COMPOSITIO MATHEMATICA

WINFRIED KOHNEN On Siegel modular forms

Compositio Mathematica, tome 103, nº 2 (1996), p. 219-226 http://www.numdam.org/item?id=CM_1996__103_2_219_0

© Foundation Compositio Mathematica, 1996, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On Siegel modular forms

WINFRIED KOHNEN

Universität Heidelberg, Mathematisches Institut, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany

Received 18 April 1994: accepted in final form 30 August 1994

1. Introduction and statement of result

Let F be a holomorphic cusp form of integral weight k on the Siegel modular group $\Gamma = \operatorname{Sp}_{g}(\mathbb{Z})$ of genus g and denote by a(T) (T a positive definite symmetric even integral (g, g)-matrix) its Fourier coefficients.

If g = 1 and $k \ge 2$, then by Deligne's theorem (previously the Ramanujan-Petersson conjecture) one has

$$a(T) \ll_{\varepsilon,F} T^{k/2-1/2+\varepsilon}, \quad (\varepsilon > 0),$$

and since by [10]

$$\limsup_{T\to\infty} |a(T)|/T^{k/2-1/2} = \infty,$$

this bound is best possible.

For arbitrary $g \ge 2$ our knowledge of how to obtain good bounds for the coefficients a(T) in terms of det(T) is still extremely limited. For $g \ge 2$ and k > g + 1 Böcherer and the author in [4] proved that

$$a(T) \ll_{\varepsilon,F} (\det(T))^{k/2-\delta_g+\varepsilon}, \quad (\varepsilon > 0),$$
 (1)

where

$$\delta_g := \frac{1}{2g} + \left(1 - \frac{1}{g}\right) \frac{1}{4(g-1) + 4[(g-1)/2] + 2/(g+2)}.$$

The bound (1) for arbitrary g seems to be the best one known so far. Note, however, that for $g \to \infty$ it is still of the same order of magnitude as Hecke's bound $a(T) \ll_F (\det(T))^{k/2}$.

In the present paper we shall prove

THEOREM. Suppose that 4/g. Then there exists $\kappa = \kappa(g) \in \mathbb{N}$ with the following property: for each $N \in \mathbb{N}$ there is an integer $k \in \{N, N+1, \ldots, N+\kappa-1\}$ and a non-zero cusp form F of weight k on Γ_g whose Fourier coefficients a(T) satisfy

$$a(T) \ll_{\varepsilon,F} (\det(T))^{k/2 - 1/2 + \varepsilon}, \quad (\varepsilon > 0).$$
(2)

The proof of the Theorem will be given in Section 2. The functions F will be constructed as theta series attached to a positive definite quadratic form of rank 2g with certain harmonic forms. For some general comments we refer the reader to Section 3.

NOTATION. If A and B are real resp. complex matrices of appropriate sizes we put A[B] := B'AB resp. $A\{B\} := \overline{B}'AB$; here B' is the transpose of B.

If S is a real symmetric matrix we write $S \ge 0$ resp. S > 0 if S is positive semi-definite resp. positive definite. If S is real of size m and S > 0, we denote by $S^{1/2}$ the unique real symmetric positive definite matrix of size m satisfying $(S^{1/2})^2 = S$.

2. Proof of theorem

For $\nu, m \in \mathbb{N}$ denote by $H_{\nu}(m, g)$ the \mathbb{C} -linear space of harmonic forms $P: \mathbb{C}^{(m,g)} \to \mathbb{C}$ of degree ν , i.e. of polynomial functions $P(X)(X = (x_{ij})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq g}})$ which satisfy $P(XU) = (\det(U))^{\nu}P(X)$ for all $U \in \operatorname{Gl}_g(\mathbb{C})$ and which are annihilated by the Laplace operator $\Sigma_{i,j}(\partial^2/\partial x_{ij}^2)$ [6, 8]. For $m \geq 2g$ the space $H_{\nu}(m,g)$ is generated by the forms $(\det(L'X))^{\nu}$ where L is a complex (m,g)-matrix with L'L = 0 [8].

Let S be a fixed positive definite symmetric even integral matrix of size m with determinant 1 (such a matrix exists if and only if 8|m). Then the generalized theta series

$$\vartheta_{S,P}(Z) = \sum_{G \in \mathbb{Z}^{(m,g)}} P(S^{1/2}G) \, \mathrm{e}^{\pi i \cdot \mathrm{tr}(S[G]Z)},$$

$$(Z \in \mathbf{H}_g = \text{Siegel upper half-space of degree } g)$$

is a cusp form of weight $m/2 + \nu$ on Γ_g [5, Kap. II, Sect. 3].

We now specialize to the case m = 2g (supposing 4|g). Take $L = {E \choose iE}$ where E is the unit matrix of size g and define

$$P_{\nu}(X) := (\det(L'X))^{\nu}, \quad (\nu \in \mathbb{N})$$

We write

$$a_{\nu}(T) = \sum_{\substack{G \in \mathbb{Z}^{(2g,g)} \\ S[G]=T}} (\det((E \ iE)S^{1/2}G))^{\nu}, \quad (T > 0)$$
(3)

for the Fourier coefficients of $\vartheta_{S,P_{\nu}}$.

Put

$$H := T + iR$$

where

$$R := J[S^{1/2}G], \quad J := \begin{pmatrix} 0 & -E \\ E & 0 \end{pmatrix}$$

and observe that R is skew-symmetric and H is hermitian.

From

$$\begin{pmatrix} E\\iE \end{pmatrix}(E - iE) = E + iJ, \quad T = S[G]$$

we see that

$$H = G'S^{1/2} \begin{pmatrix} E \\ iE \end{pmatrix} \cdot \left(G'S^{1/2} \begin{pmatrix} E \\ iE \end{pmatrix}\right)';$$

in particular

$$\det(H) = |\det((E \ iE)S^{1/2}G)|^2. \tag{4}$$

Choose a unitary matrix $U \in \operatorname{GL}_g(\mathbb{C})$ such that $iR\{T^{-1/2}U\} = D$ is a real diagonal matrix with diagonal entries the eigenvalues of the hermitian matrix $iR[T^{-1/2}]$. As $R[T^{-1/2}]$ is real, these eigenvalues occur in pairs $\pm \alpha_{\nu}(\nu = 1, \ldots, g/2)$. From

$$H\{T^{-1/2}U\}=E+D$$

we find that

$$\det(H\{T^{-1/2}U\}) = \prod_{\nu=1}^{g/2} (1 - \alpha_{\nu}^2) \leq 1,$$

hence by (4) we obtain

$$\begin{aligned} |\det((E \ iE)S^{1/2}G)|^2 &= \ \det(H\{T^{-1/2}U\}\{U^{-1}T^{1/2}\}) \\ &\leqslant \ \det(E\{U^{-1}T^{1/2}\}) \\ &= \ \det(T). \end{aligned}$$

From (3) we now infer that

$$|a_{\nu}(T)| \leq (\det(T))^{\nu/2} \cdot r_S(T), \tag{5}$$

where

$$r_S(T) := #\{G \in \mathbb{Z}^{(2g,g)} | S[G] = T\}$$

is the number of representations of T by S.

Denote by

$$r_{S}^{*}(T) := \#\{G \in \mathbb{Z}^{(2g,g)} \mid G \text{ primitive, } S[G] = T\},\$$

the number of primitive representations of T by S. By elementary divisor theory we have

$$r_S(T) = \sum_{\substack{D \in \operatorname{GL}_g(\mathbb{Z}) \setminus \mathbb{Z}^{(g,g)}_* \\ T[D^{-1}] > 0 \text{ even integral}}} r_S^*(T[D^{-1}])$$

where $\mathbb{Z}_*^{(g,g)}$ denotes the set of integral (g,g)-matrices of rank g.

Let $S_1, \ldots, S_h(h = h(2g))$ be a set of representatives of classes of (the genus of) unimodular positive definite symmetric even integral (2g, 2g)-matrices and $\varepsilon(S_{\mu})$ ($\mu = 1, \ldots, h$) be the number of units of S_{μ} . Then according to the 'primitive' version of Siegel's main theorem on quadratic forms [11] one has

$$\begin{pmatrix} \sum_{\mu=1}^{h} \frac{1}{\varepsilon(S_{\mu})} \end{pmatrix}^{-1} \sum_{\mu=1}^{h} \frac{1}{\varepsilon(S_{\mu})} r_{S_{\mu}}^{*}(T)$$
$$= c_{g} \cdot (\det(T))^{g-(g+1)/2} \cdot \prod_{p} \alpha_{p,T}^{*},$$

where c_g is a constant depending only on g, and where the $\alpha_{p,T}^*$ are certain local densities which satisfy

$$\prod_{p \nmid \det(T)} \alpha_{p,T}^* \ll 1$$

and

$$\alpha_{p,T}^* \leqslant 2, \quad (p \mid \det(T))$$

(cf. [1; Sect. 2, esp. (2.6), (2.7b), (2.7d); Sect. 3] in combination with [2; 1.1ff.], and [7; Sect. 6.8, Thm. 6.8.1, iii)]; note that in the product in formulas (2.7b) and (2.7d) in [1] the index j should start with 0 (rather than 1) and that the algebraic calculations given in [1; Sect. 3] remain valid also without the assumption on the weight imposed there).

We therefore conclude that

$$r_S^*(T) \ll_{\varepsilon} (\det(T))^{(g-1)/2+\varepsilon}, \quad (\varepsilon > 0),$$

hence that

$$r_{S}(T) \ll_{\varepsilon} (\det(T))^{(g-1)/2+\varepsilon} \sum_{\substack{D \in \operatorname{GL}_{g}(\mathbb{Z}) \setminus \mathbb{Z}^{(g,g)}_{*} \\ T[D^{-1}] > 0 \text{ even integral}}} \frac{1}{|\det(D)|^{g-1+2\varepsilon}},$$

$$(\varepsilon > 0). \tag{6}$$

The condition $T[D^{-1}]$ integral implies that $(\det(D))^2 | \det(T)$. Hence the sum on the right of (6) is majorized by

$$\sum_{d^2|\det(T)} \alpha_g(d)/d^{g-1+2\varepsilon},$$

where for any $n \in \mathbb{N}$ we have put

$$\alpha_n(d) := \#\{D \in \operatorname{GL}_n(\mathbb{Z}) \setminus \mathbb{Z}^{(n,n)}_* \mid |\det(D)| = d\}, \quad (d \in \mathbb{N}).$$

As is well-known and easy to see one has

$$\sum_{d \ge 1} \alpha_n(d)/d^s = \zeta(s)\zeta(s-1)\ldots\zeta(s-n+1), \quad (\operatorname{Re}(s) > n).$$

From the latter equality one easily checks by induction on n that

$$\alpha_n(d) \ll_{\varepsilon} d^{n-1+\varepsilon}.$$

Thus

$$\sum_{d^2|\det(T)} \alpha_n(d)/d^{g-1+2\varepsilon} \ll_{\varepsilon} (\det(T))^{\varepsilon},$$

and by (6) it follows that

$$r_S(T) \ll_{\varepsilon} (\det(T))^{(g-1)/2+\varepsilon}$$

for any $\varepsilon > 0$.

Together with (5) this implies

$$a_{\nu}(T) \ll_{\varepsilon} (\det(T))^{k/2-1/2+\varepsilon}, \quad (\varepsilon > 0),$$

where $k = g + \nu$ is the weight of $\vartheta_{S, P_{\nu}}$.

To complete the proof we proceed as follows. Suppose that $\vartheta_{S,P_{\nu}}$ is identically zero for all $\nu \ge 1$, so

$$\sum_{\substack{G \in \mathbb{Z}^{(2g,g)} \\ S[G]=T}} (\det((E \ iE)S^{1/2}G)^{\nu} = 0$$
(7)

for all $T \ge 0$ and all $\nu \ge 1$. Identity (7) implies that

$$\det((E \ iE)S^{1/2}G) = 0 \tag{8}$$

for all $G \in \mathbb{Z}^{(2g,g)}$; in fact, this follows from the well-known more general result that if $\sum_{n=1}^{\infty} c_n$ is an absolutely convergent series of complex numbers such that $\sum_{n=1}^{\infty} c_n^{\nu} = 0$ for all $\nu \in \mathbb{N}$, then $c_n = 0$ for all n.

By (4) and the definition of H, (8) is equivalent to

$$\det((S+iJ[S^{1/2}])[G]) = 0.$$
(9)

for all $G \in \mathbb{Z}^{(2g,g)}$. Since the left-hand side of (9) is a polynomial in the components of G, equality (9) must hold for all $G \in \mathbb{R}^{(2g,g)}$. Replacing G by $S^{-1/2}G$ we find

$$\det((E+iJ)[G]) = 0$$

for all G, a contradiction (take e.g. $G = \begin{pmatrix} G_l \\ 0 \end{pmatrix}$ with G_1 invertible). Therefore there exists $\nu \in \mathbb{N}$ with $\vartheta_{S,P_{\nu}} \neq 0$ (of course, we could have also used the slightly different reasoning suggested by Maass, cf. [9, p. 154f.]).

Repeating the above argument with ν replaced by $N\nu$ where N is an arbitrary positive integer, we deduce inductively that there are infinitely many ν with $\vartheta_{S,P\nu} \neq 0$.

To obtain the slightly stronger assertion of the Theorem, we follow Maass [9, loc. cit.]. Assume that $a_{\nu_0}(T_0) \neq 0$, say and denote by b_1, \ldots, b_{κ} the distinct non-zero numbers of the form $\det((E \ iE)S^{1/2}G)$ as G runs over all $G \in \mathbb{Z}^{(2g,g)}$ with $S[G] = T_0$. Then there exist $n_1, \ldots, n_{\kappa} \in \mathbb{N}$ such that

$$a_{\nu}(T_0) = \sum_{j=1}^{\kappa} n_j b_j^{\nu}$$

for all $\nu \ge 1$. Supposing that

$$a_N(T_0) = a_{N+1}(T_0) = \cdots = a_{N+\kappa-1}(T_0) = 0,$$

we obtain $n_1 = n_2 = \cdots n_{\kappa} = 0$ (Vandermonde determinant), a contradiction.

3. Comments

We conclude the paper with a few general comments.

(i) Certainly the estimate (2) can be proved for the Fourier coefficients of theta series with more general harmonics than the special forms P_{ν} considered in Section 2, and eventually it would be true for all $P \in H_{\nu}(2g,g)$. However, we have not checked this, mainly for the following reason: for $\nu \to \infty$ the dimension of $H_{\nu}(2g,g)$ grows like $\nu^{g(g+1)/2-g}$ ([6], cf. also [3, formula XI.1]), while the

dimension of the space of cusp forms of weight $g + \nu$ on Γ_g grows like $(g + \nu)^{g(g+1)/2}$; hence there is no hope to eventually proving (2) for all cusp forms on Γ_g of weight $k \gg g$ by the method of this paper.

(ii) If in (2) one drops the condition that S is unimodular (and hence also the condition that 4|g), one obtains cusp forms on subgroups of Γ_g of finite index with a multiplier system. The same method as before can be applied to estimate their Fourier coefficients. For example, take the simplest case g = 1 and let $S = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$. Then

$$\vartheta_{S,P_{\nu}}(z) = \sum_{x_1,x_2 \in \mathbb{Z}} (x_1 + ix_2)^{\nu} e^{2\pi i (x_1^2 + x_2^2) z}, \quad (z \in \mathbf{H} := \mathbf{H}_1; \nu \in \mathbb{N})$$

is a cusp form of weight $1 + \nu$ on $\Gamma_0(4) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_1 \mid 4/c \}$ with character $\left(\frac{-4}{\cdot}\right)$ (Legendre symbol). If $4|\nu$ it is not identically zero (the coefficient of $e^{2\pi i z}$ is equal to 4). Since (as is of course well-known) $r_S(T) \ll T^{\varepsilon}(\varepsilon > 0)$, we obtain Deligne's bound

 $a(T) \ll_{\varepsilon} T^{\nu/2+\varepsilon}, \quad (\varepsilon > 0)$

for the Fourier coefficients a(T) of $\vartheta_{S,P_{\nu}}$.

(iii) One should observe that in general (i.e. for $m \neq 2g$) the coefficients of theta functions with harmonic forms in $H_{\nu}(m,g)$ cannot be estimated directly in a good way. In fact, for m < 2g one has

$$egin{array}{ll} H_
u(m,g)=..\{0\} & ext{if} \quad m < g, \quad ext{all} \quad
u \geqslant 1, \ H_
u(m,g)=\{0\} & ext{if} \quad g \leqslant m < 2g \quad ext{and} \quad
u
eq 1 \end{array}$$

(cf. [3, p.13]). On the other hand, for m > 2g an estimate with the same method as in Section 2 leads to a bound which is even worse than the usual Hecke bound.

Acknowledgements

The author would like to thank S. Böcherer for a useful conversation.

References

- Böcherer, S.: Über die Fourierkoeffizienten der Siegelschen Eisensteinreihen, Manuscripta Math. 45 (1984) 273–288.
- Böcherer, S. and Raghavan, S.: On Fourier coefficients of Siegel modular forms, J. Reine Angew. Math. 384 (1988) 80–101.
- 3. Böcherer, S.: Siegel modular forms and theta series, *Proc. Sympos. Pure Maths. AMS*, vol. 49, part 2 (1989) 3–17.
- 4. Böcherer, S. and Kohnen, W.: Estimates for Fourier coefficients of Siegel cusp forms, *Math. Ann.* 297 (1993) 499–517.
- Freitag, E.: Siegelsche Modulformen, Grundl. Math. Wiss. vol. 254, Springer, Berlin-Heidelberg-New York, 1983.

- Kashiwara, M. and Vergne, M.: On the Segal-Shale-Weil representations and harmonic polynomials, *Invent. Math.* 84 (1978) 1–47.
- 7. Kitaoka, Y.: Arithmetic of quadratic forms. Cambridge Texts in Maths, no. 106, Cambridge University Press, 1993.
- 8. Maass, H.: Harmonische Formen in einer Matrixvariablen, Math. Ann. 252 (1980) 133-140.
- 9. Raghavan, S.: Cusp forms of degree 2 and weight 3, Math. Ann. 224 (1976) 149-156.
- 10. Rankin, R.-A.: An Ω-result for the Fourier coefficients of cusp forms, Math. Ann. 203 (1973) 239-250.
- Siegel, C. L.: Über die analytische Theorie der quadratischen Formen. In: *Collected Works I* (eds.: K. Chandrasekharan and H. Maass), pp. 326–405. Springer, Berlin-Heidelberg-New York, 1966.