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Abstract. The main tool for studying the inflections (or Weierstrass points) of a mapping of a smooth
projective variety into projective space are the principal parts of line bundles. In recent work by
D. Cox, [2], homogeneous coordinates on a toric variety have been introduced, and in subsequent
work with V. Batyrev, [ 1 ], an Euler sequence is defined. The homogeneous coordinates and the Euler
sequence are direct generalizations of the usual notions in the case of projective space. The purpose
of this note is to use the Euler sequence to describe the principal parts of line bundles on a toric
variety (Theorem 1.2). The essential idea is to compare derivatives with respect to local and global
coordinates. Even for the case of projective space, the complete description is apparently not to be
found in the literature.

Key words: principal parts, toric varieties, homogeneous coordinates, Euler sequence, Weierstrass
points, inflections.

0. Notation

We use standard notation from analysis. If a = (al, .... an ) is a tuple of non-
negative integers, let a ! := IIf=lai! and lai := Ellai. A monomial of the form
IIi 1 ea2 will be denoted by ea. We will often write OXi in place of 010xi.

TORIC VARIETIES

As general references for toric varieties, we use [3] and [8]. Let X be an n-
dimensional toric variety associated with a fan A in an n-dimensional lattice
N ù Zn. Let M = Homz(N,Z) be the dual lattice and A( 1 ) be the set of one-
dimensional cones of A. For each p e A (1), let np be the generator of p fl N and
Dp be the associated T-invariant Weil divisor; the set of such Dp is a basis for
the free abelian group of T-Weil divisors, ZLl{I). To describe the homogeneous
coordinate ring of X introduced in [2], recall the exact sequence

where An- (X) is the group of Weil divisors modulo rational equivalence and the
map --&#x3E; An- (x) sends a divisor to its class. For each p E A (1), let xp be a
variable. There is a 1-1 correspondence between T-Weil divisors and monomials
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in the xp, namely, D = £papDp e ZA(l) corresponds with XD = Il p xap . p The
homogeneous coordinate ring of X is S = C[xp 1 p e A(l)] with grading given
by the class group, An_1(X). This means that two monomials x D and xE have
the same degree if [D] = [E] in An-l (X). For each T-Weil divisor D, there
is a coherent sheaf, Ox (D). As explained in [2], it comes from sheafifying the
An - (X)-graded S-module S(D), where S(D) is S with degree shifted by [D],
i.e., its [E]th graded part is given by S(D)jEj = S[D]+[E]- We will always be
interested in the case where X is smooth and projective. Hence, each Ox (D) is a
line bundle.

As discussed in [1], for each element 0 e Homz (An- 1 (X), 7,), there corres-
ponds an Euler formula. If f e S is homogeneous of degree [D], then it is straight-
forward to check that

The case of X = JP&#x3E;n recovers the usual Euler formula.

PRINCIPAL PARTS

Let F be an Ox -module on a smooth n-dimensional variety X over C. Let pk (F)
be the sheaf of kth order principal parts of F. We assume familiarity with principal
parts, and recall some basic facts. Some references are [4], [6], [9], [11]. Through-
out, we indentify vector bundles over X with locally free sheaves of Ox -modules.

In the case where F = F is locally free, the principal parts sheaves are locally
free, and there are exact sequences of vector bundles

where SkOX denotes the kth symmetric power of the cotangent bundle of X. We
call these the fundamental exact sequences for principal parts bundles. One uses
these sequences to get a local description of the principal parts bundles, which we
recall for the case where F = L is a line bundle. First suppose that X is affine, with
coordinate ring A = (C[xi, ... , xn], and define B = A[dxI, ... , dx,, ] where the
dxi’s are indeterminates. Then X and L can be identified with A, and the bundle
SkOx, (resp., pk (L», can be indentified with elements of B which are homoge-
neous of degree k, (resp., # k), in the dxi’s. For arbitrary X, the local picture is
similar to the affine case just described: one takes local coordinates x 1, ... , X n at
a point x and replaces A by the completion of the local ring of X at x (isomorphic
to C[[xi, - - - , x-11).

In general, for each k, there is a canonical map of sheaves of abelian groups
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These maps commute with the projections to lower-order principal parts bundles:
7rk o dk = dk-l. For T = L, a line bundle, using local coordinates as above, dk
sends a section of L to its truncated Taylor series

Composing with 7rk amounts to truncating the Taylor series one degree earlier.
Grothendieck, [4], defines differential operators so that they are represented by

principal parts bundles. A map D: F -+ 9 of sheaves of abelian groups is called a
differential operator of order  k if it factors

where u is Ox-linear. In the case where 0 = L is a line bundle, this definition is
equivalent to saying that locally, D is given by Ox-linear combinations of partial
derivative operators in the local variables.

To see the connection between principal parts bundles and inflections, let L be
a line bundle, W an (n + l)-dimensional vector space over C, and W -+ r(X, L)
a map of vector spaces. For each integer k &#x3E;, 0, we define an Ox-linear truncated
Taylor series map by evaluating global sections and taking principal parts

These maps are compatible with the projections: 7rk o §k = Ok - 1 -
Assuming 00 is surjective, there is a corresponding map

The study of inflections of f is equivalent to studying the degeneracy locii of
the §k. Let rk be the generic rank of Ok. A point x E X such that the rank of
Ok (x) drops below rk is called a kth order inflection or Weierstrass point for f.
Let U = f x e XI rk0k = rk 1. Restricting Ok to U determines a surjection onto a
subbundle of pk (L) 1 u which corresponds to a rational map

to the Grassmannian of (rk - l)-planes in IPI. This defines the kth order associated
map of f sending a point to its kth order osculating space. Using local coordinates
on X to parametrize the mapping, the point x E X is sent to the span of the deriva-
tives of the mapping up to order k.
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1. Principal parts on toric varieties

Let X be a smooth toric variety over C with s one-dimensional cones pi , ... , ps
having associated invariant Weil divisors Di = Dpi and homogenous coordinates
Xi = xPi for i = 1,..., s. We want to describe the principal parts of line bundles
on X. Let

where the ei are indeterminates. Take symmetric powers to define

with basis consisting of monomials in the ej’s of degree k.

DEFINITION 1.1. If D is a T-Weil divisor, the bundle of kth order homogeneous
principal parts of Ox(D) is

As an analogue of the projection of principal parts, 7rk, define the Ox-linear
map

The map cr is not generally surjective, but we will see that like the standard
projection, its kemel is Sk 0 X @ 0 x (D). It is surjective, however, in the case
where k = 1 and D = 0. The resulting exact sequence has been called by [1] ’the
generalized Euler exact séquence :’

For example, if X == JP&#x3E;n with homogeneous coordinates xo, . - . , Xn and correspond-
ing divisors Do,..., Dn, we can can identify An- 1 (X ) with Z so that ai is deter-
mined by sheafifying the map



31

This gives the standard Euler sequence on projective space. For a general X, the
map cri will be determined by a matrix, as above, but with many rows: one for each
Euler formula on the toric variety.

In the case of X = ]Pl, the Euler sequence is exactly the fundamental exact
sequence for principal parts with = 1 and D = 0, [5]. A complete description
of pk (OX (d) ) and the fundamental exact sequence for a range of values of k may
also be described using the Euler sequence (cf. Sect. 2). The main purpose of this
note is to generalize these ideas to the case of toric varieties.

To begin to compare homogenous principal parts on a general toric variety with
the standard principal parts, consider the map

For each divisor D, the sheaf Ox (D) is naturally a subsheaf of the constant sheaf
on CC[xtl , ... , x;l] (see the definition of Ox (D) in [2]). Hence, for each D, the
map just described induces a differential operator of order k

To verify that âk is a differential operator, note that on a standard affine open set,
the operators axi which do not come directly from the coordinates can be written
as combinations of those that do by using Euler formulas (cf. Sect. 0). In detail,
let U be a standard affine open set and assume that xl, ..., xn are coordinates. The

sheaf Ox (D) is the set of elements of degree [D] in C-[x 1 , ... Xn, xn+1, ... , 1 xs
(cf. [2]). Take [D,+,], ... [D, ] as a basis for An_1 (X ), and take the dual basis,
On+ 1, - - - , os, for Homz(An-1 (X), 7,). For f E O x (D) (U), the Euler formulas of
Section 0 can be written (solving for 0,,j)

(The reader may find the exact description of SkY(D)(U), given in the proof of
Theorem 1.2, useful in understanding the remarks just made.) Hence, using the
above formulas, âk can be described using only partial derivatives with respect to
the coordinates.
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The universal property of principal parts bundles says there is an Ox-linear
map Uk factorizing ôk through the canonical differential operator dk

Finally, to make the projections Uk and 7rk compatible with the maps Uk, define

Although T involves partial derivatives with respect to the Xi, it is Ox-linear. If f
is homogeneous of degree [E] = £§=j ai [Di], then

Hence, T is just multiplication by degree.
We can now state the main theorem:

THEOREM 1.2. For each k &#x3E;, 0, there is a commutative diagram with exact rows

The bottom row is the fundamental sequence for principal parts bundles. Since 7rk
is surjective, pk (Ox (D ) ) is the pullback of Uk and Tk-l 0 Uk- 1 . (See Section 2 for
remarks about cases where Uk is injective.)

Proof. We will first show that the right-hand square of the diagram commutes.
Since pk(OX (D» is generated by the image of dk and dk is compatible with the
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projection, 7rk, it suffices to show that Uk o ôk = Tk-l 1 o âk-1 1

We now take local coordinates to check that the induced map between ker ork
and ker 7rk is an isomorphism. Let U be a standard maximal affine open set of X.
We may assume that x 1, ... , zn correspond to one-dimensional cones spanning
a maximal cone in the fan for X and that U is the corresponding affine subset.
Take the primitive lattice points on these one-dimensional cones as a basis for N,
the dual basis for M, and [D,+ 1 ], ... , [D, ] as a basis for An _ 1 (X ) . The exact
sequence, (1), for An_1 (X) becomes

for some matrix C = [Cn+i,j] 1 is-n, 1,j_n-
According to [2], if E is a T-Weil divisor, then 1’(U, Ox (E» is the set of

elements of degree [E] in the localized ring C[XI, ... , XS]Xn+l°O’Xs’ Since linearly
equivalent divisors give rise to isomorphic line bundles, we may assume that
D = an+IDn+1 + - ... + asDs for some integers a2. Hence, the affine coordinate
ring on U is

Also, letting we have

and
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To make the kemel of ak apparent, it is convenient to change e-variables, letting

It follows that f(U, SkY(D)) == XD (i==l BZi)k, and since [Di] == j==n+l cj,i[Dj]
for 1 = 1,..., n, we get that

Hence, the kemel of Uk consists of polynomials of z-degree k in xD B[ZI, ... , zs]
which do not involve any of the zi with i &#x3E; n.

We identify pk (OX (D» 1 u with the elements ofdegree k in B [dwl,... , dWn],
thinking of the dwi’s as indeterminates. For xD f (WI, ... , Wn) E 1’(U, Ox (D» =
xD B, the map dk gives the truncated Taylor series expansion of f,

The kemel of 7rk is the set of polynomials of degree exactly in the dwi’s. We
will be finished if we show that for each a e Z’ with lai = k, the map Uk sends
the monomial dw’ to the corresponding monomial in the kemel of uk, namely,
xD zQ. A priori, we know that Uk maps the kemel of 7rk to the kemel of Ok, so
Uk (dwQ) has no terms involving z2 with i &#x3E; n. Thus, we just need to check the
coefficients of terms only involving zi with i , n.

Using a standard identity from analysis,

For each q = (qi , ... , i ’Yn 0, ... , 0) E Z so with l’YI 1 = k, we need to find the
z’*-term in the above expression. In 8k(xD{3), this term is



35

(A note to help see that the second line in the above computation follows from the
first: Recall that each z2 is a homogenous linear combination of the ej’s. Hence, to
find the zy-term, we only need to consider partial derivatives, axi , with i , n.) Now
note that since 0  a and lai = 1-yl, the final expression is zero unless 0 = a = q.
Thus,

as required. 0

2. Discussion

1. TAYLOR SERIES/ASSOCIATED MAPS

We define Taylor series maps with respect to the homogeneous coordinates on
the toric variety, X, and compare them with the usual notion (cf. Sect. 0). Let
W---&#x3E;r’(X, Ox (D) ) be a map of vector spaces over C By evaluating global sections,
define the Ox-linear map

There is a commutative diagram expressing the compatibility of Oh with the usual
truncated Taylor series map

If Uk is injective, then the ranks of Oh and §k are the same at all points of X.
Thus, k can be used to measure inflections: if W maps to a set of globally
generating sections of Ox (D), the kth order inflections of the corresponding map,
X-&#x3E;IP’, are exactly the points where §§§ drops rank. The following proposition
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gives a sufficient condition for the injectivity of Uk -

PROPOSITION 2.1. Using the notation of Section 1, the map Uk is injective
provided that the classes, [D - Di, Dil] are nonzero for all il, ... ii E
sl andfor Ê = 0,..., k - 1.

Proof From the definition of S£Y(D) and the fact that 7-£ is multiplication by
degree, it follows that 7£ is injective provided that [D - Di, - Dil] are nonzero
for all il, ... , i£ E {l, ... , s }.

Theorem 1.2 implies that U£ is injective provided that ui- and 7-Ê-1 are injec-
tive. The result follows. D

For instance, on Ipn with Ox (D) = Ox (d), the map Uk is injective if k x d or
if d  0. (For more on this point, see II, below.)
We can define variants of Uk and oh so that inflections can be measured using

homogeneous coordinates even in the case where Uk is not injective. First, define
the differential operator of order k :

(Compare this with 8k of Section 1, where we only took derivatives of order exactly
k in the homogeneous coordinates.) The Ox-linear map corresponding to 6-k via
the universal property of principal parts bundles is

Using the Euler formulas from Section 0, it is straightforward to check that U,k
is always injective. Defining oh := (D k ooh we get a ’Taylor series’ map and a
commutative diagram 

Now, the ranks of §k and Oh are the same at all points of X. This idea was used
in [ 12] to define inflections of toric mappings using homogeneous coordinates.
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II. PRINCIPAL PARTS ON PROJECTIVE SPACE

Let X = IP’ and Ox (D) = Opn (d) for some integer d. The commutative diagram
in Theorem 1.2 can be written

The surjectivity of the upper row can be checked in local coordinates. The map
Tk- 1 is multiplication by degree, d - k + 1. Since uo is an isomorphism, it follows
from the five-lemma that all the Uk are isomorphisms for k = 1,..., d. When
k = d + 1, the map Td is multiplication by zero and ud+ 1 is not an isomorphism.
If d is negative, then Uk is an isomorphism for all k.
We have identified pk ( Opn (d) ) as a direct sum of line bundles in the case where

k 5 d or d  0. In the case where &#x26; &#x3E; d, it follows from Theorem 1.2 that

where the bundle Qk is given as

In particular, Qd+ 1 = Sd+ 1 Opn @ Opn ( d). It also follows that for k &#x3E; d there are

exact séquences

It would be nice to know more about these bundles, Qk.
Note. In [10] it had previously been noted that pk(O(d» - 0(d - k)ED(k+l)

on IP’ for 5 k 5 d.

III. PRINCIPAL PARTS OF PROJECTIVE BUNDLES

In [ 11 ], a description of principal parts on projective bundles over arbitrary schemes
was given. We recall this description here in an extended form. Let E be a vector
bundle of rank n + 1 over a noetherian scheme S. Let P = P (E) be the projective
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bundle of one-dimensional quotients of E with projection u : P - Sand universal
quotient bundle 0(oo). (For example, if E is a trivial bundle over a field S = k,
then P ÉÉÉ P? .)

To describe the principal parts of 0 ( [) , we use the Euler sequence on P, which
we write as

where Ep := u*E. Define a map

Tensoring by 0(£) gives a map which we also denote by ek

(This map is essentially Ok from Section 1.)

THEOREM 2.1. Let k # 0 be an integer, and assume that the characteristic of the
residue field at each point of S is zero or greater than k; then there is a commutative
diagram with exact rows

The bottom row is the fundamental sequence for principal parts bundles. The
map vk is an isomorphism when k $ d or when d  0.

In [ 11 ], this theorem is proved only for the case k  d. Using the ideas presented
in this paper, the result can be extended to the case d  0.

IV. DIFFERENTIAL OPERATORS ON TORIC VARIETIES

We have given a description of pk (Ox (D» on a toric variety. Thus, taking duals
- applying ’Hom( - , Ox) to Theorem 1.2 - should give a description of the dif-
ferential operators D : Ox (D) -+ Ox. I. Musson, [7], has described these ’twisted’
differential operators on a toric variety, and it would be interesting to compare our
results.
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