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Let K/k be a finite Galois extension of number fields with Galois group G, and
let S be a finite G-invariant set of primes of K which contains all the archimedean
primes. This paper is concemed with deriving an exact sequence

of finitely generated ZG-modules, in which E is the group of S-units of K, A is
cohomologically trivial, B projective, and V is uniquely determined, in a sense
stronger than isomorphism, by Il and S.

Such an exact sequence has been constructed by Tate [TN,TS], but only under
the assumption that S is large, in the sense that the S-class number of K is 1

and that all ramified primes of K/k are in S. In this case V has a very simple
description: writing 7,S for the permutation G-module with Z-basis S, then ~ is
the kemel

of the augmentation map ZS - Z, which sends every element of S to 1.
Our interest in Tate sequences comes from the observation that they enable the

cohomological methods of class field theory to be used in the study of the G-module
structure of E. In [GW], the Tate sequence is applied to discuss invariants of the
ZG-genus of E. If S is large, then more precise invariants of the location of E in
its genus have been considered [RW] assuming, e.g., that E is totally real and G
has odd order.

When S is not large, then V tums out to be considerably more complicated than
OS. It is given by an exact sequence of G-modules

where cl is the S-class group of K and where V is a ZG-lattice rather like AS
but incorporating also some ramification-theoretic information about the set Sram
of ramified primes of K/k which are not in S. Finally the extension class of the

* The authors acknowledge financial support provided by the DFG and by NSERC.
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above exact sequence four 17 is uniquely determined. In fact, it can be explicitly
described in terms of the exact sequence

of Galois groups, where  is the Hilbert S-class field of K, hence G(K/K) ~ cl.
Surprisingly, the proof of this makes essential use of global Weil groups.

1. Constructions and results

We fix the notation of the introduction. In particular, since the set S will not vary, we
continue to not display it in our notation (so the K in CK is to suggest independence
from S). The purpose of this section is to sketch the main construction, to formulate
some of the problems it raises and to outline our results on these problems. The
actual proofs start in Section 4, with Section 2, Section 3 providing some necessary
background.
We fix, for now, a choice * of a representative for each orbit of the action of

G on the primes of K. Many of the objects we consider will depend on * but, for
the sake of eventual clarity, we delay the discussion of this dependence to the end
of this section. Let S*, for a set S of primes of K, denote the intersection of S
and *.

We begin the construction by choosing a finite G-invariant set of primes S’,
containing S and larger in the sense that:

(i) the S’-class number of Il is 1
(ii) S’ contains all primes which ramify in K/k

(iii) U Gp = G, where Gp is the decomposition group of p in K/k.
p~S’

Such a set S’ exists, by the Tchebotarev density theorem, and we will need to
discuss the independence of our results from its choice, for which reason S’ is
explicitly kept in our notation.

The augmentation sequence 0~0394G~ZG~Z~0 induces an isomorphism
03B4’ :H1(G, Hom(0394G, CK))~H2(G, Hom(Z, CK)) = H2(G, CK), since Hom(EG,
CK) is cohomologically trivial. So there is a unique a E H1(G, Hom( 0 G, CK)) ==
Ext1G(0394G, CK) with bla - UK/k, the global fundamental class. We choose an exact
sequence

of G-modules with extension class a.
For p e S*, there is, locally, an analogous exact sequence

of Gp-modules with extension class 03B1p E H1(Gp, Hom(0394Gp, K p)) =

Ext1Gp(0394Gp, K p) satisfying 03B4’03B1p = uKp/kp, the local fundamental class in

H2(Gp, K p).
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For p E S’*, p e S* we use a different local sequence with Il§ replaced by Up,
the units of Kp By [GW], which is reviewed in Section 3, there is a special inertial
ZGp-lattice Wp and a canonical class (3p E H1((Gp, Hom(Wp,Up)) =

Extbp (Wp, Up). As before, we take an exact sequence

of (9p-modules with extension class (3p.
We apply indGGp to these local exact sequences and take the direct sum of them

over p e S’*. Glueing on the unit ideles of the form 03A0p~S’ Up, we get an exact
sequence

of G-modules,

Here we are identifying the 03A0p~ß K p in J, for a G-orbit B of primes, with
indgp K for p E B*.

There is a canonical G-homomorphism J~CK. For p E S*, the inclusion

0394Gp~0394G of G p -modules induces a canonical G-homomorphism indgpGGp0394Gp~
AG. For p E S’*BS*, Wp comes equipped with a canonical Gp-homomorphism
Wp --+ AG,, which, composed with the map of the last sentence, yields a canonical
WS’~0394G.

THEOREM 1. There exist surjective G-homomorphisms 0 in

diagram 1

with exact rows and maps as described above.

The theorem is essentially due to the matching of the global and local funda-
mental classes. It is proved in Section 4.

Suppose now that 0 is such an epimorphism. Since J-CK has kemel E, the
S-units of Il, and cokemel cl, the S-classgroup of K, the snake lemma gives an
exact sequence
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of finitely generated G-modules, with Ao = ker 0 cohomologically trivial because
Vs, and 0 are (Section 4), and with Rs, = ker(WS’ ~ 0394G) a 7, G-lattice of known
structure. We call this a "Tate" sequence for S*. In Section 4 we describe a process
by which it can be transformed into

where Bs, is a finitely generated stably free ZG-module and B7 B an extension of
cl by a known ZG-lattice ~* which is independent of 0 and S’ (but not of *). The
latter sequence will be referred to as a Tate sequence for S*, since it gives back
Tate’s original sequence [TS, p. 54] provided that S is a larger set.

THEOREM 2. (a) All surjective maps 0 determine the same snake class [s] E
HO(G, Hom(Rs,, cl)). (Here, and always, HO is a Tate cohomology group.)
(b) [~03B8] e Ext1G(~*, cl ) is independent of 0.
(c) The class [A03B8] E K0(ZG) does not depend on 0.

The proof of (a) and (b) is given in Section 5; (c) is shown in Section 6. Its
main ingredients are the vanishing of H1(G, CK) and the relation of Wp to the
decomposition group of /k for the ramified primes p ~ S’*B S* , where 11 is
again the Hilbert S-class field of Il.

REMARK. A finitely generated cohomologically trivial ZG-module A is, up to
stable isomorphism, determined by its Z-torsion submodule and its class [A] in
K0(ZG)[GW,(2.3)].Here[A] = [P1] - [P2] , if 0~P2~P1~A~0 is a projective
resolution for the cohomologically trivial A. It follows from Theorem 2(c) that the
stable isomorphism class of Ao is independent of 0, since Ao has torsion 03BCK, the
roots of unity in K.

So far, the larger set S’ has been kept fixed. Because of Theorem 2 we have
for each larger set S’ a uniquely determined extension class [~S’] e Exth(B7 *, cl).
Equally well, there is a unique stable isomorphism class [As,].

THEOREM 3. (a) If S’ C S" are larger sets containing S, then the natural
inclusion RS’~RS" induces an isomorphism

which takes the snake class for S"* to the snake class for S’*.
(b) [~] = [~S’] E Ext1G(*, cl) is independent of S’.
(c) [As,] - [Bs,] E K0(ZG) is independent of S’.

The proof is given in Section 7.
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Let rs be the number of G-orbits of ramified primes of K/k outside S. Define
the Chinburg class 03A9*m E K0(ZG) by setting

in the notation of Theorem 3(c). The method of proof of Theorem 3 implies the

COROLLARY. 03A9*m E Cl(ZG) is independent of S (but not yet of *).

Each Tate sequence

defines an extension class T e Ext2G(~, E), whose uniqueness we discuss next.
By Theorem 2(b), 3(b) we know that the V which appears in a Tate sequence is
uniquely determined up to admissible G-module isomorphisms, i.e. those which
make

commute. So the strongest uniqueness statement possible appears to be

THEOREM 4. Let T e Ext2G(~, E), T’ E Ext2G(~’, E) be the extension classes of
two Tate sequences for S*. Then there exists an admissible isomorphism h : ~ ~ ~’
which takes T’ to T.

Most of the proof of this, i.e. variation of (), is in Section 6, with the conclusion
in Section 7. So the analogue of Tate’s canonical class [TN] in Ext2G(~, E ) is now
an orbit of the admissible automorphisms of B7.

In addition to problems of uniqueness there is the question of identification of
our objects. We next turn to a description of the snake map s. It is again based on
the Galois theoretic behaviour of primes in the Hilbert S-class extension /k. We
outline the construction.

Galois theory provides, for each p E S’*, a natural commutative diagram

where W(Knrp/Kp), W(Knrp/kp) denote the Weil groups of the maximal unram-
ified extension of K, over K, and kp, respectively (Section 3). By means of the
translation functor t of Section 2, which takes short exact sequences A ~ X -G of
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groups, with A abelian, to short exact G-module sequences 0~A~M~0394G~0,
we get a corresponding diagram

in which the top row is the canonical one (and Z has been identified with

W(Knrp/Kp)) and in which the left vertical map sends 1 e Z to the Artin symbol

. In particular, if p ~ S, then 1 is sent to 1 and so the map Wp~H factors
through a map 0394Gp~H. Consequently, on putting all these diagrams, for p E S’*,
together in the usual way we arrive at a well-defined map à : WS’~H.

THEOREM 5. The restriction of &#x26;: Ws,--*H to Rs, takes values in G(/K)
and, on identifying G(/K) with cl by means of the Artin symbol, is a snake map
cr: Rs, -cl.

This is proved in Section 5. By the construction of the Tate sequence in Section 4,
it follows that the extension class of ~ is also explicitly described by Theorem 5.

Finally we discuss the dependence on the choice * of G-orbit representatives
of primes of K. Let Q be another such choice. For each p distinguished by * let
xp e G have the property that xpp = p’ is distinguished by 0. Such a system X
of elements of G gives a transport X : * - O. This means that it induces natural
G-module transport maps X : W*~ Wo , V* - Vo (where S C S’ are now
suppressed in the notation); these maps X are described at the end of Section 4,
with some preparation at the end of Section 3.

Define X -admissible isomorphisms h between two V to be those which make

commute. These allow the formulation of

THEOREM 6. Assume a transport X : * - 0 has been chosen.

(a) The transport map X : ~* ~ B7 0 carries the extension class [~] E

Exta1G(, cl) to [~*] E Ext1G(~*, cl).
(b) Let T* E Ext2G(~*,E), 03C4 E Extb(B70,E) be the extension classes of Tate

sequences for S*, So respectively. Then there exists an X -admissible isomor-
phism which takes 03C4 to T*.

(c) 03A9*m = 03A9m.
The transport part of the proof is in Section 8, which is really a reduction to a

suitable generalization of Theorem 4 in Section 6.
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It now follows that the Chinburg class nm = 03A9m(K/k) depends only on
Klk; this generalizes Theorem 3.1 of [C] to arbitrary sets S. 03A9m coincides with
Chinburg’s original class by [CB], because the construction there is essentially the
same as ours for larger S.

Since ~* = AS for large S, which is independent of * , transport then does
not need to be explicitly mentioned in the conclusions. For this reason it would be
helpful to have, for arbitrary S, a "canonical model" for (the homotopy equivalence
class of) V*, which is independent of *. Theorem 6 is presently our only evidence
for its existence.

2. Diagrammatic methods

The following terminology is convenient and useful. By H03B3(G, M) we always
mean Tate cohomology for a finite group G : thus H0(G, Z) = Z / 1 G 17,. We
call G-homomorphisms s’, s : M-N homotopic (notation: s’ ~ s) if s’ - s :
M~N factors through a projective ZG-module. We write [M, N] for the group of
homotopy classes of G-homomorphisms.

LEMMA 1. (a) [M, N] = H’(G, Hom(M, N)) if M is a 7,G-lattice.
(b) Let M be a G-module, M’ a 7lG’-lattice, with G’ a subgroup of G. Let

h‘ : M’~M be a G’-homomorphism and h : indGG’ M’~M the induced G-
homomorphism. Then h ~ 0 if, and only if, hl - 0.

Proof. (a) see, e.g., (5.1) of [GW]. (b) follows from (a) and Shapiro’s lemma.

To describe the diagram manipulations we will need to do, we name the maps
in certain numbered G-module diagrams by the convention

diagram n

of putting the diagram numbers as subscripts in the above pattern, if need be.
Typically c’ and c" will be known maps, the rows will be exact with fixed extension
classes, and the map c will be variable. Diagram 1 is the best example of this. *

If h’, h are two instances of c, then h’ - h = b’ dt for a unique G-homomorphism
d : M" ~ N’, which we call the diagonal deviation from h to h’. And we define
h’, h to be diatopic if d - 0. Clearly the group [M", N’] acts fixed point freely and
transitively on the set of diatopy classes of the c.

LEMMA 2. (a) Let s’, s be the snake maps induced by h’, h, respectively, which
are two instances of c. If d is the diagonal deviation from h to h’ then

* The diagrams are numbered by type rather than strictly in the order in which they appear.
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where j" : ker c"---+M" , j’: N’~coker c’are the natural maps. In particular,
if h’, h are diatopic then s’ - s.

(b) Given a diagram n, as above, and a map c" : M" ~ N" which is homotopic
to c", then there exists c : M - N, homotopic to c, so that replacing c", c by
", c gives a diagram n.

(c) Given a diagram n, with all modules being 7,G-lattices, and ê’ homotopic to
c’, then there exists c N c, so that replacing c’, c by ê’, c gives a diagram n.

Proof. (a) is clear. For (b) write " - c" = qr with maps r : M" - P, q : P ~

N" and P projective. Since b is surjective, we can find p : P - N with bp = q,
and set c = c + prt. For (c), take the Z-dual of the diagram, apply (b), and then
take 7,-duals again.

The translation functor t, which is introduced in [G,10.5], is actually a pair
of mutually inverse functors between categories G and GM, which we describe
next.

The objects of G are group extensions A - X~G of a (finite) group G by an
abelian group A. The morphisms of G are triples of group homomorphisms which
form the vertical arrows in a commutative diagram

The objects of GM are pairs (G; 0 ~ A ~ M - 0394G ~ 0) consisting of a
(finite) group G and an exact sequence of G-modules 0 - A - M~0394G~0 in
which AG is the augmentation ideal of ZG with natural G-action. The morphisms
of GM are again triples of vertical arrows making the diagram

commute, but now we insist that k is induced by a group homomorphism k: G’~G
and that our vertical arrows are G’-homomorphisms when we view G-modules as
G’-modules via K.

PROPOSITION 1 [G]. G and GM are naturally equivalent. The equivalence is
given by the functors t : G  GM and t : GM  G described below.

Given A - X~G in G, we derive in due sequence 0 - 0394(X, A)
ZX ~ ZG ~ 0, 0 ~ 0394(X, A) ~ 0394X ~ 0394G ~ 0 and 0~0394(X,A) 0394(X,A)0394X ~
0394(X) 0394(X,A)0394(X) ~0394G~0. The respective modules are viewed as left G-modules by let-
ting g e G act by left multiplication by any preimage x E X . The map a - a - 1
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induces a G-isomorphism from A (with g e G acting by conjugation by x) to

0394(X,A) 0394(X,A)0394X; an inverse is induced by the mapping (a - 1 )r ~ a on the Z-basis
{(a - 1)r : 1 ~ a E A, X = ~r. Ar (disjoint union)} of A(X, A). Using this as
an identification we define t of A ~ X ~ G to be (G; 0 ~ A ~ AX
0394G ~ 0). 

Conversely, given (G; 0 ~ A~ M - 0394G ~ 0) in GM we form semidirect
products to get the exact sequence of (multiplicative) groups

Now g - (g - 1, g) is a group monomorphism G- AG x G. The pullback of
the above sequence with respect to it gives A ~ X-G with X = {(m, g) E
M x G : m has image g - 1 in AGI, which we define to be the t-translate of
(G;0~A~M~0394G~0).

It is clear how to define t on morphisms.

We need to check the compatibility of t with extension classes in the usual
sense. If A is a G-module, then applying Hom(·, A) to 0 ~ 0394G~ZG~Z~0 and
taking cohomology induces isomorphisms

because Hom(7,G, A) is cohomologically trivial.

LEMMA 3 Let 03BE E H1(G, Hom(0394G, A)) be the extension class of the G-module
sequence 0~A~M~0394G~0. Then 03B4(03BE) E H2(G, A) is the extension class of
the t-translate A - X~G of (G; 0 ~ A - M - AG - 0).

Proof. We include this instead of a list of our conventions. Letting g ~ eg E
Hom(A G, A) be a 1-cocycle representing ç, we compute a 2-cocycle representing
03B4(03BE). Taking tg E Hom(EG, A), defined by g(g’) = 03BEg(g’ - 1) for g’ E G, as a
preimage of 03BEg, then g,g’ = gg’ - gg’ + g belongs to Hom(F,, A). Identifying
this with A we find that

gives a 2-cocycle (g, g’) - g,g’ representing b(e).
Taking Hom(AG, .) and cohomology of our G-module sequence gives

with 03B4(id0394G) =03BE by definition. This means that çg = gr - r for an appropriate
pre-image r E Hom(AG, M) of idAG, i.e. a section r to M ~ AG. From r we
get a section ri of the group extension A  1 ~ M  G-»OG  G by setting
r1(y,g) == (r(y), g), y E AG. Since this induces a section r2 for A ~ X~G, it
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follows that a 2-cocycle (g, g’) ~ 03BE’g,g’ representing this extension is determined
by

Thus 03BE’g,g’ = 03BEg(g(g’ - 1 ) ) gives a 2-cocycle representing the t-translate of

(G;0~A~M~0394G~0).
Now define ag’ = 03BEg’(g’ - 1) ~ A for g’ e G. Then gag’ - agg’ + ag =

03BEg,g’ - 03BE’g,g’, so our two 2-cocycles represent the same element of H2(G, A),
completing the proof.

Finally we need an analogous result for maps. Start from a diagram 0

and let h’, h be two instances of co. Then these two instances of diagram 0 may
be viewed as two morphisms in GM provided h’, h are G’-homomorphisms via
k : G’ ~ G. Taking d to be the diagonal deviation from h to h’ defines an element
[d] E H°(G’, Hom(AG’, A)).

Applying the translation functor to these two morphisms in GM gives two
morphisms in G differing only in the group homomorphisms u’, u : X’ --* X

Then À : G’~ A, g’ ~ u’(x’)u(x’)-1 for any preimage x’ E X’ of g’, defines
a 1-cocycle (cf. [AT, p. 178-179]), which clearly splits precisely when u’, u are
conjugate by an element of A.

LEMMA 4. s : H°(G’, Hom(AG’, A)) - H1(G’, A) takes [d] to - [À].
Proof Taking d E Hom(ZG’, A) so that d(g’) = d(g’ - 1) then 6[d] is

represented by g ~ gd -  e Hom(Z, A) = A, i.e., by g ~ d(1 - g).
Now u(m’, g’) = (h(m’), K(g’)) for (m’, g’) E X’, i.e. t0(m’) = g’ - 1, hence

(d(g’ - 1), 1)u(m’, g’) = u’(m’, g’) and À(g’) = (d(1 - g’),1)-1.

REMARK. We often use the translation functor as a convenience. However, it

appears to be essential for Theorem 5.
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3. Local considerations

The main part of this section is a review of [GW, Sections 11, 12]. However, using
the translation functor allows us to derive diagram 2p in a way which fits in well
later.

We suppress the subscript p in this section, in order to ease the notation. So
K/k is a finite Galois extension of p-adic fields with group G, which has inertia
subgroup Go. We write - for the map G - G = G/G° to the corresponding
residue field extension, and let p denote the Frobenius generator of G.

Define the inertial lattice of K/k to be the ZG-lattice

We need the following module-theoretic properties of W.

LEMMA 5.

(a) W - 7lG if K/k is unramified.
(b) There are exact sequences

of G-modules.

We choose the map ÍZ -7 W to send 1 to (0, 1 + ~ + ... + ~f-1) , f = IGI.
(c) Let WO = Homz(W, Z). There is a commutative diagram of G-modules

with exact rows. The map W - AG is the canonical one of the first exact
sequence in (b) and W0~Z0 = E is the Z-dual of the map Z~W there.

Proof. (a) is clear, (b) follows from the definition of W by projecting on the
first and second components, respectively. And (c) is Lemma 4.1 of [GWL].

The relationship between W and Galois theory will follow from

LEMMA 6. The t-translate of the first sequence (G; 0 ~ E ~ W ~ AG - 0)
of Lemma 5(b) is the group extension

up to canonical equivalence of extensions, with G = {(n, g) ~Z x G : cpn = g}.
The map Z~ G takes 1 to ( f, 1) with f = |G|, and the map G~G is the projection
on the second component.
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Proof. Writing Z - X-G for the t-translate, we construct an extension
equivalence X --7G.

Since X={(w,g) E W  G : j(w) = g - 1} with j : W-AG given by
Lemma 5(b), and since w E W is a pair (x, y) E AG ~ EG we can define X~G
by (w, g) ~ ( n, g ) if y ~ ZG has augmentation n. Observe that if g = ~m then
(~ - 1)y = x = g - 1 = (~ - 1) 03A3m-1i=0~i implies y - 03A3m-1i=0 ~i = r f-1 
with r E Z, hence n - m mod f, that is, (n, g ) E G.

If L/k is a Galois extension containing the maximal unramified extension
knr/k, we denote the Weil group of L/k by W(L/k) = tg e G(L/k) :g is a
¿Z-power of the Frobenius of L/k}. Recall [W, appendix 2], that, if Kab/K is the
maximal abelian extension, then W(Kab/K) is the image of the reciprocity map
Ilx - G(Kab/K).

With G = G(K/k), as usual, the field tower k C K C Knr defines an exact
sequence G(Knr/K) ~ G(Knr/k)~G of Galois groups.

LEMMA 7. There is a unique commutative diagram

with the map Z~W (Knr /K) taking 1 to the unique Frobenius liftof Knr/K.
Proof. Choose a Frobenius lift  E W(Knr/k) and let K be its image in G.

Define G~W(Knr/k) by (n, g) ~ ng’ where g’ is the unique element of the
inertia subgroup of Knr/k which maps to -nK g in G. This clearly gives such a
commutative diagram. And there is a unique map G~W(Knr/k) in it, because
the 1-cocycle À of Lemma 4 must be identically 1, by H1( G, 2) = 0 and ÍZ central
in G.

PROPOSITION 2. The units U of K fit into a G-module diagram

diagram 2p

in which the bottom row has extension class a and in which V -7 V’ is an

isomorphism. Moreover, V is then cohomologically trivial.
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Proof. There is a natural Weil group diagram

The reciprocity isomorphism Kx ~W(Kab/K) is a G-map which, by the
local Safarevic-Weil theorem [W], carries the local fundamental class uK/k E

H2(G, K x ) to the extension class of the top row of our diagram. Identifying the
bottom row with z - ~G by Lemma 7, and applying the translation functor
gives

by Lemma 6. The map Kx -z here is the normalized valuation [S, p. 205], so has
kemel U. The map V-W then also has kemel U and our diagram 2p follows,
with V - V’ the identity map, by suitably collapsing and introducing equality signs.
That 0~Kx ~V~0394G~0 has extension class a, in the sense of Section 1, follows
from Lemma 3, and the cohomological triviality of V from [GW; 11.3].

REMARK. The special diagram 2p in the proof actually has the identity map
V- V’. This has the consequence, because of HOMG(0394G, Z) = 0, that the exten-
sion class of the top row in diagram 2p is actually uniquely determined (cf. [GWL],
1.8), and this is the canonical class (3 e H1(G, Hom( W, U ) ) of Section 1. For our
purposes it is not essential that /3 always comes equipped with a reference to a so
we need only use any diagram 2p.

LEMMA 8. The map H0(G, Hom( W, U))-+HO(G, Hom( W, Kx», induced by
the inclusion U - K x, is surjective.

Proof. We must show that the map b in the long cohomology sequence induced
by 0 - U - Kx - Z - 0 is injective:

Since, [GWL, Section 4], H0(G, Hom( W, Z)) ~ Z/ e7, and H1(G, Hom( W, U» -
7-/eZ ED Z/eZ, with e the ramification index of K/k, this will follow if we know
that H1(G, Hom(W,Kx)) is cyclic. However from 0 - Z ~ W - 0394G ~ 0 we
get

with H1(G, Hom(0394G,Kx)) ~ H2(G,Kx) ~ Z/|G|Z cyclic and

H1(G,Hom(ÍZ,J(X)) = H1(G,J(X) = 0.
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We end this section with our first discussion of transport of structure. We revert to
our global extension K/k with Galois group G, fix a prime p of K and an element
x E G and set p’ = xp. Then 9 I---?- xgx-1 gives an isomorphism Gp ~ Gp’.
Thus a ~ xax-1 gives transport maps 0394Gp ~ 0394Gp’ and Wp ~ Wp’; the latter
works, in terms of the description of W as pairs, because xG0px-1 = G0p’, and
x~px-1 = ~p’. The purpose for these maps in Section 4 will be that they induce
transport maps indg p Wp ~ indg p 1 Wpl by 9 0 w - gx-1 ~xwx-1, which are
G-isomorphisms. For now, though, we can just view Wp ~ Wpl as a Gp-map
when Gp acts on Wp’ via 9 I---?- xgx-1.

The same applies to the Z-duals of 0394Gp and Wp. But now the transport map
W0p ~ W0p’ is obtained by taking the dual of the inverse map Wp’ ~ Wp, i.e.
w’ ~ x-1w’x.

PROPOSITION 3. The following commutative diagrams exist; the top and bottom
faces are Gp-diagrams in the sense of transport of structure, while the back and
front faces are Gp-diagrams and Gp/-diagrams in the ordinary sense.

The front and back faces are diagram 2.p’ and 2p, respectively. The action of x
on K indu ces Kp - Kp’ by continuity; this takes Up to Up’.

The front and back faces are the diagrams in Lemma 5(c) for p’ and p.
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Proof. (a) We begin by forming a commutative diagram

with top and bottom faces again being transport, e.g. the map AGp - AG,, is
d ~ xdx-1. The main point here is the existence of a map Vp - Vpl making
the top face commute: this can be seen by applying the translation functor to the
corresponding diagram of Weil groups (which clearly exists), or, equivalently, by
recalling the behaviour of the fundamental class under transport of structure [S,
XI, Section 3]. The front and back faces are those of the proof of Proposition
2 for p’ and p, and we get Wp ---7 Wp’ because Wp is a pushout. This induces
0394Gp~ 0394Gp’, which must be d - xdx-1, and then the diagram of (a) results by
taking kemels as in the proof of Proposition 2. Note that it follows that Wp - Wpl
is also w - xwx-1: for this is the unique map which makes the bottom face
commute, since the diagonal deviation is in Homcp (0394Gp, Z) = 0.

(b) This follows by a straight-forward computation from the proof of Lemma
4.1 of [GWL], on using the maps ~p, 03B8p there and a - xax-1 on 7,G, EB 7,Gp»
These maps are described in terms of a special Z-basis {wg(p ) : g E Gp} of Wp
and one observes that xwg(p)x-1 = wxgx-1(p’).

4. Existence of 0; the Tate sequence

The existence of a surjective 0 in diagram 1 comes from local constructions. By
Frobenius reciprocity, i.e. that induction and restriction are adjoint, it follows that
a diagram 1 is equivalent to local diagrams

diagram 1p

for p e S* and for p ~ S’*B S*, respectively.
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We first get diagrams 1p of the first kind for every p e S*, in the following way.
We consider the diagram of group extensions

in which the top row represents the local fundamental class UKp/kp e H 2 (Gp,
Kxp) and the bottom row the global fundamental class UK/k E H2(G, Ch ). The
condition [AT, p. 180] for the existence of the dotted arrow is that res UK/k equals
the image of UKp/kp in H 2 (Gp, Ch ), and this condition is satisfied [TCF, p. 195-
196]. Applying the translation functor of Section 2 now gives the first kind of
diagram 1p for every p e S’*, because of Lemma 3.

Inducing from Gp to G for p ~ S’*, taking direct sums and glueing on llp«st Up,
as in Section 1, gives

diagram 3

with Js’ the S’-ideles and 0394S’ = ~ indGGp 0394Gp. Since S’ is larger, the left
vertical arrow in diagram 3 is surjective, by (i) of Section 1. We next show that
(iii) of Section 1 forces the right one, c"3, to be so as well. Set H = (h E G :
h - 1 E im c"3}; then H D ~p~S’* Gp and H is a subgroup of G by hh’ - 1 =
h(h’-1)+(h- 1). Thus ~g~GgHg-1 ~ UPES’ Gp = G implies H = G.

The Gp-modules Vp are cohomologically trivial (Proposition 2), and the proof of
this, which uses only class formations, also gives the cohomological triviality of9J.
The cohomological triviality of Vs’ follows from that of ~p~S’* indgp Vp and from
(ii) of Section 1, because local units in unramified extensions are cohomologically
trivial. The map Vs’ ~  in diagram 3 is then surjective by the snake lemma. This
amounts to getting the Tate sequence for larger S’, by, essentially, the method of
[T,TN], especially in the form of [CB].

To get the diagram 1 we take a diagram 2p for p ~ S’*B S*, with isomorphisms
Vp ~ Vp: this is possible by Section 3. Since it is a Gp-module diagram we can
apply indg p to the whole diagram - not just the top row. Direct summing these
over p ~ S’*B S*, we obtain

diagram 2

by using equalities on all p-components with p e S’ B S*. Getting a diagram 1 with
03B8 surjective is now just a matter of stacking diagram 2 on diagram 3. Theorem 1 is
proved.
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As has been said in Section 1, each surjective 03B8 provides a snake map s together
with a "Tate" sequence 0 - E - A03B8 ~ Rs, 1 cl ~ 0. We now tum to the
derivation of the Tate sequence 0 - E - A03B8 ~ BS’ ~ ~03B8 ~ 0 from it.

By Lemma 5(c), composed with the inclusions Gp - G, there is, for p e s¡am,
the commutative diagram

of Gp-modules. For p ~ S* there is a similar diagram with top row 0 ~ 0394Gp~
ZGp~Z~ 0, and also one for unramified p ~ S’*B S* with top row 0 ~ Wp ~
ZGp - 0 ~ 0, by Lemma 5(a). Inducing these top rows to G and taking direct
sums over p ~ S’* gives the diagram

diagram 4

of G-modules. Here Ws, is as before, Ns’ is the free G-module

where the first direct sum ranges over the p E S* and the nonramified primes
p e S’ B S*, the second over the ramified primes p ~ S’*B S*, and

is independent of S’ (but not of *). The G-homomorphisms Wus, - OG and
M*~ Z in diagram 4 are fixed, but we allow any rows with the extension classes
just constructed and any G-map Ns, - ZG making the diagram commute to be
considered as a diagram 4. 

_

Taking kemels in diagram 4 gives an exact sequence 0 ~ Rs’ ~ Bs, ~ ~*~
0, which defines Bs, and ~*. Observe that the extension class of this sequence
does not depend on the choice of rows in diagram 4, and that V * is independent of
S’ (but not of *). Also Bs, E9 ZG = Ns, implies that Bs’ is stably free.
Now take the pushout along our given snake map s:

Since Bs, is projective, the connecting homomorphism H°(G, Hom(Rs,, cl»-+
H1(G, Hom(V *, cl)) is an isomorphism, under which [s] E [Rs,, cl] and [~03B8] E
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Ext1G(~*, cl ) uniquely correspond. We finally combine the "Tate" sequence 0 ~
E ~ A03B8~ Rs’  cl ~ 0 and the extension class 0 ~ cl - ~03B8 ~ ~* ~ 0
by replacing ker (Rs’ ~ cl ) by ker (Bs’ ~ ~03B8). Thus we get the Tate sequence
0~E~A03B8~Bs’~Vj~0.

Finally we tum to the description of the transport maps X induced on G-modules
by a transport X : * ~ . Writing p’ = xpp as in Section 1, and Dp for one of
our local modules, the basic process, already explained at the end of Section 3, is
to associate to a local transport map f : Dp ~ Dp’, in the sense of Section 3, theG-module map X : indGGp Dp ~ Inda p ,Dp’ defined by 9 0 d ~ gXp-l 0 fp(d);
recall that fp(gd) = xpgx-1p.fp(d) for g E Gp,d E Dp. Rather than discussing
this (simple) process in general we prefer to point out its peculiarities in the cases
which actually arise.

If B is a G-orbit and p e 8*, p’ E B, then the
identification process before Theorem 1 gives
the commutative triangle shown, and the same
for U. This means that after this identification
X becomes the identity map on J (which is,
therefore, a "canonical model").

When we look at the transport map X : W*~ Wo we find it is not compatible
with the given maps W*~ OG, Wo ---t AG. This comes from the presence of the
right multiplication by x-1p 1 in the commutative square shown,

which has the effect of perturbing the canonical map c1, i.e. we only get a com-
mutative

triangle as shown. Here c"1* is replaced by xc"1*, which
is the composite

with canonical first map, with second map (dp)p ~
(dpxp-1p)p and with third map (dp)p E dp.

p
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So we do not get a transport map for R ; it is this which necessitates the perturbed
version of Theorem 4 in Section 6.

The observation necessary here is that xc"1* is homotopic to c"*, which follows
from right multiplication by x-1p, on AG, being homotopic to the identity map: for
the difference is the composite of the inclusion AG - ÍZG with 7,G --+ AG, z ~

z(x-1p - 1).

Turning to M, note that the triangle shown com-
mutes (hence ES is a "canonical model"). In partic-
ular, X : M* ~ Mo is compatible with the augmen-
tation maps M - ¿Z, so we do get a transport map
X:~*~~.

Of course, we then have a transport map X : ~* ~ Vo for each choice of
transport X : * - 0. The next result shows that they all have the same effect in
cohomology.

LEMMA 9. The transport maps X : ~* ~ ~ are all homotopic.
Proof. Composing transports * - * with a fixed transport * ~  gives rise to

all transports * - 0. So it suffices to show that if X is a transport * ~ * then the
induced map ~* ~ V* is homotopic to the identity.
Set = S U sram. Assembling the Z-duals of the (first) local sequence of

Lemma 5(b), the definition of V* implies a commutative diagram

where we have used the last commutative triangle as an identification to get the
identity on 0394.

The left X is homotopic to the identity. To see this note that X takes g 0 r¡, with
77 E (0394Gp)0 and p e Sram*, to gx-1p ~  with (d) = ~(x-1pdxp). Since x, E Gp
we have gx, ~  = g 0 x-1p  with (x-1p )(d) = (xpd) = q(dx,). Thus this X
is induced by right multiplication by x, on AGp, which was seen to be homotopic
to the identity above.

By Lemma 2(c) we can replace the above diagram by one with left map the
identity and a middle map X’ ~ X. It then suffices to show X’ is diatopic to the
identity, i.e. that [AS, ~p~Sram* indgp (0394Gp)0] = 0.

This group is dual to [~p~Sram* indGGp (0394Gp)0, 0394] By Shapiro’s lemma, we are
reduced to showing H-1(Gp, AÉ) = 0 for p e S,am, after dimension shifting by
the dual of the augmentation sequence. Since p e S, the sequence 0 ~ 0394 ~
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ZS~Z~ 0 is Gp-split, by 1 ~ p, so H-1(Gp, 0394) embeds in H-1(Gp, ÍZS),
which is 0 by Shapiro’s lemma again.

5. Pinning down the snake map

We first tum to the proof of Theorem 2(a). By Lemma 2(a) it suffices to show that
the diagonal deviation between 0 and 0’ maps to zero under [Ws,, CKI - [Rs,, cl].
So the result is a consequence of the stronger

PROPOSITION 4. [WSI, CK]~[WS’, cl] is the zero map.
Proof. By the "semi-local" structure of Ws, and Shapiro’s lemma we must

show that H0(Gp,Hom(Wp,Ck)) ~ H0(Gp, Hom(Wp, cl)) is 0 for p ~ S’*BS*,
and the analogous statement for p ~ S* with Wp replaced by AGp.

The case p ~ S* is immediate because

Tuming to the case p e S’ B S*, we use the second sequence of Lemma 5(b),

to get the commutative square

with the top arrow surjective by H0(Gp, Hom(indGpG0p 0394G0p, CK)) = 0. This reduces
us to proving that H0(G0p, CK) ~ H0(G0p, cl ) is zero.

In order to do this it will be convenient to have two more diagrams at our
disposal. Let  be the Hilbert S-class field of K. By the global Safarevic-Weil
theorem [AT] there is a commutative diagram of group extensions

in which the top row represents the fundamental class uK/k, and CK~G(/K)
is the reciprocity map. Applying the translation functor gives
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where we have identified G(/K) with cl in the bottom row, via the Artin symbol.
We regard this as the definition of H.
We come back to the assertion that H0(G0p, CK) ~ H0(G0p, cl) is the zero map.

To simplify notation we may assume that G° = G, i.e. that p is totally ramified in
K/k. It follows that the bottom row in the group extension diagram above splits,
since the inertia group of a prime of É above p is a complement to G(/K) in
G(/k) . By Lemma 3, then the bottom row in the corresponding module extension
diagram also splits. So, taking cohomology gives the square shown, with b = 0.

The isomorphism ~, which follows from the cohomological triviality of 0, then
completes the proof of the proposition and thus of Theorem 2(a).

In order to verify Theorem 2(b), we recall the isomorphism [Rs’,cl] ~
Ext1G(~*, cl) from the last section, under which [s] and [~03B8] correspond. Since
[s] is independent of 0, so is [~03B8].

We now tum to the proof of Theorem 5, that is, to the construction of an explicit
snake map u : Rus, - cl. Its basic idea has already been introduced in Section 1.
Namely, we stack the diagram in Lemma 7 on the first diagram shown below and
apply the translation functor in order to arrive at the second diagram below:

by Lemma 6. If p e S*, then the map Z - cl is zero, so we modify the above
diagram by replacing E - Wp by 0 - AGp.
Now we glue these together, for p e SI, and get

As Rs, is the kemel of the composite map Ws’ ~ As, - AG, the map
 : Ws’~H when restricted to Rs, takes values in cl. We denote this by u and
show that it is a snake map.
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REMARK. Explicitly the map p~G(/k) comes about as follows. Choose a
prime /p of Il and a corresponding Frobenius lift  for /k ; let pç denote its
restriction to K. Then (n, g) e p is mapped to Ç3) . g’, where g’ is the unique
element in the inertia group of /k belonging to  with image ~-n·g in GO

The relation between o, and the snakes comes from Galois theory. It takes,
though, the notion of global Weil groups to make this relation transparent. The
relative Weil group of Kab/k is, by definition,

where W(k) is an absolute Weil group of k, which is fixed once and for all. The
notation is that of [TW, p. 3, 4] ; observe, however, that we write W(Kab/k) rather
than WK/k, as Tate does.

From the argument at the end of page 4 and beginning of page 5 in [TW], the
extension classes of

coincide in H2(G, CK) after identifying CI1 and W(Kab/K) by the reciprocity
isomorphism. For p e S§, choose an embedding Kab ~ K,b extending K ~ K
Then there is a commutative diagram

in which the horizontal maps are the canonical maps from the Weil to the appropriate
Galois groups. The right vertical map comes from Galois theory and the left vertical
map is induced by Tate’s 0-map [TW, Prop. 1.6.1].

The following diagram reflects our Galois-theoretic set up, if it is read with
every W replaced by G.

Since the local Weil groups are subgroups of the corresponding Galois group,
the only new information in the diagram arises from the maps in its top face. That
we may indeed fill them in comes from diagram (ii) above.
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We apply the translation functor and (i). For p ~ S’*B S* we stack our old
diagram 2p on the resulting diagram. So we obtain:

As the proof of Proposition 2 shows, we may choose this diagram 2p with the
identity map Vp - Vp and with the map Vp ~ Wp coinciding with the one that
was already there. For p e S*, we replace the top row above by the second row
(with equality as vertical maps everywhere) and the third row (in the back face) by
0 - 0 - 0394Gp~ AGp - 0. Taking indGGp and direct sums, and glueing on the
unit ideles 03A0p~S’ Up now gives

in which the map Ws, -H is, by construction, our à. Since J is sent to 0 in cl,
we have two more maps Ws’~H. Namely, start with w e Ws, in the right upper
corner, take a preimage v e Vs, and go down to H, either via Ws, or via 0. The
first map is (j, since the image of v E Vs, via Vs, = VS’--7 W s’ is w. The second
map restricted to Rs’ takes values in cl and is a snake map s. As the diagram
commutes we have u = s. This finishes the proof of the theorem.

6. Tate canonical classes

For the proof of Theorem 4 we need to compare two instances of diagram 1 with
0 replaced by 03B8’. Actually we will prove a stronger perturbed version of Theorem
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4, which we need in Section 8, where we compare a diagram 1 with a diagram 1 in
which c"1 is replaced by any c 1 which is homotopic to c"1 and à is any surjective c 1
making the diagram commute; thus we write à instead of 0’. Applying the process
of Section 4 will give a perturbed Tate sequence, and we will show that this is
essentially a Tate sequence.

Since "1~ c"1 we can write c 1 - c"1 = qr with r : Ws’ -7 P, q : P~ 0394G and
P projective. Since bl is surjective, there exists p : P~D so that q = bi p. We set

V+s’ = Vs, (D P, Ws = Ws, ED P and build the commutative diagram

The front face is an instance of diagram 1+, say, which is formed from diagram 1
by setting ci+ = (c1, p), c"1+= (c"1, q, t+ = tl (f) idp. The back face is a diagram
1~+ which is obtained from diagram 1 in the same way. The w in the top face is
the isomorphism (x, y) ~ (x, y + rx). The obvious attempt at a dotted arrow is
to take v : V+s’ ~ VS1’ (x, y) H (x, y + rt1x). Now 03B8+v need not agree with +,
but otherwise the diagram commutes. We next show how to modify this v to give a
dotted arrow so the whole diagram commutes. Let d : W+s’ ~ Ch be the diagonal
deviation from 03B8+v to + in diagram 1+, i.e. 03B8+ - 03B8+v = b’1+dt1+. By Proposition
5(a) below (on the HomG level), we can write d = c’1+d’ for a G-homomorphism
d’ : W+s’ ~ J. Then v’ = v + t’1+d’t1+ still makes the top face commute and has
03B8+v’ = 03B8+v + b’1+c’1+d’t1+ = +, as claimed.

Applying the snake lemma to front and back faces gives

with the obvious notation, the presence of a " indicating a perturbed object.
Next we bring in the construction of Section 4 to get i7 involved. Setting

Nj = Ns, gF P, we build the diagram
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in which the front face is the diagram 4+, which is formed from diagram 4
by setting c’4+ = (c’4, q), c4+ = (c4, b’4q), t’4+ = t’4 ~ idp. The back face is a
diagram 4+ which is obtained from a diagram 4 in the same way; here diagram
4 means diagram 4 perturbed by Lemma 2(c), so c4 = c1 and c4 are replaced by
’4 = c 1 and c4, and the rest of diagram 4 remains. This diagram commutes for
the w above and the identity on M*, and we again fill in a dotted arrow. Since
H1(G, Hom(M*, P)) = 0 there exists r+ : Ns, - P so that r+t’4 = r, and

defining n : N+s’ ~ N+s’, (x, y ) - (x, y + r+x), gives a dotted arrow making the
top face commute, but with c4+n possibly not equal to c4+. The procedure used to
replace v by v’, with Proposition 5(b) instead of 5(a), now modifies n to an n’ so
the whole diagram commutes.

Again applying the snake lemma to the diagram just constructed gives the top
face of the diagram

The front and back faces are the pushouts defining V by the construction of
Section 4 (and its perturbed analogue). The pushout property of ~+ gives a dotted
arrow h : ~+ ~ vt making the left cube commute, and this h induces the dotted
arrow h : V* - ~* making the right cube commute. It follows that h = id~*,
hence h is an admissible isomorphism. Applying the construction at the end of
Section 4 now yields
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with h admissible.
The relation between 0 and 03B8+ is expressed by a similar diagram

with admissible isomorphism B7 e -+ B7t, which is obtained by the same process
as the previous one, except that it is even easier. One uses first

with the natural inclusions as vertical arrows, as the top face of a diagram relating
diagram 1 to diagram 1+ for 0, and applies the snake lemma as before. Next we
use

again with vertical inclusions, as the top face to relate diagram 4 to diagram 4+.
Again the snake lemma gives the top face of a large diagram which yields an
admissible isomorphism ~03B8~ ~+03B8 by the pushout property.

In the same way one gets

relating  and +, with admissible B7 Õ --+ ~+.
From the bottom face of the last big diagram shown we get [~+] == [~+03B8]

in Ext1G(~*, cl), and the analogous big diagrams for the comparisons to + give
[~+03B8] = [~03B8] and [~] = [~+]: thus [~] = [~03B8] in Ext1G(~*, cl).

Combining the three diagrams # then yields an admissible isomorphism B7 B -+
B7 e taking the (possibly perturbed) Tate class for B to that for 03B8. In particular, this
proves the independence from 03B8 in Theorem 4; the independence from S’ is delayed
to Section 7.

Tracing through the above process we have P = coker( Ws’~ W+s’) =
coker(Rs’ ~ R+s’) = coker( AB -+ At), hence A+03B8 ~ AB EB P and, similarly,
A+ ~ AÕ EB P. Since +s’ ~ Rj, , we have A+ ~ At and, combining, conclude
[A] = [A03B8] in Iio(7 G). In particular, this proves Theorem 2(c).
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LEMMA 10. The usual ‘inclusion’ map Kxp ~ CK indu ces an isomorphism

Proof By the cohomological triviality of Vp and QJ we have H°(Gp , Hom(Wp,
Kxp))~ H-1(Gp, Hom(Wp, 0394Gp)) ~ H0(Gp, Hom(Wp, CK)), so it suffices to
show that our map is injective.

By H0(Gp,Hom(0394Gp,Kxp)) = 0 the exact sequence 0~Z~ Wp -
0394Gp ~ 0 induces

so reducing to showing Ho(G, Kxp) ~ HO( Gp, CK) injective.
Finally, letting L be the fixed field of Gp in K/k,

the standard relation between the local and global reciprocity isomorphisms com-
pletes the proof.
PROPOSITION 5.

Proof. (a) By Shapiro’s lemma and H0(Gp, Hom(AGp, CK)) = 0 this reduces
to showing H0(Gp, Hom(Wp,J)) ~ H0(Gp, Hom(Wp, CK)) surjective for p E
S’*BS*, for which it suffices that H O(Gp, Hom(Wp, Up)) ~ HO( Gp, Hom( Wp, CK))
be surjective. However this map is the composite of two maps which are surjective
by Lemma 8 and Lemma 10. (These ingredients will give a different proof of
Proposition 4).

(b) From diagram 1 and the cohomological triviality of Vs’ and QJ we get the
left square
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and the right square comes from the exact sequence 0 ~ Ws’ ---7 Ns, - M* ~ 0
of Section 4 with Ns, projective.

REMARK. The group of admissible automorphisms ouf 17 is, by Lemma 2(a),
isomorphic to HomG(~*, cl), and acts on Ext2G(~, E) via the canonical map
HomG(~*, cl) ~ [V*, cl]. In particular, it follows that there is a single Tate
canonical class whenever cl is cohomologically trivial.

7. Independence from S’; the Chinburg class

For the proof of Theorem 3, let S" be another larger set, which we may assume
contains S’. There is then a natural embedding Ws, - Ws", which is the identity
on the common components, and whose cokemel P = ~p~S"*BS’* indGGp Wp is free,
by Lemma 5(a). In the same component-wise manner we construct the top face to
a diagram

in which the back face is any diagram 1 for S’ and then 0 is extended to a 03B8’ (e.g.
by the local method of Section 4) which gives a front face which is a diagram 1 for
S". Applying the snake lemma to the diagram 1 faces we get

in which Rs’~Rs" clearly has the same cokemel P as Wus, - Ws,,. Since P
is projective, the map [Rs,,, el] ---7 [Rs,, cl] is an isomorphism and Theorem 3(a)
follows from the commutativity of the snake map square above. It also follows that
A03B8 ~ Ae, has cokemel P, hence, by Theorem 2(c), that [As» ] = [As,] + [P] in
K0(ZG).
We repeat the above procedure with the exact sequence 0~Ws’~Ns’~M*~0.

Thus we note that it has a component-wise enlargement to S", and, from diagram
4, we get the top face of the large diagram
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Taking cokemels in this top face, we get [Bs"] = [Bs,] + [P] in I£7o(EG), which,
together with the last paragraph, completes the proof of Theorem 3(c). The front
and back faces of the diagram above are the pushouts along s, s’ which define ~
in Section 4. The pushout property implies a map h : Vs, ~ Vs,, filling in that
dotted arrow and inducing the one V* - ~*, which must be id~*. This bottom
face now implies that 1’7s,l = [~s"] in Ext1G(~*, cl), proving Theorem 3(b).
We now tum to removing the dependence on S’ in Theorem 4. We can use all

of the above (which is parallel to Section 6). From the construction of the Tate
Sequence in Section 4, the last two diagrams above imply

with h admissible. This completes the proof of Theorem 4.

Finally we give a proof of the Corollary to Theorem 3(c). Let rk : K0(ZG)~Z
be the ZG-rank, i.e. rk[ZG] = 1. We first use the Tate sequence to compute

by Dirichlet’s unit theorem and the exact sequence

which is immediate from the definition of B7)fC’ in Section 4. Thus Q* is in

Cl(ZG).
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Since Bs, above is stably free, as we saw in Section 4, the above computation
implies Q£ = [A] - rk( A) [A], still with S fixed. (Incidentally, this argument will
slightly shorten the proof of Theorem 3(c)).
Now to see Q£ is independent of S, let Si be another set of primes, and choose

S’ larger and containing S U S1. We build particular Tate sequences for S and S1,
by using the method of Section 4 with the same S’. Thus we use the same diagram
3 and stack a diagram 2 for S, respectively S1, on it to get a diagram 1 for S and
S1. The point now is that the maps Vs’~ Vs, in the two copies of diagram 2 are
isomorphisms, so the kemels As, in our two copies of diagram 1 are isomorphic to
the kemel in our single diagram 3. As we are free to use any S’, by Theorem 3(c),
this completes the proof of the Corollary.

8. Transport of structure

Finally we must analyse a transport X : * ~ 0 (with SeS’ now fixed). We start
by building a particular diagram

with front face a diagram 1 for Q obtained by the process, from Section 4, of
stacking a particular diagram 2 on any diagram 3. To get the rest of the diagram,
we induce the diagram of Proposition 3(a) up to G, for each p e S*, and take direct
sums of it in the usual way. This gives a big diagram with front face a diagram 2
for 0 (which is the particular diagram 2 for Q mentioned above), with back face a
diagram 2 for *, and with top and bottom faces consisting of transport maps X.

Composing the bottom face of the big diagram with the chosen diagram 3 for Q
gives a diagram 3’ for *. Composing the diagram 2 for * with the diagram 3’ gives
the back face of the diagram we are constructing. The top face consists of transport
maps X, which amount to the identity on J via our identification process, by the
discussion at the end of Section 4.

This same discussion shows that the maps J ~ CI1 are the canonical ones and
that the map W* ~ A G obtained is Xc"1* which, moreover, is homotopic to c"1*.
Thus the back face of our diagram is a perturbed diagram 1 for *, in the sense of
Section 6. So we write "1* instead of xc"1*.
A similar, but simpler, use of Proposition 3(b) results in the commutative dia-

gram
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with c’4 = c"1 hence xc’4 = c 1.
Proceeding in the familiar way the first diagram leads to

and the second to the top face of

with the rest of the diagram following because * is a pushout. It results that
X : V* - Vo carries [Vo] E Ext1G(~, cl) to [*] E ExtG(B7 *, cl) and that
h : V* - B7 0 is X -admissible.

Taking the last step in the construction we get

so h takes the Tate classes in Ext2G(~, E) to the perturbed Tate classes in
Ext2G(*, E) . Moreover, from W ~ W* we get R ~ R* and thus A ~ A*
(and B ~ *).

Comparing these last assertions with the corresponding ones in Section 6, which
are listed just before the statement of Lemma 10, we recognize the assertions (a),
(b), (c) of Theorem 6.
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