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1. Introduction and statement of result

Let F be a holomorphic cusp form of integral weight on the Siegel modular
group r = Sp (Z) of genus g and denote by a (T) (T a positive definite symmetric
even integral g, g)-matrix) its Fourier coefficients.

If g = 1 and k &#x3E; 2, then by Deligne’s theorem (previously the Ramanujan-
Petersson conjecture) one has

and since by [10]

this bound is best possible.
For arbitrary g &#x3E; 2 our knowledge of how to obtain good bounds for the

coefficients a(T) in terms of det(T) is still extremely limited. For g &#x3E;, 2 and
k &#x3E; 9 + 1 Bôcherer and the author in [4] proved that

where

The bound (1) for arbitrary g seems to be the best one known so far. Note, however,
that for g - oo it is still of the same order of magnitude as Hecke’s bound

In the present paper we shall prove

THEOREM. Suppose that 4/g. Then there exists r, = k ( g ) E N with thefollowing
property: for each N E N there is an integer k E {N, N + 1, ..., N + k - 1 ) and a
non-zero cusp form F of weight k on Fg whose Fourier coefficients a (T) satisfy
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The proof of the Theorem will be given in Section 2. The functions F will be
constructed as theta series attached to a positive definite quadratic form of rank 2g
with certain harmonic forms. For some general comments we refer the reader to
Section 3.

NOTATION. If A and B are real resp. complex matrices of appropriate sizes we
put A[B] := B’AB resp. A{B} := 13’ AB; here B’ is the transpose of B.

If S is a real symmetric matrix we write S &#x3E; 0 resp. S &#x3E; 0 if S is positive
semi-definite resp. positive definite. If S is real of size m and S &#x3E; 0, we denote

by S112 the unique real symmetric positive definite matrix of size m satisfying

2. Proof of theorem

For v, m e N denote by Hv (m, g) the C-linear space of harmonic forms P : C(m,g)-
C of degree v, i.e. of polynomial functions P (X ) (X = (xij) i 1 i, m) which satisfy
P X U = (det(C/))"P(X) for all U e Glg (C) and which aré ânnihilated by the
Laplace operator Ei,j(â2 / âX;j) [6, 8]. Form &#x3E; 2g the space Hv(m, g) is generated
by the forms (det(L’X) )v where L is a complex (m, g)-matrix with L’L = 0 [8].

Let ,S’ be a fixed positive definite symmetric even integral matrix of size m with
determinant 1 (such a matrix exists if and only if 8 ]m). Then the generalized theta
series

is a cusp form of weight m/2 + v on Fg [5, Kap. II, Sect. 3].
We now specialize to the case m = 2g (supposing 4Ig). Take L = (E )where

E is the unit matrix of size g and define

We write

for the Fourier coefficients of {} S,Pv .
Put
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where

and observe that R is skew-symmetric and H is hermitian.
From

we see that

in particular

Choose a unitary matrix U E GLg(C) such thatiR{T-1/2U} = D is a real diag-
onal matrix with diagonal entries the eigenvalues of the hermitian matrix iR[T-1 12] .
As R[T- 1/2] is real, these eigenvalues occur in pairs +av (v = 1, ..., g/2).

From

we find that

hence by (4) we obtain

From (3) we now infer that

where
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is the number of representations of T by S.
Denote by

the number of primitive representations of T by S. By elementary divisor theory
we have

where z(g,g) denotes the set of integral (g, g)-matrices of rank g.
Let Si, ... , Sh (h = h(2g)) be a set of representatives of classes of (the genus

of) unimodular positive definite symmetric even integral (2g, 2g)-matrices and
e(S03BC,) (M = 1,..., h) be the number of units of S JL. Then according to the ’primi-
tive’ version of Siegel’s main theorem on quadratic forms [11] one has

where Cg is a constant depending only on g, and where the a;,T are certain local
densities which satisfy 

’

and

(cf. [1; Sect. 2, esp. (2.6), (2.7b), (2.7d); Sect. 3] in combination with [2; 1.1 ff.],
and [7; Sect. 6.8, Thm. 6.8.1, iii)]; note that in the product in formulas (2.7b) and
(2.7d) in [1 ] the index j should start with 0 (rather than 1) and that the algebraic
calculations given in [1; Sect. 3] remain valid also without the assumption on the
weight imposed there).
We therefore conclude that
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hence that

The condition T[D-1] integral implies that (det(D) )2 det(T). Hence the sum
on the right of (6) is majorized by

where for any n E N we have put

As is well-known and easy to see one has

From the latter equality one easily checks by induction on n that

Thus

and by (6) it follows that

for any E &#x3E; 0.

Together with (5) this implies

where k = g + v is the weight of {} S,Pv .
To complete the proof we proceed as follows. Suppose that {} S,Pv is identically

zero for all v &#x3E; 1, so
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for all T &#x3E; 0 and all v &#x3E;, 1. Identity (7) implies that

for all G E Z(2g,g); in fact, this follows from the well-known more general result
that if E==l Cn is an absolutely convergent series of complex numbers such that
soo 1c’ = 0 for all v e N, then cn = 0 for all n.

By (4) and the definition of H, (8) is equivalent to

for all G E Z (2g,g). Since the left-hand side of (9) is a polynomial in the components
of G, equality (9) must hold for all G E JR(2g,g) . Replacing G by S-112 G we find

for all G, a contradiction (take e.g. G = ( Gl) with G1 invertible). Therefore there0

exists v E N with {} S,Pv 1:- 0 (of course, we could have also used the slightly
different reasoning suggested by Maass, cf. [9, p. 154f.]).

Repeating the above argument with v replaced by Nv where N is an arbi-
trary positive integer, we deduce inductively that there are infinitely many v with
{}s,Pv 1:- 0.

To obtain the slightly stronger assertion of the Theorem, we follow Maass
[9, loc. cit.]. Assume that avo (To) 1:- 0, say and denote by bl, ... , bk the distinct
non-zero numbers of the form det( (E iE)Sl/2G) as G runs over all G E Z(2g,g)
with S[ G] = To. Then there exist n 1, ... , n,k e N such that

for all v &#x3E; 1. Supposing that

we obtain n 1 = n2 = ... nk = 0 (Vandermonde determinant), a contradiction.

3. Comments

We conclude the paper with a few general comments.
(i) Certainly the estimate (2) can be proved for the Fourier coefficients of

theta series with more general harmonics than the special forms Pv considered in
Section 2, and eventually it would be true for all P e Hv (2g, g) . However, we
have not checked this, mainly for the following reason: for 1) -t oo the dimension
of Hv(2g, g) grows like Vg(g+1)12-g ([6], cf. also [3, formula XI.1]), while the
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dimension of the space of cusp forms of weight g + v on Fg grows like (g +
v)g(g+1)/2; hence there is no hope to eventually proving (2) for all cusp forms on
Fg of weight k » g by the method of this paper.

(ii) If in (2) one drops the condition that S is unimodular (and hence also the
condition that 4g), one obtains cusp forms on subgroups of Fg of finite index with
a multiplier system. The same method as before can be applied to estimate their
Fourier coefficients. For example, take the simplest case g = 1 and let S = ( 2 0).0 2
Then

is a cusp form of weight 1 + v on ro(4) = {( a d) E F1 1 4/cl with character
(-4) (Legendre symbol). If 4]v it is not identically zero (the coefficient of e2li-’
is equal to 4). Since (as is of course well-known) rs(T) W TE (,- &#x3E; 0), we obtain
Deligne’s bound

for the Fourier coefficients a(T) of {}s,Pv.
(iii) One should observe that in general (i.e. for m # 2g) the coefficients of

theta functions with harmonic forms in H v (m, g) cannot be estimated directly in a
good way. In fact, for m  2g one has

(cf. [3, p.13]). On the other hand, for m &#x3E; 2g an estimate with the same method as
in Section 2 leads to a bound which is even worse than the usual Hecke bound.
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