Compositio Mathematica

Winfried Kohnen
 On Siegel modular forms

Compositio Mathematica, tome 103, ${ }^{\circ} 2$ (1996), p. 219-226
http://www.numdam.org/item?id=CM_1996__103_2_219_0
© Foundation Compositio Mathematica, 1996, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

On Siegel modular forms

WINFRIED KOHNEN
Universität Heidelberg, Mathematisches Institut, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany

Received 18 April 1994: accepted in final form 30 August 1994

1. Introduction and statement of result

Let F be a holomorphic cusp form of integral weight k on the Siegel modular group $\Gamma=\mathrm{Sp}_{g}(\mathbb{Z})$ of genus g and denote by $a(T)$ (T a positive definite symmetric even integral (g, g)-matrix) its Fourier coefficients.

If $g=1$ and $k \geqslant 2$, then by Deligne's theorem (previously the RamanujanPetersson conjecture) one has

$$
a(T) \lll<, F T^{k / 2-1 / 2+\varepsilon}, \quad(\varepsilon>0)
$$

and since by [10]

$$
\lim _{T \rightarrow \infty} \sup |a(T)| / T^{k / 2-1 / 2}=\infty
$$

this bound is best possible.
For arbitrary $g \geqslant 2$ our knowledge of how to obtain good bounds for the coefficients $a(T)$ in terms of $\operatorname{det}(T)$ is still extremely limited. For $g \geqslant 2$ and $k>g+1$ Böcherer and the author in [4] proved that

$$
\begin{equation*}
a(T) \ll_{\varepsilon, F}(\operatorname{det}(T))^{k / 2-\delta_{g}+\varepsilon}, \quad(\varepsilon>0) \tag{1}
\end{equation*}
$$

where

$$
\delta_{g}:=\frac{1}{2 g}+\left(1-\frac{1}{g}\right) \frac{1}{4(g-1)+4[(g-1) / 2]+2 /(g+2)}
$$

The bound (1) for arbitrary g seems to be the best one known so far. Note, however, that for $g \rightarrow \infty$ it is still of the same order of magnitude as Hecke's bound $a(T) \lll{ }_{F}(\operatorname{det}(T))^{k / 2}$.

In the present paper we shall prove
THEOREM. Suppose that $4 / g$. Then there exists $\kappa=\kappa(g) \in \mathbb{N}$ with the following property: for each $N \in \mathbb{N}$ there is an integer $k \in\{N, N+1, \ldots, N+\kappa-1\}$ and a non-zero cusp form F of weight k on Γ_{g} whose Fourier coefficients $a(T)$ satisfy

$$
\begin{equation*}
a(T)<_{\varepsilon, F}(\operatorname{det}(T))^{k / 2-1 / 2+\varepsilon}, \quad(\varepsilon>0) \tag{2}
\end{equation*}
$$

The proof of the Theorem will be given in Section 2. The functions F will be constructed as theta series attached to a positive definite quadratic form of rank $2 g$ with certain harmonic forms. For some general comments we refer the reader to Section 3.

NOTATION. If A and B are real resp. complex matrices of appropriate sizes we put $A[B]:=B^{\prime} A B$ resp. $A\{B\}:=\bar{B}^{\prime} A B$; here B^{\prime} is the transpose of B.

If S is a real symmetric matrix we write $S \geqslant 0$ resp. $S>0$ if S is positive semi-definite resp. positive definite. If S is real of size m and $S>0$, we denote by $S^{1 / 2}$ the unique real symmetric positive definite matrix of size m satisfying $\left(S^{1 / 2}\right)^{2}=S$.

2. Proof of theorem

For $\nu, m \in \mathbb{N}$ denote by $H_{\nu}(m, g)$ the \mathbb{C}-linear space of harmonic forms $P: \mathbb{C}^{(m, g)} \rightarrow$ \mathbb{C} of degree ν, i.e. of polynomial functions $P(X)\left(X=\left(x_{i j}\right)_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant g}}\right.$ which satisfy $P(X U)=(\operatorname{det}(U))^{\nu} P(X)$ for all $U \in \mathrm{Gl}_{g}(\mathbb{C})$ and which are annihilated by the Laplace operator $\Sigma_{i, j}\left(\partial^{2} / \partial x_{i j}^{2}\right)[6,8]$. For $m \geqslant 2 g$ the space $H_{\nu}(m, g)$ is generated by the forms $\left(\operatorname{det}\left(L^{\prime} X\right)\right)^{\nu}$ where L is a complex (m, g)-matrix with $L^{\prime} L=0$ [8].

Let S be a fixed positive definite symmetric even integral matrix of size m with determinant 1 (such a matrix exists if and only if $8 \mid m$). Then the generalized theta series

$$
\vartheta_{S, P}(Z)=\sum_{G \in \mathbb{Z}^{(m, g)}} P\left(S^{1 / 2} G\right) \mathrm{e}^{\pi i \cdot \operatorname{tr}(S[G] Z)}
$$

$$
\left(Z \in \mathbf{H}_{g}=\text { Siegel upper half-space of degree } g\right)
$$

is a cusp form of weight $m / 2+\nu$ on Γ_{g} [5, Kap. II, Sect. 3].
We now specialize to the case $m=2 g$ (supposing $4 \mid g$). Take $L=\binom{E}{i E}$ where E is the unit matrix of size g and define

$$
P_{\nu}(X):=\left(\operatorname{det}\left(L^{\prime} X\right)\right)^{\nu}, \quad(\nu \in \mathbb{N})
$$

We write

$$
\begin{equation*}
a_{\nu}(T)=\sum_{\substack{G \in \mathbb{Z}^{(2 g, g)} \\ S[G]=T}}\left(\operatorname{det}\left((E i E) S^{1 / 2} G\right)\right)^{\nu}, \quad(T>0) \tag{3}
\end{equation*}
$$

for the Fourier coefficients of $\vartheta_{S, P_{\nu}}$.
Put

$$
H:=T+i R
$$

where

$$
R:=J\left[S^{1 / 2} G\right], \quad J:=\left(\begin{array}{rr}
0 & -E \\
E & 0
\end{array}\right)
$$

and observe that R is skew-symmetric and H is hermitian.
From

$$
\binom{E}{i E}(E-i E)=E+i J, \quad T=S[G]
$$

we see that

$$
H=G^{\prime} S^{1 / 2}\binom{E}{i E} \cdot\left(G^{\prime} S^{1 / 2}\binom{E}{i E}\right)^{\prime}
$$

in particular

$$
\begin{equation*}
\operatorname{det}(H)=\left|\operatorname{det}\left((E i E) S^{1 / 2} G\right)\right|^{2} \tag{4}
\end{equation*}
$$

Choose a unitary matrix $U \in \mathrm{GL}_{g}(\mathbb{C})$ such that $i R\left\{T^{-1 / 2} U\right\}=D$ is a real diagonal matrix with diagonal entries the eigenvalues of the hermitian matrix $i R\left[T^{-1 / 2}\right]$. As $R\left[T^{-1 / 2}\right]$ is real, these eigenvalues occur in pairs $\pm \alpha_{\nu}(\nu=1, \ldots, g / 2)$.

From

$$
H\left\{T^{-1 / 2} U\right\}=E+D
$$

we find that

$$
\operatorname{det}\left(H\left\{T^{-1 / 2} U\right\}\right)=\prod_{\nu=1}^{g / 2}\left(1-\alpha_{\nu}^{2}\right) \leqslant 1
$$

hence by (4) we obtain

$$
\begin{aligned}
\left|\operatorname{det}\left((E i E) S^{1 / 2} G\right)\right|^{2} & =\operatorname{det}\left(H\left\{T^{-1 / 2} U\right\}\left\{U^{-1} T^{1 / 2}\right\}\right) \\
& \leqslant \operatorname{det}\left(E\left\{U^{-1} T^{1 / 2}\right\}\right) \\
& =\operatorname{det}(T)
\end{aligned}
$$

From (3) we now infer that

$$
\begin{equation*}
\left|a_{\nu}(T)\right| \leqslant(\operatorname{det}(T))^{\nu / 2} \cdot r_{S}(T) \tag{5}
\end{equation*}
$$

where

$$
r_{S}(T):=\#\left\{G \in \mathbb{Z}^{(2 g, g)} \mid S[G]=T\right\}
$$

is the number of representations of T by S.
Denote by

$$
r_{S}^{*}(T):=\#\left\{G \in \mathbb{Z}^{(2 g, g)} \mid G \text { primitive, } S[G]=T\right\}
$$

the number of primitive representations of T by S. By elementary divisor theory we have

$$
r_{S}(T)=\sum_{\substack{D \in \operatorname{GL}(\mathbb{Z}) \backslash\left(\mathbb{Z}^{(g, g)} \\ T\left[D^{-1}\right]>0\right. \text { even integral }}} r_{S}^{*}\left(T\left[D^{-1}\right]\right)
$$

where $\mathbb{Z}_{*}^{(g, g)}$ denotes the set of integral (g, g)-matrices of rank g.
Let $S_{1}, \ldots, S_{h}(h=h(2 g))$ be a set of representatives of classes of (the genus of) unimodular positive definite symmetric even integral ($2 g, 2 g$)-matrices and $\varepsilon\left(S_{\mu}\right)(\mu=1, \ldots, h)$ be the number of units of S_{μ}. Then according to the 'primitive' version of Siegel's main theorem on quadratic forms [11] one has

$$
\begin{aligned}
& \left(\sum_{\mu=1}^{h} \frac{1}{\varepsilon\left(S_{\mu}\right)}\right)^{-1} \sum_{\mu=1}^{h} \frac{1}{\varepsilon\left(S_{\mu}\right)} r_{S_{\mu}}^{*}(T) \\
& \quad=c_{g} \cdot(\operatorname{det}(T))^{g-(g+1) / 2} \cdot \prod_{p} \alpha_{p, T}^{*}
\end{aligned}
$$

where c_{g} is a constant depending only on g, and where the $\alpha_{p, T}^{*}$ are certain local densities which satisfy

$$
\prod_{p \nmid \operatorname{det}(T)} \alpha_{p, T}^{*} \ll 1
$$

and

$$
\alpha_{p, T}^{*} \leqslant 2, \quad(p \mid \operatorname{det}(T))
$$

(cf. [1; Sect. 2, esp. (2.6), (2.7b), (2.7d); Sect. 3] in combination with [2; 1.1ff.], and [7 ; Sect. 6.8, Thm. 6.8.1, iii)]; note that in the product in formulas (2.7b) and (2.7d) in [1] the index j should start with 0 (rather than 1) and that the algebraic calculations given in [1; Sect. 3] remain valid also without the assumption on the weight imposed there).

We therefore conclude that

$$
r_{S}^{*}(T) \ll_{\varepsilon}(\operatorname{det}(T))^{(g-1) / 2+\varepsilon}, \quad(\varepsilon>0)
$$

hence that

$$
\begin{gather*}
r_{S}(T) \lll \varepsilon<_{\substack{D \in G \operatorname{LL} g(\mathbb{Z}) \backslash \mathbb{Z}^{(g, g)} \\
T\left[D^{-1}\right]>0 \text { even integral }}} \frac{1}{\mid \operatorname{det}(T))\left.^{(g-1) / 2+\varepsilon}\right|^{g-1+2 \varepsilon}}, \\
(\varepsilon>0) . \tag{6}
\end{gather*}
$$

The condition $T\left[D^{-1}\right]$ integral implies that $(\operatorname{det}(D))^{2} \mid \operatorname{det}(T)$. Hence the sum on the right of (6) is majorized by

$$
\sum_{d^{2} \mid \operatorname{det}(T)} \alpha_{g}(d) / d^{g-1+2 \varepsilon},
$$

where for any $n \in \mathbb{N}$ we have put

$$
\alpha_{n}(d):=\#\left\{D \in \mathrm{GL}_{n}(\mathbb{Z}) \backslash \mathbb{Z}_{*}^{(n, n)}| | \operatorname{det}(D) \mid=d\right\}, \quad(d \in \mathbb{N}) .
$$

As is well-known and easy to see one has

$$
\sum_{d \geqslant 1} \alpha_{n}(d) / d^{s}=\zeta(s) \zeta(s-1) \ldots \zeta(s-n+1), \quad(\operatorname{Re}(s)>n) .
$$

From the latter equality one easily checks by induction on n that

$$
\alpha_{n}(d) \ll_{\varepsilon} d^{n-1+\varepsilon} .
$$

Thus

$$
\sum_{d^{2} \mid \operatorname{det}(T)} \alpha_{n}(d) / d^{g-1+2 \varepsilon} \lll \varepsilon(\operatorname{det}(T))^{\varepsilon}
$$

and by (6) it follows that

$$
r_{S}(T) \ll_{\varepsilon}(\operatorname{det}(T))^{(g-1) / 2+\varepsilon}
$$

for any $\varepsilon>0$.
Together with (5) this implies

$$
a_{\nu}(T)<_{\varepsilon}(\operatorname{det}(T))^{k / 2-1 / 2+\varepsilon}, \quad(\varepsilon>0)
$$

where $k=g+\nu$ is the weight of $\vartheta_{S, P_{\nu}}$.
To complete the proof we proceed as follows. Suppose that $\vartheta_{S, P_{\nu}}$ is identically zero for all $\nu \geqslant 1$, so

$$
\begin{equation*}
\sum_{\substack{G \in \in(2, g, g) \\ S[G]=T}}\left(\operatorname{det}\left((E i E) S^{1 / 2} G\right)^{\nu}=0\right. \tag{7}
\end{equation*}
$$

for all $T \geqslant 0$ and all $\nu \geqslant 1$. Identity (7) implies that

$$
\begin{equation*}
\operatorname{det}\left((E i E) S^{1 / 2} G\right)=0 \tag{8}
\end{equation*}
$$

for all $G \in \mathbb{Z}^{(2 g, g)}$; in fact, this follows from the well-known more general result that if $\Sigma_{n=1}^{\infty} c_{n}$ is an absolutely convergent series of complex numbers such that $\Sigma_{n=1}^{\infty} c_{n}^{\nu}=0$ for all $\nu \in \mathbb{N}$, then $c_{n}=0$ for all n.

By (4) and the definition of $H,(8)$ is equivalent to

$$
\begin{equation*}
\operatorname{det}\left(\left(S+i J\left[S^{1 / 2}\right]\right)[G]\right)=0 \tag{9}
\end{equation*}
$$

for all $G \in \mathbb{Z}^{(2 g, g)}$. Since the left-hand side of (9) is a polynomial in the components of G, equality (9) must hold for all $G \in \mathbb{R}^{(2 g, g)}$. Replacing G by $S^{-1 / 2} G$ we find

$$
\operatorname{det}((E+i J)[G])=0
$$

for all G, a contradiction (take e.g. $G=\binom{G_{l}}{0}$ with G_{1} invertible). Therefore there exists $\nu \in \mathbb{N}$ with $\vartheta_{S, P_{\nu}} \neq 0$ (of course, we could have also used the slightly different reasoning suggested by Maass, cf. [9, p. 154f.]).

Repeating the above argument with ν replaced by $N \nu$ where N is an arbitrary positive integer, we deduce inductively that there are infinitely many ν with $\vartheta_{S, P_{\nu}} \neq 0$.

To obtain the slightly stronger assertion of the Theorem, we follow Maass [9 , loc. cit.]. Assume that $a_{\nu_{0}}\left(T_{0}\right) \neq 0$, say and denote by $b_{1}, \ldots, b_{\kappa}$ the distinct non-zero numbers of the form $\operatorname{det}\left((E i E) S^{1 / 2} G\right)$ as G runs over all $G \in \mathbb{Z}^{(2 g, g)}$ with $S[G]=T_{0}$. Then there exist $n_{1}, \ldots, n_{\kappa} \in \mathbb{N}$ such that

$$
a_{\nu}\left(T_{0}\right)=\sum_{j=1}^{\kappa} n_{j} b_{j}^{\nu}
$$

for all $\nu \geqslant 1$. Supposing that

$$
a_{N}\left(T_{0}\right)=a_{N+1}\left(T_{0}\right)=\cdots=a_{N+\kappa-1}\left(T_{0}\right)=0
$$

we obtain $n_{1}=n_{2}=\cdots n_{\kappa}=0$ (Vandermonde determinant), a contradiction.

3. Comments

We conclude the paper with a few general comments.
(i) Certainly the estimate (2) can be proved for the Fourier coefficients of theta series with more general harmonics than the special forms P_{ν} considered in Section 2, and eventually it would be true for all $P \in H_{\nu}(2 g, g)$. However, we have not checked this, mainly for the following reason: for $\nu \rightarrow \infty$ the dimension of $H_{\nu}(2 g, g)$ grows like $\nu^{g(g+1) / 2-g}$ ([6], cf. also [3, formula XI.1]), while the
dimension of the space of cusp forms of weight $g+\nu$ on Γ_{g} grows like $(g+$ $\nu)^{g(g+1) / 2}$; hence there is no hope to eventually proving (2) for all cusp forms on Γ_{g} of weight $k \gg g$ by the method of this paper.
(ii) If in (2) one drops the condition that S is unimodular (and hence also the condition that $4 \mid g$), one obtains cusp forms on subgroups of Γ_{g} of finite index with a multiplier system. The same method as before can be applied to estimate their Fourier coefficients. For example, take the simplest case $g=1$ and let $S=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$. Then

$$
\vartheta_{S, P_{\nu}}(z)=\sum_{x_{1}, x_{2} \in \mathbb{Z}}\left(x_{1}+i x_{2}\right)^{\nu} \mathrm{e}^{2 \pi i\left(x_{1}^{2}+x_{2}^{2}\right) z}, \quad\left(z \in \mathbf{H}:=\mathbf{H}_{1} ; \nu \in \mathbb{N}\right)
$$

is a cusp form of weight $1+\nu$ on $\Gamma_{0}(4)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{1} \right\rvert\, 4 / c\right\}$ with character $\left(\frac{-4}{\cdot}\right)$ (Legendre symbol). If $4 \mid \nu$ it is not identically zero (the coefficient of $\mathrm{e}^{2 \pi i z}$ is equal to 4). Since (as is of course well-known) $r_{S}(T) \ll T^{\varepsilon}(\varepsilon>0)$, we obtain Deligne's bound

$$
a(T) \ll_{\varepsilon} T^{\nu / 2+\varepsilon}, \quad(\varepsilon>0)
$$

for the Fourier coefficients $a(T)$ of $\vartheta_{S, P_{\nu}}$.
(iii) One should observe that in general (i.e. for $m \neq 2 g$) the coefficients of theta functions with harmonic forms in $H_{\nu}(m, g)$ cannot be estimated directly in a good way. In fact, for $m<2 g$ one has

$$
\begin{array}{lll}
H_{\nu}(m, g)=\{0\} & \text { if } \quad m<g, \quad \text { all } \quad \nu \geqslant 1, \\
H_{\nu}(m, g)=\{0\} & \text { if } & g \leqslant m<2 g \quad \text { and } \quad \nu \neq 1
\end{array}
$$

(cf. [3, p.13]). On the other hand, for $m>2 g$ an estimate with the same method as in Section 2 leads to a bound which is even worse than the usual Hecke bound.

Acknowledgements

The author would like to thank S . Böcherer for a useful conversation.

References

1. Böcherer, S.: Über die Fourierkoeffizienten der Siegelschen Eisensteinreihen, Manuscripta Math. 45 (1984) 273-288.
2. Böcherer, S. and Raghavan, S.: On Fourier coefficients of Siegel modular forms, J. Reine Angew. Math. 384 (1988) 80-101.
3. Böcherer, S.: Siegel modular forms and theta series, Proc. Sympos. Pure Maths. AMS, vol. 49, part 2 (1989) 3-17.
4. Böcherer, S. and Kohnen, W.: Estimates for Fourier coefficients of Siegel cusp forms, Math. Ann. 297 (1993) 499-517.
5. Freitag, E.: Siegelsche Modulformen, Grundl. Math. Wiss. vol. 254, Springer, Berlin-HeidelbergNew York, 1983.
6. Kashiwara, M. and Vergne, M.: On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 84 (1978) 1-47.
7. Kitaoka, Y.: Arithmetic of quadratic forms. Cambridge Texts in Maths, no. 106, Cambridge University Press, 1993.
8. Maass, H.: Harmonische Formen in einer Matrixvariablen, Math. Ann. 252 (1980) 133-140.
9. Raghavan, S.: Cusp forms of degree 2 and weight 3, Math. Ann. 224 (1976) 149-156.
10. Rankin, R.-A.: An Ω-result for the Fourier coefficients of cusp forms, Math. Ann. 203 (1973) 239-250.
11. Siegel, C. L.: Über die analytische Theorie der quadratischen Formen. In: Collected Works I (eds.: K. Chandrasekharan and H. Maass), pp. 326-405. Springer, Berlin-Heidelberg-New York, 1966.
