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Introduction

Reflexive sheaves are nowadays a common tool to study projective varieties. In
the present paper we apply reflexive sheaves to study projective morphisms. Given
a projective map ~: X - Y and an ample line bundle £ on X one may consider
an associated coherent sheaf F := ~* on Y. The knowledge of the sheaf F
allows sometimes to understand some properties of the variety X and of the map
~. This is a typical way to study cyclic coverings (or, more generally, finite maps)
and projective bundles. In the latter case one may choose the bundle £ to be a
relative O(1)-sheaf so that X = P(F). A similar approach can be applied to study
equidimensional quadric bundles: again, choosing £ as the relative O(1), one
produces a projective bundle P(F) in which X embeds as a divisor of a relative
degree two. Note that, in all the above examples, if X and Y are smooth then the
map p is flat and the resulting sheaf F is locally free. In the present paper we want
to extend the method also to non-flat maps. In particular, we will consider varieties
which arise as projectivizations of coherent sheaves.

Our motivation for this study was originally two-fold: firstly we wanted to
understand the class of varieties called by Sommese (smooth) scrolls - they occur
naturally in his adjunction theory - and secondly we wanted to complete a classifi-
cation of Fano manifolds in index r, dimension 2r and b2  2 - the task which was
undertaken by the second named author of the present paper. As our understanding
of the subject developed we have realised that many other points and applications
of the theory of projective fibrations are also very interesting and deserve proper
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attention. However, for the sake of clarity of the paper we refrained from dealing
with most of the possible extensions of the theory. Therefore, in the present paper
we will deal mostly with coherent sheaves whose projectivizations are smooth
varieties. This class of sheaves is related to the class of smooth sheaves which were
studied by Constantin Bânicâ in one of his late papers. Thus we decided to name
the class of the sheaves studied in the present paper after Bânicâ to commemorate
his name.

The paper is organised as follows: in the first two sections we introduce some
pertinent definitions and constructions and subsequently we examine their basic
properties. In particular we prove that Bânicâ sheaves of rank  n (where n is
the dimension of the base) are locally free, and subsequently we discuss a version
of a conjecture of Beltrametti and Sommese on smooth scrolls. In Section 3 we
gathered a number of examples which illustrate some aspects of the theory. From
Section 4 on we deal with Bânicâ sheaves of rank n - 1: first we discuss when

they can be extended to locally free sheaves and examine numerical properties of
extensions. In the remaining two sections we apply this to study ampleness of the
divisor adjoint to a Bânicâ sheaf and then to classify Fano manifolds of large index
which are projectivizations of non-locally free sheaves.

Notation and assumptions

We adopt standard notation, see Hartshome’s textbook [H1]. We will frequently
identify divisors and line bundles on smooth varieties. We assume that all varieties
are defined over complex numbers, though the definitions and some results are also
valid for varieties over an algebraically closed field.

1. Projectivization

First, let us recall the definition of a projectivization of a coherent sheaf E over a
scheme V, see [G] and [H1] for details.

(1.0). We start with a local description. Let A be a Neotherian ring and M a
finitely generated A-module. We will also usually assume that the ring A is an
integrally closed domain, though it is not needed for the definitions. Let B denote
the symmetric algebra of M

where SmM is the m-th symmetric product of the module M. The A-algebra B
has a natural gradation Bm = S’ (M) and we define PA(M) := Proj (B). Such
defined projective scheme is a generalization of the projective space over A. The
scheme P(M) has a natural affine covering defined be elements of M : for a nonzero
f e M consider
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the scheme D+(f) is then isomorphic to the affine scheme Spec(B(f)), where B(J)
denotes the zero-graded part of the localisation B f of B with respect to the element
f. The embedding A = S0M C Sym(M) yields a projection map

Graded modules over B give rise to coherent sheaves over P(M). In particular,
on P(M) there are invertible sheaves O(k) associated to graded B-modules B(k),
with B(k), = Bk+m = sm+k(M), where the sub-index denotes the gradation
shifted by k with respect to the gradation of B. Note that sections of the sheaf O(1)
are isomorphic to the module M.

The above local definition of P allows us to define projectivization for any
coherent sheaf î: If Sym î = ~m0Sm03B5 is the symmetric algebra of sections of
coherent sheaf C over a normal variety V then we define

The inclusion OV~ ~ S003B5 ~ Sym E yields the projection morphism p: P( £) --+ V.
We will always assume that the morphism p is surjective, or equivalently, that the
support of E coincides with V. The local definition of O(1) gives rise to a globally
defined invertible sheaf and thus over P(E ) there exists an invertible sheaf Op(£)( 1)
such that p*O(1) = E.

In the present section we want to understand some basic properties of this
construction. The first one is about irreducibility.

LEMMA 1.1. IfP( î) is an integral scheme then £ is torsion-free.
Proof. The assertion is local. Note that O(1) is locally free of rank 1 on an

integral scheme and therefore it has no torsions. Consequently E, being locally the
space of sections of O( 1), is torsion-free.

The converse of the above lemma is not true, see the Example (3.2).
Therefore, from now on we will assume that all the sheaves whose projectiviza-

tions we will consider are torsion free.

LEMMA 1.2 (cf. [H2, 1.7]). Let E be a torsion-free sheaf over a normal variety
Y and let p : P(03B5) ~ Y be the projectivization of E. Assume that P(S) is a
normal variety and no Weil divisor in P(E) is contracted to a subvariety of Y of
codimension  2. Then the sheaf E is reflexive.

Proof. We claim that the sheaf £ is normal (in the sense of [OSS, II, 1] or
[H2]). This is because any section of E over open subset UBD of Y, where D
is of codimension  2, is associated to a section of O(1) over p-1(UBD). This,
however, extends uniquely over p-1(U) because P(£) is normal and p-1(D) is of
codimension  2 (cf. [H2, 1.6]).

The above argument works for any projective surjective p: X ~ Y of normal
varieties. If p contracts no Weil divisor on X to a codimension  2 subset of Y
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then a push-forward ~*F of any reflexive sheaf F on X is reflexive on Y, see [H2,
1.7]. This is used in the following

LEMMA 1.3. Let £ be a reflexive sheaf over a normal variety Y satisfying the
assumptions of the previous lemma. Then

Proof. Note that the isomorphism is true if E is locally free (one can use relative
Euler sequence to prove it). The sheaf Hom(03A9P(03B5)/Y, O( -1)) is reflexive as a dual
on a normal variety. Then, similarly as above we prove that its push-forward is
reflexive as well. Thus we have isomorphism of the two reflexive sheaves defined
outside of a codimension 2 subset of Y. Therefore the sheaves are isomorphic.
We will need the following

LEMMA 1.4. Let (A, m) be a regular local ring which is an algebra over its
residue field k = A/m. Assume that M is an A-module which is not free and
which comes from an exact sequence

Let us write s(1) = (so, ..., sr ) where si E m C A. Then PA (M) is regular if and
only if the classes of elements so, ... , s, are k-linearly independent in m/m2.

Proof. The ideal of P(M) in P’ = Proj(A[t0,...,tr]) is generated by an
element 03A3siti. Therefore, in an affine subset Uo = Spec A[t’1..., tT (where t’i =
ti/t0) its equation is so + 03A3sit’i = 0. Thus, P(M) is smooth at t’ = ··· = t’r = 0
if and only if so is nonzero in m/m2. The above argument can be repeated for any
k-linear transformation of coordinates in m/m2 which proves that so,..., sr are
linearly independent in m/m2.

2. Bânicâ sheaves, first properties

In one of his last papers [B], Constantin Bânicâ considered a special class of
reflexive sheaves.

DEFINITION 2.0. A reflexive sheaf E of rank r over a smooth variety V is called
smooth if extq (E, 0) = 0 for q  2 and 03B5 xt1(03B5, O) = Ov/(t1,...,tr+1) for some
choice (tl, ... , tn) of regular parameter system at any point v E V where E is not
locally free.

Smooth sheaves are convenient for studying subvarieties of smooth varieties,
see also [H2], [BC] and [HH].

In the present paper we will deal with another special class of coherent sheaves
over normal varieties. As it will be seen this class is a generalisation of the one
studied by Bânicâ and therefore we name these sheaves after him.
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DEFINITION 2.1. A coherent sheaf £ of rank r  2 over a normal variety Y is
called Bânicâ sheaf if its projectivization is a smooth variety.

The assumption on smoothness of the projectivization is very strong as the
following lemma shows.

LEMMA 2.2. If e is a Bânicâ sheaf then it is reflexive and moreover the map
p : P(03B5) ~ Y is an elementary, or extremal ray contraction. Furthermore Op(,,) (1)
is p-ample and generates Pic(P(03B5)) over Pic Y so that we have a sequence

Moreover, every Weil divisor on Y is Cartier, Y has rational singularities, it is
Cohen-Macaulay and also Gorenstein.

Proof. First, note that since P(£) is irreducible, £ is torsion-free (1.1). To prove
that p is an elementary contraction note that every fiber of p over a point y e Y is a
projective space P(03B5y ~ k(y)) (where k(Y) denotes the residue field). Taking a line
in a generic fiber and deforming it, we obtain a non-trivial curve in a special fiber,
too (actually a line), therefore all curves contracted are numerically proportional,
hence p is an extremal ray contraction in the sense of Mori theory and consequently
O(1) is p-ample. Moreover there is an exact sequence

where Pic Y - Pic P( £) is the pull-back map p* and Pic P(03B5) ~ Z comes from
intersecting divisors with a line in a fiber of p. The above sequence is associated
to any elementary contraction but in this particular case it is also exact at the last
place because O(1) has intersection 1 with a line in the fiber.

Let us suppose that a prime Weil divisor D in P(£) is contracted to a proper
subset of Y. The divisor D is also Cartier (because P(E) is smooth) and it has trivial
intersection with curves contracted by p and thus, because of the above sequence, it
is a pull-back of a Cartier divisor from Y. Now the reflexivity of E follows because
of Lemma (1.2).

Similarly, let us note that the inverse image p-1(D) of a prime Weil divisor
D from Y is Cartier on P(£) and has intersection 0 with curves contracted by p.
Therefore, p-1 ( D ) is a pull-back of a Cartier divisor from Y and thus D is Cartier
(cf. [KaMM], Lemma 5.1.5). Moreover, Y has only rational singularities because
of a result of Kollar, [Ko, Corollary 7.4], which in tum yields that it is Cohen-
Macaulay, see [Ke] pp. 49-51. Thus, being Cohen-Macaulay and algebraically
factorial Y is also Gorenstein.

(2.3). One motivation to study Bânicâ sheaves comes from smooth scrolls which
are defined by Sommese as follows: A pair (X, G) consisting of a smooth variety X
and an ample line bundle ,C is called a scroll if there exists a morphism p : X - Y
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onto a normal variety Y of smaller dimension such that KX (g) ~(dim X - dim Y +1)
is a pull-back of an ample line bundle from Y.
A smooth scroll is over a general point a projective bundle, this follows from

Kodaira vanishing and Kobayashi-Ochiai characterisation of the projective space.
Obviously, projective bundles and, more generally, projectizations of coherent
sheaves are examples of smooth scrolls. Conversely, if all fibers of the map p are
of the same dimension then the scroll is a projective bundle, [F1, 2.12] and [I].
We have also examples of scrolls which do not belong to any of these two classes;
their fibers may be Grassmann varieties of large dimension with respect to the
dimension of a general fiber, see the Example (3.2). If we assume that the smooth
scroll is a projectivization of a sheaf, the dimension of special fibers can not jump
so much:

LEMMA 2.4. Let p : P(03B5) ~ Y be a projectivization of a rank-r Bânicâ sheaf.
Let F ~ pk be a fiber of p of dimension &#x3E; r - 1. Then k  dim Y.

Proof. Let 03A0 ~ Pr-1 C F be a specialization of a general fiber. We have then
a sequence of normal bundles

Since NnjP(£) is a specialization of a trivial bundle it has a trivial total Chem class
c, therefore

Consequently,

and the inequality follows.
On the other hand, if we assume that the jump of the dimension of fibers in a

scroll is small then we can apply Theorem 4.1 and Remark 4.12 from [AW] to get
the following

PROPOSITION 2.5. Let (X, £) be a smooth scroll. Assume that for any fiber F of
the map p : X ~ Y it holds dim F  dim X - dim Y + 1. Then Y is smooth and
X = P(p*£) so that p* is a Bânicâ sheaf. Moreover, if dim X  2 dim Y - 1
then p is a projective bundle.

For smooth scrolls which are projectivization of sheaves there holds a conjecture
of Beltrametti and Sommese; namely we have

THEOREM 2.6. Let £ be a Bânicâ sheaf of rank r over a normal variety Y. If
r  dim Y then Y is smooth and £ is locally free. If r = dim Y - 1 then Y is
smooth.
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Proof. The first part follows immediately from 2.4, 2.5 and Fujita’s result [Fl,
2.12] mentioned above. Namely, if r  dim Y + 1 then, because of (2.4), all fibers
are of the same dimension and we are done because of [F1, 2.12]. If r = dim Y, so
that dim P(03B5) = 2 dim Y - 1, then because of (2.4) we can apply the last assertion
of (2.5) and we are through again.

Similarly, for r = dim Y - 1 we can apply (2.5) to get the desired result as soon
as we prove the following somewhat more general:

LEMMA 2.6.1. Let p : P( É ) - Y be a projectivization of a rank-r Bânicâ sheaf.
Suppose that dim Y &#x3E; r  dim Y - 2. Let F ~ pk be a fiber of p of dimension
&#x3E; r - 1. Then k  dim Y - 1.

Proof. Let us assume the contrary. Then because of (2.4) we may also assume
that dim Y = dim F = k, and therefore rank(NFlp(e» - r - 1. Since p : P(É) -
Y is an elementary contraction we may also assume that F is not a divisor, so
that r  3 and k  4. Moreover, by the same argument as in the proof of (2.4) we
compute the total Chem class of the restriction of the conormal bundle of F

and therefore its Chem classes are as follows

for i = 1,..., r - 1 and h denoting the hyperplane class on F.
We claim that the bundle N*F/P(03B5)(1) is spanned by global sections. Indeed, 03B5

is spanned in an affine neighbourhood U of p(F) by k + 1 sections and we have
an embedding of P(£U) into PkU. Thus, P(£U) may be constructed as a subset in
some pN, with fibers of p embedded linearly. Therefore, N*F/P(03B5)(1) is a quotient
of N*F/PN(1) which is spanned.

Now, we arrive to the contradiction with the following

CLAIM 2.6.2. On Pk (where k  4) there is no spanned vector bundle F of rank
p such that

where h denotes the class of a hyperplane.
Proof. Assume that such an F exists. Then a zero locus Z of a general section

of F is a smooth surface or a 3-fold. Let Zj be a connected component of Z. By
adjunction we find the Chem classes of the tangent bundle of Zj
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where hz, is the hyperplane section of Zj. Since CI (TzJ) is ample the variety
Zj is either a del Pezzo surface or a Fano 3-fold. In such a case, however, from
Riemann-Roch follows easily that c2(TZj) should not be zero - a contradiction.

Using the above Proposition 2.5 and Remark 4.12 from [AW] we get the fol-
lowing

LEMMA 2.7. Let E be a Bânicâ sheaf of rank r over a normal variety Y. If
r  dim Y - 1 or, iffor any point y E Y, dimk £y 0 k(y)  r + 1, then Y is smooth
and locally E is a quotient of a trivial sheaf by a rank-1 subsheaf, that is, we have
a sequence

If we now combine lemmata (1.4) and (2.7) we get the following

COROLLARY 2.8. Any smooth sheaf (in the sense of Bânicâ) is a Bânicâ sheaf.
If a Bânicâ sheaf E over a normal variety Y satisfies the condition

for any y E Y : dimk £y ~ k(y)  rank î + 1,

then it is smooth.

3. Examples

The simplest examples of scrolls are projective bundles. In particular, if the base
Y is smooth then any locally free sheaf is a Bânicâ sheaf. Also, if a locally free
sheaf over a smooth Y is spanned by global sections then a general section s of
F will yield a Bânicâ sheaf as a quotient

The singular set of E coincides with the zero locus of the section s. The local
condition on the sheaf E to be Bânicâ sheaf is described in Lemma (1.4).

More generally, we can consider arbitrary morphisms of vector bundles over
smooth base.

LEMMA 3.1 (cf. [B, Thm. 2]). Let F and 9 be locally free sheaves over a smooth
variety Y of rank f and g, respectively. Assume that f  g + 2 and the sheaf
1tom( 9 , F) is spanned by global sections. Then, for a generic u E Hom( 9 , F) we
have an exact sequence
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with the quotient î being Bânicâ sheaf of rank f - g.
Proof. We have a natural isomorphism (see [Hl, Il.5])

HomP(F)(p*G,O(1)) ~ HomY(G,F).

The zero locus of a section

coincides with the projectivization of the cokemel É of the map 03C3 : G ~ F
embedded into P(0) by the map associated to the epimorphism F ~ 03B5. Therefore
the lemma follows from Bertini Theorem.

Not all scrolls arise as the projectivizations of sheaves.

EXAMPLE 3.2 ([BSW], Example 3.2.4.2). Consider the Grassmann variety
G(2, n) of linear planes in a given linear space W of dimension n. Over G(2, n)
we have the universal quotient bundle Q whose projectivization is a flag variety

with a projection onto pn-l which makes F( 1, 2, n) a Pn-2-bundle over pn-l .
Now we take a bundle Q (D O over G(2, n) and its projectivization P(Q ~ 0)
which we call X and which admits a projection

The variety X maps also onto P’ (via the evaluation map)

and all fibers of p except one are isomorphic to Pn-2. The exceptional fiber (call it
Fo) is associated to the 0-factors of the bundle q and it is isomorphic to G(2, n), so
that it is of dimension 2(n - 2). (It is not hard to see that X is an incidence variety
of P2’s in Pn containing a fixed point p(Fo).) One checks easily that the variety has
a structure of a smooth scroll. However, X is not a projectivization of a sheaf over
Pn as the special fiber is not a projective space (for n  4). Let us consider the sheaf
J7 : := p*q*OG(2,n)(1) where VG(2,n)(I) is the positive generator of PicG(2,n).
The sheaf F is locally free outside one point where it has a fiber isomorphic to
A 2W. It is not hard to check that it is reflexive though its projectivization is a
reducible variety consisting of two components: the dominant one which is the
original scroll and the special fiber P(A2W), the fiber Fo embedded in P(AzW)
via Plücker embedding.

If we allow the projectivization have some singularities, even mild ones, some
of the statements from the previous section are not true (e.g. 2.4).
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EXAMPLE 3.3 (Sommese [S, 3.3.3]). Take a smooth surface S and blow it

up 03B2: S’ ~ S at a point s E S. Let E denote the exceptional divisor. Let L
be a pull-back to S’ of an ample line bundle from S. We may assume (possibly
replacing L by its power) that L 0 O( -E) is ample and spanned on S’. Over
S’ we consider a projective bundle p’ : P(L e (L 0 O(-E))) ~ S’. The O(1)-
sheaf on the projectivization is clearly nef and ample outside the inverse image
of E. The unique curve with which the 0 1 )-sheaf has trivial intersection is the
section of the projective bundle over E (a smooth rational curve) associated to
the splitting O ~ O(1) ~ O. The smooth rational curve is easily seen to have
normal bundle Opi (-1) ~ Opi (-1 ) and it can be contracted to an isolated singular
point by the morphism coming from the evaluation of O(1) (since the bundle
Z (B (-L 0 O(-E)) is spanned). The singularity is Gorenstein since the canonical
bundle on the projectivization has intersection 0 with the contracted curve. By V let
us call the resulting 3-fold obtained by contracting the section to a point. The 3-fold
V maps onto S and the map makes V a scroll. There exists a unique exceptional
fiber of the scroll which is isomorphic to p2 and which contains the singular point.
On the other hand, the threefold V can be described as a projectivization of a sheaf
03B5 = (0 o p’)*O(1), and it is not hard to see that the singularity of î at the point s
is of the type O ~ JS, where Js is the ideal of the point s.

In the present paper we will also deal with Fano manifolds arising as projec-
tivization of sheaves. We have:

LEMMA 3.4. Let î be a Bânicâ sheaf over a normal variety Y. Assume that a
singular set of E is of dimension  1 or p(Y) = 1. If P(C) is a Fano manifold then
- Iîy is ample, that is, Y is a Gorenstein Fano variety.

Proof. The argument is similar as in the proof of [W, 4.3], compare also with
[SW, 1.6] and [KMM]. We are only to prove that

has positive intersection with any extremal rational curve C in P(03B5) not contracted
by p. We claim that the curve C may be chosen so that p( C ) is not contained in the
singular locus of 03B5. Indeed, if it were, then the whole locus of the ray R+ [C] would
be contracted by p to a set of dimension 1, thus all fibers of the contraction of the
ray would be of dimension 1, hence the locus would be a divisor [Wl, l.l]. This,
however, contradicts the fact that p contracts no Weil divisors to set of codimension
 2. Once the curve C is assumed not to be in the singular locus of the map p we
conclude as in [SW, 1.6], or as in [KMM].

EXAMPLE 3.5. The assumption on the singular set of E is indispensable. Let

Then -A"y = 4q where q denotes the relative O( 1) of the projectivization over
P2. The line bundle q is spanned but not ample, so Y is not Fano. The morphism
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associated to 1r¡1 contracts to a point the unique section of Y - p2 associated to
the 0-factors, call this set Z. Let H be the pullback of the hyperplane from P2 to
Y. The line bundle associated to q - H is spanned off Z by three sections. Thus
we have a morphism O~3Y ~ OY(~ - H) which yields a sequence

with a rank-2 sheaf E which is free outside Z. The variety P(î) is the coincidence
variety of divisors from the linear system |~ - H| and each one of the divisors is
isomorphic to P(O~2P2 ~ OP2( -1)). Therefore P(E) is smooth. Moreover

Therefore P(03B5) is a smooth Fano variety.

4. Extensions to locally free sheaves, nefness

We want to find conditions to realise globally the projectivization of a Bânicâ
sheaf as a divisor in a projective bundle. For simplicity we introduce the following
definition.

DEFINITION 4.0. We say that a coherent sheaf E over a normal variety Y extends
to a locally free sheaf F if there exists a sequence of Oy -modules

In other words, E is obtained by dividing F by a nonzero section s. The singular
locus of F coincides with the zero locus of s. Altematively, P(E) is a divisor in
P(0) from the linear system |OP(F)(1)|.

In the present section we will also discuss numerical properties of coherent
sheaves. Let us recall that a sheaf E is ample (resp. nef) if 0(l) is ample (resp. nef)
on P(E); this makes sense also if we multiply E by a Q-divisor.

For a coherent sheaf E by E* we will denote its dual sheaf Hom(03B5, O).

LEMMA 4.1. Let E be a Bânicâ sheaf of rank n - 1 over a smooth projective
variety Y of dimension n. If H2(y, E*) = 0 then E extends to a locally free sheaf;
in particular £ 0 £-’ extends for G an ample line bundle and m » 0.

Proof. Because of (2.7) we know that the extension exists locally. To prove the
existence of a global extension consider the spectral sequence relating local Ext
and global Ext. Then we have the following exact sequence
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The support of Extl (C, O) consists of isolated points of singularity of C. For any
such point y, Îxtl (î, O)y ~ Oy and the unit represents the extension to a free
module. Thus the vanishing of H2(y, C*) yields the existence of an extension in
Extl(î, O) to locally free sheaf.

Therefore, frequently we will be interested in the vanishing of the latter term in
the sequence (4.1.1). To this end we have.

LEMMA 4.2. Let C be a Bânicâ sheaf of rank n - 1 over a smooth projective
variety Y of dimension n. Assume that .C is an ample line bundle on Y and let
H E || be a smooth divisor which does not meet the singular set of 03B5. If, for k  1
and i = 1, 2, H’(H, (,F* 0 £k) IH) = 0 then E extends to a locally free sheaf.

Proof. The vanishing of H2(y, £*) follows from the vanishing of cohomology
on H which, because of the divisorial sequence for H, implies that

for k  0.
On the other hand, the non-vanishing of H2(y, î* Q9 k) for k « 0 can be

used to estimate cn(£), that is, the number of singular points of C. The following
lemma was suggested to us by Adrian Langer whom we owe our thanks for finding
a mistake in a previous version of this paper.

LEMMA 4.2.1. Let E be a Bânicâ sheaf of rank n - 1 over a smooth projective
variety Y of dimension n and let ,C be an ample line bundle over Y. Then, for
k  0, we have

Proof. We have a global duality [Hl, 111.7.6]:

and the latter term vanishes for k » 0 and i  n. Therefore the spectral sequence
relating Ext and £xt converges to a trivial one. This yields that HO(Y, îxtl(î 0
k, OY)) = H2(y, £* 0 .C-k) (cf. 4.1.1) and we are done.

Making similar argument as is the proof of 4.2 we get the following

COROLLARY 4.2.2. Let E be a Bânicâ sheaf of rank n - 1 over a smooth
projective variety Y of dimension n. Assume that G is an ample line bundle on Y
and let H E || be a smooth divisor which does not meet the singular set of E.
If, for any k E Z and i = 1, 2, the groups H’(H, (£* 0 k)|H) vanish then E is
locally free.

We will need also the following version of the lemmata 4.1 and 4.2 for arbitrary
sheaves with isolated singularities.
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LEMMA 4.3. Let E be coherent sheaf with isolated singularities over a smooth
variety Y, dim Y  3. Let ,C be an ample line bundle over Y and let H E 1£1 be a
smooth divisor which does not meet the singular points of £. Then:

(a) if E extends to a locally free sheaf then £ 0 £-1 extends as well,
(b) if E 0 -1 extends to a locally free sheaf and H2(y, £*) = 0 then also £

extends to a locally free sheaf.

Proof. Consider the divisorial sequence associated to H E 1£1 

The morphism O ~ ,C from this sequence yields a commutative diagram with
exact rows and columns coming from multiplying by a section defining H

On the other hand we know that

so that, because the singularities of E are isolated and H does not meet them, the
vertical map in the center is an isomorphism. Therefore an extension in Exti (E, O)
which gives a locally free sheaf will be mapped by the left-hand-side vertical map
to an extension in Extl (£, £) which produces a locally free sheaf, too. This proves
(i). To get (ii) we make a similar argument, but this time applying vanishing of
H2(Y, 03B5*) to lift a local extension to a global one.
Now we want to compare ampleness and nefness of a rank r Bânicâ sheaf î

with the same properties of a locally free sheaf 0 in whose projectivization E
is embedded. Therefore, let us assume that E extends to F, that is, we have the
sequence 4.0. Obviously, if E is nef then also F is nef. As for the ampleness we
have the following.

LEMMA 4.4. Let £ and 0 be coherent sheaves on a smooth variety Y satisfying
the above assumptions. Assume moreover that clY = c1F is nef and that £ is
ample. Then OP(F)(1) is semiample, that is |OP(F)(m)| is base point free for
m y 0. The exceptional set E of the morphism given by |OP(F)(m)|, m » 0, if
non-empty, contains all sections Y D G ~ P(FG) associated to a splitting
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of the sequence (4.0) over any closed G c Y of positive dimension. Moreover p
maps E finite-to-one into YBsing 03B5.

Proof. The line bundle OP(F)(1) is nef and big. Since KP(F) = O(-r - 1) ~
p*(Ky + det F), it follows that Op(F)(m) 0 K-1 is nef and big for m » 0.
Therefore, by the Kawamata-Shokurov contraction theorem 0P(F)(m) is semi-
ample. The morphism defined by |OP(F)(m)| is birational and its exceptional set
does not meet P(E) c P(F) (because the divisor P(C) C P(F) has positive
intersection with any curve meeting it). If the sequence (4.0) splits over a positive-
dimensional set G C Y then, clearly, the unique section of F over G is contained
in E. And clearly p(E) n sing (C) = p(E n P(03B5)) = 0.

COROLLARY 4.5. In the above situation, if G C y is not contained in p(E) then

We will also need the following.
LEMMA 4.6. Let £ be an ample reflexive sheaf on a normal variety Y. Assume
that some twist of E extends to a locally free sheaf so that we have a sequence

with F locally free and ,C a line bundle. Let C C Y be a rational curve which is
not contained in the singular locus of C. Then

C . det 03B5 &#x3E; rank E + number of singular points of E on C.

Proof. First, let us note that, in the above situation,

where r is the rank of E and p : P(03B5) ~ Y is the projection. Indeed, the formula is
correct for projective bundles and is preserved for divisors in them which meet the
cycle p-1 ( C ) at the expected dimension. The cycle p-1 ( C ) consists of ’vertical’
components over singular points (each being a projective space) and of the domi-
nant component over C which is a projective bundle with a fibre pr-l . From the
classification of bundles over Pl it follows that the latter component brings to the
intersection at least r and therefore the inequality follows.

5. Adjunction

In the present section we compare the determinant, or the first Chem class of
a Bânicâ sheaf with the canonical sheaf of the variety over which the sheaf is
defined. In case of locally free sheaves the question was considered in [YZ], [F2]
and [ABW].
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THEOREM 5.1. Let E be a Bânicâ sheaf of rank r over a smooth variety Y of
dimension n = r + 1  3. Assume that.F is ample and moreover that it is not locally
free. Then

(1) Ky + c1 03B5 is nef unless Y ~ Pn and E is a quotient of a decomposable sheaf

(2) if KY + cl£ is nef then it is also big unless

(2.1) Y is Fano and Ky + cl E = 0, or
(2.2) Y has a structure of a projective bundle 7r : Y - B over a smooth curve

B and 03B5 fits into a sequence

where 9 is a rank-n vector bundle over B and OY (1) a line bundle
whose restriction to any fiber of 03C0 is O(1);

(3) if KY + c i É is nef and big then it is also ample unless there exists a birational
map 03C0 : Y - Y’ supported by KY + ci E onto a smooth variety Y’ which
blows-down disjoint exceptional divisors Ei ~ P- 1, such that Ei n sing E
0. On Y’ there exists an ample Bânicâ sheaf £’ such that E -- 7r*î’ ~
OY(-03A3Ei) and KY’ + c103B5’ is ample.

Remark. The case (2.1) of the theorem will be discussed thoroughly in the
subsequent section. In particular, it will be shown that Y is either a projective
space or a smooth quadric.

Proof of the theorem. If Ky + c 103B5 is not nef, then according to the cone theorem
of Mori, there exists an extremal ray of Y which has negative intersection with this
divisor. The length of the ray is at least n so that its locus coincides with Y, see
[I, 0.4] or [Wl, 1.1 ]. Therefore there exists a rational curve from the ray meeting
the singular locus of E. Because of (4.6), these curves have intersection at least
n + 1 with -KY. Consequently, by an argument on deformation of curves passing
through a point (see e.g. [Wl]), Pic Y = Z and we compute easily that h’Y =

( n + 1 ) ( Ily + det 03B5) and therefore by a theorem of Kobayashi-Ochiai Y ~ pn.
The restriction of E to a generic hyperplane H C Pn is an ample vector bundle and
ci (EH) = n + 1, therefore we see that 03B5H ~ Tpn-l or 03B5H ~ O(2) ~ O(1)~(n-1),
the latter possibility ruled out because of 4.2.2. In the former case, we use 4.2 to
produce an extension of E to a locally free sheaf F; the only possible non-trivial
extension on .FI leads to a decomposable bundle OH(1)~n so the bundle F is
decomposable as well (see e.g. [OSS]).

For the remaining cases the argument is similar. Assume first, that KY + cl E is
nef but not ample. Therefore there exists a ray of Y having intersection 0 with the
divisor. The length of the ray is a at least n - 1, [Wl, 1.1]. If the contraction of the
ray is birational then it is actually divisorial and the ray has to have length n - 1.
In this case, however, the exceptional locus can not meet the singular locus of E
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because then we would find out (4.6) that the length is actually n which contradicts
[I, 0.4]. Consequently, î is a vector bundle in a neighbourhood of E and the
arguments from [ABW, 2.4] apply to conlude the description of the blow-down
morphism and the sheaf E as in the case (3) of the theorem.

If the contraction of the ray in question is of fiber type then a fiber containing a
singular point of E has to be a divisor (again, since -Ky . C  n for any rational
curve passing through the singular point). Thus the contraction is either to a point
(which is the case of (2.1)) or onto a smooth curve B. In the latter case we consider
fibers which do not contain singularities of E and as in [ABW, 2.2] we prove that
the fibers are projective spaces. Similarly, we conlude that Y has a structure of
a scroll P(G) ~ B over the curve and E restricted to a general fiber F of the
contraction is isomorphic to TPn-1. To complete the description of F we choose a
smooth divisor H C X which is a hyperplane in each fiber of the scroll and which
does not meet the singular set of E; the restriction of E to any fiber of H ~ B is
then Ton-2 e O(1). After twisting E by a pull-back of a negative line bundle from
B it will satisfy assumptions of (4.2) on H, so that it will extend to a vector bundle
F. The description of F follows now easily, since its restriction to a general fiber
has to be isomorphic to O(1)n.

To conclude the theorem note that the loci of extremal rays can not meet

(because we would have a curve contracted by both contractions) and therefore the
description of the adjoint morphism is as in (2) of the theorem.

6. Fano manifolds of middle index

In the present section we want to complete the classification of Fano manifolds
of index r and dimension 2r with second Betti number b2  2. Let us recall that
a smooth projective variety X is called Fano if its anti-canonical divisor -Kx is
ample. The index of the Fano variety is equal to the largest integer r for which
-KX ~ rH, for some ample divisor H. Such varieties with projective and quadric
bundle structure were studied in [PSW2] and [W2], respectively. To complete their
classification one has to deal with these which are non-equidimensional scrolls
[W2, Theorem 1].

(6.0). Our set-up is as follows: X is a Fano manifold of index r and dimension
2r  6, and it is a projectivization of a non-locally free Bânicâ sheaf E over a
smooth variety Y of dimension r + 1. The projection X ~ Y we will denote
by p; we may choose E = p*(O(H)), so that the line bundle associated to H is
OP(03B5)(1). The variety X admits also another non-trivial map (a contraction) with
connected fibers ~: X ~ Z onto a normal variety Z. In [W2, Thm. I] it was proved
that all fibers of p are of dimension  r and thus, because of [AW, Thm. 4.1 ], Z is
smooth and one of the possibilities occurs:

(i) dim Z = r + 1 and p : X - Z is a projectivization of a non-locally free
sheaf;
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(ii) dim Z = 2r and p : X - Z is a blow-down of a smooth divisor E in X to a
smooth subvariety T C Z, dim T = r - 1;

(iii) dim Z = r and ~: X ~ Z is a quadric bundle;
(iv) dim Z = r + 1 and cp: X ~ Z is a projective bundle.

(6.1). Fano manifolds with projective bundles were studied in [PSW2]; from the
classification obtained in the paper it follows that the last possibility (iv) can not
occur. Quadric bundles were studied in [W2] and it had tumed out that two of
the quadric bundles obtained there have also a structure of projectivization of
non-locally free sheaf:

(a) a divisor of bidegree (1, 1) in the product Pr x Qr+1,
(b) a divisor of bidegree (1, 2) in the product Pr x Pr+1.

From now on we assume that we are either in case (i) or (ii), which we will call
fiber and divisorial case, respectively.

Our arguments are similar to those from [PSW2]: we will use ’big fibers’ of the
map p, that is fibers of dimension r. We know that they are isomorphic to P’’ and
the restriction of H to each of them is (9(1), see [AW, 4.1]. First we will deal with
the case when is divisorial.

LEMMA 6.2 (cf. [PSW2 (7.2)]). Assume that p is divisorial. Then the restriction
of O(E) to a fiber of p is isomorphic to O(1).

Proof. Assume the contrary. Let us take a general fiber F of p such that E
restricted to the fiber is a hypersurface of degree &#x3E; 1. Let us take a line in F

which is not contained in F n E; on this line choose two points x1 ~ x2 such
that x1, x2 ~ F ~ E. Let Gi := ~-1(~(xi)). We claim that there exists a curve
C C Y, p(F) E C, such that:

(*) for a general c E C: #(p-1(c) fl (G1 U G2))  2.

Indeed, note first that dim(Gi ) = r and p maps Gi onto a divisor in Y. Therefore,
if ~(x1) ~ p(z2) we take a curve in p(G1) fl p(G2) ~ p(F). If Cl = G2 we
consider a curve in a set f y : #(p-1(y) C G1)  21 -D p(F) which again is of
positive dimension.

Now over a generic c E C we choose a line Le in p-1 (c) such that Le is not
contained in E and Le meets G1 U G2 at at least two points. This way we can
construct a ruled surface over the normalisation of C which is mapped via p to a
two-dimensional variety and which contains a curve (or curves) contracted to point
(or points) such that it contradicts the following:

SUBLEMMA. Let 03C0 : S = p( £) --+ C be a (geometrically) ruled surface (a
pl-bundle) over a smooth curve C. Assume that there exists a map ~ : S - PN
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such that the image of ~ is of dimension 2 and ~ contracts a curve Co C S to a
zero-dimensional set. Then Co is a unique section of 1r such that C20  0.

Proof. First, we claim that the curve Co is irreducible. Indeed, if CI and
C2 were two irreducible components of Co then C2  0, C2  0, C1C2  0
and aC, - bC2 would be equivalent to a multiple of a fiber of 7r for a, b &#x3E; 0
and thus (aCi - bC2)2 = 0, a contradiction. Let i : B - Co C S be the
normalisation. Consider 7rB : SB := P( (7r o i)*(03B5)) ~ B a ruled surface over B
obtained via base change; it has a section Bo which comes from the epimorphism
(1r o i)*(C) ~ i*OP(03B5)(1). The section Bo is mapped birationally to Co under
the induced map of projective bundles j : SB ~ S and it is a component of
BI = j-1(Co) which is contracted by ~ o j. Since BI is irreducible, it follows that
Bi = Bo and

and therefore we are done.

Remark. Note that this argument works also in case of Lemma 7.2 from [PSW2]
to replace the original ’lift-up’ argument which is incomplete.
We continue with the divisorial case: As an immediate consequence of the

preceeding lemma let us note that the good supporting divisors of cp and p (i.e.
pullbacks of ample divisors from the targets of respective maps) may be chosen to
be H + E and H - E, respectively.

Let now M be the intersection of a r-dimensional fiber of p with E, it follows
that M ~ P(r-1) and H|M = E|M = 0(1). Now since the map cp maps M onto
T, by a result of Lazarsfeld [L] it follows that T EÉ p(r-l). Since E + H is a
pullback of a Cartier divisor -Kz/r from Z and (E + H)|M = O(2) it follows
that -KZ/r restricted to T is either O(2) or (9(1). In the latter case, however,
using the relation

we would find out that cl N*T/Z = 0. On the other hand, since H = - E + (E + H)
is ample on E it follows that NT /Z 0 O( - l( Z 1 r) is ample. Thus, if ci (N;lz) = 0
and O(-KZ/r)|T = O(1) the bundle N*T/Z(1) would be isomorphic to EBO(1 yH,
a contradicition, since its projectivization would not have a dominant morphism on
Y of dimension r + 1. A similar argument done if (-KZ/r)|T = O(2) leads to the
situation when N*T/Z(2) is ample with first Chem class O(r + 2) and therefore by
splittingtype (see e.g. [W2, 1.9]) N*T/Z(2) ~ TPr-1 ~ O(1)2. The projectivization
of this latter bundle maps with connected fibers (because they are hyperplanes in
fibers of p) onto Y. Therefore, we check that the morphism p restricted to E is given
by the evaluation of the bundle TPr-1 ( -1 ) ? O2 and thus we get the following



331

LEMMA 6.3. If ~ is divisorial then Y -’ P’+’ and any non-trivial fiber of ~ is
mapped by p isomorphically onto a hyperplane in Pr+1. Moreover T ~ P’-1 and
NTIZ TPr-1 E9 O(1)2.

Now we deal with the case when both p and ~ are of fiber type

LEMMA 6.4 (Comparison Lemma [PSW2, 3.1]). Assume that ~ is offiber type.
Let

ry := min{-KY. C : where C is rational on X}.

Then rY · H + p*(KY) is a good supporting divisor for ’the other’ contraction
~.

The proof of the above lemma in case r  4 is identical as in [PSW2]; for r = 3
and ~ of fiber type the lemma will also work because ~ has a fiber of dimension r,
see Remark (3.4) in [PSW2].

Remark 6.5. Note that in the divisorial case we also have the comparison lemma
since the pull-back of O( 1) from Y = Pr+1 to a fiber of ~ is again O(1).

COROLLARY 6.6. Assume that ~ is either divisorial or of fiber type.

(a) Let F be an r-dimensional fiber of ~. Then F is Pr and£F(-1) := (p*03B5|FF)(-1)
is nef, and ci (îF( -1)) is either 1 or 2.

(b) If f ~ pr-l is a general hyperplane in F or - for ~ of fiber type - a general
fiber of ~ then £ J( -1) := (p*E03B5|f)(-1) is as described in [PSWl, Thm. 1 j or
[PSW2, 0.6].

Proof. We already noted that F = pr. The rest is proved exactly as (5.2) and
(5.3) from [PSW2], the case cl - 0 ruled out because £ is not locally free.

LEMMA 6.7. Assume that ~ is of fiber type. Then both Y and Z are isomorphic
to Pr+l.

Proof. We use notation from 6.6, i.e. F is a ’big’ fiber of ~ while f is a general
fiber of ~, or a general hyperplane in F. Let us consider a composition of maps

where P(03B5f) ~ P(£) is induced by the change of the base p: f ~ Y. We claim
that the composition is surjective. Indeed, if this is not the case then p-1(p(f1)) n
f2 = 0 for a sufficiently general choice of fi and f2, so that the intersection
of cycles p-1(p(f1)) · f2 is zero. But note that for a general choice of f, we
have dim(p-1(p( fl)) fl F) = r - 2 - because p(F) is ample on Y - and thus
p-1(p(f1)) ~ f2 is non-empty of the expected dimension r - 3  0 for f2 c F.
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Therefore, for r  5, looking up through the list from [PSW1], we find out that
the only possibility when P(03B5f) admits a surjective map onto a r + 1 dimensional
variety is

The map P(03B5f) ~ Z factors through Pr+1 and thus Z = pr+1. The reasoning is
clearly symmetric with respect to the change of Z and Y so the lemma is proved
in this case.

For r equal 3 and 4 we have to eliminate some other possibilities apart of
03B5f(-1) ~ Or+2/O(-1)2, that is, possible sheaves 03B5f(-1) which occur in the
classification [PSW1] such that P(03B5f) admits a morphism onto an r + 1-dimensional
variety. If r = 4 the other possibility is a sheaf from the sequence

see [PSWl]. We claim that in this case H1(P3, îj( k)) = H2(P3, £f(k)) = 0 for
k  2 and therefore £F(-1) extends to a locally free sheaf, see 4.2, 4.3. Indeed, the
bundle 03B5*f(k) is isomorphic to either TP3(k - 3) e O(k - 1) or to N(k - 2) e
O(k-1)2, where N is a null-correlation bundle on P3; thus we check the vanishing
easily. Now, to conclude this case, note that if îF( -1) extends to a locally free
sheaf 0 then 0 is nef on P4 and with Chem classes (cl, c2, c3) = (2, 2, 0), thus
checking it with the list from [ibid] we arrive to a contradiction.

The case r = 3 (that is f = p2) is dealt with similarly: apart of 03B5f(-1) ~
O5/O((- )2 also decomposable bundles and a bundle with Chern classes (c1, c2) =
(2, 2) admit morphism onto 4-dimensional variety, see the main theorem of [SW].
As above we check a vanishing to claim that 03B5F(-1) extends to a locally free
sheaf 0 on F = p3,:F is nef with Chem class ci = 2, thus globally generated, see
[PSW1]. But P(F) contains P(03B5) which is mapped onto a 4-dimensional variety,
so itself it has to be mapped onto a 5-dimensional variety. Again, by [ibid] the only
possibilities for J7 are O6/O((-1)2 or f2p3 (2) EB 0, or N(1) ~ 02 where N is a
null-correlation; we are to exclude the latter two possibilities.

To this end note that c3(03A9P3(2)) = 0 and thus ÉF is locally free. Now we can
apply an argument from [PSW2, 5.5]: using the relative Euler sequence (because
E is locally free on p(F)) we compute the total Chem class of 03A9X|F

On the other hand, because of [AW, 4.9, 4.12] N*F/X = TPr(-1) (NFIX denoting
the normal bundle), and we compute

and further
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where h denotes the class of a plane in p3; in particular p(F) . C3(!1Y) is not
divisible by 5. In our case, however, the integer rY from 6.4 is equal to 5 so either
-KY is divisible by 5 in Pic Y and then Y = P4 or -KY generates Pic Y. In the
latter case the intersection of any 1-cycle with any divisor would be divisible by
5 (this follows e.g. from deformation theory), a contradiction. On the other hand
ct(03A9P4) = 1 - Sh + lOh2 - lOh3 + 5h4 so comparing it with the above formula
for Ct(p*(!1Y)IF) we arrive to a contradiction even if Y = P4. This completes the
proof of 6.7.

To conclude the classification we will deal with the case Y = Pr+1 in our set-up
6.0 (i)-(iii). Let EH denote the restriction of E to a general hyperplane H = PT in
Pr+1; 03B5H(-1) is then a nef vector bundle (see 6.4, 6.5) with ci = 2. Looking up
through the list from [PSW1] we get the following possibilities depending on the
dimension of Z:

(i) 03B5H(-1) = Or+2/O(-1)2 and P( £ H ) has a contraction onto pr+ 1 ,
(ii) EH(-l) = (TPr(-1) ~ O(1))/O and P(EH) admits a birational morphism

onto a quadric Q2r-1, the variety P(EH) is a blow-up of the quadric along a
linear P’’-1, 

(iii) £H(-1) = Or+1/O(- 2) and P(EH) is contracted onto Pr.
The remaining cases appearing in [PSW1, Thm. 1] are excluded: decomposable

bundles because of 4.2.2, the other ones because they do not admit maps onto
varieties of dimension emerging in cases (i)-(iii) of 6.0.

Note that above three cases are in one-to-one correspondence with the cases
(i)-(iii) from 6.0. The variety Z - the target of the contraction cp - is therefore
Pr+1, Q2r and par, respectively. If p is divisorial or a quadric bundle, we obtain a
description of X (and therefore of E) immediately - see 6.3 and 6.1, respectively.
If cp is of type (i) then note that £( -1) is spanned by r + 2 sections, because
OP(03B5(-1))(1) = ~*O(1), and therefore we have an exact sequence

with 1t a reflexive sheaf of rank 2. Since £(-1) restricted to a hyperplane is
Or+2/O(-1)2 it follows that 1t = O( -1)2 and thus we have a description of E
and of X.
We summarize the result in the following

THEOREM 6.8. Let X be a Fano manifold of index r and dimension 2r. Assume
that X is a projectivization of a sheaf 9, p : X = P(03B5) ~ Y, and assume moreover
that E is not locally free. Then one of the following holds (note that the top Chern
class cr+1 (E) is equal to the number of singular points of £):

(i) Y ~ pr+1 X is an intersection of two divisors of bidegree (1, 1) in pr+1 X
Pr+1,



334

Acknowledgements

We would like to thank SFB 170 Geometrie und Analysis in Gôttingen and Max-
Planck-Institut für Mathematik in Bonn; parts of the present paper were prepared
at the time when we visited these institutions. The first named author was also

supported by Italian MURST and GNSAGA while the second named author was
supported by Polish grant KBN GR54.

References

[ABW] Andreatta, M., Ballico, E. and Wi015Bniewski, J.: Vector bundles and adjunction, Int. J. Math.
3 (1992) 331-340.

[AW] Andreatta, M. and Wi015Bniewski, J.: A note on non-vanishing and applications, Duke Math.
J. 72 (1993) 739-755.

[B] B0103nic0103, C.: Smooth reflexive sheaves, Revue Romaine Math. Pures Appl. 63 (1991) 571-
573.

[BC] B0103nic0103, C. and Coand0103, I.: Existance of rank 3 vector bundles on homogeneous rational
3-folds, Manuscr. Math. 51 (1986) 121-143.

[BSW] Beltrametti, M., Sommese, A. J. and Wi015Bniewski, J.: Results on varieties with many lines
and their applications to adjunction theory, in Complex Algebraic Varieties, Bayreuth 1990,
Lecture Notes in Math. 1507, Springer-Verlag, 1992.

[F1] Fujita, T.: On polarized manifolds whose adjoint bundles are not semipositive, in: Algebraic
Geometry, Sendai 1985, Adv. Studies in Math. 10, pp. 167-178, Kinokuniya 1987.

[F2] Fujita, T.: On adjoint bundle of ample vector bundles, in: Complex Algebraic Varieties,
Bayreuth 1990, Lecture Notes in Math. 1507, Springer-Verlag, 1992.

[G] Grothendieck, A.: EGA II, Publ. Math. IHES 8 (1961).
[H1] Hartshorne, R.: Algebraic Geometry, Springer-Verlag 1977.
[H2] Hartshorne, R.: Stable reflexive sheaves, Math. Ann. 254 (1980) 121-176.
[H3] Hartshorne, R.: Ample vector bundles, Publ. Math. IHES 29 (1966).
[HH] Hartshorne, R. and Hirschowitz, A.: Nouvelles curves de bon genre, Math. Ann. 267 (1988)

353-367.

[I] Ionescu, P.: Generalized adjunction and applications, Math. Proc. Camb. Phil. Soc. 99
(1988) 457-472.

[KaMM] Kawamata, Y., Matsuda, K. and Matsuki, K.: Introduction to the minimal model problem,
in: Algebraic Geometry, Sendai 1985, Advanced Studies in Pure Math. 10 (1987) 283-360.



335

[Ke] Kempf, G. et al.: Toroidal embeddings, I, Lecture Notes in Math. 339 (1973), Springer-
Verlag.

[Ko] Kollár, J.: Higher direct images of dualizing sheaves, Annals of Math. 123 (1986) 11-42.
[KMM] Kollár, J., Miyaoka, Y. and Mori, Sh.: Rational connectedness and boundness of Fano

manifolds, J. Diff. Geom. 36 (1992) 765-779.
[OSS] Okonek, Ch., Schneider, M. and Spindler, H.: Vector bundles on complex projective spaces,

Progress in Math. 3, Birkhäuser, 1980.

[PSW1] Peternell, Th., Szurek, M. and Wi015Bniewski, J.: Numerically effective vector bundles with
small Chern classes, in: Complex Algebraic Varieties, Bayreuth 1990, Lecture Notes in
Math. 1507, Springer-Verlag, 1992.

[PSW2] Peternell, Th., Szurek, M. and Wi015Bniewski, J.: Fano manifolds and vector bundles, Math.
Ann. (1992) 151-165.

[S] Sommese, A. J.: On the adjunction theoretic structure of projective varieties, in: Complex
Analysis and Algebraic Geometry, Göttingen, 1985, Lecture Notes in Math. 1194, Springer-
Verlag, pp. 175-213.

[SW] Szurek, M. and Wi015Bniewski, J.: On Fano manifolds which are Pk-bundles over P2, Nagoya
Math. J. 120 (1990) 89-101.

[W1] Wi015Bniewski, J.: On contractions of Fano manifolds, J. reine Angew. Math. 417 (1990)
141-157.

[W2] Wi015Bniewski, J.: Fano manifolds and quadric bundles, Math. Zeit. 214 (1993) 261-271.
[YZ] Ye, Y. and Zhang, Q.: On ample vector bundles whose adjunction bundles are not numeri-

cally effective, Duke Math. J. 60 (1990) 671-687.


