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0. Introduction

In [11], Robinson proved that, given a ring Rand two .R-modules A and B, there
is a spectrum whose homotopy groups are the torsion groups Tor.R(A B). More
precisely, he proves

THEOREM 1 of [11] Let R be a ring. Let A be a right R-module, let B be a left
R-module. Consider the category TorR(A, B) whose objects are pairs s: P ~ B
and 71: P* ~ A, where P is a projective left R-module, and P* = Hom(P, R) is
its dual. Then if we geometrically realise the category TorR(A, B) we obtain a
space with the natural structure of an infinite loop space, and its homotopy is given
by the formula

Inspired by Robinson’s work, the second author generalised this to obtain a spec-
trum whose - ith homotopy group is Ext2 ( A, B). More precisely, in [9], the second
author announced the following theorem:

THEOREM 2 of [9] Let E be an exact category. Let A and B be objects of E.
Consider the categories Extn(A, B) whose objects are exact sequences

and whose morphisms are morphisms of such exact sequences. Then the loop space
S2 Extn (A, B) of the category Exe (A, B) is naturally identified with Exf1-1 (A, B).
If one considers the Q-spectrum defined by the homotopy equivalences
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then this defines a spectrum we will denote Ext(A, B), and clearly

where Exti03B5(A, B) means the usual extension groups, as opposed to extension
categories.

In this article we will generalise both results to an arbitrary homotopy category
associated to a Waldhausen category. Let us begin by reminding the reader about
the formalism of a Waldhausen category. Note that our presentation here will be
very sketchy and incomplete. Throughout this article we will assume familiarity
with Waldhausen’s foundational article [13].
A Waldhausen category will mean a category with cofibrations and weak equiv-

alences, satisfying the Gluing Lemma, Extension Axiom, Saturation Axiom and
Cylinder Axiom, as in Waldhausen’s article [13] . Starting with such a category, one
can construct an associated stable homotopy category, by inverting the suspension
functor and the weak equivalences. Inverting the suspension functor is harmless;
the resulting category is still Waldhausen. For a discussion, see Section 1. Inverting
the weak equivalences is drastic. One obtains something which is decidedly not a
Waldhausen category, but only a triangulated category.

Throughout the article we will assume that the Waldhausen categories we are
dealing with have an invertible suspension functor. As we have already said, this
is harmless once we replace a Waldhausen category by its stabilisation.

For the uninitiated, let us briefly recall what a Waldhausen category is. It is
a category C, with two subcategories 03C9(C) and c(C). The objects in the three
categories are the same. The morphisms in 03C9(C) are called weak equivalences and
denoted by the letter w, the morphisms in c(C) are called cofibrations and denoted
by the letter c. These must satisfy a long list of axioms, which we do not want to
repeat here. Perhaps the most important is that pushouts of cofibrations exist. That
is, given a diagram

then it is possible to complete it to a pushout square

as long as either X - Y or X ~ Y’ is a cofibration. The other piece of structure
a Waldhausen category comes equipped with is a cylinder functor. Given any map
f: X ~ Y, there is an object
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which is functorial in f: X - Y, comes with several natural transformations, and
also satisfies a long list of axioms we do not want to repeat. It might be more
enlightening if we gave a simple example.

EXAMPLE 0.1. Let be an abelian category. Define C = C(,A) to be the
category of all chain complexes of objects in .A. A morphism f in C = C(A) is
a chain map of chain complexes. The morphism f is called a cofibration if it is
a monomorphism in each degree. The morphism f is called a weak equivalence
if it induces a homology isomorphism. Given a morphism f: X - Y in C, the

mapping cylinder Cyl(X  Y) is by definition the mapping cone on the map of
chain complexes

where by mapping cone we understand the usual mapping cone of homological
algebra. In this case, the suspension functor, which is always given by the pushout
diagram

is nothing other than the functor shifting the complex to the left, and is therefore
invertible in C = C(A). Thus the category C is a Waldhausen category with an
invertible suspension functor.

It is possible to formally invert the weak equivalences. One then gets a trian-
gulated category, which in the above case is nothing other than D (,A), the derived
category of the abelian category A.

NOTATION 0.2. Let C be a Waldhausen category with an invertible suspension
functor. Then the associated homotopy category, obtained by formally inverting
the weak equivalences, will be denoted w-1 C.

Before we state our theorems, we need some definitions. Let C be a Waldhausen
category. Let

be a chain complex in C; that is, the composites ~ o ~ are all zero. It is then

possible to define a ’totalization’ of the complex, denoted T(X.). This is the
precise analogue of taking the total complex of a double complex in the category
C = C(A), and for a definition which makes sense in an arbitrary Waldhausen
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category, see Definition 1.2. A complex X. is called acyclic if the natural map
0 - T(X) is a weak equivalence.

DEFINITION 0.3. Let n be an integer  1. Then define Extn(A, B) to be the
category whose objects are diagrams

where the chain complex

is acyclic, and the map A ~ Xn+1 is both a weak equivalence and a cofibration.
It is a map of type w, in the standard notation. The morphisms in the category
Extn(A, B ) are morphisms of diagrams, which are the identity on A and B.

DEFINITION 0.4. Define ExtO(A, B ) to be the category whose objects are the
diagrams

where B --+ X is of type w (that is a cofibration and a weak equivalence), and
A ~ X is any morphism. A morphism in the category Ext°(A, B) is a map of
such diagrams that is the identity on A and B.

Now we are ready to state our theorems.

THEOREM 5.2. Let n  1 be an integer. The loop space of the category
Extn ( A, B ) is naturally homotopy equivalent to Extn-1(A, B).

A useful addendum is

PROPOSITION 7.4. There is a natural homotopy equivalence Extn(03A3A, B) ~
EXtn-1(A, B).
In particular, we obtain a spectrum, which is perhaps simplest to describe in terms
of the Ext°. There is a sequence of homotopy equivalences
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which defines an S2-spectrum we will call Ext(A, B). Clearly,

To turn this into a computation of the homotopy of the spectrum Ext(A, B), one
appeals to

PROPOSITION 6.1. The group 03C00 [ExtO(A, B)], or more generally the groups
7rn [Extn(A, B)], are naturally isomorphic to Homw-lc(A, B). The group

Homw-1C(A, B) means the homomorphisms A ~ B in the category w-1C,
the triangulated category associated to C, where the weak equivalences have
been inverted.

Combining these results, we deduce that the spectrum Ext( A, B) satisfies

This isomorphism is also compatible with the composition in the category w-1 C.
Precisely, let A, A’ and A" be three objects of the category C. Then there is a
product

It is even defined on the level of categories. There is a functor

which is very simple to describe. It takes the pair of diagrams

and

to the diagram

where Y, and the maps to it, are defined up to canonical isomorphism by the
pushout square
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and the pushout exists because A’ ---+ X is a cofibration. Now if we declare

to be the base point of Ext°(A, A’), where A’ - A’ is the identity and A ~ A’
is the zero map, then there is a natural transformation from the zero map to the

maps

and

These natural transformations combine to define multiplication as a map

It can be checked that this is compatible with the infinite loop structure, and defines
a map of spectra

and this map satisfies the associative law, up to coherent homotopies. It follows
that the category w-1 C can be enriched over the homotopy category of spectra.

The results of Robinson [11] and the second author [9] are now immediate
consequences. Let A be the category of left modules over a ring R, and let C =

C(A) be the Waldhausen category of chain complexes in A. Given a left R-module
B and a right R-module A,

where A* = RHom(A, R) is the dual of A. In other words, the spectrumExt(A*, B)
is in fact homotopy equivalent to Robinson’s. The theorem of the second author
is an even more direct consequence; one just looks at the special case where the
category C = C(03B5) is the Waldhausen category of chain complexes in an exact
category î.

It follows directly from the above, and from the work of Porter in [7], that one can
define higher products in any Waldhausen category, and they take their values in the
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associated homotopy category. Porter’s machinery applies immediately. Another
approach, which avoids using extensions, can be found in [10].

Perhaps one should make a comment regarding the proof. As is well-known,
the dual of a Waldhausen category need not be Waldhausen, and Waldhausen

categories are not in general additive. If one assumes at the start that we will only
deal with Waldhausen categories C whose duals are Waldhausen in a compatible
way, and such that C is additive, then the proof becomes substantially simpler. In
particular, the cases where C = C(A) or C = C(03B5), where A is abelian and î
is exact are such very nice Waldhausen categories, and the theorem can be proved
with substantially simpler arguments. This covers both the theorem of Robinson
and of the second author.

However, it is not clear whether one leams anything new from this simple case.
Let us spend a couple of paragraphs discussing the simple case, before retuming
to the more general situation of an arbitrary Waldhausen category. What makes the
theory ’special’ in the additive case is

PROPOSITION 8.1. Suppose the Waldhausen category C is additive. Then the
spectra Ext( A, B) are all wedges of suspensions of Eilenberg-MacLane spectra.

REMARK 0.5. Both Robinson [11] and the second author [9] prove versions of

Proposition 8.1 appropriate to each of their theories.

As we have said, the authors are not entirely sure whether this makes the result
completely trivial in the case of an additive Waldhausen category. Let us explain the
difficulty by posing it as a problem to the reader. Let T be the homotopy category of

spectra, 7- 2 the homotopy category of prime-to-2 spectra. Observe first that from

the article [6] we know that there is a triangulated functor fl : 7- 2 D (7- 2
which takes a spectrum to a complex computing its stable homotopy. Note that
when we restrict II to spectra that are wedges of suspensions of Eilenberg-MacLane
spectra, the result becomes trivial and there is no need to invert 2. There is also
a functor Il : D(Z) - T, which takes a chain complex of abelian groups to the
associated chain complex of Eilenberg-MacLane spectra. The existence of the
functor Il is essentially trivial, and can be seen in many ways. One way to see
that the functor Il exists is the following. There is a t-structure on the category of
spectra whose heart is just the category of abelian groups, embedded in T as the
Eilenberg-MacLane spectra (see [6], Section 1). The functor D(Z) --7 T is just the
map from the derived category of the heart to the category with t-structure.

For any X which is a wedge of suspensions of Eilenberg-Maclane spectra, there
is an isomorphism of X with K03A0(X). The isomorphism is decidedly not natural
in X. What is not clear to the authors is
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PROBLEM 0.6. Let C be an additive Waldhausen category. Is there a natural

isomorphism

where naturality means naturality in A and B?

If the answer to Problem 0.6 is ’yes’, then the spectrum Ext( A, B ) carries no more
information than the object K03A0 [Ext(A, B)] of D(Z). But in most cases of interest,
it has been known for a long time that the derived category can be enriched over
D(Z) ; this is the RHom construction. If the answer to Problem 0.6 is ’no’, then
this means that one cannot rectify the functor Ext(A, B) so that, in the wedges
of suspensions of Eilenberg-MacLane spectra that come up, all the maps are in
the image of the functor Il. Recall that maps between wedges of suspensions of
Eilenberg-MacLane spectra are generalised Steenrod operations. The ones in the
image of the functor Il are Bocksteins. To say that the answer to Problem 0.6
is ’no’ would imply that the higher Steenrod operations come naturally into the
structure. That would be interesting.

While it is not clear that this article has proved anything the least bit pro-
found about additive Waldhausen categories, the statement about arbitrary Wald-
hausen categories is interesting. Consider for example the category C of simplicial
schemes. Variants of this category can be given the structure of Waldhausen cat-
egories, in a number of different ways. This is a subject with some subtle techni-
calities, which would be quite inappropriate for this article. Nevertheless, it seems
to the authors that for a suitable choice of Waldhausen category C, the category
w-1 C is Voevodsky’s triangulated category of mixed motives. There are many
details we have not checked carefully, but this seems very probable.

Before this article, it does not seem to have been known that w-1 C can be
enriched over D(Z), let alone over the category T of spectra. But the work of this
article has an even more interesting bearing on Voevodsky’s work.

It is conjectured that the triangulated category of mixed motives is D(A), the
derived category of an abelian category .A of mixed motives. As a consequence of
the results here, we now know that both D(A) and w-1 C can be enriched over the
category of spectra. We also know from Proposition 8.1 that for D(A) this enriching
structure is trivial; the spectra one gets are wedges of Eilenberg-MacLane spectra.
It becomes natural to ask whether in Voevodsky’s category w-1 C, the spectra
Ext( A, B ) are all wedges of Eilenberg-MacLane spectra - equivalently, whether
their Postnikov invariants all vanish.

Thus the really interesting consequence of the work presented here is that
we have attached to every category w-1 C a set of invariants, namely the spectra
Ext( A, B ) . The Postnikov invariants of these spectra will vanish when C is additive,
but not in general; for the homotopy category of finite spectra, they do not vanish.
Thus we have an invariant that can distinguish ’algebraic’ triangulated categories
from more general ’topological’ ones.
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The only other such invariant that the authors are aware of comes from Franke’s
work; see [5]. Franke shows that if one suitably enriches the categories in ques-
tion, then the only categories possessing Adams’ spectral sequences with certain
properties are derived categories.

The enriching structure of w - 1 C over the category of spectra depends on the
Waldhausen model we start with, but not much. A map C ~ C’ of Waldhausen
models inducing an equivalence w-1C ~ w-1 C’ will induce homotopy equiv-
alences ExtC(A, B) - Extc, (A, B). Thus if it so happens that in Voevodsky’s
category w-1 C, the spectra Ext(A, B) in general have non-vanishing Postnikov
invariants, then we have not disproved the conjecture that there is an equivalence
w-1 C ~ D(A). All we have shown is that such an equivalence cannot possibly
be induced by a map of Waldhausen models.

It is known that there are triangulated functors of triangulated categories with
no Waldhausen models. For two examples, see [6], Remarks 4.2 and 4.8. There
is, however, no known example of an equivalence of triangulated categories with
no model. Finding such an example would be very interesting. If nothing else, it
would allow one to check a problem raised by Thomason in [12]. Thomason asks
the following. Suppose C and C’ are Waldhausen categories, and suppose w-1 C
and w -1 C’ are equivalent. Is it true that the K-theory spectra K(C) and K(C’) are
homotopy equivalent? It is a theorem of Waldhausen’s (the approximation theorem)
that if the equivalence is induced by an exact functor of the Waldhausen categories
F: C ~ C’, then in fact K(F) : K(C) ~ Il(C’) is a homotopy equivalence.

Until now, it has been impossible to check Thomason’s conjecture, since we
have had no examples of Waldhausen categories C and C’, such that w-1C and
w-1 C’ are equivalent, but the equivalence cannot be expressed as a sequence of
exact functors of Waldhausen categories

The above suggests a way to construct examples.

Added in final revisions: Jeff Smith pointed out to the authors that the existence
of the structure of a spectrum for Homw-1C(A, B) follows from the work of
Dwyer and Kan, [4]. Since their construction is rather different from the extension
categories used here, it would be interesting to compare.

1. The total complex

A Waldhausen category will mean a category with cofibrations and weak equi-
valences, satisfying the Gluing Lemma, Saturation Axiom, Extension Axiom and
Cylinder Axiom as in Waldhausen’s foundational article [13]. There is one notation
we will adopt that will differ from [13]; it is appropriate to alert the reader to it
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immediately. The cylinder functor will be denoted by Cyl( - ). This is of course quite
different from Waldhausen, who denotes it T(-). Thus, given a map f: X - Y,
then the object

is nothing other than the mapping cylinder of the map f. There is a cofibration

which is the inclusion of the first and last face of the cylinder object, and there is a
weak equivalence

so that the composite

is the identity. The mapping cone Cone(X  Y) is defined by the pushout
square

In any Waldhausen category C, there is a suspension endomorphisms
E: C - C. It is defined by sending an object X to the object 03A3(X), given by
the pushout diagram

and since X V X and Cyl(X  X) are functorial in X and the inclusion of the
front and back faces in the cylinder is a natural transformation, it is clear that the
pushout diagram defining 03A3(X) makes it a functor in X. For a general Waldhausen
category, the functor E need not be invertible. However, it is an endomorphism
of the category C preserving the Waldhausen structure. One can therefore form
a Waldhausen category 03A3-1C, which is simply the direct limit category for the
sequence
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In the Waldhausen category 03A3-1C, the suspension functor is an invertible endo-
morphism of the category. From now on we will assume that all our Waldhausen
categories have invertible suspension functors. All our theorems are therefore
theorems about 03A3-1C.
Now we come to our first definition.

DEFINITION 1.1. Let C be a Waldhausen category. Let n be the category

Let Cpxn(C) be the category of complexes in C of length n; that it is the full sub-
category of the functor category Hom( n, C) whose objects are the chain complexes.
They are the sequences

such that 0 o ~ = 0.

Now we are ready for the main definition of this section:

DEFINITION 1.2. Let C be a Waldhausen category, and let Cpxn(C) be as in
Definition l . l . There is a functor T: Cpxn (C) -t C which totalises the complex.
We define it inductively.

If n = 1, define T (Xo - Xl) to be Cone(Xo - X1).
Suppose T has been defined on complexes of length  (n - 1). There is a

natural functor

which takes the complex

to the map of complexes

By induction, we already have the functor T defined on Cpxn-1 (C); thus we have
an induced map
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and T is defined to be the mapping cone

REMARK 1.3. As has already been mentioned, we varied Waldhausen’s notation
to let Cyl( - ) stand for the cylinder functor. The reason was that we wanted to
reserve the letter T for the total complex of Definition 1.2.

In this section, we will recall briefly the elementary properties of the functor T.
We begin with another definition:

DEFINITION 1.4. Let C be a Waldhausen category. Let Cpxn ( C ) be the category
of length n complexes in C, as in Definition l.l. Then a morphism

in Cpxn(C) is called a weak equivalence if all the vertical morphism in C are
weak equivalences. The morphism is called a cofibration if all the vertical maps
are cofibrations in C.

The following lemmas are trivial and the proof is left to the reader.

LEMMA 1.5. Let f: X. - Y. be a morphism in Cpxn(C), If f is a cofibration
(resp. weak equivalence), then so is T(f): T(X.) ~ T(Y.) 0

LEMMA 1.6. Let f : X. - Y. be a cofibration in Cpxn(C), and let g: X. ~ Z.
be an arbitrary morphism. Then one can form the pushout Y. ~X. Z. in Cpxn(C),
which is the complex

Pushouts of cofibrations are cofibrations, and the category Cpxn(C) satisfies the
Gluing Lemma and the Extension Axiom. To remind the reader: the gluing lemma
says the following. Suppose we are given the two commutative squares

Suppose further that X. ~ Y. and X.’ ~ Y.’ are cofibrations, and that X. ~ X’,
Y. - Y.’ and Z. - Z.’ are weak equivalences. Then the natural map
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is also a weak equivalence. The extension axiom says that suppose we are given a
commutative square

where the vertical maps are cofibrations, and suppose that X. ~ X.’ and

are both weak equivalences. Then the map Y. -7 Y.’ is also a weak equiva-
lence. 0

2. The catégories of acyclics

Let C be a Waldhausen category, and as always we assume it to have an invertible
suspension functor. The category Acyn(C) is the category of acyclic objects in
Cpxn(C). Precisely

DEFINITION 2.1. The category Acyn(C) is the full subcategory of Cpxn(C)
whose objects are given by

LEMMA 2.2. It is immediate from the Gluing Lemma for Cpxn(C) that if X. ~ Y.
is a cofibration, X. - Z. any morphism, and X., Y. and Z. are in ACYn(C), then
so is Y. ~X. Z.. It is immediate from the Extension Axiom that if X. - Y. is a
cofibration in Cpxn(C) and X. as well as Y. ~X. 0 are objects of Acyn(C), then
Y. must also be an object of Acy,,(C). 0

The important technical lemma of this section is:

LEMMA 2.3. Let f: X. ~ Y. be a morphism in ACYn(C), Then it is possible to
construct a diagram in Acyn(C)

where X. ~ Y. and Y. ~ Y. are cofibrations, and the composites
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are, respectively

Furthermore, the map f is after all a map of complexes

Suppose now that for some i, with 0  i  n, the map fi : Xi -7 Yi is a weak

equivalence. Then so are Xi -7 Yi, Xi -7 Yi and Yi -7 Yi.
Proof. Let us consider the diagram that comes from the Cylinder Axiom

where is the complex

and the maps X. - Cyl(X.  Y.), Y. - Cyl(X.  Y.) and

Cyl(X.  Y.) --7 Y. are all the natural maps of chain complexes. It is imme-
diate that X. - Cyl(X.  Y.) and Y. - Cyl(X.  Y.) are both cofibrations,
and that the composites

and

are, respectively

So we let Y. be Cyl(X.  Y.), and we consider the diagram above. Two things
remain to prove about the diagram. The first is that Cyl(X.  Y.) is acyclic; that
is that it lies in the category Acyn(C). The second is that if f i : Xi -7 Yi is a weak
equivalence, then so are Xi -7 Yi, Xi -7 Yi and Yi -7 Yi.
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We prove first the acyclicity. By the Cylinder Axiom for the Waldhausen

category C, the map Cyl(X.  Y.) ~ Y. is a weak equivalence. Hence the
map

is also a weak equivalence. We know that the composite

is a weak equivalence, because Y. is acyclic. It follows from the Saturation Axiom
that

is a weak equivalence, and hence Y. = Cyl(X. L Y.) is acyclic.
Now we already observed above that the map Y. = Cyl( X. ----7 Y.) - Y. is a

weak equivalence by the Cylinder Axiom. The composite

is the identity, hence definitely a weak equivalence. It follows again from the
Saturation Axiom that Y. ~ Y. is a weak equivalence. Thus, with no hypothesis
at all on the map f : X. - Y., we always have that Yi - Yi and Yi ~ Yi are weak
equivalences.

Suppose now that fi:Xi ~ Y is a weak equivalence. The map fi can be
expressed as the composite

the composite is a weak equivalence, as is the second map. It follows by the Satu-
ration Axiom’hat Xi ---7 Yi is a weak equivalence. 0

3. The catégories of extensions

Now we come to the categories whose homotopy we will compute. For technical
reasons, we will need several models for the same topological space. Let us there-
fore give a flexible definition.

DEFINITION 3.1. Let C be a Waldhausen category. Let A and B be two fixed
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objects of C. Let n  1 be an integer. We would like to consider a number of cate-
gories, which we will denote by symbols like Extn(aa’A, bb’B). Thus the symbol
for the category is has 7 inputs which help specify which of the wide assortment
of possible categories we want to consider. An object in one of these extension
categories is a diagram

where the first row is an object of ACYn+l (C). That is, the row

is an acyclic complex in C. The objects A and B are our fixed objects in C, and in
the symbol for the category Extn(aa’A, bb’B ) their position has been highlighted.
This explains the role of the n, the A and the B in the symbol for the category. It
remains to explain the significance of the a, a’, b and b’.

The symbols a, a’, b and b’ tell us, respectively, the restrictions on the morphisms
a: X’ n+l ~ A, a’: X’n+1 ~ Xn+1, b: X’0 ~ B and b’: X’0 ~ Xo. Thus, in the
category

Extn (wcA, wwB)

the morphism a’: X’n+1 ~ Xn+1 is assumed a cofibration, while the others, that is
a : X’n+1 ~ A,b: Xi - B and b’ : Xi - Xo, are assumed weak equivalences. Thus
w stands for weak equivalence, c for cofibration. If the morphism is unrestricted,
we indicate this with the letter f for free. If it is restricted to be the identity, the
symbol for that is =. If we assume the morphism to be simultaneously a cofibration
and a weak equivalence, we will indicate this with an w. Thus each of the letters
a, a’, b and b’ in the symbol Extn(aa’A, bb’B) is allowed to be any of f, w, c, w or
=, and this gives 54 = 625 possibilities.

The morphisms in any of the above categories are just maps of diagrams,
restricted to be the identity on A and B.

EXAMPLE 3.2. Consider for example the category Extn(== A, == B). An
object is an acyclic complex

and a morphism is a map of such complexes. Suppose now that C = C(,A)
is the Waldhausen category of chain complexes in an abelian category A as in
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Example 0.1. Suppose furthermore that A, B and all the Xi lie in the subcategory
A C C(A), that is they are complexes supported in degree 0. Then to say that
the complex totalises to an acyclic object is to say that it has no cohomology; the
sequence

had better be exact. Thus such an object of Extn(== A, = B) is nothing more
than an extension of length n of A by B. The morphisms are just morphisms of
extensions.

From now on, we will be studying the homotopy of the categories of the form
Extn(aa’A, bb’B), and to make sense of this we better assume henceforth that C
is a small category. Thus C has only a set of objects and a set of morphisms. This
makes the categories Extn (aa’A, bb’B) also small. Their nerves are simplicial sets,
which we can realise to get topological spaces. The topological space given by
the realisation of the nerve of Extn(aa’A, bb’B) will be freely confused with the
category Extn ( aa’ A, bb’B). We will allow ourselves to say that two categories are
homotopy equivalent, meaning that their realisations are.

LEMMA 3.3. Let a, a’ and b be any of the possibilities f, w, c, w or =. The

inclusions

induce homotopy equivalences.
Proof. The inclusion functors

and

each has a right adjoint, sending the diagram

to the diagram
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LEMMA 3.4. Let a, a’ and b be any of the possibilities f, w, c, w or =. The

inclusion

induces a homotopy equivalence.
Proof. We will produce two natural transformations on Extn(aa’A, bwB) which,

taken together, connect the identity on Extn (aa’A, bwB) to a map factoring through
to the subset Extn (aa’A, = wB). The homotopy will be relative to the subset,
proving that the inclusion of the subset is a homotopy equivalence.

The first natural transformation is a map F1~ 1, and is given by the diagram

The second natural transformation is a map F1 ~ F2, and is given by the dia-
gram

REMARK 3.5. So far, we have proved that the homotopy type of

depend only on a and a’. That means that if for b we take any of f = w, w, c, f} and
for b’ any of t -_ w, w}, the resulting simplicial set has a homotopy type depending
only on a and a’.

LEMMA 3.6. Let b and b’ be any of the possibilities f, w, c, w or =. The inclu-

sions
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and

induce homotopy equivalences.
Proof. The point is that the four inclusion functors

all have left adjoints, which send the object

to the object

LEMMA 3.7. For a, b and b’ arbitrary, the inclusions

and

induce homotopy equivalences.
Proof. We will, in each case, produce a homotopy which connects the identity

to a map factoring through the subset. In each case, the homotopy will be relative
to the subset; hence the Lemma.

The homotopies are all given by a single natural transformation q : F =&#x3E; 1. On

an object s of the category, that is on a diagram
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the natural transformation q is determined by giving the morphism q(s), which is
the diagram

REMARK 3.8. From what we have proved so far, it certainly follows that for the
following two classes of categories

and

the homotopy of the category depends only on its class. That means that the natural
inclusions among the categories in either class induce homotopy equivalences. We
would like to prove that these two classes are the same. We need to show that
some inclusion of a category in one class to a category in the other class induces a

homotopy equivalence.

NOTATION 3.9. From now on, we will frequently consider cylinders on identity
maps. We will write Cyl(X) for Cyl(X  X). We will also need a notation for
wedges of such cylinders. Thus, given a pair of maps

with R - S a cofibration, then
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will stand for the pushout where we attach ,S to Cyl(X) via the inclusion of R in
the first face of Cyl(X), while

will stand for attaching via the inclusion of R in the second face. We can even
string these together, forming objects like

which means that S’ is attached to the first face of Cyl(S), then the second face
of Cyl(S) is attached to the first face of Cyl(X) over R. The reader can amuse
himself with other possibilities.

If the object we are attaching is the 0 object, we will leave it out. Thus, as a
matter of notation

In particular, 03A3X, which is defined to be the quotient of Cyl(X) by the inclusion
of the front and back face, can be denoted

LEMMA 3.10. The inclusion

induces a homotopy equivalence.

REMARK 3.11. We will actually need a refinement of Lemma 3.10. Consider the
category Extn (C ~ A, a’, B) whose objects are diagrams

where the object B and the map C - A is given and fixed, and the restrictions
on the diagram are that the top row is acyclic, the maps b: X’0 ~ B, bl: X’0 ~ Xo,
Y’ - C and a : X’n+1 ~ A are all weak equivalences, while a’: X’n+1 -7 Xn+ is
of type a’, as indicated in the symbol of the category. If we forget Y’ and C, what
we have is exactly Extn(waA, wwB). The refinement we need is that the natural
inclusion
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induces a homotopy equivalence.
Proof. Once again, we will produce a homotopy connecting the identity on

Extn(w f A, wwB) to a map factoring through Extn(wwA, wwB). The homotopy
will be relative to the inclusion of the subset Extn(wwA, wwB), and hence the
Lemma. We will give the homotopy on the more complicated pair of simplicial
sets Extn(C ~ A, w, B) C Extn(C - A, f, B) ; to obtain a proof of Lemma 3.10,
the reader should simply delete Y and C from our diagrams.

The difficult thing about this homotopy is that we will give a suspension of it.
Recall that in the Waldhausen category C, the suspension functor has been inverted.
We are therefore free to give the suspension of a natural transformation, and the
reader should everywhere supply desuspensions for the diagrams we write.

Other than this difficulty, the homotopy could hardly be simpler. It is given by
exactly one natural transformation F ~ 03A3. The functor F takes the object

to the object

where for all but two terms Z in the diagram, Z means zCyl(Z) VZ Cyl(Z)z. The
two exceptions are Z = Xn and Z = Xn+1. For these two, Z is defined by the
formula

and

In every case, the natural transformation F ~ 03A3 is given by collapsing the first
cylinder. Thus for Z not Xn or Xn+1, the map Z ~ 03A3Z is
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For the exceptional cases Z = Xn or X n+ 1, the map is still the collapse; Xn ~
03A3Xn is

while for Xn+1 ~ 03A3Xn+1 the map is

Of course, it need hardly be added that the structure maps Y’ ~ Sc, X’n+1 - 03A3A
and X§ - SB are also given by the collapse of the first cylinder.

Having written down the natural tranformation, one needs to do some checking.
First, it needs to be checked that this is, indeed, a well defined natural transforma-
tion. Then one needs to check that the functor F factors through the inclusion of
the subcategory.
We leave to the reader most of the checking that this is a well-defined natural

transformation. Let us just verify here that the sequence

is an acyclic complex in the category C. In any case, we have a diagram

where EXi is the quotient of X by X i. In fact, for 1 fl n, (n + 1), the cofibration
Xi -7 X, is given by the inclusion into the first cylinder

The inclusion Xn - X n is
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whereas the inclusion Xn+1 ~ Xn+1 is

From the above it follows that, for i  n, X i is weakly equivalent to 0, while
Xn ~ X n+ 1 is an isomorphism. Hence the sequence

is acyclic, as is

By the Extension Axiom (see Lemma 2.2), it follows that the sequence

is also acyclic.
Once one has checked that the natural transformation is well-defined, it remains

to verify that the functor F factors through the subcategory; in other words, that the
map X’n+1 ~ Xn+1 is a weak equivalence. But the map is simply the natural

Consider the commutative diagram

given by the inclusion of the right hand cylinder and the quotient map. The two
objects on the left are equivalent to 0. The two objects on the right are isomorphic.
By the Extension Axiom, the middle vertical map is a weak equivalence. 0

REMARK 3.12. All the results of the section put together certainly imply that
the homotopy type of

is well-defined; this means, for any category Extn(aa’A, bb’ B) where a, a’, b and b’
satisfy the above conditions, the homotopy type of the category is the same. In fact,
the natural inclusions of these categories all induce homotopy equivalences.

4. A contractible category

Consider now the category EXTn(A, B), whose objects are diagrams
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where we are assuming that both the row

and the row

are acyclic, i.e. are objects of ACYn+1 (C). The maps a: X’n+1 ~ A, a’: X’n+1 ~
Xn+1, b : X’0 ~ B and b’ : X’0 ~ Xo and b" : X’0 ~ Y0 are all weak equivalences,
but not necessarily anything more. There is a natural forgetful functor

which forgets the Y’s; it sends the object above to the diagram

In this section, we will prove that the category EXTn(A, B ) is contractible. In the
next section, we will show that the functor above, namely

is aquasifibration, and the fibercan easily be computed to be Extn-1 (= f A, = wB).
Modulo the results of the last section, we know that Extn-1 (= f A, = wB) can be
naturally identified with Extn-1 (wwA, wwB) (among many other models). Thus
the loop space of Extn(wwA, wwB) is Extn-1 (wwA, wwB).

It tums out to be surprisingly hard to prove the contractibility of EXTn(A, B), 9
and much easier to prove that the functor F: EXTn(A, B) - Extn(wwA, wwB)
is a quasifibration. The difficulty with the contractibility proof is that, once again,
our homotopies are defined on suspensions.
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PROPOSITION 4.1. The category EXT’(A, B) above is contractible.
Proof. We will give a series of functors and natural transformations, starting

with the suspension on EXTn(A, B) and ending with a contraction. We begin with
a functor F1 and a natural transformation F1 ~ E. Let s be the object

of the category EXTn(A, B). Then FI (s) is the diagram

where Z is zCyl(Z) Vz Cyl(Z)z, and any map Z - 03A3W in the diagram is the
collapse of the first cylinder. The natural transformation F1 ~ 03A3 is also the collapse
of the first cylinder.

Next we give a natural transformation F1 ~ F2. The object F2(s) is given by
the diagram

The natural map F1 ~ F2 is only interesting on the Xi’s. For i  (n - 1), The
map Xç - £E is just the collapse of the first cylinder. The map Xn+1 - 03A3Xn+1
is the collapse of the second cylinder. The map X n -+ 03A3Xn+1 V 03A3Yn is the map
which takes the first cylinder to 03A3Xn+1, the second to 03A3Yn. That is, it is the map
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Next, we follow with a natural transformation F3 ~ F2. The object F3(s) is the
diagram

and the natural transformation F3 ~ F2 is obvious. To finish matters off, consider
the natural transformation F3 ~ F4, where F4(s) is the diagram

and since F4 is a contraction, we are done.

5. A quasi-fibration

The key result of this section will be:

LEMMA 5.1. The natural projection

satisfies the hypotheses of Quillen’s Theorem B. That is, given a morphism s ~ s’
in the category Extn(wwA, wwB), the induced map of comma categories s’BF -+
sBF is a homotopy equivalence. This means that the map from EXTn(A, B) to the
connected component at 0 of Extn(wwA, wwB) is a quasi-fibration. Note that, as
EXTn(A, B) is contractible, its image will lie in one connected component.

Proof. Recall that an object in the category s’BF is an object x of EXyn( A, B)
together with a map s’ ~ F(x). The map s’)F ~ sBF is induced by composing
s’ ~ F(x) with the given map s - s’.

Let s be given by the diagram
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and s’ by the diagram

We are given a morphism s ~ s’. We assert that if s ~ s’ is such that the induced
map

is a cofibration, then the natural map s’BF -7 sBF has a left adjoint. That is, if for
each i, fi : Xi -7 Yi is a cofibration, then there is a left adjoint. The adjoint is given
simply by pushing out along the cofibrations Xi -7 Yi.

The Lemma will therefore follow immediately if we can reduce to this case.
Now recall that by Lemma2.3, any map f : X. -7 Y. in Acyn+1 (C) can be extended
to a diagram

where X. ~ Y. and Y. ~ Y. are cofibrations, and the composites

are, respectively

and where furthermore if fi : Xi ~ Yi is a weak equivalence, then so are all the ith
maps in the new diagram; that is
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are all weak equivalences. In our case, we have a map X. ~ Y. such that fo : X0 ~
Yo and fn+1:Xn+1 ~ Yn+ 1 are weak equivalences. Applying Lemma 2.3, we
deduce a diagram in the category Extn(wwA, wwB)

where s - 3 and s’ ~ s yield cofibrations in Acyn+1(C), and the

composites

and

are, respectively

and

We already know that s - 3 and ~ s induce homotopy equivalences sBF ~
s B F and 3)F - s’BF. On the other hand, the composite s’ ~ s ~ s’ is the
identity, and hence definitely induces a homotopy equivalence. It follows that

s --+ s’ induces a homotopy equivalence s’BF ~ sBF. Therefore, composition
with f : s ~ s’, which can be factored as composition with 3 - s’ followed by
composition with s ~ s, induces a homotopy equivalence s’BF ~ sBF. 0

It follows that the homotopy type of the fiber sB F is independent of s, and
is hom otopy equivalent to the homotopy fiber. Since EXTn(A, B ) is contractible,
this is a model for the loop space of Extn(wwA, wwB). We will now prove:

THEOREM 5.2. The loop space of Extn(wwA, wwB) is naturally identified with
Extn-1 (= fA, = wB).

Proof. By Lemma 5.1 it remains only to identify the space sBF with
Extn-1 (= f A, = wB) for some suitable choice of s. We choose s to be the
object
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Observe now that an object in sBF is a morphism s ~ F(t), where the object t is
given by the diagram

Inside the category sBF is a subcategory s = F, the full subcategory of objects so
that s - F(t) is the identity. I assert first that the inclusion {s = F} C (s) F) has
a right adjoint. It is the functor sending t above to

It therefore suffices to determine the homotopy type of the subcategory s = F. But
as a category, this is visibly nothing other than Extn-1 (= f A, - wB). After all,
most of the diagram above is redundant. The part that matters is

and the restrictions on the morphisms are as stated; B ~ Yo is a weak equivalence,
while A ~ Yn is free. 0

REMARK 5.3. The case where n = 1 deserves special mention, since the loop
space of Ext1(wwA, wwB) has been identified with Ext0( = f A, = wB), and until
now we have explicitly excluded Ext°. Of course, the proof of Theorem 5.2 is valid
in the case n = 1, and the loop space, which we will call Ext0( = f A, = wB), can
be defined to be what we computed it to be; it is the category of diagrams
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where B ~ Y0 is a weak equivalence, A - Yi is free, and Y0 ~ YI is acyclic.
It follows that £Yo - SY, is a weak equivalence, and since the functor E is
invertible, that Yo ---+ YI is a weak equivalence.

What is not true is that the results of Section 3 apply. We have not proved, for
the case n = 0, that the category Extn(aa’A, bb’B) has a homotopy type which,
for a large class of possible a, a’, b and b’ is independent of a, a’, b and b’. Not only
did we not prove it, but it tums out to be false. The reason we excluded the case
n = 0 before is that it is something of a special case.

However, let us include the following two lemmas, which deal with the homo-
topy of Ext° .

LEMMA 5.4. The natural inclusion

induces a homotopy equivalence.
Proof. The inclusion has a right adjoint which sends the object

to the object

LEMMA 5.5. Consider the subcategory of Homh(A, B) C Exto (- fA, == B)
consisting of diagrams

where the morphism B - YI is not just a weak equivalence, but also a cofibration.
In our notation, it is of type w. Then the inclusion Homh(A, B) C Ext0(= f A, = =
B) induces a homotopy equivalence.

Proof. We give a natural transformation F ~ 1, where F factors through the
inclusion of the subcategory Homh(A, B) C Ext0(= f A, = = B). The natural
transformation takes the object
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to the morphism

The category Homh(A, B) will be our preferred model for nnIExtn(wwA, wwB) 1,
the n-fold loop space on Extn(wwA, wwB).

6. A computation of 03C0n(Extn(wwA, wwB))
The nth homotopy group of Extn(wwA, wwB) is naturally identified with the group
of components of its n-fold loop space. We know by Section 5 that Homh(A, B)
is a model for this n-fold loop space. What is its group of components?

Define a category, denoted w-1 C, whose objects are the objects of C and whose
morphisms are elements of xo (Homh(A, B)). Composition in this category is
defined as follows. There is a continuous map

It is given by a functor of the corresponding categories; given an object of
Homh(A, B)

and an object of Homh(B, C)

one obtains an object of Homh(A, C)

from the diagram
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where the square

is defined by pushing out along the cofibration B ~ Y,. Since it is obvious that
the two composites

are equal, even as maps of categories, it follows that the maps on the level of 03C00
are equal, and hence our composition law for the category w-1 C is associative.
Thus we have a category.

Given any functor F: C - Z where F(w) is invertible for each weak equiv-
alence w, the map factors uniquely through the category w-1 C; one sends the
connected component of

to the morphism F(w)-1 F(f), where w: B ~ Yi and f : A ~ YI are the maps
defining the object. It is trivial to check that this is independent of the representa-
tive

that we choose in the path component. Now recall that, in the proof that the
map F: EXTn(A, B) ~ Extn(wwA, wwB) satisfies the conditions of Quillen’s
Theorem B we established, among other things, that the homotopy of sBF is
independent of s. To identify the fiber with Extn-1 (= f A, = wB), we chose s to
be
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Given weak equivalences A’ ~ A and B ~ B’, we get another object s’ given by
the diagram

and morphism s - s and s’ ~ s . The fiber s’BF is identified with Homh(A’, B’)
by precisely the computation that identified sBF with Homh(A, B). The reader
can easily check that the map inducing the homotopy equivalence s’BF ~ sBF is
nothing other than the map

given by precomposing with A’ ~ A and postcomposing with B ~ B’. It follows
that this map is an isomorphism in the category w-1 C. In other words, given any
weak equivalence w : A’ ~ A in C, we have proved that precomposing with w and
postcomposing with w yields isomorphisms

In other words, for the functor F: C ~ w-1 C, every weak equivalence w in C
satisfies F( w ) invertible. Thus w-1 C is universal with this property. The category
w-1 C is known as the homotopy category associated to the Waldhausen category
C. What we have proved in this section is

PROPOSITION 6.1. The nth homotopy group 03C0n (Extn(wwA, wwB)) is naturally
isomorphic to Homw-1C(A, B), where w-1 C is the homotopy category associated
to the Waldhausen category C.

EXERCISE 6.2. The reader can amuse himself with the following exercise. Let C
be a Waldhausen category. Let f 1: X ~ Y, f2: X - Y be two morphisms in C.
A homotopy between f1 and f2 is a map
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so that if i1: X ~ Cyl(X ) is the inclusion of the first face, i2 : X ~ Cyl(X ) the
inclusion of the second face, then f1 = F o ii , f2 = F o i2.

Suppose there exists a homotopy between two maps f1: X ~ Y and
f2: X - Y. That is, there is an F: Cyl(X) - Y as above. Let p: Cyl(X) ~ X
be the natural projection. Then p o il 1 = 1 x = p o i2. But by the Cylinder Axiom,
p : Cyl(X) ~ X is a weak equivalence. Thus, in any category in which weak equi-
valences become invertible, p becomes invertible, and in such a category il 1 = i2-
In particular, it follows that in the universal example w-1 C,

The exercise for the reader is to show directly that f i : X - Y and f2 : X ~ Y lie
in the same path component of Homh(X, Y).

7. Another model for Extn(wwA, wwB)
We already have so many models for the space Extn(wwA, wwB), that it may
seem excessive to find yet another one. However, we would like to compute the

homotopy groups of Extn(wwA, wwB), and so far we have only been able to get
a clean description of xn (Extn(wwA, wwB)). To get further, we will need a new
model.

Let us recall that in Remark 3.11 we considered a category Extn (C - A, a’, B) ,
whose objects are diagrams

where the object B and the map C - A is given and fixed, and the restrictions
on the diagram are that the top row is acyclic, the maps b: Xi - B, b’: Xi - Xo,
Y’ - C and a: X’n+1 ~ A are all weak equivalences, while a’: X’n+1 ~ Xn+1 is
of type a’, as indicated in the symbol for the category. Let A be a given object of the
category C, and A ~ Cyl(A)A be the inclusion of the first face. We can consider
the category Ext’ (A , Cyl( A)A, w, B). There is a natural inclusion map

which sends the object
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to the object

LEMMA 7.1. The natural inclusion map above

induces a homotopy equivalence.
Proof. The point is that the inclusion functor has a left adjoint, sending the

object

to the object

The reader should note that since X’n+1 ~ X,,+ 1 and X’n+1 ~ Cyl(A)A are
assumed weak equivalences, Xn+1 is weakly equivalent to 0. It follows that

is a weak equivalence of objects of Cpxn+1 (C). Since the bottom row is acyclic,
so is the top row. 1:1

COROLLARY 7.2. We know from Remark 3.11 that the inclusion
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induces a homotopy equivalence. It therefore follows that Extn(A ~ Cyl(A)A,
f, B) is yet another model for Ext"-1 (wwA, wwB).

Now there is a map

given by sending the object

to the object

where the map A - Xn is, of course, the zero map.

LEMMA 7.3. The inclusion above

induces a homotopy equivalence.
Proof. Although this time there is no adjoint, there is a functor

which is relatively straightforward to describe, and is a homotopy inverse to F. It
takes the object s given by the diagram

to the object G(s), which is
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There is clearly a natural transformation G o F ~ 1. As for F o G, there is a natural
transformation H ~ F o G, and another natural transformation H ~ 1. We will

write down H, and allow the reader to supply the (obvious) natural transformations.
Thus, H ( s ) is the diagram

Summarising the results of this section so far, we obtain:

PROPOSITION 7.4. There is a natural homotopy equivalence of the categories

and

Since we already know that there is a homotopy equivalence of

and

we deduce a homotopy equivalence of

and

We use this to compute the homotopy groups.

THEOREM 7.5. For any r  - n, the homotopy groups are given by

Proof. The first equality is the result of this section, while the second was proved
in Section 6. 0

8. The case of an additive Waldhausen category

Now we need to prove the last unproved claim made in the Introduction, namely
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PROPOSITION 8.1. Let C be an additive Waldhausen category. Then the spectra
Ext(A, B) that one obtains from the sequence of homotopy equivalences

is a wedge of Eilenberg-MacLane spectra.
Proof. Observe that if we are given three additive Waldhausen categories C and

C’ and D, and a tensor product map

which is a map of Waldhausen categories, then there is an induced map

where the map is given by a functor. Given objects

and

the functor takes them to the object

It is not difficult to show that this multiplication extends to the non-connective
spectra, to give a map

Now consider the special case where C’ is the category of chain complexes of free
il modules, and C = D. Then there is an obvious tensor product

and hence an action of ExtC’(Z, Z) on ExtC(A, A’). But the homotopy groups of
the spectrum Extc, (Z, Z) are Exti(Z, E), that is are zero for all i fl 0. It follows
that Extci (Z, Z) is an Eilenberg-Maclane spectrum, in fact K(7-, 0), and that every
ExtC(A, A’) is a module over it. By Lemma 6.1 on page 58 in [1], this forces
Extc (A, A’) to be a wedge of Eilenberg-MacLane spectra. 0
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