). Then for every a E K, there exists a unique
power series h(x) E K[[x]] with h(0) = 0, h’(0) = a and f o It = h a f.

Proof. See Lubin [6, Proposition 1.1]. 0

By the Lemma above, for every a E K, we denote M/() the unique series in
K[[x]] satisfying [a]f o f = f o [a]f whose first-degree coefficient is a.

DEFINITION 5.2 Let f (x) E So(O). We define Uf = (u E 0* ] [u] j (z) E

C?[M]} and ujn) = tu e 0* 1 [U]f (x) E 0[[x]] and u - 1 E Mn
Remark. Uf is a subgroup of 0*, since for every ul, U2 E Uf [UI . u2] j (z) =

[Ullf o [U2]f (X) E 0[[x]] and [u-Ilf (x) = [u]/-l(x) E 0[[x]]. By the same
reasoning, ujn) is a subgroup of U f.
PROPOSITION 5.3 Let f(x) be a power series in 0[[x]] satisfying f(x) == 7rx
(mod x2) and wideg( f ) = pl. Let Kn( f ) == K(An(f)) be the field of fan-torsion
points. For a sufficiently large n, suppose that #(Uf/Uf ) = plO-1) (pl 1). Then
Kn (f K is a totally ramified abelian extension, of degree pl(n-l) (p 1 1) with
Galois group
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Proof. Since f (x) commutes with an invertible series, we have that f (x) -
g(xP’) (mod M) (Lubin [6]). Therefore wideg( f’) = oo. Because f’(0) = 7r,

f ’(x) has no root in M. Hence all the roots of iterates of f (z) are simple.
Fix an a e An(f). Since the Newton polygon of f (z) has only one segment,

[u](a) E A,, (f ) for every u E Uf (because f on ([U] f (a» = [u)(fon(a)) = 0
and v ([u] f (a» = v(a)). Consider the map

By Corollary 4.1.2, it induces an injective map UflUf (n) ----&#x3E; A n(f),whichisalso
surjective since both sides have same order.

Consider

Çn (0) = 7r and wideg(CPn) = pl(n-1)(pl - 1). According to the Weierstrass
Preparation Theorem, An(f) is the set of roots of an Eisenstein polynomial of
degree pi (n - 1) (pi - 1). Since for every /3 e An(f) there exists u E Uf such that
[u]¡(a) = (3, our claim follows. D

In fact, we have proved:

PROPOSITION 5.4 Let f (x) be a power series in 0[[x]] satisfying f(x) == 7rx
(modx2) and wideg( f ) = pl. Then #(Uf /U(n» f pl(n-l)(pI-l),Jor n sufficiently
large.

Proof. Since the map U/Un) -7 An (f ) is injective and #(An (f » is pl(n-l)
(pl - 1), our proof is complete. D

EXAMPLE Let L be an finite unramified extension of K. We denote by OK (resp.
OL) the integer ring of K (resp. L) and UK (resp. UL) being it’s unit. Let f (x) be
a Lubin-Tate power series over OK and F(x, y) be it’s group law. The set of all
OK-endomorphisms (resp. OL-endomorphisms) of F is denoted by EndoK(F)
(resp. EndoL (F». According to Lubin and Tate [7], EndoK (F) is isomorphic to
OK. Thus for every a E O K , [a] f C OK[[X]]. We would like to find EndoL (F).

Denote by UfK (resp. UfL) the set of u E UK (resp. UL) such that [ulf E
OK [ [XI (resp. OL[[X]]). We have that for n large enough,

Recall that wideg(f ) = q, where q is the number of residue field of OK. By
Proposition 5.3, we have that /U(nl)  qn-l (q - 1). Since #(U K lut)) =Proposition 5.3, we have that #(Uf,L f,L - LI K

qn-1 (q - 1), it implies that UF,LI TT(n) - UKITT(N) for all n which is sufficientlyf,L 
= 

K

large. It follows that !7/,L = UK, because both K and L are complete.
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If h(x) E Endo, (F), then we have that h o f = f o h. Since the Newton
polygon of f has only one segment, according to Li [4, Corollary 3.4.1] for every
h(x) E EndoL (F), h(x) == [u] o fom(x) for some m and u e Uf,L. Because
Uf L = UK and f C OK[[X]], it implies that 

Remark. When L is totally ramified over K, we can use similar argument to
prove that End(9L (F) = EndoK (F). This says that the absolute endomorphism
ring of F(x, y) is isomorphic to OK. This result can also be proved by using Lubin
[8, Theorem 2.3.2].
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