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0. Introduction

Let X be a projective algebraic variety over an algebraically closed field of char-
acteristic zero. Suppose that an affine algebraic group G acts transitively on X;
such varieties are called flag spaces. Let Tx denote its tangent bundle, with sym-
metric algebra S* (7-x). Then, the cohomology groups HZ (X, Tx ) vanish for i &#x3E; 1.
The complex analytic version of this result was proved by R. Bott in 1957, using
Kodaira’s vanishing theorem, [Bott] Theorem VII. By Serre’s GAGA principle, the
algebraic version follows immediately. In the late seventies, R. Elkik showed that
Hi (X, y’(7x)) vanishes for all i &#x3E; 1, using Grauert-Riemenschneider’s vanishing
theorem. This implies readily Bott’s result.

By Kodaira-Spencer theory, the vanishing of H1 (X, Tx ) implies that complex
flag varieties admit no local deformation of their complex structures. In other words,
for any continuous family of complex varieties Xt parametrized by a complex
manifold T, with Xt topologically isomorphic to X for all t, and Xo analytically
isomorphic to X, then Xt is analytically isomorphic to X in a neighborhood of
OET.

Another application of this vanishing theorem is to show that every regular
function on the cotangent bundle of X is the symbol of a differential operator on
X with regular coefficients. This result is basic in the theory of D-modules on
flag varieties. It is easy to find examples of varieties where the vanishing theorem
fails, for instance the plane minus a point. It is harder to find algebraic varieties
where the correspondence between symbols and differential operators ceases to be
well-behaved. However, moduli spaces of vector bundles over curves provide such
examples, see [BK].

One can look for a more general vanishing theorem, namely find conditions on
a line bundle L over a flag variety X such that I-I’(X, L (8’) S (7-x» = 0 for all i &#x3E; 1.
This property holds if L is globally generated. B. Broer has given a characterization
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of all line bundles, for which this vanishing result holds, [Bro] Theorem 2.11. This
generalized vanishing theorem has further applications in representation theory,
see [Bry].

With these motivations in mind, we consider here a class of G-varieties X called
regular varieties; see 2.1. Regular varieties were defined separately in [BDP] and
[Gin]. In this article, we show that both definitions coincide, see 2.5. Regular
varieties need not be homogeneous for a group, but they must be smooth and
contain an open G-orbit, say Ç2. In fact, complete regular varieties must contain an
open B-orbit for a Borel subgroup B of G; such varieties are called spherical. The
wonderful compactifications of symmetric spaces and all smooth toric varieties are
examples of regular G-varieties.

The divisor D := X B Q is called the boundary of X. Since X is regular, D
has only normal crossings. The action sheaf Sx is the subsheaf of Tx made of all
vector fields tangent to D, i.e. preserving the defining ideal of D. The regularity of
X implies that Sx is locally free, and coincides with Tx on Q.

When Q is proper over an affine variety, we show that HI (X, L 0 S’ (Sx» vanish
for all i &#x3E; 1 and for all globally generated line bundles L on X, Theorem 3.2. Our
hypothesis is satisfied if the isotropy groups of Q are reductive. Hence, our result
holds for smooth toric varieties, and for wonderful compactifications of symmetric
spaces as well. For smooth toric varieties, it reduces to a known vanishing result on
the cohomology of globally generated line bundles. Our hypothesis is also verified
if X is a flag variety, and hence Theorem 3.2 implies also Bott’s and Elkik’s
vanishing theorems for flag varieties, and their twists by line bundles, see 3.7.

Our vanishing theorem combined with subsequent work of F. Knop [K3] has
several useful applications for regular varieties:

(o) Local rigidity of the complex structure of X relatively to the class of the divisor
D.

(i) A general characterization of regular G-varieties X which are homogeneous
under their automorphism groups. The criterion is that every irreducible G-
stable divisor is numerically effective, see 4.1. A striking example is that the
wonderful compactifications of symmetric spaces of rank one are homoge-
neous varieties for an overgroup.

(ii) If a projective regular variety X is Fano, then Hz (X, TX ) = 0 for all i &#x3E;, 0; in
particular X is locally rigid, see 4.2.

(iii) A good correspondence between symbols and differential operators coming
from the group action, see 4.3.

Our vanishing result does not always hold if we replace Sx by the whole
tangent sheaf to X. Indeed in 4.4, we give examples of varieties X, regular for
G = SO(2n + 1), made of only two G-orbits and for which H1 (X, Tx) = k 2n+l
and 1-12 (X, TX ) = 0. Hence, these varieties admit many local deformations of their
complex structures, yet they do not admit deformations preserving the class of their
boundary divisor.



3

Our main motivation to prove the vanishing Theorem 3.2 was to study the
category of modules M over the sheaf Dx of differential operators on X. In

particular, we wanted to find appropriate conditions on X and M, to ensure that
M has no higher cohomology and is generated by global sections, as in the work
of Beilinson-Bemstein for flag varieties, see [Bien]. We have found conditions that
are still unsatisfactory to our liking, so we did not include them in this article.
We proved the vanishing Theorem 3.2 in the autumn 1991. At that time, we had

evidence, and conjectured, that our assumption that Q is proper over an affine, was
not necessary to prove the vanishing theorem for regular G-varieties. Inspired by
our result, F. Knop proved in 1992 a generalized version of this vanishing theorem
which applies in a suitable sense to all G-varieties, see [K3]. His version relies on
a careful study of the group action, while our version follows a more geometric
approach.

1. Preliminaries

All our geometric objects are defined over an algebraically closed field k of char-
acteristic zero. All varieties and subvarieties are irreducible. Let us recall first a

fundamental vanishing theorem.

KODAIRA VANISHING THEOREM 1.1. Let X be a smooth projective variety,
with canonical bundle wx, and let L be an ample line bundle on X. Then H’(X, L 0
wx) = 0 for Z’ &#x3E; 1.

Varieties arising from homogeneous spaces of linear algebraic groups tend to
have a negative canonical bundle. They are often Fano, i.e. their anti-canonical line
bundle cvXl is ample. Hence in the above theorem, the tensor product with w x
helps to obtain a vanishing result for line bundles that fail to be ample.

To state the Kawamata-Viehweg vanishing theorem, we present a few defini-
tions. Further details can be found in [KMM]. Let X be a normal variety; consider
a Cartier divisor D on X, and a reduced, irreducible complete curve C G X.
We define the intersection number (D - C) as follows: denote by 7r: C 2013 C the
normalization, then (D - C) is the degree of the line bundle -ff * (Ox (D) 1 C) on C.

DEFINITION 1.2. A Cartier divisor D in X is numerically effective, or nef for
short, if (D - C) &#x3E; 0 for any reduced, irreducible curve C C X .

Suppose now that X is a complete, normal variety. For any Cartier divisor D
on X, the Iitaka dimension of D is by definition the integer k such that there exists
a, b &#x3E; 0 and c e N&#x3E;o for which the following inequalities hold for all m G N
sufficiently large:
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This integer k is denoted by K(D).

DEFINITION 1.3. A divisor D E DivX is called big if K (D) = dim X.

A nef divisor is big if and only if its self-intersection number (Dn t is positive,
where n = dim X, see e.g. [Vie] 3.2. Clearly, any ample divisor is both nef and
big. The converse does not hold in general; for instance, let X be the blowup of 1pn
at one point, and let D be the pull-back of the hyperplane line bundle on IP n then
D is big and nef, but not ample.
A Q-divisor D on a normal variety X is a formal finite sum D = E ai Di where

ai are rational numbers, and Di are irreducible divisors. For any rational number
a, we denote by [a] the largest integer n such that n  a (the integral part of a).
We set: (a) = a - [a] (the fractional part of a) and [a] = -[-a] (the round-up of
a). We then set: (D) = E (ai) Di (the fractional part of D) and rDl = E [ai] Di
(the round-up of D). There are obvious notions of nef and big Q-Cartier divisors.

KAWAMATA-VIEHWEG VANISHING THEOREM 1.4 ([KMM] 1-2-3, [Viel]
Theorem 1). Let X be a projective, nonsingular variety. Let D be a Q-divisor on
X satisfying:

(i) D is nef and big,
(ii) the fractional part (D) has support with only normal crossings.
Then

Since ample line bundles are nef and big, this theorem implies the Kodaira
vanishing theorem.

2. Regular G-varieties

2.1. DEFINITIONS

We continue with the previous notation. Let X be an algebraic variety on which
a connected affine algebraic group G acts with an open dense orbit Q. Then X is
called regular if it verifies the following three conditions (see [BDP]):

(i) The closure of every G-orbit is smooth.
(ii) For any orbit closure Y i- X, Y is the transversal intersection of the orbit

closures of codimension one containing Y.
(iii) The isotropy group of any point p E X has a dense orbit in the normal space

to the orbit G - p in X.

It follows from (i) that X is smooth, and from (ii) that G has only a finite number
of orbits in X. Denote by Ç2 the open orbit. Let H be the isotropy group in G of a
point of 9; then Q -- G/H. The set D := X B Q is called the boundary divisor of
X ; let XI, ... , Xl be its irreducible components.
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Here are some examples. JP&#x3E;n, the n-dimensional projective space with the stan-
dard action of the torus G = (Gm) n is a regular variety; so is every smooth toric
variety. The table below contains a list of examples for which G is almost simple, X
contains exactly two G-orbits, and the open orbit Ç2 is affine; see D. Ahiezer, [AI]
Table 2. Note that the list consists precisely of completions of rank one symmetric
spaces, plus two exceptions, up to covering.

Here Gr(d, m) denotes the Grassmannian of d-planes in km. P =Gr(l, n + 1),
and (Ipn)* =Gr(n,n + 1) denotes the same projective space with contragredient
action of PGL (n + 1). Q(n) denotes the quadric z2 = Ei lzi in JP&#x3E;n. SO(n) acts on
Q(n) by [zo : z’] e [zo: i gz’] for z’ e kn and g e SO(n). The right hand column
refers to the parabolic subgroup of G which stabilizes a point of the closed orbit.
Pi, resp. Pi,j, denotes the parabolic subgroup obtained by adjoining all simple root
subgroups to a Borel subgroup, except for the root subgroups corresponding to the
simple roots i, resp. i and j. The order on the Dynkin diagram is taken to be the
standard one, with arrows placed on the right hand side and pointing to the right,
except for SP(2n) for which they point left. Note that P is a maximal parabolic
subgroup, except in the first case, i.e. Ipn x (Ipn)-. Note that Q(4) is the regular
completion of SL(2) - SO(4)/SO(3).

Finally two examples of non-regular varieties:
X=IP’ with the standard action of the additive group Gà is not a regular variety,

because G,, acts trivially in the tangent space to the fixed point. Note that the
symmetry group Ga is unipotent, hence this case would not have been included in
our study, anyway.
X = A2 with the standard action of SL(2) is also not a regular variety. Indeed

A2 contains two orbits: {0} and its complement A2 B {O}. Since there is no orbit
of codimension one, X cannot be regular. On the other hand, the blow up of A2 at
the origin is a regular variety for SL(2).
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2.2. RELATIONS WITH SPHERICAL VARIETIES

A G-variety is called spherical if a Borel subgroup B of G has an open dense orbit
in X. The second author and E. Vinberg have shown that spherical varieties contain
only a finite number of G-orbits, and even a finite number of B-orbits.
A color in a G-variety X is an irreducible B-stable divisor containing a G-orbit,

but which is not itself G-stable. For example, take G = SL(2) with the natural
action on X = A2, then the point 0 is a closed G-orbit. Let B be the subgroup of
upper triangular matrices; it preserves the x-axis which contains the origin. Yet,
the x-axis is not G-stable, hence X has one color. A G-variety is said to be without
color if every irreducible B-stable divisor containing a G-orbit is itself G-stable.

In order to describe regular varieties, let us review a result on the local structure
of spherical varieties. Let X be spherical, and let B be a Borel subgroup of G. Let
Qo be the open orbit of B in H. Put

Then P is a parabolic subgroup of G containing B. Let N denote the unipotent
radical of P. According to [BP] Proposition 3.4, if X has no color, then Xo is open
in X and stable by P. Moreover, there exists a closed subvariety Z in Xo, and a
Levi subgroup L in P such that:

(a) Z is stable by L, and the derived subgroup (L, L) acts trivially on Z,
(b) The natural morphism N x Z -- Xo, given by the group action, is an isomor-

phism.

The torus L/ (L, L) acts in Z with an open dense orbit. Let A be the image of this
torus in the automorphism group of Z; then Z = A is a toric variety for A. Since
X has no color, every G-orbit in X meets Z in a single A-orbit.

The rank of X, denoted by rk(X), is by definition dim(A) = dim(Z). If X
contains a projective G-orbit Y, then rk(X) equals the codimension of Y in X.

PROPOSITION 2.2.1. Let X be a complete and smooth G-variety. Then X is
regular if and only if it is spherical and without color.

Proof.  Suppose X is spherical and without color. Consider the open affine
chart described above: N x Z /+ X. Then Z is a smooth affine variety, toric for
L/ (L, L), with a fixed point o. It follows that Z is isomorphic to affine r-space
(r = rk(X)) with the standard action of the r-dimensional torus. Clearly, Z is
regular for A, or L. Because any G-orbit in X meets Z transversally along a single
L-orbit, X is regular for G.

=&#x3E; Suppose X is regular, complete and smooth. Theorem 1.4 in [BLV] asserts
that if X is a normal G-variety and z E X is any point lying in a projective G-orbit
in X, then there is an open affine neighborhood of z isomorphic to N x Z, where
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N is the unipotent radical of a parabolic subgroup P opposite to the stabilizer Gz,
and Z is an affine subvariety of X, containing z and stable by the Levi subgroup
L = P n Gz. If X is smooth, then so is Z. Moreover, we can identify the normal
space to the orbit G - z at z with the tangent space Tz Z.

In our case, by condition (ii), the representation of Gz in this normal space
decomposes as a direct sum of one-dimensional representations. Moreover, (iii)
implies that the corresponding characters of Gz are linearly independent. Therefore,
the Levi subgroup L of Gz acts on Tz Z with a dense orbit, and its derived subgroup
(L, L) acts trivially. Hence a very special case of Luna’s slice theorem implies
that Z is L-isomorphic to Tz Z, and hence that Z is a toric variety for L/ (L, L).
It follows that X is spherical. Moreover, there are no colors since every L-stable
divisor in Z is the intersection of Z with a G-stable divisor in X.

COROLLARY 2.2.2. A homogeneous space for G admits a regular completion if
and only if it is spherical.

Proof. If X is a regular completion of a homogeneous space, then Proposition
2.2.1 asserts that X is spherical. Therefore the underlying homogeneous space is
also spherical.

Conversely, given a spherical homogeneous space Ç2, its completions without
color correspond to subdivisions of its cone of valuations, [BP]. There exists a
regular subdivision, i.e. a subdivision such that every cone is generated by part of a
basis of the lattice, see [KKMS] Chap. I, Sect. 2, Theorem 11. The corresponding
toric variety is smooth, therefore so is the completion of Q, according to the above
result of local structure.

2.3. ACTION SHEAF OF A REGULAR VARIETY

From now on, we suppose that X is regular and complete, with a normal crossing
boundary divisor D = X U X2 U ... U Xl .

Let Tx denotes the tangent sheaf to X, and let 1 be the ideal sheaf of D. The
action sheaf SX of X is the subsheaf of TX made of vector fields tangent to D, i.e.

Another notation for the action sheaf Sx is Tx ( - log D), and it is then called
the logarithmic tangent bundle. Choose local coordinates x 1, ... , xn on X, n =

dim(X), such that D is defined locally by the equation xl - X2 - - - - - Xl = 0.
Set 9i = 0/ axi. Then, the vector fields x 101, ... Xl al, 81+1 , ... , an form a local
Ox-basis of Sx. Therefore, Sx is a locally free Ox-module of rank d. The Lie
bracket of vector fields induces a Lie algebra structure on Sx.

Let g be the Lie algebra of G. The G-action on X gives a canonical morphism

Observe that G preserves each component of the boundary of X, since such a
component is the closure of a G-orbit. Consequently, the image of op lies in the
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action sheaf Sx. Recall from Section 2.2 that Xo denotes the union of all B-orbits
open in the corresponding G-orbits. We have Xo -- N x Z, where Z is a smooth
toric variety for the torus A.

PROPOSITION 2.3.1.

(i) There is an exact sequence of(Oxo’ P) -modules, where P acts trivially on a:

(ii) The sheaf sx is locally free, and generated by op(g). In particular, Sx is
generated by global sections.

Proof. The quotient of Xo by N exists and is isomorphic to Z. The quotient
morphism q : Xo -&#x3E; Z is equivariant for P, and N acts trivially on Z. We have an
exactsequence

Moreover, the canonical map Ox, 0 n --+ Txo/z is an isomorphism. Hence, we
obtain an exact sequence

Since Z is a smooth toric variety for A, the A-action yields an isomorphism

cf. [Oda] Proposition 3.1.
This proves (i) and (ii).

PROPOSITION 2.3.2. There is an exact sequence

REMARK. In local coordinates xl, ... , xn, we can describe the map

Proof. Let Qx denote the sheaf of regular differential 1-forms on X, and
Qx (log D) the sheaf of differential 1-forms on X with at most logarithmic singu-
larities along D, see [Dan] Section 15. Consider the exact sequence of Ox-modules:
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where the map on the right is given by residues, see e.g. [Dan] 15.7. Applying the
duality functor Homox (., Ox), we obtain:

On the other hand, the Ox -dual of the exact sequence 0 -&#x3E; Ox (-Xi) ----&#x3E;
OX -&#x3E; oxi --- &#x3E; 0 is :

Thus, Extl , (oxi, 0x) is isomorphic to Ox(Xi) Oox Oxi. Using the identity
Sx = 7-x (- log D), we obtain the proposition.

2.4. RESTRICTION TO A REGULAR SUBVARIETY

Let Y be a subvariety of X defined by the intersection of irreducible components
of the normal crossing divisor D = X U ... U XL . Re-ordering these components
if necessary, we have Y = X n ... n Xc, where c is the codimension of Y in X.
Let ly be the ideal sheaf of Y.

The normal bundle of Y decomposes as a direct sum of line bundles

Consider the total space of this normal bundle

Then, we have

and ON is naturally endowed with a gradation by NC induced by the decomposition
of Àfly as a sum of c line bundles.

Define SN to be the sheaf of all derivations 8 of Oy such that ô preserves
the gradation by Nc, and that 810y preserves the ideal sheaves of Y n xi, for
c + 1 _ i  l. In more geometric terms, SN is the sheaf on Y made of all vector
fields on N which commute with the action of (k*)C defined by the gradation by
N’, and whose restriction to Y stabilizes the subvarieties Y n Xi for c + 1 $ i  l .

There is a natural map
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given as follows. Every ô E Sx acts on the line bundles Ox (-Xi) for i = 1, ... , l .
Hence, ô maps Iy into itself, and similarly for all the powers ofly, because ô is a
derivation. Therefore, ô induces a derivation of ON, which preserves the gradation
and the subvarieties Y n xi. If moreover 6 E Iysx, then Ó(Ox) c Ty and
6(ly) C 12y. Therefore, ô acts trivially on ON,

PROPOSITION 2.4.1. We have an isomorphism Sx ] y = SN as Oy -modules.
Proof. Choose local coordinates x 1, ..., zn on X, n = dim(X), such that

D is defined locally by the equation x 1 X2 - - - - - xl = 0. Then, the vector
fields x 1 â1, ... , z181 , aL+ 1, ... , an form a local O x-basis of Sx. The kemel of
Sx 1 y --&#x3E; SN is the image in Sx 1 y = Sx /ly Sx of the derivations ô e Der Ox
such that b(ID) C ID,Ó(OX) C Iy and 6(ly) Ç I2y. Indeed, the last two
conditions are equivalent to 6(ly) C lym+’, b’m e N. Since the local equation for
Y is Xl ..... x, = 0, we see that the kemel of Sx -&#x3E; SN is generated locally by
XiXjOj for 1  i, j  c and xio9j for 1 , i  c, c + 1 , j , 1. Thus, this kemel is
exactly lysx.

The surjectivity of the map SX Y - SN follows by the same token: the images
of x 101, . - . , zc8c generate the subsheaf of SN made of Oy -linear derivations,
while the images of X c+ 1 oc+ 1 , ..., Xl al, Ol+ 1 , ... , an generate the subsheaf of SN
made of derivations induced by Oy.

PROPOSITION 2.4.2. We have an exact sequence:

Proof. By the above proposition, Sx 1 y -- SN. Every derivation 8 E SN pre-
serves Oy ç ON, and induces on it a element of Sy. Moreover, every derivation
of Oy can be trivially extended to ON. Hence, we have an exact sequence

where Der.Groy (ON) consists of all derivations of ON over Oy which preserve
the gradation.

Now, Deroy (ON ) = Deroy(SÕy(Iy/I)) = DeroySÕy EBi=1 Oy(-Xi).
The subalgebra of Deroy ( ON) which stabilizes the gradation can be identified
with EBl=1 Hom(Oy( -Xi), Oy(-X,)) Oy. 2022

2.5. EQUIVALENT CHARACTERIZATION OF REGULAR ACTION

We continue with the notation of 2.4, and bring in the group action, with associated
morphism:

PROPOSITION 2.5. X is a regular G-variety with boundary D if and only if the
image of op is Sx.
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Proof. Suppose Im(op) = Sx ; we must show that X is a regular G-variety.
Since S x and Tx coincide on X B D, the tangent sheaf to X B D is generated by
g. Therefore, X B D is a G-orbit. Let Y C X be a subvariety defined as in 2.4.1;
then Y is G-stable. The composite morphism

is surjective, hence so is Oy 0 g - SN. In particular, Oy 0 g -- SY is surjective,
thus G has a dense orbit in Y; let us denote this orbit by Ç2’. Moreover, the following
map is also surjective:

where Der.Gr denotes as before the derivation which preserve the gradation. It
follows that G acts transitively in the normal bundle to 0’ minus its boundary
divisors. Hence, the isotropy group of any point y e Q’ has a dense orbit in the
normal space to Q’ at y.

The converse implication follows by reversing the arguments in the previous
discussion.

Given a sheaf .F of O x-modules on X, the fiber of F at x E X is the vector

space F(x): = Fx/mxFx, where Fx denotes the stalk of F at x, and mx is the
maximal ideal in the local ring Ox,x. By Nakayama’s lemma, op is surjective if and
only if the induced fiber map g ---&#x3E; Sx (x) is surjective, for all x E X. The above
proposition shows that Definition 4.2.1 in [Gin] of regular G-action is equivalent
to Definition 1. 1.

2.6. IITAKA DIMENSION OF SX

For any locally free sheaf E on a complete algebraic variety Z, we define the Iitaka
dimension K(É) to be the Iitaka dimension of the tautological line bundle on the
projective bundle

Then the dimension ofr(Z, S’E) grows like mr,(E).
The following result will play a key role in the proof of our vanishing result.

Recall that rk(X) denotes the rank of X defined in 2.2.

PROPOSITION 2.6.1. For any G-stable subvariety Y of X, we have:

Note that the right hand side of this equality does not depend on Y.
Proof. First observe that for any exact sequence
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with E and 0 locally free sheaves on Y, and for any integer m &#x3E; 1, we have an
exact sequence

It follows that K(É) = r.(F) + 1. Applying this observation to the exact sequence

in 2.4.2, we obtain K(Sxly) =- K(Sy) + c. Now, the rank of Y equals
rk(X) - c, while dim(Y) = dim(X) - c. Therefore, the equality in the proposition
is equivalent to:

In other words, we can suppose that Y = X.
Let ,S’* X be the spectrum of the symmetric algebra of Sx. There is a ’moment

map’ 
,

induced by the action map op : g ---&#x3E; HO (X, Sx). Recall that Sx is generated by
global sections, see Proposition 2.3.1 above. Thus, M is proper, Sx is numerically
effective, and x (Sx ) + 1 is the dimension of the image of M. On S2, S*X coincides
with the total space of the cotangent bundle of X. Thus, our statement follows
from [K1] Satz 7.1, which asserts in particular that the dimension of the image of
it equals 2 dim(X) - rk(X) for spherical X.

A locally free sheaf E on Z is called big if K(S) is maximal, i.e. x(É) =
dim(Z) + rk(E) - 1. It is equivalent to say that the tautological fiber bundle
Op(£)(l) on JP&#x3E;(£) = Proj S» (S) is big.

COROLLARY 2.6.2. For every closed G-orbit Y in X, the sheaf S x/y is big.

2.7. INDEPENDENCE OF THE REGULAR COMPLETION

We show that the cohomology of the symmetric algebra S (S x) depends only on
the open G-orbit Q and not on the particular regular completion X.

Let X’ be another complete regular G-variety, endowed with a birational G-
equivariant morphism 7r : X’ - X.

PROPOSITION 2.7.1. For any integer i &#x3E; 1, we have: Ri7r*S.(Sxl) = 0.

Moreover, 7r*S.(SXI) = S.(Sx).
Proof. For every closed G-orbit Y, let XY be the set of x E X such that Y

is contained in the closure of G - x. Then, Xy is a G-stable open subset of X,
containing Y as its unique closed G-orbit; we will say that Xy is simple. By
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replacing X, resp. X’, by Xy, resp. 7r (Xy) , we can assume that X is simple,
with 7r : X’ -&#x3E; X birational and proper. However, X and X’ need no longer be
complete.

Then, Z (defined in 2.2) is a simple toric variety, hence affine, and Xo is also
affine. Since the translates g - Xo (g E G) cover X, it suffices to verify that:

and

Now, 7r-I(XO) equals Xb. Namely, the complement of Xi is the union of the
B-stable irreducible divisors in X’ which meet the open G-orbit; and the same
holds for the complement of 7r-1 (Xo), because 7r is an isomorphism on this open
orbit. Furthermore, the restriction of S (Sx,) to Xb is isomorphic as Ox, 0 -module
to O.,y, 0 0 S (n E9 a). Since 7r is birational and proper, and X, X’ are smooth, we
have: 7r*OX’ = O x by Zariski’s main theorem, and Ri7r*Oxl = 0 for all i &#x3E; 1,
e.g. by [B2]. This implies the result.

COROLLARY 2.7.2. For any line bundle L over X, and for any integer i &#x3E; 0, we
have an isomorphism

Proof. This follows readily from the Leray spectral sequence and the projection
formula.

That the cohomology of 9’(?x) depends only on Ç2, and not on a particular
regular completion, follows now from Corollary 2.7.2 and the fact that any two
regular completions of Q are dominated by a third one.

3. Cohomology of the action sheaf

3.1. A SEPARATION CONDITION FOR X

We continue with the previous notation. In particular, X denotes a complete,
regular G-variety, with open orbit Q (a spherical homogeneous space). To Ç2 are
associated several combinatorial objects, whose definition will be recalled below.
We will characterize those Q which are proper over an affine, in terms of these
combinatorial data.

Given a Borel subgroup B of G, let Qo be the open orbit of B in Ç2. Note that
Qo is also open in X, and hence that every B-invariant rational function on X is
constant. Since B is solvable, Qo is an affine variety, and its complement in Q is
pure of codimension one. Let D be the set of irreducible components of Ç2 B Qo.
Then D is the set of ’possible colors’ for Q.
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Each Z e D is a B-stable divisor; let vz be the corresponding valuation of
k (X ) . Let k (X) (B) be the set of eigenvectors of B in k (X), and let A be the set of
eigencharacters, also called weights, of B in k(X). Then, A is a free abelian group
of finite rank.

Note that every f E k(X)(B) is determined uniquely, up to a scalar multiple, by
its weight XI e A, because every B-invariant function in k (X ) is constant. Hence,
for any Z E D, we can define p(Z) e Homz(A, z ) by p(Z)(Xf) = vz( f ).

Let V be the set of G-invariant discrete valuations of k(X) over k. To each
valuation v E V, we can associate, as above, p(v) E Homz (A, Q) =: Q. It is
known that the map p identifies V with a finitely generated convex cone in Q, with
non-empty interior (cf. [K2] Corollary 6.3).

The following result is an immediate consequence of [K2] 5.2, 5.4 and 7.7.

LEMMA 3.1. The following conditions are equivalent:

(i) S2 is proper over an affine variety.
(ii) There is a weight f E A such that f  0 on p(D) B {O} and f &#x3E; 0 on V.

For the isotropy subgroup H of a point of S2, Condition 3.1 (i) means that H is
a parabolic subgroup of some reductive subgroup of G. In particular, this condition
is satisfied if X is a smooth toric variety, or a wonderful compactification of a
symmetric space, or a flag variety.

3.2. THE VANISHING THEOREM

THEOREM 3.2. If S2 is proper over an affine, then:

for every integers i &#x3E; 1, m &#x3E; 0 and line bundle L on X generated by global
sections.

Note that the special case m = 0 asserts that HI (X, L) = 0 if L is generated
by global sections. This result was proved by the second author [B2] Corollary
1 for any complete, spherical variety. F. Knop proved in [K3] a generalization of
Theorem 3.2 which avoids condition 3.1 (ii), but does not allow twisting by line
bundles L. We will give several applications of this vanishing result in Part 4. For
the convenience of the reader, we give here a synopsis of the proof of our theorem.

(1) Condition 3.1 (ii) implies (for projective X) that the cone of nef and effective
Q-divisors with support in D has a non-empty interior in the linear space of
Q-divisors with support in D.

(2) From Step 1, we deduce the existence of an effective Q-divisor E supported
on the whole D, such that OJP&#x3E;(s*x )(1) 0 7r*Ox(E) is nef and big, where
7r: P(S*X) - X.
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(3) The canonical bundle of JP&#x3E;(S* X) is

where n = dim(X).
(4) Let E = Ef z -- INiXi. Let N = maxf Ni,..., N£I. For Tn # 0, define:

Applying the Kawamata-Viehweg vanishing Theorem 1.4 to ,C and using Steps
2 and 3, we get:

3.3. A TECHNICAL LEMMA

LEMMA 3.3. Consider a projective, regular variety X such that Ç2 is proper over
an affine. Then the cone of nef and effective Q-divisors with support in D has a
non-empty interior in the linear space of Q-divisors with support in D.

Proof. Recall that XI, ... , XÊ denote the boundary divisors of X ; let v 1, ... , v E
V be the associated valuations. Furthermore, denote by (CZ)2EI the subdivision of
V into convex cones which is associated to X, see e.g. [BP]. Then each cone Ci
is generated by some subset of { VI , ... , vî 1. Now any Q-divisor E with support in
D defines a piecewise linear function -DE on the fan (CZ)ZEI, as follows: The value
of ’(DE at V j is the coefficient of Dj in E. This sets-up a bijective correspondence
E ---&#x3E; IF E between Q-divisors with support in D, and Q-valued piecewise linear
functions on V. We denote its inverse by P - Eq&#x3E;. By [B 1 ] 3.3, the divisor E is
nef if and only if lF E is convex and moreover VD (’*E,i)  0 for all D E D, where
P E,i denotes the linear function PEI Ci .

By assumption, there exists a linear function f such that f &#x3E; 0 on V and that
f  0 on p(D) B {0}. Moreover, because X is projective, there exists a piecewise
linear function g on V, such that g is strictly convex (this follows from [Bl] 3.3).
Furthermore, we may assume that g &#x3E; 0 on V B {0}. Namely, g is the support
function of some convex polyhedron P. Translating P (which amounts to adding
a linear function to g), we may assume that P contains the origin in its relative
interior, and then g is positive outside of the origin.
Now set -* = f + Eg with - &#x3E; 0 small enough. Then 4) is strictly convex, &#x26; &#x3E; 0

on V B {0} and VD(Pi)  0 for all i E I and all D e D such that p(v D ) # 0.
Therefore, Eqy is in the interior of the cone of nef, effective Q-divisors with support
in D.

3.4. KEY LEMMA

We denote by 1f: FI --&#x3E; X the projective bundle associated to Sx, i.e. P -

Proi S* (Sx).
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LEMMA 3.4. If S2 is proper over an affine and if X is projective, then there exists
an effective, nef divisor E, supported on the whole boundary D, such that the
invertible sheaf Op (1) 0 7r*Ox(E) is big.

Proof. Assume that for all effective, nef divisors E supported on the whole D,
the invertible sheaf Op (1) 0 7r*Ox(E) is not big. Then the intersection number

vanishes, see 1.3. On the other hand, since Op(l) and 7r* Ox (E) are generated by
global sections, we have

for u + v = dim(P) . It follows that all these intersection numbers vanish. But
any divisor with support in D is the difference of two effective, nef divisors with
support on the whole D, see 3.3. Therefore, we have

for all divisors D 1, ... , Dv with support in D. Choose a closed G-orbit Y in
X, then Y is the transversal intersection of r irreducible G-stable divisors where

r = rk ( X ) . Therefore,

that is: x(Sx 1 y)  dim(P) - r = 2 dim(X) - 1 - r, and we have a contradiction
with Proposition 2.6.1.

3.5. CANONICAL BUNDLE OF P

Recall that IF denotes the projective bundle associated to SX.

LEMMA 3.5. The canonical sheaf of IP is given by

where n = dim(X) = rk Sx.
Proof. Recall that

(see for instance [Sch] p. 139). Now, from the exact sequence in Proposition 2.3.2:

we obtain the isomorphism
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whence

3.6. END OF THE PROOF OF THE VANISHING THEOREM

Using Corollary 2.7.2 and the fact that any complete regular variety is dominated
by a projective, regular variety, we may assume that X is projective. Let E be as
in Lemma 3.4. Write

with NZ &#x3E; 0 for all i. Set N = max(Nl, ... , Ni) , n = dim(X) and

where m is a non-negative integer. Since Op( 1) and L are nef, it follows from
Lemma 3.4 above and [Sch] Lemma 1.3, 1.4, that L is nef and big. Furthermore,
rE/Nl == D by choice of N. Therefore, applying the Kawamata-Viehweg van-
ishing Theorem 1.4 together with Lemma 3.5, we get:

We conclude the proof using the fact that:

3.7. SIMPLIFICATIONS IN THE CASE OF FLAG VARIETIES

In the case where X = G/P is a homogeneous space, i.e. a flag space, then the
action sheaf S x coincides with the tangent sheaf Tx. Furthermore D is empty, and
w; 1 == Op ( n) is nef and big. Indeed, C?p(l) is generated by its global sections. To
show that it is big, observe that the associated morphism is the projectivization of
the moment map

and this map is known to be generically finite, see e.g. [Bien] IV.1.1. Note that wp1 1
is not ample in general, because the projectivization of the moment map is rarely
finite.

Therefore, for any line bundle L generated by global sections, 7r*L 0 Op(l)
is also nef and big. Applying the Kawamata-Viehweg vanishing Theorem 1.4, we
have
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This provides a direct proof of Theorem 3.2 in the case of flag spaces, and of Bott’s
theorem mentioned in the introduction.

4. Applications

4.1. AUTOMORPHISM GROUP OF A REGULAR G-VARIETY

We continue with the previous notation; in particular, X denotes a complete,
regular G-variety. Let Aut(X) denote the automorphism group of X considered as
an algebraic variety. Since X is complete, smooth and unirational, (in fact it is even
rational like all spherical varieties), the identity component of Aut(X) is an affine
algebraic group, and its Lie algebra consists of the space of global vector fields
H° (X, Tx ) (cf. [MO] Theorems 3.6, 3.7 or [Ram] Corollary 1). Using a vanishing
theorem of F. Knop ([K3] Theorem 4.1 ), we describe the G-module H° (X, Tx ).

For 1  i  1, let Y be the quotient of H° (X, Ox (Xi» modulo the line of
constant sections. Since X is spherical, the G-module Y is multiplicity free.

PROPOSITION 4.1.1. We have an exact sequence of G-modules

Proof. By Proposition 2.3.2 and the vanishing of HI (X, Sx) (see [K3] Theorem
4.1 ), we have an exact sequence:

Now, consider the exact sequence

Observe that Hl (X, Ox) is zero since X is smooth, complete and unirational.
Hence, H° (Xi, Ox(Xi)lxi) is isomorphic to Vi.

Remark. The image of g in H° (X, Tx) is contained in H° (X, Sx ), and it may
happen that this inclusion be strict. For instance, if G is a symplectic group of rank
m, and X is a projective space of dimension 2m - 1. Then G acts transitively in
X, hence X is a regular G-variety. Since the boundary D is empty, H° (X, Sx) =
H° (X, Tx ), but this latter space can be identified with the space of all 2m x 2m
matrices of trace zero, which is strictly larger than g for m &#x3E; 2. Namely, H° (X, 7-X)
is the Lie algebra of the automorphism group of X, i.e. of PGL2m (k).

THEOREM 4.1.2. For a complete regular variety X, the following conditions are
equivalent:
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(i) Aut(X) is transitive
(ii) For 1  i  1, the invertible sheaf Ox (Xi) is generated by global sections
(iii) For 1  i  l, the invertible sheafOx(Xi) is numerically effective.

Proof. (i) =&#x3E; (ii) If the group of automorphisms of X is transitive, then Tx is
generated by global sections. Therefore, by Proposition 2.3.2, the sheaf 0 x (Xi) lx,
is also generated by global sections. Now the vanishing of Hl (X, Ox) implies that
the map

is surjective, hence Ox (Xi) is generated by global sections.
(ii)=&#x3E;(iii) is obvious.
(iii)=&#x3E;(ii) follows from the fact that in a complete spherical variety, every numer-

ically effective Cartier divisor is generated by its global sections. Indeed, it follows
from [B 1 ] Section 3, that in such a variety X, numerical equivalence coincides with
rational equivalence. Moreover, in the space Pic(X) oz R, the closure of the cone
of ample divisor classes is the set of divisor classes generated by global sections.

(ii)#(1) By [K3] Theorem 4.1, we have Hi(X,S.Sx) == 0 for all i &#x3E; 1. In

particular, Hl (X, Sx) = 0. Therefore, every global section of Ox (Xi) can be
lifted to a global section of TX . By proposition 2.3.2, we conclude that Tx is
generated by global sections.

For complete regular varieties containing only two orbits, we recover the fol-
lowing result due to D. Ahiezer [A2] whose proof relied on his classification of
regular varieties with only two orbits in [A 1 ] .

COROLLARY 4.1.3. Let X be a complete regular G-variety, containing exactly
two G-orbits. Then the following conditions are equivalent:

(i) There exist regular non-constant functions on Ç2.
(ii) The normal bundle of the closed G-orbit Y in X has non-zero global sections.
(iii) The automorphism group of X is transitive.

Proof. (1)#(ii) Let f be a non-constant regular function on Q. Then f extends
uniquely to a rational function on X with a pole of order n &#x3E; 0 on Y. Thus, f
defines a global section of O (nY), which generates this sheaf on a open dense
subset of Y. Since Y is homogeneous, the sheaf Ox (nY) is generated by global
sections; hence so is N00FF, where Afy denotes the normal (line) bundle of Y. Because
Y is a flag variety, it follows that Ny is also generated by global sections.

(ii)=&#x3E;(iii) follows from the above theorem and the surjectivity of the map

(a consequence of the vanishing of Hl (X, Ox )).
(iii)#(1) is also implied by the above theorem, and the fact that every non-

constant global section of Ox (Y) defines a non-constant regular function on H.
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This corollary implies for instance that all the varieties in the table of Section
2.1 are homogeneous for an overgroup of G. It would be interesting to have a
classification of homogeneous regular varieties, or equivalently a classification of
flag varieties that are regular completions of spherical spaces.

4.2. RIGIDITY OF SPHERICAL FANO VARIETIES

The vanishing of H1 (X, Tx ) implies by Kodaira-Spencer theory that X is locally
rigid, i.e. that the complex structure of X is locally unique, see [MK]. In the relative
case (X, D), the vanishing of H1 (X, Sx ) implies that the inclusion of the divisor
D " X is locally rigid, see [Bin] for the theory of deformations of diagrams.
Hence regular varieties are locally rigid modulo their boundary, because of the
vanishing Theorem 4.1 in [K3].

In this section, we show that if X is regular and Fano, then it is locally rigid even
without group action, i.e. Hl (X, TX ) = 0. Recall that a variety is called Fano if
its anti-canonical line bundle wxl is ample. All flag spaces are Fano. The complete
symmetric varieties of De Concini-Procesi are Fano as well. For a characterization
of smooth toric Fano varieties, see [Oda] Lemma 2.20.

PROPOSITION 4.2. Let X be a regular projective Fano G-variety. Then

(i) Hi(X, Tx) = 0 for any i &#x3E; 1.

(ii) If SZ is proper over an affine, then H’(X, L 0 7-x) = 0 for all i &#x3E; 1 and line

bundle L generated by its global sections.

Proof. (ii) For any irreducible divisor Y in X, let.A/y be its normal line bundle:
Ny = Ox (Y) Oox Oy. Let Xi,..., ,Xi be the components of the boundary of
X. Put Afj - Afx,. Recall from 2.3.2, the exact sequence:

Because Q is assumed to be proper over an affine, we have Hi (X, L 0 SX ) = 0
for i &#x3E; 1, by Theorem 3.2. To prove the proposition, it suffices to show that

HI (Xj, L 0 Yj) = 0 for i &#x3E; 1. But

Now L is nef and wxl is ample, therefore L o wxl is ample. Then, by Kodaira
vanishing Theorem 1.1, we have

The proof of (i) is similar, using [K3] Theorem 4.1.
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4.3. DIFFERENTIAL OPERATORS AND THEIR SYMBOLS

Let DX be the sheaf of algebraic differential operators on the complete, regular
variety X, with boundary D. Denote by CX the subsheaf of Dx made of operators
strongly tangent to the boundary D

Since X is regular, CX is the Ox-subalgebra of Dx generated by the action sheaf
Sx. Recall that Sx is a locally free Ox-module of rank n = dim(X). The Lie
bracket of vector fields induces a Lie algebra structure on SX .

The order filtration on DX induces a filtration on CX, whose associated graded
algebra is the symmetric algebra S’ SX of the action bundle SX . This filtration
induces also a filtration on H° (X, Cx). To every differential operator p E Cx, we
can attach a symbol u(p) C S S x which is simply the image of p in the associated
graded algebra. Locally, it is clear that every symbol comes from a differential
operator, because we can study this question in an affine open set and the result
is known to hold for affine space with a union of hyperplanes as boundary. But at
the global level, we loose all explicit description in coordinates, and one can ask
whether every symbol in H° (X, S* (Sx» comes from an operator in H° (X, Cx),
in other words whether we can commute taking the cohomology of C x with taking
its associated graded. The answer is affirmative by the following result.

PROPOSITION 4.3.1. For any complete, regular variety X, we have

and

Proof. For every integer rrz &#x3E; 0, we have an exact sequence

Therefore, we get a long exact sequence of cohomology spaces

and an isomorphism
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Namely, the sheaf SI+ 1 (Sx) has no higher cohomology by [K3] Theorem 4.1.
In particular, the map

is onto for i &#x3E;, 1. Now, Co is isomorphic to O x , hence we have: Hi (X, CO = 0.
Therefore, HZ (X, CI) = 0 by induction on m, and the proposition follows.

COROLLARY 4.3.2. On any complete, regular variety X, the symbol map is
surjective.

4.4. REGULAR G-VARIETIES CAN HAVE DEFORMATIONS

In this section, we show that a regular G-variety X can admit deformations even
if it does not have any deformation keeping the divisor class of D fixed. In other
words, we shall construct regular G-varieties X such that H1 (X, SX ) = 0 but
Hl (X, 7-X) : 0. To establish the existence of deformations of their complex
structures, one needs to check that there are no obstructions, i.e. H2 (X@ Tx) = 0,
see [MK] p. 155.

Let V be a k-vector space of odd dimension 2n + 1. Let q be a non-degenerate
quadratic form on q, and choose a maximal isotropic subspace U c V, i.e. a

subspace of dimension n, such that qlu = 0. Take G = SO(V, q) = SO(2n + 1),
and P to be the stabilizer of U in G. Then P is a maximal parabolic subgroup of G
with Levi factor L - GL(n), and we have a surjective morphism f : P --&#x3E; GL(U).
Let P(U), resp. IP(U*), be the projective space of U, resp. of the dual of U. Then
P acts diagonally in F = P(i7) x P(U* ) by f and its contragredient. Let X be the
fiber product G Xp F, with projection p: X - G/P.

PROPOSITION 4.4.

(i) X is a projective regular G-variety, with only two orbits.
(ii) The G-module HI(X, Tx) is isomorphic to V = k2n+l.
(iii) Hi(X, Tx) = Ofor all i &#x3E; 2.

Therefore, X admits a 2n + 1-dimensional family of complex deformations.
Proof. (i) F is projective and smooth, hence the same holds for X. P operates

in F via its Levi factor L. F contains one open dense L-orbit consisting of the
pairs (d, H) e IP(U) x IP(U*) such that the line d is not in the hyperplane H. The
complement of this orbit: f (d, H) e P(U) x IP’(U*) Id E H} is homogeneous for
L, and has codimension one. Thus, F is a spherical variety for the Levi factor L,
with only two orbits. Because the closed orbit in F is a divisor, F has no color for
L and hence F is a regular L-variety. Consequently, X is a regular G-variety.

(ii) and (iii) Consider the exact sequence of OX-G-modules
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where R denotes the relative tangent bundle. Note that

By the projection formula, we have

Moreover, H’(GIP, TGIP) = 0 for all i &#x3E; 1 by [Bott], whence

Thus, we get an exact sequence

and isomorphisms

for i &#x3E; 2. The restriction of R to F coincides with the tangent bundle of F =

IP (U) x IP (U*). Therefore, H° (F, IZ 1 F) -- ,l (U) ED,,l (U) as GL(U)-modules, while
Hi(F, IZIF) = 0 for all i &#x3E; 1, by the vanishing Theorem 3.2 for flag varieties, see
3.7. This implies that the locally free G-sheaf p*R on G / P is associated to the
semisimple P-module ,l (U) (Dsl (U), and that Rip*R = 0 for i &#x3E; 1.

Using the Borel-Weil-Bott theorem [Bott], we check that HI (G/P,p*R) is
isomorphic to V Q9 V and that H’(GIP, p. 7?) = 0 for any i i- 1. Let ei,..., en
be unit vectors in t* =- kn, the dual of a Cartan subalgebra of g, and choose
e 1 - e2, e2 - e3,..., en-l - en, en as simple roots. Then p = (n - 2 , n - 2 , 1)
is the half sum of the positive roots. The highest weight of the L = GL(n)-module
,51 (U) -- -sl (n) is À = ( 1 , 0, ... , 0, -1 ) . Consider the dominant weights in t* of the
form w (À + p) - p, where w is an element of the Weyl group W of g. If s is the
simple reflection in the nth simple root en, then s (À + p) - p = (1, 0, ... , 0), which
is dominant and is the highest weight of V as G-module. For all other choices of
w E W, the weights w (À + p) - p are not dominant. This proves our assertion. It
follows that H1 (X, 7Z) ^-J V ® V, and HZ (X, 7Z) - 0 for i i- 1, whence (iii). In
particular, H° (X, 7Z) = 0, i.e. there are no global vector fields tangent to the fibers
of p, and H° (X, Tx) == g injects into HO (GIP, TG/ p ) .

Now, the automorphism group of G/P is actually SO(2n + 2) P SO(2n -f-1 ) ==
G. Hence, as G-module, H°(G/P, TG / p) _ so(2n+2) - ,o(2n+ 1) ED V = g Q9 V.

The action map g -&#x3E; H° (X, ’ÎX ) is an isomorphism. Indeed, one can check
using Theorem 4.1.2 that the automorphism group of X is exactly G. The above
exact sequence in cohomology translates into an exact sequence of G-modules:
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The first map is injective, for it is induced by the map from g to H°(G/P, TG / p )
defined by the G-action on G/P. Hence, V is isomorphic to H1 (X, Tx ).

The last sentence of the theorem follow by the Kodaira-Nirenberg-Spencer
Theorem, [MK] p. 155.

Note that in this example, we also have Hl (X, Vl) i: 0. Indeed, we have a
short exact sequence:

which splits canonically by evaluating elements of DX at the constant function 1.
In particular, the symbol map is always surjective for differential operators of order
 1. Thus, Hl (X, Dl ) is isomorphic to H1 (X, Tx)  V.

To complete our study of these varieties X, one can show that they are locally
rigid modulo their boundary divisors, i.e. HZ (X, SX ) - 0 for i &#x3E; 1. We cannot

use Theorem 3.2, because X does not satisfy the Condition 3.1 (ii). Indeed, using
the notation of 3.1, the cone V consists of a half-line, and Vo = 0. The set D of
possible colors for the open G-orbit in X contains three elements. Under the map
p, one is mapped inside V, the two others are mapped on the opposite half-line.
Thus, there is no weight f e A that can separate p(D) and V, and Condition 3.1
(ii) fails. However, the method of proof of Theorem 4.4 applies - with a lengthy
computation - or one can use the results of [K3] to show that HZ (X, Sx) = 0 for
1 # 1 .

4.5. REMARKS ON GLOBAL RIGIDITY

The results proved in this paper address only the local uniqueness of complex
structures on regular varieties. The question of global uniqueness of complex
structures is quite different, and in fact, uniqueness does not hold in general. Except
for special cases such as projective spaces, flag varieties admit many homogeneous
complex structures. Thé number of these is, however, finite.

Let k be the field of complex numbers, and let K be a maximal compact
subgroup of G. Borel-Hirzebruch have shown that the K-homogeneous complex
structures on varieties of complete flags are in bijection with elements of the Weyl
group of K, see [BH] 13.8.

Let us explain how to construct these complex structures. Let M be a Cartan
subgroup of K, let W be the Weyl group of K, and let B be any Borel subgroup of
G containing M. Then, the flag variety of G can be written as X = KIM -- G/B.
This presentation equips X with the complex structure of a complex homogeneous
space for G.

There are exactly W ( such Borel subgroups: fwbw-llw e W}, hence one
could think that the complex varieties G / (wBw-l) are the ones of Borel-

Hirzebruch’s result. However, all the varieties G/(wBw-1) are isomorphic to
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X = GIB. Indeed, G acts on them, and B has a fixed point by Borel’s fixed point
theorem. Therefore, they are isomorphic to G/B.

To obtain a K-equivariant almost complex structure on K/M, it suffices to
have an M-equivariant linear transformation J of order 4, of the complexified
tangent space TeM(K/M)c such that the only eigenvalues of J are i and -i, and
the corresponding eigenspaces T+ and T - (the holomorphic and anti-holomorphic
tangent spaces) are of equal dimension. Now,

where t is the Lie algebra of T, the complexification of M, and (D is the root system
of T in G. Moreover, this complex structure is integrable if and only if t (D T+ is a
Lie subalgebra of g.

J commute with the action of M if and only if T+ and T - are direct sums of
root spaces, because all the roots of M are distinct. We can then choose t Q9 T+
to be the Lie algebra of any Borel subalgebra containing t, namely Ad(w)b, for
w e W. Using the group K to spread this choice of holomorphic tangent space all
around K/M, this yields a K-equivariant complex structure on K/M.
The W complex structures on K/M mentioned above are obtained this way.

One checks that these complex structures are also Kähler. They are pairwise distinct,
since they have distinct Chem classes in H2 (X, z ) , see [BH] Sect. 10. Nevertheless,
these complex structures are equivalent under the group of diffeomorphisms of X
induced by the right action of W on K/M. W acts transitively on the set of Borel
subgroups containing T.

For varieties of partial flags, this equivalence might fail due to the fact that
parabolic subgroups having a given Levi subgroup may not be conjugate by G.

It is worth observing that only one of the complex structures constructed above
admits G as a group of complex automorphisms, namely the complex structure
corresponding to the choice of t + T+ = b at the origin of G / B. Indeed, all other
choices for T+ are not B-stable, hence they do not yield a G-equivariant complex
structure.

The structure defined by t + T- = b- corresponds to the complex conjugate
variety. It admits G as group of anti-holomorphic automorphisms.

It would be very interesting to have further finiteness results on the global
moduli spaces of regular varieties.
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