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Abstract. An algebraic/arithmetical proof of irreducibility over the algebraic closure of Q is given
for the polynomial -03A6n, (x, c) whose roots are the periodic points of least period n of the dynamical
system x -+ f (x, c), where f (x, c) is a polynomial in Z[x, c] satisfying several conditions, the most
important being that the primitive n-bifurcation points, the complex values of c for which two n-
orbits coincide, are distinct. A similar condition modulo p implies irreducibility of lfn (x, c) over the
algebraic closure of the finite field Fp having p elements. The genus of the curve C : lfn (x, c) = 0 is
computed, along with the genus of the curve ân (x, c) = 0 defined by the multipliers of period n orbits.
The genus of the latter curve is shown to be greater than or asymptotic to ((k - 1 ) / (2k) - 1 /n) kn ,
as n - oo, where k = degx f, This fact is used to prove the main result: for the polynomials
f (x, c) under consideration, and for large enough n, there are only finitely many cyclic extensions
N = L(O) of degree n of a given number field L for which 0 - f (0, a), with a in L, is a generating
automorphism of Gal (N/L).
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1. Introduction

If F is a field and f (x) e F[x], then the properties of the polynomial

introduced in [20], [13] and [3] (when f (x) is quadratic; see also [14]), have
importance for the dynamical system defined by the map z - f (x) on the algebraic
closure of F. All the periodic points of the map f having minimal period n are
roots of q&#x3E; n (x). In certain exceptional cases some of the roots of 03A6n (z) can have
a minimal period less than n. Because of this, 1 will use the terminology of [14]
and call the roots of 03A6n(x) the periodic points of f of essential period n. The
polynomial 03A6n (z) is analogous to the n-division polynomial on an elliptic curve
(see [18, p. 105] and [14]).

If f(x, c) is a polynomial in F [x, c], then the equation 03A6n(x) = 03A6n (z, c) = 0
defines an algebraic curve. In this paper 1 use properties of this curve to prove

* 
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a finiteness theorem on the number of cyclic extensions of a given degree over
a fixed algebraic number field which can have a generating automorphism of the
form B -3 f (0, a), for some primitive element 0 and some constant a (in the
ground field) depending on the extension, and for polynomials f of a certain form
(see Theorems B-E below). In this situation the polynomial f (x, a) is called an
automorphism polynomial for the cyclic extension. Like the results of [11] and
[ 12], which consider quadratic polynomials f and cyclic extensions whose degrees
are 3 or 4, the underlying idea is to take a noncanonical approach and see what can
be said about algebraic number fields which correspond to a given automorphism
polynomial. Though the class of polynomials considered is somewhat limited,
for technical reasons, the methods are potentially applicable to larger families
of polynomials. The main result can be viewed as evidence for an interesting
connection between complex dynamics and Galois theory.

In order to prove this finiteness result, it is necessary to know if the polynomial
I&#x3E; n (x, c) is irreducible. For the map f (x) = x2 + c, this has been answered in the
affirmative by T. Bousch [3]. Using ideas from complex dynamics, Bousch [3] has
shown that -03A6n (x c) is indeed irreducible over C [c] and has computed its Galois
group over this field. We note that his results easily imply the truth of conjecture
2(b) of [13] for the case k = 2, which states that the Galois group of -b,, (x, c)
over Q[c] is isomorphic to the wreath product of the cyclic group Z/nZ by the
symmetric group Sr, where r = (deg 03A6n(x, c))/n. (These and more general results
have also been obtained by Schleicher and Lau [17], [10], by a different method.
See the discussion below.)

In this paper we first consider the question of irreducibility of the polynomials
lfn (z) over Q (the algebraic closure of Q) when f (x) = f (x, c) is a homogeneous
polynomial of degree k &#x3E; 2 satisfying several simple conditions. In our general-
ization we follow the outlines of Bousch’s proof, but at several steps replace the
analytic or dynamical argument given by Bousch by an algebraic argument. (For
k &#x3E; 2 we also need to prove several lemmas that are not necessary in the case k = 2
considered in [3].) In this way we are able to isolate the analytic properties required
to prove irreducibility to a single, easily computable statement about the factors of
the discriminant of 03A6n (x). We also simplify Bousch’s argument by eliminating the
use of Zsigmondy’s theorem [3]. In addition, the techniques we introduce allow us
to prove irreducibility of 03A6n (x) over the algebraic closure of FP, for a specific set
of primes p depending on f and n (see Section 5).

In order to state the theorem which results from this algebrization of Bousch’s
argument, we recall the following definitions and facts from [15]. If R is any
integral domain and f (x) in R[x] is monic, let ai be a periodic point of f with
essential period n, and define the polynomial Aj (z) by
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If 0152i, ... , 0152r are representatives of the orbits of roots of 03A6n (x), counted with proper
multiplicities, then it is clear that

where r is the number of orbits, and

(These facts are easiest to prove by first assuming that f is a generic polynomial
over Q and then specializing. See [13], Theorem 2.5. I am also grateful to Jacob
Sturm (private communication) for his remarks in this regard). As usual, define
the multiplier of the orbit containing ai to be wn (ai) = (jn)/(ai), and let 8n(x)
denote the polynomial whose roots are the multipliers of the different orbits:

The polynomial 6n(x) has coefficients in R (see [20] and [13], Sect. 5) and there
is a formula for the discriminant of 03A6n (x ) which involves the factors of 8n (1).
THEOREM A ([15]) If Cm (x) denotes the mth cyclotomic polynomial, and the
expressions An,d are defined by means of the formulae

and

then An,d E R[cl, C2, ..., 1 Ckl, where the ci are the coefficients of f, and we have

Moreover, the delta factors are also given by the expressions:



322

here 1]1 = 1]t(d) and q2 lie in the quotient field of R[Gt,... ce,] and (1]I)d and
(1]2)n are units in Z[Ct,... , ck, a1, ... , ar] (or Z /pZ[cj , ... , Ck, Cel, ar], if
char R = p).

In the case that f (x) = f (x, c) is a polynomial in x and c, the delta factors
defined above are polynomials in c. We may now state

THEOREM B Let f (x) = I(x, u) be a homogeneous polynomial in Z[x, u] of
degree k &#x3E; 2 satisfying the conditions:

(i) l(x,O) = Xk;
(ii) gcd (disc I(x, 1), kn - 1) = 1;
(iii) An,n (u), as a polynomial in u, has no multiple roots.

Then ’03A6n (x, u) is irreducible over Q (or over C).
The hypotheses of Theorem B are easy to verify in particular cases. The theorem

is also true for polynomials f (z, u) in o[x, u], where o is the ring of integers of an
algebraic number field whose intersection with the field Q((kn-t) of (k n - 1 )th
roots of unity is just Q; the proof is the same.

Condition (iii) of Theorem B is a dynamical condition, since it refers to bifur-
cation points, while condition (ii) is arithmetical. The latter condition plays a
fundamental role in the proof of Theorem B, since it implies several facts: that
(Dn (x, u) splits completely in a suitable Laurent series field; that purported factors
of 03A6n (x, u) have coefficients in Q; that roots of irreducible factors of 03A6n(x, u)
consist of complete orbits under f ; and that 8n (1) is primitive, as a polynomial in
u (its coefficients have gcd equal to 1). An examination of the proof shows that
condition (ii) may be replaced by three conditions:

(iia) f (z, 1) has distinct roots [so that 03A6n(x, u) still splits];
(iib) the splitting field Frv of f(x, 1) over Q satisfies Frv n Q( (N) = Q, where

N = kn - 1 and (N is a primitive Nth root of unity [to imply the facts about
purported factors of ’03A6n (x, u), and for the last step in Bousch’s argument];

(iic) if p is a prime dividing disc ( f (x, 1)), then p does not divide all the coefficients
of ân ( 1 ) [to get primitivity of 8n ( 1 ) ].

Theorem B has the following corollary.
COROLLARY 1 Let I(x) = x k + c, for k &#x3E;, 2. If the polynomial8n(l) = 8n(1, c)
has no multiple roots, then 03A6n (x) and 8n (x) are irreducible over Q.

The corollary follows from Theorem B by setting c = -uk. It follows from
results of Douady-Hubbard theory conceming the parameter space of the complex
map f (x) = xk + c that ân (1, c) does in fact have simple roots (while we only
need that On,n(c) has simple roots for irreducibility of 03A6n(x)). The roots of
8n (1, c) are the bifurcation points of the map f corresponding to period n. They
are also the ’roots’ of the hyperbolic components of period n, i.e., the images of
1 under certain homeomorphisms from the closed unit disk to the closures of the
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hyperbolic components. These roots are distinct because the closures of hyperbolic
components are disjoint. (For k = 2 see [5]; for k &#x3E; 2 see [17], Theorem 4.2.3,
and [15], Proposition 3.2.) Thus 03A6n (x) is absolutely irreducible for this family of
maps. D. Schleicher and E. Lau have a different proof that 03A6n (x) is irreducible in
this case, which depends on a combinatorial description of Mk, the analogue of
the Mandelbrot set for the map f (x) = xk + c (see [17], [10]). Their argument
also allows them to calculate the Galois group of -1),, (x). These same results (for
f(z) = xk + c) have also been achieved independently by T. Bousch (private
communication through D. Schleicher).

An immediate consequence of these remarks is conjecture 2(a) of [13]. (The
argument given by Schleicher and Lau also implies conjecture 2(b) of [13].)

COROLLARY 2 If f (x) = xk + Clxk-l + ... + ck is a generic polynomial over
Q, I&#x3E;n (x) is irreducible over Q [c1, C2 ... , i Ckl.

The class of polynomials considered in Theorem B may be extended, using
the same technique as for Corollary 1. Thus I&#x3E; n (x, c) is irreducible over Q if
f (z, c) E Z[x,c],J(x,um) is homogeneous in x and u and satisfies conditions
(i)-(iii), for some integer m &#x3E; 1. For ease of reference we list these hypotheses,
with (iii) replaced by a stronger condition:

(H) f (x, um) is homogeneous in x and u, for some m &#x3E;, 1 ; f (z, c) satisfies con-
ditions (i)-(ii) of Theorem B (or conditions (iia)-(iic) in place of (ii)), and
8n ( 1, c) has distinct roots.

As in Corollary 1, this condition also implies the irreducibility of 8n (x, c). In
Section 3 we give a direct computation of the genus of the curves defined by
03A6n, (x, c) = 0 and 8n(x,e) = 0 for the maps f (x, c) satisfying (H). The genus
of 03A6n (z, c) = 0 for the map f (z) = x 2 + c was given by Bousch [3], but the
computations for other maps and for 8n (x, c) = 0 are new. These results follow
naturally from Theorem A, and make use of the stronger hypothesis that 8n(1, c)
has no multiple roots.

THEOREM C Assume f (x, c) e Z[x, c] satisfies hypothesis (H).
(a) The genus of the curve 03A6n,, (x, c) = 0 is given by

where v (n) = £ ¿eln J-L(nle)ke and cp is Euler’s phi-jùnction.
(b) The genus ln of the curve 8n(x, c) = 0 is given by
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where

(c) The genus of 6,, (x, c) = 0 satisfies the inequality rn &#x3E; ( 2 - £ - -L) kn +
0(nkn/2 ), as n -+ oo, with an implied constant that depends only on k.
We note that the terms involving v(n) and the Euler 0-function in parts (a)

and (b) of this theorem result from computing the degrees in c of the discriminant
factors An,d(C) (see the proofs of Theorems 11 and 12).

Part (c) of this theorem implies that the Douady-Hubbard multiplier maps from
hyperbolic n-components of the Mandelbrot set to the unit disk (see [4] and [5])
live on Riemann surfaces whose genus goes to infinity with n. It also implies that
the genus of the curve lfn (z, c) = 0 goes to infinity as n -&#x3E; oo, and this leads to
the following application for the map f (x) = xk + c. (See Section 3.)
THEOREM D For a fixed k &#x3E; 2 and sufficiently large n, there are only finitely
many values of c in a given algebraic number field L for which f (x) = xk + c has
an essential n-periodic point lying in L. The same holds for f (x) = x2 + c, for
n &#x3E; 4.

03A6In [12] it is proved that a map f(x) = x2 + c with rational c cannot have
a rational 4-cycle. It is shown in [8] that such a map can never have a rational
5-cycle. It would be interesting to settle whether or not this map can ever have a
rational n-cycle with n &#x3E; 6 and c in Q. The curve 03A6n (x, c) = 0 does, however,
have degx 03A6n (x, c)/2 distinct rational points at infinity, for any n; see Proposition
10. Moreover, this curve has finite rational points over R and Qp for all primes
p (see [12]); thus for n = 4 and n = 5 (and probably for n &#x3E; 6) the equation
03A6n (x, c) = 0 violates the Hasse principle.

The fact that the genus yn of bn (x, c) = 0 goes to infinity with n leads to our
main result.

THEOREM E (see Theorem 14) Let f(x, c) be a polynomial in Z[x, c] satisfying
(H), for a certain value of n. If n &#x3E; C(k), a constant depending only on k =
degxf, there are only finitely many cyclic extensions N = L( 0) of a given number
field L which have degree n over L and a generating automorphism of the form
0 --&#x3E; f (0, a), for some a in L.

COROLLARY 1 For a given k &#x3E; 2 and n &#x3E;, C(k) there are only finitely many
cyclic extensions N = L(0) of a given number field L which have degree n over L
and a generating automorphism of the form 0 - Ok + a, for some a in L.
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COROLLARY 2 If n &#x3E;, 5, then there are only finitely many cyclic extensions N/L
of degree n of a given number field L for which 0 --&#x3E; B2 + a, for some a in L, is a
generator of Gal (N/L).

The last result is a complement to results of [11] and [12] corresponding to
the cases n = 3 and 4. In those papers the cyclic extensions N/L of a field L
(with char L = 2) are determined which have [N : L] = 3 or 4 and a generating
automorphism of the form 0 __+ 02 + a. When char L = 0, there are infinitely
many such extensions. When n = 5, the relevant cyclic extensions of Q have been
determined by Flynn, Poonen and Schaefer [8] (see Section 4).

Theorem E and its corollaries are a consequence of the fact that a cyclic extension
N/L of degree n determines a unique L-rational point on the curve 8n (x, c) = 0.

As noted above, the roots of the multiplier equation ân (1, c) = 0 are the ’roots’
of hyperbolic components of period n in the parameter space of the complex
family f (x, c) = xk + c. Thus, the first corollaries to Theorems B and E show
that the nature of these hyperbolic components influences the extent to which the
specializations f (x, a) can occur as automorphism polynomials for subfields of Q.
In this sense complex dynamics has interesting connections to Galois theory.

All of the arguments of this paper are algebraic or arithmetical. The advantage
of this approach is that the same techniques can be applied in characteristic p.
Thus it is possible to show that p is a prime of good reduction for (03A6n (x, c) = 0
whenever 8n(1, c) and f(x, 1) have distinct roots modulo p (Theorem 15). In
particular, 03A6n (x, c) is absolutely irreducible over Fp for such primes. Dynamically,
the condition on ân (1, c) means that the n-bifurcation points of the map f are all
distinct modulo p. For f (x) = x 2 + c and small values of n, odd primes at which
lfn (z, c) = 0 has bad reduction are rare (it always has bad reduction at 2). The
first n for which this curve has bad reduction at an odd prime is n = 5, and then
its only ’bad’ primes are p = 2, p = 5 and P = 3701 (see [8]).

At present 1 do not have an algebraic/arithmetic proof that bn, ( 1, c) has no
multiple roots for the maps f (x, c) = xk + c. It would be of interest to know
whether the factors An,d(c) of the polynomial ân (1, c) are irreducible over Q in
this case (as was conjectured in [15]). In general, is there an interpretation of the
polynomials An,d (C) that would yield an algebraic proof that 8n(1, c) has simple
roots?

1 am very grateful to J. Silverman, J. Sturm, A. Dupre, and B. Poonen for
interesting conversations and correspondence, and to D. Schleicher for making me
aware of the paper [3]. 1 am also grateful to B. Poonen for his computation of en
in Lemma 12 (Section 3).
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2. Proof of Theorem B.

We consider a homogeneous polynomial f (x, u) of degree k # 2 in the variables
x and u, with coefficients in a given field F, and satisfying the conditions:

and f (x, 1) has k distinct roots over F.

The second condition is equivalent to the statement thst disc f (x, 1) is not zero in
F, or that f’ ((, 1) = , 0 for any root ( of f (x, 1) = 0, where the prime denotes the
derivative with respect to x. To fix notation we set

The first step is to find the roots of -03A6n (x) in the Laurent series field L =
Frv ( ( 1 1 u ) ), where Frv is the splitting field of f (x,1 ) over F. To do this we
consider the dynamical system given by the map z - f (z, u) on the field L. In
what follows we denote by ( a root of f (x, 1 ) = 0 and by fi (z) = fi (z, u) the
jth iterate of f (z, u) in the variable z.

LEMMA 1 Assume the polynomial f satisfies (6), (6’). Forany sequence f (i, i ? 01
of roots of f (x, 1 ) = 0, there is a unique Laurent series z in L = Frv ( ( 1 /u) ) of
the form

for which

where 0(l) denotes a power series in FI"V[[l/u]]. If the coefficients of f(x, u) lie
in the ring R, then the am are in R [ 1 / f ’«i), i &#x3E;, 0] 

Proof. If z is given by (7), ao must be (0 in order for (8) to hold for i = 0, and
then
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where

and

for m &#x3E; 2 (f’((O) is shorthand for f’((O, 1)). Using the assumption that f’((o) =1
0, a is determined by bl = (i.

If the coefficients ao, ... , ai-l have been determined so that (8) is satisfied for
j  i - 1, then

with

By the above computation,

and so the condition (8) deteimines the coefficient ai uniquely. Now it is easily
checked that f i (z) has the form given by (9), (9’) with i-1 replaced by i, and this
proves the lemma. n

LEMMA 2 If f satisfies (6!, (6’), then the distinct solutions in L = Frv((l/u)) of
jn(z) - z = 0 correspond 1-1 to the sequences f (i, i &#x3E; O} of roots of f (x, 1) = 0
which have period n. The roots of 03A6n (z) = 0 correspond 1-1 to the sequences
{(i, i &#x3E;, 01 with minimal period n:

where s runs over the sequences s = {(i, i &#x3E;, 01 with minimal period n and Zs is
the series corresponding to the sequence s by Lemma 1.
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Proof. The lemma is immediate from the uniqueness assertion of Lemma 1 and
the fact that

if z corresponds to a sequence f (j, i &#x3E;, 0} with period n. D

This lemma shows that all of the periodic and pre-periodic points of the map
z -3 f (z) on the algebraic closure of L are contained in L itself. If w represents
the standard valuation on L = F- «l /u» (w (u) = - 1), the formal Julia set of f
may be defined as

It can be shown that Jj is the closure of the set of periodic points of f in L, and
that the dynamics of f on Jf is canonically isomorphic to symbolic dynamics on
the set of all sequences s = ((j , 1 j 01 of roots of f (x, 1 ) = 0.

The common hypothesis of the rest of the lemmas of this section, with the
exception of Lemmas 4 and 7, will be that f satisfies (6), (6’).
LEMMA 3(a) Ifipn(x) = 4(x)B(x) is a factorization ofipn(x) over F, then
,4 (x) and B(x) have coefficients in Frv, where F- is the splitting field of f(x, 1)
over F.

(b) Assume F = Q and that f(x, u) has coefficients in Z. Ifipn(x) = A(x)B(x)
over Q, the coefficients of A and B lie in the ring o of algebraic integers of the
splitting field F- of f (x, 1 ) over Q.

Proof. By Lemma 2 we have that A(x) is a product of terms x - zs for s in
a certain set of sequences S, if we consider the factorization (10) over the field
F((1/u)). Since A (x) is a polynomial in x and u, all but finitely many of the terms
in the Laurent series zs cancel identically in the product of x - zs over s in S, and
so the coefficients of A(x) are expressions involving only finitely many Laurent
series coefficients. This shows that the coefficients of A(x) are in Frv and proves
(a).

To prove (b) we note that the series zs are all integral over Z [u], since f n (x) - x
is monic with coefficients in Z[u]. Hence the elementary symmetric functions of the
zs for s in S lie in Frv[u] and are integral over Z [u], and are therefore also integral
over o[u]. But it is not difficult to check that o[u] is integrally closed in F-(u). (In
fact, if o is any Dedekind ring with quotient field K, then o[u] is integrally closed
in K(u).) Thus the coefficients of A and B lie in o. D

The results we have obtained so far can be looked at in the following way. Let E
be the splitting field of the polynomial 03A6n (x) over the field F (u), where F is a
prime field. Let Poo be the pole divisor of u in F(u). The completion of F(u) at
poo is just the field F ( ( 1 1 u ) ), and our results show that the completion of E at a



329

prime divisor Poo which lies over Poo is the Laurent series field L = Ff’J ( ( 1 1 u ) ),
independent of n. It is also easy to see that [L:F(( 1 /u) )] = [Ff’J:F], where e = 1
is the ramification index and f = [F-:F] is the inertial degree of L /F ( ( 1 /u)). In
particular, there is a natural injection

The completion of the field E at other prime divisors yields further information
about the factorization of 03A6 n (x). Let po be the zero divisor of u in F(u) and let
po be a prime divisor of E lying overpo. The completion E po can be determined
from the following lemma. For ease of notation let

be the set of primitive divisors of N = kn - 1.

LEMMA 4 Assume f(x, 0) = xk, and that char F = 0 or p where (p, kn -1) = 1.
For every d in Pn and every primitive dth root of unity (d there is a unique series

in F((d) [[u]] for which lfn (z) = 0, and we have the factorization

where Cd(X,U) = II(d (x - z«d» has coefficients in F[[u]]. In case F = Q, the
polynomial Cd (x, u) is irreducible over Q((u)).

Proof. We find all the solutions of (D,, (z, u) = -(D,, (z) = 0 in F (( N ) ( (u) ) , (N =
kn - 1 ). Using that f(x, 0) = xk it is easy to see that

where Cd (z) is the dth cyclotomic polynomial, so that lfn (z , 0) has distinct roots.
(There is an extra factor x in lfn (z, 0) when n = 1. Cf. [13], equation (3.1).) It
follows from Hensel’s lemma that for each root (d of Cd(x) = 0 there is a unique
solution

of 03A6n (z, u) = 0 in the complete field F((d ) ( (u) ) . Thus 03A6n (x, u) splits completely
in F((N )((u)). This proves (11). To show that Cd (x, u) has coefficients in F((u)),
note that
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under the automorphism Q = ((d - Qd) in Gal (F((d)((u))IF((u)))  Gai
(F ( (d) / F). Hence Cd (x, u) has coefficients in the ground field F((u)). This also
shows Cd (x, u) is irreducible when F = Q, since the roots of unity (di are all
conjugate over Q. The other assertions are immediate. D

Remarks. (1) The completion Epo is thus given by Epo = F((N)((U)), with
residue class field F ((N ), where N = kn - 1. The extension Epoi F ( ( u)) is
unramified and

(2) For the series z((d) in we have

so that the action of f on the roots z( (d) of 03A6n (z) coincides with the action of the
map ((d - (dl) on F((d) ( (u) ) . When F = Q it follows that the roots of Cd (x, u)
are permuted by the map f and therefore consist of complete orbits.

LEMMA 5 If F = Q and 03A6n (x) = A(z)B(z) over Q, the coefficients of A and
B lie in o n z[çN], where N = kn - 1. If Frv fl Q((N) = Q, the roots of A(x) and
B (x) over Q(u) consist of complete orbits under f.

Proof. The first assertion follows from Lemma 3(b) and Lemma 4: A(x) and
B(x) have coefficients in o[u] and also in Q((N)((U)). If Frv n Q((N) = Q, then
Cd (x, u) is irreducible over F’’ ((u) ), which implies that the monic polynomial
A(x) is a product of certain of the polynomials Cd (x, u). The second assertion
now follows from Remark 2 above. 0

To complete the next step we need the following lemma.

LEMMA 6 If f E Z[x,u] satisfies (6), (6’) and gcd (disc f (z, 1), k’ - 1 ) = 1,
then disc 03A6n, (x), as a polynomial in u, is primitive.

Proof. Let ai, for 1  i  r, denote representatives of the different orbits of
roots of 03A6n (z) under f, and let w(ai) = fjj f’(fj(ai)) denote the multiplier of
the ith orbit, corresponding to the periodic sequence s = f (o, (1, ... i (n-li - - -1,
as in Lemma 1. Using the fact that f’(z, u) is homogeneous of degree k - 1, it is
easily checked that

By the formula
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it is clear that the leading coefficient of 8n ( 1, u) is plus or minus a product of terms
of the form f’ ((, 1) and is therefore only divisible by prime factors of disc f (x, 1).
The same holds for the leading coefficients of the polynomials An,d (u) , by formula
(3). On the other hand, the constant term of D.n,d( u) is a product of prime divisors of
N = kn - 1, by formula (3’), since the substitution u = 0 reduces the discriminant
of -03A6n (x) to a product of discriminants and resultants of cyclotomic polynomials
Cd(x) over a set of divisors d of N. The assumption gcd (disc f (x, 1), N) = 1

implies that the D.n,d ( u) are all primitive in u, so (3’) implies that disc 03A6n (x) is

primitive as well. 0

For the rest of this section we assume the condition that gcd (disc f (x, 1), kn - 1) =
1. Then F- n Q( (N) = Q follows automatically, since any primes which ramify
in Frv n Q( (N) would be common divisors of disc f (x, 1) and N. From Lemma 5
the factors A (x) and B(x) in 03A6n (x, c) = A (x) B (x) each have roots (over Q(u))
consisting of complete orbits under f. By Theorem 5.2 of [13] this factorization
corresponds to a factorization of the multiplier polynomial 8n (x, u) = a (x)b(x),
where

and the products are taken over representatives ai from the orbits which make up
the roots of A and B respectively. From Lemma 4 we also have

where D and D’ are disjoint sets of divisors of kn - 1 and D U D’ = Pn.
LEMMA 7 Assume f E Z [x, u] is monic in x and that ipn(x) = 4 (x) B (x), where
A(x) is irreducible over Q. Assume also that the roots of A(x) in an algebraic
closure of Q(u) consist of complete orbits under f. If ai runs through a set of
representatives of these orbits, then for any proper divisor d of n the expression
ni ipd(ai)n/d is a polynomial in Q[u] times a unit 1n in the integral closure R of
Q [u] in Q(al, ..., ai, ..., u).

Proof. Since A(x) = A(x,u) is absolutely irreducible, we may work in the
algebraic function field Ki = Q(al, u). It is easy to see that this field has the map
a: u -+ u, al -t f (at) as an automorphism of order n with fixed field KI,, where
[KI,: Q(u)] = s, the number of orbits of f which make up the roots of A(x) in an
algebraic closure of Q(u). Let P be any prime divisor of KI which divides d (a 1
Then

where 03A6d (a, b) = 03A6n (a, b) = 0. By Theorem 2.4 of [13] a cannot be a root of
any polynomial ’(bd’ (X) with d’ # d, n. If G is the decomposition group of P over
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KI,, then G is generated by ad’ for some integer d’, and ]G] = n/d’ = e. Since
ad’ fixes P, we have that PI(fd’ (al) - 0152I) and therefore PI(fd’ (a, b) - a), i.e.
fd’ (a, b) - a = 0. This implies that dld’, since a is a primitive d-periodic point
of f (x, b). Hence eln/d, and the power of P occurring in 03A6d(a1)n/d is a mul-
tiple of the ramification index e. On the other hand, the zero-divisor of 03A6d(0152t)
is invariant under Q, since 03A6 d (f ( al) ) 1 I&#x3E; d ( 0152t) is a unit in the integral closure of
Q[u] in KI (see [15], Lemma 2.1 or [14]), so that all the conjugates of P over
KI, occur in 03A6d(al )n/d to the same power that P does. It follows that the zero
divisor of (03A6d(al ),Id is equal to a divisor of Klu, and hence the zero-divisor of
7r = Ili 03A6d(ai)‘d is equal to a divisor in Q(u), as the maps al -+ ai, applied to
Klu, give rise to all the conjugate extensions of Kla over Q(u) (see [13], Lem-
ma 4.4). Since the individual terms in 7r are integral over Q[u], there is a polynomial
p(u) in Q[u] for which the divisor (7r/p(u» only involves primes over Poo (the
pole divisor of u in Q(u)). Hence n = 1f 1 p( u) is a unit in R. 0

The next lemma contains the crux of the whole argument, and is the only place
where the assumption that An,n (u) has no multiple roots is used.
LEMMA 8 Assume f E Z [x, u] satisfies (6), (6’) and that 03A6n(x) = A(x)B(x)
is a factorization over Z. If gcd (disc f(x, 1), kn - 1 ) = 1 and the polynomial
An,n (u) has no multiple roots, then Res (A, B ) = + 1 .

Proof. Write

where the Bi (x) are defined by (1) and I and J make up a partition of the integers
from 1 to r, and where, without loss of generality, we may assume A(x) to be
irreducible over Q. We have first that

by [15], equation (2.10) (see the computations leading to this equation). Here and
in the rest of the proof n] represents a unit in the integral closure R of Q[u] in
Q(u, 0152I, ... , ar). In order to relate (17) to a(1) we compute:

Furthermore,
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and

where Fk (z) = fk(x) - x. It can also be shown that

by the computations in the proof of [15], Theorem 2.5 (see eqs. (2.5), (2.8), (2.9)
of [15]). Putting these formulas together gives

by ( 15), hence that

Similarly,

It is easy to see that Aj (aj ) and Aj (ai) are associates in R (see Lemma 2.3 in [ 15]),
so a(1) and b( 1 ) share the common factor

By Lemma 7, the product I1iEI I1dln,d:;fn tPd(ai)n/d is a unit times a polynomial
in u. Hence the same is true ofI1i,jEI,j:;fi Àj(ai) . 0(u). By (5), we have

so that Ili,jeji:,,j Àj (aj ) . 0(u) is also essentially a polynomial in u.
We can now prove Lemma 8. If Res(A, B) had a complex root u, then by (17)

and (21) this would also be a root of 0(u), and by the above argument, a multiple
root of Lln,n ( u). Hence Res(A, B) is constant. Moreover, by the formula
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and the fact that disc lfn (x) is primitive as a polynomial in u (Lemma 6), the integer
Res(A, B) must be a unit in Z. a

Remark Related to this proof is the following proposition: Assume 03A6n (x) has
coefficients in a unique factorization domain or Dedekind domain R, and that 03A6n (x)
factors as A (x) B (x) over R, where the roots of A and B consist of complete orbits
under the polynomial f e R[x]. If (An,n , An,d) = 1 in R for ail proper divisors d
of n, then Res(A, B) = npn where 77 is a unit in R, p E R and p 2lan,n in R. The
proof, which 1 omit, uses (17) and an argument similar to the proof of Lemma 7.
Thus the expression 0(u) in (21 ) is itself a polynomial when R = Z[u] and An,n (u)
is relatively prime to all the polynomials An,d(u) (for dln and d  n).

The proof of Theorem B will now follow quickly, using properties of cyclotomic
polynomials. The argument is a simplification of the argument given by Bousch [3].

PROOF OF THEOREM B. Assume 03A6n (x) = A(x)B(x). The hypothesis (disc
f (x, 1), N) = 1 implies that the condition Frv n Q«N) = Q of Lemma 5
holds. Hence Lemmas 5-8 are applicable, and the factorizations in (16) and
Res (A, B) = ±1 imply that Res(Cd(x,O),Cd’(X,O)) = ± 1 for any pair (d, d’)
with d in D and d’ in D’. On the other hand, it is well known that Cd(x) and
Cd, (x) have a resultant which is divisible by p whenever dld’ and d’/d is a power
of the prime p. (To see this note that some term ((d - (dl) in the product which
defines the resultant equals Çd( 1 - (), where ( = (pa, and the norm of (1 - ()
is a positive power of p.) This shows that if Cd (x, u) divides A(x) and dld’ with
d’/d a prime power, then Cd, (x, u) also divides A. For any primitive divisor d of
N there is certainly a chain of divisors dl = d, dz, ... , ds = N = kn - 1 for
which each di Idi - is a prime power, and each di is a primitive divisor of N since
d is. It follows that CN(X, u) must divide A(x). But the same argument shows that
CN(x, u) divides B (x), which is impossible by (16). Hence gbn (x) is irreducible
over Q. 0

PROOF OF COROLLARY 1. We prove the corollary for any map f (x, c) satisfying
hypothesis (H). Put c = um. Conditions (i)-(ii) of Theorem B certainly hold for
f (x, um). Set 8(x, u) = 8n(x, um). Formula (13) shows that no multiplier is zero,
which implies that 8(l,u) = ân (1, um) has distinct roots. Hence Theorem B
implies that 03A6n (x, um) is irreducible over Q, which implies that 03A6n (x c) is also
irreducible. To show that 8n (x, c) is irreducible, we first show that it has no multiple
factors. By formula (14),

it is clear that the highest degree monomial in c of 6n (x, c) is independent of x,
since this monomial is a product of the terms -ÇiU n(k-1). The same is clearly true
of any factor of bn (x, c) over Q, and the c-degree of any such factor is positive.
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If 6n (x, c) had a multiple factor over Q, the polynomial 6n (1, c) would have a
multiple factor as well, contradicting our assumption on bn ( 1, c). Thus 6n (x, c) has
no multiple factors over Q(c), and the irreducibility of 6n (x, c) follows from the
irreducibility of q,n(x, c) and Theorem 5.5 of [13]. .

1 mention two further applications for quadratic maps. The first concems the
map f (x, c) = x 2+ c and the polynomial T n (x, c) whose roots are the traces of the
orbits of essential n-periodic points of f (roots of lb,,(x, c)), i.e., the expressions
t + f (a) +... + fn-1 (a)
COROLLARY 3 (to Theorem B) The polynomial Tn(X, c) is irreducible over Q.

Proof. Using the fact that -03A6n (x, c) is irreducible over Q, we note first that
Tn(X, c)n is the characteristic polynomial of t taken in the extension Q(a, c)/Q(c),
where 03A6n (a, c) = 0. (See [13], Theorem 5.3.) Hence Tn(X, c) is a power of an
irreducible polynomial over Q. To show that Tn (x, c) does not have multiple roots,
consider its roots in the Laurent series field Q ((1/u)), where u2 = -c. By
Lemma 2, these roots have the form

where 1,-i, i &#x3E; 01 is a sequence of ± I’s with minimal period n. Now there is only
one orbit for which the coefficient of u is n-2, namely, the orbit corresponding to
the sign sequence {1,1,...,!,20131}. Hence the trace of this orbit cannot equal the
trace of any other orbit, whence it follows that T n (x, c) has distinct roots and is
irreducible over Q.

The second application concems the related map h(x, a) = x 2 + ax, which is
linearly conjugate to g(x) = x2 - 4a2 + la = h(x - 2a, a) + la. Since c -+
- !a2 +!a is not linear, it is not immediately clear whether the polynomial 03A6n,h (x)
corresponding to h(x, a) is irreducible or not. In fact, 03A6,h (x) = x2 + (a - 1)x is
reducible. However, Theorem B gives
COROLLARY 4 For n &#x3E; 1, the polynomial 03A6n,h (X) corresponding to h (x, a) =
x 2 + ax is irreducible over Q.

Proof. The map h (x, a) satisfies (i) and (ii) of Theorem B, since disc (h(x, 1 ) ) =
1. Let A(a) be the factor of disc (03A6n h(x)) referred to in part (iii) of Theorem B.
Since the periodic points of h(x) are just the periodic points of g(x), shifted
by -!a, the discriminant of 03A6n,h(X) equals the discriminant of the polynomial
03A6n,g (x) corresponding to g(x), and (5) implies that 0(a) = An,n (- 1 a 2 + la),
the àn,n-factor for 03A6n,x2+c(X, c) evaluated at c la 2 + la. By the discussion
following corollary 1 (Section 1), we know An,n (c) has distinct roots in c. To show
that àn,n (- 1 a 2+ la) has distinct roots in a consider its derivative with respect to
a:
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The only possible multiple root of A (a) is therefore a = 1, which corresponds to
c = 4. Since 1 is a root of Ai ,i (c) and no other An,n (c) , this shows that A(a)
satisfies the hypothesis of Theorem B, (iii) when n &#x3E; 1. The irreducibility of
03A6n,h (z) follows. 

2 2The example f (x) = x2 + 7 ux + 14u2, for which 03A63 (X, u) is irreducible, but for
which A3,3(U) = 7(u + 1)2 and disc f (x, 1 ) = -7, shows that neither condition
(ii) nor (iii) of Theorem B is a necessary condition for the irreducibility of 03A63 (X, u).
However, this is essentially the only quadratic polynomial x2 + aux + bu2 with
integer coefficients and no multiple factors, for which 63 (1, u) has multiple roots.
This is because, for the general quadratic,

and this discriminant is equal to 0 (in the case under consideration) only if b =

2a2/7; this implies 7 la, in which case the substitution a -+ 7a, u - u/a yields the
polynomial f above.

3. The genus of the algebraic curves -03A6n (x, c) = 0 and 6,,, (x, c) = 0

In this section we left f (x, c) be a polynomial which satisfies hypothesis (H) and
we consider the function field

The assumption that Jn (1, c) has distinct roots has important consequences for the
arithmetic of K. This field has the automorphism a = (x --&#x3E; f (x, c)) with fixed
field KQ generated by w = w(x) = f’(X)f’(f(x))... f’(fn-t(x)). This follows
from [K:Ku] = n = [K :Q(w, c)], where the first equality is a consequence of
Galois theory and the second is a consequence of the irreducibility of ân (x, c) over
Q and the formula

(Note: 5n(w, c) = 0 in K.) Thus Ka = Q(w, c). The function field Ku can also be
generated over Q(c) by t = x + f (x) + ... + f n-1 (x), when the trace polynomial
Tn (x, c) is irreducible.

Our goal in this section is to compute the genus of the function fields K and K,.
We may also consider the function fields K = F(x, c) and K, = F(w, c) over any
algebraically closed field F (of nonzero characteristic, for example) over which
f (x,1 ) and 6n (1, c) have distinct roots, and over which 03A6n (x, c) is irreducible.
The proof of Corollary 1 to Theorem B shows that bn (x, c) is also irreducible over
F. We will see that the same formulas hold for the genus over F that hold over

Q; this fact will allow us to determine the primes of good reduction for the curve
03A6n(x, c) = 0 (defined over Q), up to an explicit finite set.
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We will denote prime divisors in the fields F(c), Ka and K by, p, p and P,
respectively. We letpo and Poo denote the zero and pole divisors of c in F (c), while
pb will denote the zero divisor of (c - b), for b constant.

PROPOSITION 9 Let F be an algebraically closed field over which 8n(1, c) has
distinct roots, and 03A6n (x , c) is irreducible.
(a) The prime divisors P of K which do not divide Poo are in 1-1 correspondence

with the solutions (x, c) = (a, b) in F of 03A6n (x, c) = 0.
(b) The ring F[x c] is the integral closure of F[c] in K, with integral basis

(c) The c-discriminant of K is equal to the discriminant of lfn (z, c) (see Theo-
rem A).

(d) The c-discriminant of Ka is equal to An,n(c).
Proof. (a) Certainly every prime divisor of K which does not divide poo defines

a unique point (x, c) = (a, b) on the curve defined by 4b,, (x, c). Conversely, for
every solution (a, b) of 03A6n (x, c) = 0 there is at least one prime divisor P of K for
which P divides (x - a, c - b). Assume that P and Q are distinct prime divisors,
both of which divide (x - a, c - b).

Case 1. Suppose a is a simple root of 03A6n (x, b) = 0. The prime divisors of
K lying over pb correspond to the distinct irreducible factors of 03A6n (x, c) over the
completion F((c - b)) of F(c) atpb (cf. [9], p. 288). By Hensel’s lemma there is a
factor of 03A6n(x, c) over F((c - b)) which reduces to (x - a) when c = b, and this
factor is the only one with a as a root (mod pb). Thus there will be a unique prime
divisor P lying over pb for which x = a (mod P).

Case 2. If a is a multiple root of (x, b) = 0, then P and Q both divide 1 - w,
by (18) (with a in place of ai). Hence NormKu(P) = pi and NormKu(Q) = P2
divide (1- w). Now the norm to F(c) of (1-w) divides 8n (1, c), with a square-free
zero divisor in F(c), and the norms of pi and p2 are both equal to pb, so pi must
equal P2. Thus P and Q lie over the same prime divisor of Ka and are therefore
conjugate by some power of u. If Qi(P) = Q, then QI(ai(x) - a), and therefore
QI (x - jn-i(a)), because ( fi (z) - a) and (x - f n-,(a» are associates in F[x, c]
(see [15], Lemma 2.3). This implies QI (a - jn-i(a)) and therefore a = jn-i(a).
Suppose that d  n is smallest with the property that a = f d (a). Then 03A6d (a, b) = 0
and b is a root of On d(c) (note And (C) d = Res (03A6n (x, c), 03A6d (X, c)) by a result of
[15]). Formulas (18)-(20) show that pn/d divides 1 - w, and hence the ramification
index of P over N(P) = pi is at least n/d. It follows that there are at most d
distinct conjugates of P over Ka. But there are at least d distinct conjugates because
PI (x - a) implies ai(P)I(x - f a-i (a) ), and the elements (x - jd-i(a)) have no
common zero-divisors since the constants jd-i (a) are distinct for i = 0,..., d - 1.
Thus P has exactly d distinct conjugates Q2(P), for 0  i , d - 1, and x is only
congruent to a modulo one of them, namely P. This proves part (a).
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To prove part (b) it suffices to check the truth of part (c). As in the argument
just given, some prime divisor P lying above a divisor pb for which An,d(b) = 0
and d  n has exactly d distinct conjugates and ramification index n/d over Ka.
Thus the power of NormF(c)P = Pb which divides the discriminant of K/F(c) is
at least

This is exactly the power of (c - b) that divides disc 03A6n(x). Since disc K/F(c)
divides disc 03A6n (x) (ignoring divisors at oc) it follows that the exact contribution
of pb to disc K/F(c) is pnb -d. Moreover, the prime divisors of pb are unramified in
Ka/F(c), since the ramification index of P to F(c) cannot be greater than n/d.
Now consider a prime divisor pb for which An,n (b) = 0. From (3) (see Sect.

1) and the assumption that 8n (1, c) has distinct roots it follows that An,n (c) and
An,d(c) are relatively prime in c for all proper divisors d of n. Hence a prime P
lying abovepb cannot be fixed by any non-trivial power of u. Thus P is not ramified
over Ka. IfNormKuP = p, and pe exactly divides pb, then p’- would divide disc
Ka/F(c) and p(e-I)n would divide disc K/F(c), by the Schachtelungssatz ([9],
p. 424 and pp. 448-9). However, Theorem A shows that exactly the nth power of
(c - b) divides disc (bn (x), and this implies e  2. It remains to see that for some
prime p, p 2 exactly divides pb. Because àn,n (b) = 0 the polynomial 03A6n (x) has a
multiple root, and there are fewer than dn = deg 03A6n (z) essential periodic points
of period n. Part (a) shows that some prime divisor P of pb must be ramified. But
we have already shown that P is not ramified in KI Ka and so p must be ramified
in Ka/F(c). This proves that

and the exact contribution Of Pb to disc K/F(c) is pb .
These considerations show that disc K/F(c) and disc 03A6n(x) are equal as

divisors (except for divisors at oo), and this implies that the powers of x are an
integral basis for the integral closure ofF[c] in K.

The argument just given also implies the assertion of (d), since the only possible
divisors of the c-discriminant of Kul F(e) are pb, where disc 4Dn(x, b) = 0, and
we have seen that pb does not ramify in Ka/F(c) if An,d (b) = 0 for some proper
divisor d of n. 0

COROLLARY Under the assumptions of proposition 9, discx8n(x, c) -
An,n (c)h(c)2, for some polynomial h(c).

Remark The dynamical meaning of the last part of this proof is that exactly two
orbits of essential n-periodic points coincide at a point b for which An,n(b) = 0,
and exactly n/d orbits coincide at a point b for which An d(b) = 0 and d  n.



339

PROPOSITION 10 Let F be an algebraically closed field over which f (x, 1 ) has
distinct roots, and 03A6n, (x, c) is irreducible. Assume also that the substitution c = u"2
renders f (x, um) homogeneous in x and u. For the prime Poo we have

in K, where the prime divisors Pi are all distinct and d = dn = deg 03A6n (x). All the
prime divisors of K lying over Poo are rational over the splitting field of f (x, 1).

Proof. The prime divisors of K lying over Poo are in 1-1 correspondence with
the irreducible factors of 03A6n (x) over F((1/c)). 1 claim these irreducible factors
all have degree m. From Lemmas 1 and 2 and the fact that F ( ( 1 /u) ) is a Kummer
extension of F(( 1 /c) ) , with generating automorphism 03C8 = (u -+ (mu) and (m
a primitive mth root of 1, it follows that the irreducible factors of 03A6n(x) over
F((1/c)) have the form

since each zs is a primitive element of F( ( 1 /u) ) over F((1/c)). This proves the
claim. The last assertion follows from the fact that all series zs are defined over the

splitting field of f (z, 1). (Note that char F {m by the assumptions on f.) 0

We can now prove

THEOREM 11 (Cf. [3] for J(x) = x2 + c and k = m = 2.) Under the joint
hypotheses of Propositions 9 and 10, the discriminant of the extension K/F(c) is

where dn = degx03A6n(x). The genus of KIF (c) is

where v (n) = (1 /M) Eeln M (n/e) k’ and 0 is Euler’s phi-function.
Proof. The formula for the discriminant Dn follows immediately from the

proofs of Propositions 9 and 10. To prove the formula for gn we note from (14),
the definition of An,d, and (3) that
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Now the Hurwitz genus formula ([9], p. 457 or [19], p. 88) and dn = mv(n) imply
that

as claimed. 0

COROLLARY Let f (x, c) be a polynomial satisfying hypothesis (H) (see Sect.
03A6n). If p is a prime which does not divide disc ( f (x, 1 ) ) or disc (6n (1, c) ), and if
03A6n(x, c) is irreducible over Fp, then p is a prime of good reduction for the curve
(x, c) = 0 (over Q).

In Theorem 13 we deduce a formula for the genus of Ka. To state the formula
we introduce the following notation. Let Xn be the set of all possible ’necklaces’
with n beads, colored using the roots of f (x, 1), where a necklace is represented
by an n-tuple f (1, Ç2, ... , (n} of roots of f (x, 1) and two n-tuples t(il and f (i’l
represent the same necklace if and only if (j = (i+j, for all i (mod n) and some
fixed j. A primitive necklace is a necklace t(I (2, ... , Çn ) whose coloring is not
periodic with period  n. Let G = (w) be the group of mappings on Xn generated
by the permutation w:Xn -+ Xn, where

and ç is a primitive mth root of unity. If -d is the number of distinct orbits of
Xd under G, then en = Edl,,P(n/d),-d is the number of primitive G-orbits of Xn,
i.e., the number of orbits containing primitive necklaces. We have the following
formula for en, for which I am grateful to Bjom Poonen (private communication).
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LEMMA 12 If n &#x3E; 1, or if n = 1 and 0 is not a root of f (x, 1) = 0, then

Proof. Let X be the set of n-tuples (x 1, x2, ... , 1 Xn) of roots of f (x, 1) which
are primitive, when considered as necklaces. Let G’ = Z/nZ x G. If Z/nZ acts
on X by rotation, then en is number of G’-orbits of X, so that

by Bumside’s lemma (see [1], Ch. 18). Let g = (a, çj), and let d be the order
of a in Z/nZ. If g has fixed point y in X, then çj =1 1 (otherwise y would not
be primitive) and a # 0 (using the assumption that n &#x3E; 1 or 0 is not a root of

f (x, 1) = 0), unless g is the identity. The same argument applies to powers of g;
it follows that the order of g = d = order of çj, and dl(m, n). For each divisor d
of (m, n) there are 0 (d) 2 elements of G’ both of whose coordinates have order d.
Now consider a fixed one of these cp(d)2 elements, g. Without loss of generality,

we may assume that g = (n/d, Ei). Let Yr be the number of n-tuples of roots of
f (x, 1) which are fixed by g and which have a period dividing r, when considered
as necklaces. Then 1 Yn ] = kn/d since any fixed point y = (Xt,X2,... xn) of g
satisfies çj Xi+n/ d = xi, and is therefore determined by its first n/d coordinates.
Suppose that y has period r (a divisor of n). Then gly = y implies that ej’xi+,n/d =
zj and çjr = 1, so dlr. We claim that (n/d, r) = r/d as well. Putting (n/d, r) = e
and using g’/’y = y implies eil/1 = 1, so that d] (r le) and el(rld), from which
the claim follows. If we now set ln/d = br + r/d for suitable 1 and b, then 1 is
relatively prime to d, and gly = y if and only if çjlXi+ln/d = çjlXi+r/d = Xi,
so that y is completely determined by its first r/d coordinates. Thus 1 Yr ] k r/d
when dlr and (n/d, r) = r/d, and IYr 1 = 0 otherwise. Applying Môbius inversion
to the equation

where x(r) is the characteristic function of the set of integers r with rln, djr and
(n/d, r) = r/d, we find that

This proves the lemma, since (n/d, r) = r 1 d is equivalent to (n/r, d) = 1.
THEOREM 13 Assume that f(x, c) satisfies the hypotheses of Propositions 9 and
10.
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(a) The discriminant of the extension Ka/F(c) is

(b) The genus of K, is

(c) If (n, m) = 1, the genus of Ka is given by

Remark. The result of (b), together with Lemma 12, shows that ln depends
only on n, k and m and not on the particular polynomial f.

Proof. (a) From the proof of Proposition 9 it is clear that the contribution to
disc Ka/F(c) by primes other than poo is exactly TIb, Pb, the product taken over
the values of b for which An,n (b) = 0. Thus we need only determine the ramified
prime divisors of Poo. As in the proof of Proposition 10, the prime divisors of Poo
are in 1-1 correspondence with the irreducible factors of 8n(Y, c) over F((1/c)).
Over the field F((1/u)) we have

where wi is the multiplier of the ith orbit. We need to determine the degree of wi
overF((l/c)).

To do this we note that distinct orbits have distinct multipliers, so that wj
is fixed by a power of the automorphism 03A8 = (u - çu) if and only if the
corresponding orbit is. Let the orbit whose multiplier is w = wi correspond to
the periodic sequences s = (Çi , (2, ... , Çn ) of Lemma 2 (where we represent s
by its first n terms). Then 03C8j (w) is the multiplier of the orbit corresponding to
the sequence 03C8j(s) = {Çj(I,Çj(2,... ,çjçn}. The sequences s and 03C8j(s) give
the same orbit if and only if the finite sequence f ei (1, çj (2, ... , çj (n} is a cyclic
permutation of the sequence f (1, (2, - - . , (n 1. Hence, each of the f-orbits of roots
of lfn (z, c) determines a well-defined primitive necklace in Xn, i.e., a necklace
in which the coloring is not periodic with period less than n, and the number of
distinct conjugates of wj under (03C8) equals the number of necklaces in the orbit
of { (t , 03B62, ... , (n 1 under G. It follows that the degree of wi over F ( ( 1 /c) ) equals
IGsl, and the contribution of Poo to the discriminant is 03A3prim, G-orbits (IGsl - 1 ) _
#( f-orbits of roots of 03A6n(x, c)) - #(primitive G-orbits) = mv (n) /n - en, where
en is given by the lemma. (Note that 0 is not a root of f (x, 1) when n = 1, by the
hypothesis that 03A61 (x) = f (x) - x is irreducible.)
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This proves part (a). Now (b) follows as in the proof of Theorem 11. Part (c)
follows from Lemma 12 and (b), since en = v (n) /n when (n, m) = 1.

(d) Ignoring the contribution ofpoo (which is actually absent when m = 1) to
the genus of Ka/F(c), setting VI (n) = rnv(n) /k = Edln J-L(nld)kd-t, and using
1  m  k and kvl (n) _ [K:F(c)] gives

Now we use that VI (d)  kd-l and

and find that

as n --&#x3E; oo, for k &#x3E; 2. This completes the proof. 1:1

COROLLARY If k &#x3E; 3 is odd and f (x) = xk + c, then the genus of the function
field K, defined by 62 (z, c) = 0 is ((k - 3)/2))2.

Proof. Take n = 2 and m = k in part (c) of the theorem.

4. Applications to automorphism polynomials

THEOREM 14 Let f (x, c) be a polynomial in Z[x, c] satisfying hypothesis (H),
for some n. If n &#x3E; C (k) (a constant depending only on k = degx f ) there are only
finitely many cyclic extensions N = L(O) of a given number field L which have
degree n over L and a generating automorphism of the form 0 - f (0, a), for some
a in L.

Proof. Every such extension N gives a point (0, a) on the curve 03A6n (x, c) = 0,
because the automorphism 03C8 = 0 - f (0, a) of N/L has order n and so 0 is a
periodic point of f(x, a) with primitive period n. Moreover, the multiplier w(0) of
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the orbit containing 0 is in L, since it is fixed by 1b. Hence N gives the L-rational
point on (w(0) , a) on 8n(x, c) = 0. For n &#x3E; C(k) the genus of Ka is at least 2,
by Theorem 13(d), and Faltings’ theorem shows that there are only finitely many
solutions (w (0), a) in L of 8n(x, c) = 0. Each such point gives at most finitely
prime divisors P of the function field K lying over pa, and therefore only finitely
many 0’s with x = 0 (mod P). This proves the theorem. 0

A suitable value for C(k) can be worked out using (23). Any C(k) for which
n &#x3E; C(k) implies

gives yn, &#x3E; 2, by (23).

COROLLARY If n &#x3E; 5, then there are only finitely many cyclic extensions N/L
of degree n of a given number field L for which () -+ ()2 + a, for some a in L, is a
generator of Gal (NIL).

Proof. It is easy to check that we can take C(2) = 11, since (n - 4)2 n/2-1 1&#x3E;
(n2 + n) for n &#x3E; 11. For 5  n  10 we compute ln by means of Theorem 13(b)
and (c): this gives

Thus qn j 2 for n &#x3E; 5, which implies that the conclusion of Theorem 14 holds for
all n &#x3E;, 5. 0

For L = Q and n = 5 the possible cyclic extensions can be given explicitly.
As Flynn, Poonen and Schaefer have shown [8], the finite Q-rational points on
TS(X C) = 0 are (-1 _1) (-1 -2) (_1 _t6) ( tO - 64) The c-values -2 - t6
and - 94 correspond to cyclic quintic extensions of Q of conductors 11, 41 and
5 2 1 l, respectively (B. Poonen, private communication).

As Bjom Poonen has pointed out to me, there are infinitely many values of
n for which Tn(X, c) has a finite rational point. Take n = 03B8(3r) = 2 . 3r-t and
note that 2 is a primitive root mod 3r. If ( is a primitive 3’th root of unity, then
the automorphism ( -+ (2 generates the Galois group of Q«)/Q. Thus the map
f (x) _ x2 has an n-cycle in Q(() whose trace is rational. Actually, the trace is 0,
since the coefficient of the xO(m)-l term in the cyclotomic polynomial C"m(x) is
03A6-u(m). Thus (0,0) is a point on 7-n(x, c) for infinitely many n.

5. Réduction mod p.

When lfn (z, c) is irreducible, there are only a finite number of primes at which it
has bad reduction (see [6], p. 187). The following theorem gives an explicit set of
primes outside of which the curve 03A6n (x, c) = 0 has good reduction.
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THEOREM 15 Let f satisfy hypothesis (H). If f (x, 1 ) and 8n(l, c) have distinct
roots over Fp, then q,n(x, c) is irreducible over Fp. Thus, if the prime p does not
divide disc(f(x, 1 ) ) or disc (6,, (1, c) ), then the curve (03A6n (x, c) = 0, defined over
Q, has good reduction at p.

The proof requires a lemma. We need the definition of the graph G f for a
polynomial f (x) over a field F: this is the directed graph whose vertices are monic
irreducible polynomials over F, in which g - h if and only if g(x)lh(f(x)) (see
[2]). The map g - h is called the induced map of f . In this section we shall use rra
to denote cycle lengths in G f; this should cause no confusion with the use of the
letter m in hypothesis (H), since the latter will not occur explicitly.
LEMMA 16 Assume that f (x) is a monic polynomial with coefficients in a domain
R, and that the irreducible polynomials gel , ... , g.",, form a cycle in the graph G f.

(a) The discriminants disc gi are all associates in R, and their quotients are
squares of units in R.

(b) If Res(gi, gj) is nonzero, then Res(gi, gj) and Res(gi+T, gj+r) are associates
in R, for any r.

Proof of (a). Suppose that gi - gi+1 in the graph G f. Then gi(x)lgi+1 (f (x));
if a is a root of gi (x), then f (a) is a root of gi+l (x). Thus R[f (a)] is a subring of
R[a], which implies that

where d = deg gi = deggi+l and T is the transition matrix from the basis
( 1 , a, ..., ad-Il to the basis {1, f (a),..., J(a)d-l}. Thus disc gi divides disc
9i+ l, for each i = 1,..., m; it follows that each of the discriminants disc gi divides
each of the other discriminants, and that the determinants det T are units in R,
proving part (a).

Proof of (b). The map a -+ f (a) gives a 1-1 mapping from the roots of gi to
the roots of gi+t, since f (a) = f (b) implies a = Jn(a) = f n(b) = b, for some
multiple n of m (see [2], Lemma 3.5). Hence we can write

where a and b run over the roots of gi and gj. It follows from Lemma 2.3 of [15]
that f r (a) - f r (b) and a - b are associates, and hence that Res (gi+r, 9 j +r) is an
associate of

PROOF OF THEOREM 15 Assume that 03A6n (x, c) is reducible over Fp. By Lem-
ma 3 we know that the factors of 03A6n (z, c) over F are defined over the splitting
field Frv of f (x, 1) over F = Fp. Let A1 (x, c) be a monic irreducible factor
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of 03A6n (x, c), and suppose that AI belongs to the cycle Al, A2, ..., Am of irre-
ducible factors of 03A6n (x, c) under the induced map of f (x, c). There are two
cases in the following argument, according as 03A6n (x, c) = A1 (x) ... Am (x) or
03A6n(x, c) = A1 (x) ... Am(x )B(x) for some factor B.

Case 1. 03A6n (x, c) = AI (x) ... Am(x). The integer rrc is a divisor of n and the
Ai (x) are irreducible polynomials in F- [x, c] which make up a cycle of the graph
G f. Computing the discriminant of (03A6n (x, c) using this factorization implies by
Lemma 16 that

where q is a unit in F- [c], i.e. a constant in F""’. Therefore disc 03A6n (x, c) is

essentially an mth power, which implies by formula (3’) and the fact mIn that

is an mth power. However, m is relatively prime to n - 1, which shows that
An, 1 (c) must either be an mth power itself, or it must have factors in common with
Ild= l,n An,d (c) . Neither case can occur if m &#x3E; 1, since discc (ôn ( 1 , c) ) # 0 in F.
Thus m must be equal to 1, and 03A6n (x, c) is irreducible over F.

Case 2. tPn(x,c) = At(x)...Am(x)B(x) for some factor B. In this case
we set A (x, c) = AI (x) ... Am (x), so that 03A6n (x, c) = A(x)B(x), where the
roots of A over F- (c) consist of complete orbits. Under the assumption that
disc, (ân (1, c) ) # 0 in F, the proof of Lemma 8 shows that Res(A, B) must be a
nonzero constant in F-, since otherwise 8n ( 1, c) = a ( 1 ) b( 1 ) would have a multiple
zero at any root co of Res(A, B) = 0. But the conditions that03A6n (x, c) = A (x) B (x)
and Res(A, B) is a nonzero constant in F- are exactly the hypotheses of a two-
variable version of Hensel’s Lemma in a finite extension Kp of Qp with residue class
field F- (cf. [9], p. 161). Hensel’s Lemma implies that (Dn (x, c) = Â (x) Ê (x) over
KP, where the degrees of the factors in x are the same as degx A and degx B. On the
other hand, Kp contains the splitting field L of f (x, 1) over Q as a subfield (again
by Hensel’s Lemma), and Lemma 3 shows that A(x) and B(x) have coefficients
in L, implying that 03A6n (x, c) is reducible over L. But this contradicts the fact that
4bn(x, c) is irreducible over Q, by Theorem B! Therefore, this case is impossible,
and (Pn (x, c) is irreducible over F.

The final assertion now follows from the corollary to theorem 11. 0

It is possible to prove a result on the irreducibility of 03A6n(x, c) over Fp with
somewhat weaker hypotheses than those in Theorem 15.

PROPOSITION 17 Let f satisfy the hypotheses (i) and (ii) of Theorem B (or (iia)-
(iic)). Assume that p is a prime which does not divide disc(f (x, 1)) and which
satisfies:
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(a) p does not divide disc(On 1 (c)), so in particular (p, n) = 1;
(b) there is some irreducible factor Of An, 1 (c) (mod p) which is not a factor of any

An,d(c) with d = 1;
(c) p does not divide disc(An,n (c) ).
Then 03A6n (x, c) is irreducible over Fp.

Remark. The definition of An, (c) shows that An, (c) has multiple roots (mod
p) whenever pin, since the same is true of the cyclotomic polynomial Cn (x).

Proof. We begin as in the proof of Theorem 15, taking A(x, c) to be a monic irre-
ducible factor of 03A6n,(x, c) over Frv and {A1, A2,..., Am} the orbit of irreducible
factors of 03A6n (x, c) containing A1. Again there are two cases.

Case 1. (03A6n (x, C) = A1 (x) ... Am(x). The proof of Case 1 in Theorem 15

implies that m must be 1, since conditions (a) and (b) show that some factor of
An, (c) (mod p) cannot occur to the mth power in disc (03A6n (x, c).

Case 2. ’03A6 n (x, c) = A1 (x) ... Am (x) B (x) for some factor B (x). I claim that
conditions (a) and (b) imply that m = 1, for some orbit of (Dn (x, c). Setting A (x) =
Al1(x) ... Am (x) = AI(x) ... A, (x), and letting al, a2, ..., as be representatives
of the s orbits of roots of A under f, then as in [15], Theorem 2.5 we find that

where n is a unit in R = F- [c, Cg 1, C92, - - - , Cis ]. Replacing the product over i
of Pd(ai)n by Res(pd(x), A(x)) times a unit of R (Pd(ai) and Pd(!j(ai)) are
associates in R) gives the formula

where the resultant in the first product is a factor of A,,d (C)d (see (4)) and the final
product is a factor of An,n (cl’n (see (5)). On the other hand, the same arguments
as in Theorem 15, case 1, show that

for some constant ri’ in F-. The formulas (25) and (26) hold for any orbit of
irreducible factors of 03A6n(x). We now assume A(x) corresponds to an orbit for
which (c - b) divides Res(03A61(x),A(x)) (mod p), where (c - b) is a factor of
An, (c), but not a factor of any An ,d (c) with d # 1. Such an orbit exists because the
product of all the polynomials Res(pt(x), A(x)) is Res(03A6 1 (x), 03A6n (x)) = An, 1 (c)
(see [15], Theorem 2.2). By (26), (c - b) occurs to a power in disc A(x) which is
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divisible by m; but (25) shows that (c - b) occurs to exactly the power (n - 1) in
disc A(x) (using (a)). Since (n - 1, m) = 1 this forces m = 1, so that A(x) is an
absolutely irreducible factor of 03A6n(x).

Because A(x) is absolutely irreducible and (p, n) = 1, the arguments of Lem-
ma 7 hold over Fp (the crucial point being that there can be at most one divisor
d of n for which (Dd (a, b) = 0, by Theorem 2.4 of [13]). Thus we may apply
the full argument of Lemma 8, which, together with assumption (c), implies that
Res(A(x), B(x)) is a non-zero constant in F-. The rest of the argument is the
same as in Case 2 of Theorem 15, and this completes the proof.

The conditions (a)-(c) in the proposition are somewhat better suited for practical
calculations in a particular case than is the stronger condition that p not divide
disc( 8n ( 1, c) ). Even more work can be saved if it is known that 8n (x, c) is irreducible
mod p. In this case the following proposition holds.

PROPOSITION 18 If p is a prime for which ân (x, c) (or T n (x, c)) is absolutely
irreducible mod p, p does not divide disc (An, (c)), and some irreducible factor
of An,l (c) (mod p) does not divide TId#t,n n,d(C), then (03A6n (x, C) is absolutely
irreducible mod p. 

’

Proof. Since ân (x, c) is absolutely irreducible mod p, q)n (x, c) can only be the
product of the irreducible factors At, ... , A,", in one orbit under f, by Theorem 5.5
of [13]. The argument in Case 1 of Theorem 15 now implies the assertion.

As an example, take f (x) = x 2 + c and n = 6. Then, according to Maple, we
have

(See [15] for the polynomials A6,d (C) .) Proposition 17 is applicable for any prime
not listed and for the primes 211 and 68700493, since for these two primes 06,1 (c)
has a linear factor which does not divide the other delta factors (c + 207 for p = 211
and c + 15918356 for p = 68700493). Proposition 18 applies to all primes other
than 2 and 3: this is because

and because T6 (x, c) is absolutely irreducible over Fp for any odd prime p, by the
method of [ 12, Sect. 6]. The prime p = 3 can be handled by the following argument.
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Over F3 we have A6,1 (c) = A6,2 (c) = c2, A6 3 (c) = c2(c + 2), and (24) implies
that m can only equal 3 (the power of (c+ 2) in (24) is 6- 3 = 3). Because the roots
of the polynomials AI(X),A2(X) and A3 (x) come in pairs {a, f 3 (a) }, it follows
that (c + 2) divides each of their discriminants, since some orbit must collapse to a
3-cycle at any root of A6,3 (C) . We now set c = - 2 and factor 03A6)6(X, -2) (mod 3);
we find that Ai (x), A2 (x) and 43 (X) must reduce respectively to

say, with appropriate numbering. As specializations of the Ai(x, c) these three
polynomials must form a 3-cycle under the induced map of f (x, -2) = x2 - 2
over F3. However, a calculation on Maple shows that the 12th degree factors of
AI and A2 form a 2-cycle, as do the simple cubic factors of A3, while the cubic
x3 + x2 + x + 2 is a fixed point. Hence 03A66 (z , c) cannot factor as A1 (x)A2 (x ) A3 (x)
over F3. This shows that qD6(X, c) is absolutely irreducible over Fp for any odd
prime p.
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