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1. Introduction

Let Il be an algebraic extension of Qp and let 0 be its integer ring with maximal
ideal .M and residue field k. If li is an algebraic closure of AB we denote by 0 and
.M the integral closure of O in Il and the maximal ideal of 0, respectively.

When f(x) e O[[x]], but not all coefficients of f (x) are in M, then the lowest
degree in which a unit coefficient appears will be called the Weierstrass degree
of f(x), denoted wideg( f ). According to the Weierstrass Preparation Theorem
there exist a unit power series U(x) E O[[x]] and a distinguished polynomial
P(x) E O[[x]] such that f (x) - P(x)U(x) and deg(P) = wideg(f). All roots of
P are in M. If wideg( f ) = d, then, counting multiplicity, there are d of them and
they exhaust all roots of f that are in M.

The set of all power series over O without constant terms is a monoid (non-
commutative, associative, with unit) under composition. A series u(x) e O[[x]]
without constant term is called invertible if there exists a series w(x) E O[[x]] such
that u o w(x) = x. A necessary and sufficient condition for u(x) to be invertible is
that u’(0) e O*. Let u(x) be an invertible series without constant term in O[[x]].
Since wideg(u) = 1, u(x) has no other roots than 0 in M. We denote u°n(x) the
n-fold iteration of u(x) with itself. The point a E .M is a fixed point for u(x)
if u(a) = a. The point a is a periodic point of period n if uon(03B1) = a. The
least positive n for which u°n(a) = a is called the prime period of a. We assume
that the series u(x) always satisfies u’(0) E 1 + M; finiteness of the residue field
guarantees that any invertible series has an iterate with this property. Let pm. It
is important to know that if a is a periodic point of period pnm, then it is a periodic
point of period pn (see Li [2, Corollary 2.3.2]). Therefore, we only have to study
periodic points whose periods are powers of p.

To count the number of periodic points of u(x) brings in very delicate questions 
about automorphisms of local fields. We define the number of fixed points of
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uopn(x) (i.e. the number of periodic points of period pn), counting multiplicity,
by in( u). Thus in(u) = wideg( uopn (x) - x). Sen’s theorem [6] shows that when
in(u)  oo then in-I(U) -= in(u) (modpn). Keating [1], using local class field
theory, says that under certain circumstance we have in(u) = 2 + bp + ... + bpn, 
for some 0  b  p. In this paper we give a formula for in(u) when u is an
automorphism of a formal group.

If f(x) e O[[x]] without constant term and f’(0) e M, then we call f(x) a
noninvertible series. A noninvertible series can have no other fixed points than 0,
but the roots of iterates are of serious interest. In the invertible series case, the

periodic points now play a role parallel to the roots of a noninvertible series. These
two studies become no longer disjoint in case an invertible series commutes with
a noninvertible series (Lubin [4]). In the case that a dynamical system over the
ring of local integers O arises from a formal group, i.e. when we are discussing
the properties of the iterates of an endomorphism of a formal group defined over
O, the full commuting family contains both invertible and noninvertible series.
Lubin conjectures that for an invertible series to commute with a noninvertible
series, there must be a formal group somehow in the background. Lubin’s Main
Theorem in [4] supports this conjecture, in that it says that the only possible finite
Weierstrass degree for such a noninvertible series is a power of p. In this paper we
shall give another proof of Lubin’s Theorem and extend the idea to prove our main
theorem which says that if u(x) commutes with some noninvertible power series,
then there exists m such that for all n &#x3E; m,

for some a, b and À, a phenomenon same as automorphisms of a formal group.
Our main theorem gives us an effective method to compute the number of periodic
points of these invertible series. It tums out that this computation lends support to
the conjecture of Lubin.

The work presented here is part of the author’s 1994 Brown Ph.D. thesis. With-
out Professor Rosen’s continued help and encouragement, none of this work would
have been possible. Professor Lubin was the one who introduced the author to the
field of p-adic Dynamical Systems. His guidance in this research was indispens-
able.

2. Automorphisms of formal groups

At all times, formal groups come into our study as a guide. To my knowledge, the
only examples we have for an invertible series u(x) to commute with a noninvert-
ible series, are when u(x ) is an automorphism of a formal group or a condensation.
Let F( x, y) be a one-dimensional formal group over O. Recall that if f (x) e
Endo(F) (i.e. f(x) E O[[x]] and satisfies F(f(x),f(y)) = f (F(x, y)) ), then
wideg( f ) = pl for some natural number r. We also know that if f, g E Endo (F)
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and f’(0) = g’(0), then f = g. Therefore if f’(0) = a, then we denote f(x) by
[a] (x). We have the following properties:
(1) If [a](x) e Endn(F), then [-a](x) E Endo(F).
(2) If [a] (x), [b] (x) E Endo (F), then [ab](x) = [a] o [b] (x) = [b] o [a] (x) E

Endo (F).
(3) If [a] (x), [b] (x) E Endo (F), then [a + b] (x) = F([a](x), [b](x)) E Endo (F).
Let u(x) = [1 + b](x) E Endo(F) with b E M. Then [b](x) E Endo(F) and

we have that a e M is a fixed point of u(x) if and only if a is a root of [b](x). Since
every root (resp. fixed point) of a noninvertible (resp. invertible) endomorphism of
a formal group is simple, we have wideg([b]( x)) = wideg(u(x) - x).

If u(x) is an automorphism of a formal group, then we can easily find in(u).
Recall that Il is a field which is complete with respect to a valuation, v. We
normalize the valuation v such that v(03C0) = 1, where 7r is a generator of M.

LEMMA 2.1. If f o g = g o f, then

Proof. See Li [3] Corollary 3.2.1. D

PROPOSITION 2.2. Let u(x) be an automorphism of a formal group with u’(0) =
1 + b where b E M and suppose that wideg([p]) = ps.

Proof. We have wideg([b]) = psv(b)/v(p), by Lemma 2.1. For every n, denote
(1 + b)pn - 1 = bn. Hence uOpn(x) = [1 + bn](x).

If v(p)  (p - 1)v(b), then (1 + b)pn = 1 + bn with v(bn) = nv(p) + v(b).
Suppose that wideg([bn]) = pl. Since in(u) = wideg([bn]) and lv(p) = sv(bn),
we find that in(u) = psv(bn)/v(p). Our claim follows.

Suppose pm(p-1)v(b)  v(p) &#x3E; pm-1(p-1)v(b).If m  n  0, then we have
v(bn) = v(bP-). Hence in(u) = wideg([bn]) = wideg([b]OP’) - (psv(b)/v(p))pn.
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If n &#x3E; m, then v(bn) = (n - m - I)v(p) + v(bm+1). Since v(bm+1) =
v(p) + v(bm) = v(p) + pmv(b) if pm(p - I)v(b) &#x3E; v(p), our proof is com-
plete. ~

Let r be a positive integer which is not divisible by p and let p be a primitive rth
root of unity. Suppose that w(x) E 0[[x]] with w’(0) = p and wor(x) = x. Then
there exists an invertible series M(x) e O[[x]]such that 03C903BC(x) = 03BCo03C9o03BCo-1(x) =
px. (See Lubin [5, Lemma 4.1.1].) Suppose that f E O[[x]] with f o w = w o f.
Then we also have that f03BC commutes with wJL. Let f03BC(x) = Li Unz xnz where
an, fl 0. Since P(Li Uni Xni) == 03A3iani(03C1x)ni, p = pni for all ni. Thus ni - 1 ~ 0
(mod r). Hence we can write f03BC as x fI (XT), for some f1(x) E O[[x]]. Let (x) =
x f1(x)r. We call j a condensation of f. It is easy to check that if f o g = g o f,
then f o  =  o .

If F(x, y) is any formal group over O, then by the existence of the primitive
p - 1-th roots of unity in Zp, we can always find a condensation. Suppose [03C1](x) E
EndO(F) where p is a primitive r-th roots of unity with (r, p) = 1. We have that
[03C1]or(x) = x. If u(x) is an invertible series in EndO(F), then it is an easy exercise
to get

3. Main theorem

We denote by So(O) the set of powe4 series f E O[[x]] such that f(0) = 0 and
f’(0) is neither 0 nor any root of 1. Let u, f E So(O) be an invertible and a
noninvertible series, respectively, which commute with each other. Then the set of
roots of iterates of f (x) is equal to the set of periodic points of u(x) (Lubin [4]).
We have the following result.

PROPOSITION 3.1. Let u, f E S0(O) be an invertible and a noninvertible series,
respectively, which commute with each other. Suppose that a E M is a fixed point
of u. Then u’( a)r = u’(0) if and only if a is a root of multiplicity r of some iterate
of f.

Proof. First we make the elementary observation that if there exists r such that
u’(03B1)r = u’(0), then it is unique. Suppose that u’ ( a ) r’ is also equal to u’(0). Then
u’( a)r = u’(03B1)r’. Since u(x) e Si( 0), u’(0) is neither 0 nor a root of 1. Hence
u’ ( a) can not be either 0 or root of 1. Therefore r = r’.

It is easy to check that if a e Nl is a root of f (x) of multiplicity r, then a is
also a root of jon( x) of multiplicity r for every n &#x3E; 0. Without loss of generality,
we suppose that f (a) = 0. Consider
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Since u(x) (resp. f(x)) tends to u(a) = a (resp. f (a) = 0) as x tends to a, we
find that

Thus

Hence if a is a root of f (x) of multiplicity r, then UI(a)r = u’(0). Converse-
ly, suppose that u’(03B1)r = u’(0). Since for i  r, u’(03B1)i ~ u’(0), we have
lim,-, f(x)/(x - 03B1)i = 0. Thus a is a root of multiplicity greater than r - 1. If
limx~03B1 f(x)/(x-03B1)r = 0, then limx~03B1f(x)/(x-03B1)r+1 exists. Since uf(03B1)r+1 ~
u’(0), limx~03B1 f(x)/(x - )r+l = 0. By induction, lim,,,, J(x)/(x - a)n = 0
for all n. This is impossible, unless f (x) = 0. Therefore a is a root of multiplicity
r. D

REMARK 1. Let a be a simple root of u(x) - x. Then we call a a simple fixed
point of u(x). We know that a fixed point a is a simple fixed point of all iterates
of u(x) if and only if u’(a) is not a root of 1. Proposition 3.1 tells us that if u
commutes with some noninvertible series, then u’(03B1)n = u’(0) for some n. Since
u’ (0) is not a root of 1, hence u’(a) is not a root of 1, either. Therefore every
periodic point of u is simple.

EXAMPLE 1. We know that in Q3, u( x) = 3x + x3 is a Lubin-Tate formal power
series. Therefore there is an invertible series 03C9(x) E Z3[[X]] with w’(0) = 2 which
commutes with n(x). Consider over Z2. There is no power series f(x) E Z2[[x]]
with f’(0) = 2 such that f o u = u o f. Indeed, now u(x) is an invertible series
with fixed points 0, dii and -vf2-i. Since u’(0) = 3 and u’( +Uii) = - 3, there is
no n e N such that u’(±-,f2-i)’ = u’(0). Therefore there is no noninvertible series
over the integer ring of any algebraic extension of Q2 which can commute with
u(x).

The example above tells us that not every invertible series can commute with a
noninvertible series. Conversely, not every noninvertible series can commute with
an invertible series. In [4], Lubin’s Main Theorem says that the only possible finite
Weierstrass degree for such a noninvertible series is a power of p. Here, we shall
give another proof of Lubin’s Theorem and extend this idea to prove our main
theorem.
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First we make following simple observation. Let s = tpo(s) where pO(s) is the
highest power of p dividing s and t is prime to p. Then in k (a field of characteristic
p), we have

Thus

THEOREM 3.2. (Lubin) Let u, f be invertible and noninvertible, respectively, in
So(O). Suppose further that u o f = f o u and that f has finite Weierstrass degree
d. Then d = pl for some 1 &#x3E; 0.

Moreover, let f be the corresponding series of f over the residue field k. Then

f has the form f(x) = g(xpl) for some g E k [[x]].
Proof. By replacing u by u°n for suitable n, we may assume that u’(0) ~ 1

(mod M). Let û and f be the corresponding series over the residue field k. Let
in = wideg(uOpn(x) - x). According to Lubin [4] Corollary 4.3.1, we have that
if in = oo for some n, then u has only finitely many periodic points in M. If u
commutes with some noninvertible series, then u(x) has infinitely many periodic
points (Lubin [4] Proposition 3.2). Hence Zn 0 oo for all n and in ~ oo as
n ~ oo. According to (*) above, every non-zero term asxs of f contributes a
power series of lowest degree s + (in - 1)po(s) in f o uopn(x) - f (x). Let So
be the set of degrees of non-zero terms of f and let so be the smallest number
in So with o( so) = inf (o(s) s E S0}. If s E So and s &#x3E; so, then we have

s + (in - 1)po(s) &#x3E; So + (in - 1 )po(so). If s E So and s  so, then when in is big
enough we have that s + (in - 1 )po(s) &#x3E; so + (in - 1 )po(so) because o(s) &#x3E; o(so).
These tell us that when n is big enough the lowest degree of f o uopn (x) - f(x)
is equal to so + (in - 1 )po(so). On the other side, the first non-zero degree of
uopn (f(x» - f(x) is equal to din. Since uopn(f) - f = f(uopn) - f, we have
din = SO + (in - 1 )po(so) for n large enough. Therefore after dividing both side of
the equality by din and taking n to infinity, we have

This means d = po(s0). Because d E 50, by the definition of so, we have
d = po(s0) == So and po(so) 1 s for all s E 50. Therefore f(x) = g(xpo(s0)) for
some g(x) E k[[x]]. 0

REMARK 2. In the proof of this Theorem, we only need the hypothesis that
f o u = u o f.



357

Now let us consider the case that Il is an unramified extension of Qp and let
A be the residue ring O/M2. Let û and f be the corresponding series over the
residue ring A. Since u’(0) E 1 + M, by replacing u by u°P, we may assume that
U’(0) -= 1 (mod M2). Let (x) = x + ãxm +···+xn + ··· where m, n is
the lowest degree of the monomial of u(x) - x with coefficient in M B M 2and in
0*, respectively. We have op(x) ~ x + pbxn (mod xn+1). Hence if we let jn, in
be the lowest degree of the monomial of uopn(x) - x with coefficient in MBM2
and in 0*, respectively, then we have jn = in-1 and jn  in for all n &#x3E; 0. Let

Sl be the set of degrees of terms of f whose coefficients are in .M B .M2, i.e.
if f (x) 03A3~i=1aixi, then ~i e SI, v(ai) = 1. We also let s1 be the smallest

number in SI with o(sl) = inf {o(s) s e S1}. Consider (x + pg(x) + bxn)tpr
where g(x) E O[[x]], b E O* and p /t. We have

Therefore if s e S1, axxs contributes a power series of lowest degree s + (Ín -
1)po(’) in f o uOpn(x) - (x). For the lowest degree contributed by asxs where
s e So, because so = p°ts°) and o(so) &#x3E; 0, we only have to consider for r &#x3E; 0,

(mod M2, higher degree).

Therefore by the definitions of so and s1, we have that the lowest degree of
f o 2G°pn(x) - f(x) is min {s1 + (in - 1)po(s1), so + (in - 1)po(s0)-1}. Notice that
because So =f s1, when in is large enough s +( in -1 )po(sd &#x3E; s0+(in - 1)p°(s0)-1,
if o(s1) &#x3E; o(s0) - 1 or if o(si ) = o(s0) - 1 and s1 &#x3E; so; otherwise s + ( in -
1)po(s1)  so + (in - 1)po(s0)-1. For the lowest degree of uopn 0 f - il we consider
(pg(x) + bxt)’’ where g(x) E 0[[x]], g(O) = 0 and b E O*. The lowest degree of
(pg(x) + bxt)r mod M is tr and the lowest degree of (pg(x) + bxt)r mod M2 is
greater than t ( r - 1). Therefore the monomial bjxj of uopn(x) - x with v(bj) = 1
contributes a power series of lowest degree po( so) j in u opn o f - f and the monomial
bi x i of uopn(x) - x with v(bi) = 0 contributes a power series of lowest degree
greater than po(s0)(i - 1 ) in ûopn o / - f . By the definitions of jn and in, we have
that the lowest degree of u°pn o f - f is po(so) jn, because in  in. Suppose that
uopn o  -  =  o opn -  for all n. We have that when n is large enough

Take n = m and n = m + 1 in this equality and subtract them. We have



358

for m large enough. Because jm+1 - j", = i", - im-1, we have i",+1 - i",, =
ps(im - Ím-l) where 0  s  o(so). Therefore we have the following:

THEOREM 3.3 (Unramified Case). Let 0 be the ring of integers in a finite un-
ramified extension field K of Qp, and let u(x), f (x) be invertible and noninvertible,
respectively, in So(O). Suppose that u o f = f o u and wideg(f) = pl. If we
denote in(u) = wideg(uopn(x) - x), then there exists M such that Vn &#x3E; M,
Zn+ 1 (U) in(u) = ps(in(u) - in-1(u)) for somefixed positive s  1.

Proposition 2.2, gives us that when u is an automorphism of a formal group or
a condensation, the in(u)’s satisfy the equality in+1 - in = pS (in - in-1) when
n is large enough. Theorem 3.3 again supports Lubin’s conjecture which says that
for an invertible series to commute with a noninvertible series, there must be a
formal group somehow in the background. This leads us to explore the general
case (Theorem 3.9 below) for Theorem 3.3. Theorem 3.3 is a technically easier
special case of Theorem 3.9, and the proof of Theorem 3.3 contains many of the
ideas needed to prove Theorem 3.9. To prove the general case we need some
notations.

NOTATION:

K is an algebraic extension of Qp with ramification index equal to e.
o is the integer ring of Il with maximal ideal M.
u(x) e 0[[x]] is an invertible series with u’(0) =- 1 (mod M) which commutes

with a noninvertible series f (x) E O[[x]] with wideg( f ) = pl. Since we only
discuss the case modulo .Mt for a finite number t, after taking some iterates of
u(x), we can always suppose that u’(0) - 1 (mod Mt).

Setmn(0) = in(U) =wideg(uopn(x) - x) and mn(r) equal to the lowest degrees
of terms of uOP’ whose coefficients are in Mr B Mr+1. Thus if uopn(x) - x =
03A3~i=1bisi, then mn(r) = inf {i|v(bi) = r}.
We also set Sn( r) equal to the set of degrees of terms of fon(x) whose coeffi-

cients are in Mr B Mr+1. Thus if fon(x) = 03A3~i=1 aix’, then Sn( r) == {i|1 v( ai) ==
r}. Suppose that m = inf {o(t)|t e Sn(r)}. Let sn(r) be the smallest number in
Sn(r) with o( sn( r)) = m, i.e. sn( r) = inf (1 1 v( ai) == r, o(1) = m}.

Let t an 1 n, {bn}n be two sequences. Denote {an}n  {bn}n, if lim inf an/bn &#x3E;

1. Denote t an n bn 1 n, if lim inf an / bn = 1.

First we check some properties of the sn(r)’s by taking iterates of f (x).

PROPOSITION 3.4. For every M and r there exists M’ such that for every j  r,
o(sn(j)) &#x3E; M when n  M’.

Proof. Given M, we can find no such that wideg(fOno) = pnol &#x3E; pm. By
Theorem 3.2, we have that o(sn(0) ) &#x3E; M for all n  no. By induction, we sup-
pose that for every j  r there exists n1 such that o(sn(j)) &#x3E; M, ~ n  ni. Let
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f(x) = 03A3~i=1 aixi and fon1(x) = 03A3~i=1 bisi. Consider f o fon1. If 0  v(ai)  r,
then every non-zero term of ai(03A3i’ bi,xi’)i mod Mr+l is contributed by some
bj’xj’’s with v(bj’)  r. Since o(j’) &#x3E; M, we have that every non-zero term of

ai(03A3i’ bi,xi’)i mod Mr+1 has degree rrz which satisfies o(m) &#x3E; M. If v(ai) = 0,
then every non-zero term of ai(03A3i’ bi,si’)i mod Mr+1 is also contributed by some
bj,sj’’s with v(bj’)  r. The monomial bj’xj’ with v(bjl) = r can not happen,
because o(i)  o(si (0) ) &#x3E; 0. Therefore o(sn1+1(r)) &#x3E; M. For the same reason,
we have o(sn(r)) &#x3E; M for all n  ni + 1. ~

Next we check some properties about mn(r)’s by taking iterates of u(x).
LEMMA 3.5. Let 7r be a prime element in M and let w(x) E O[[x]], with w(x) =
x + 03C0rg(x) where g(x) E 0[M]. Then 03C9op(x) ~ x + p03C0rg(x) (mod M2r).

Proof. Considerw°2(x) = w(x)+03C0rg(w(x)) = x+03C0rg(x)+03C0rg(x+03C0rg(x)).
Since g(x + 03C0rg(x)) ~ g(x) (mod .Mr), we have that wo2(x) ~ x + 203C0r g(x)
(mod M2r). By induction, our claim follows. D

PROPOSITION 3.6. If r  e + 1 and {mn(r)}n  {mn(j)}n for all j  r, then
mn+1(r + e) = mn(r) and {mn(r + e)}n  {mn(j)}n for all j  r + e.

Proof. By the hypothesis, when n is big enough we can write u°P"(x) -
x+03C0r g(x) (mod xmn(r)+1), where g(x) e O[x]. Let g(x) = 03A3mn(r)i=1 aixi. Then by
the definition of mn(r), we have that v(ai)  1 for i  mn(r) and v(amn(r)) = 0.
By Lemma 3.5, uopn+1(x) ~ x + p03C0rg(x) (mod.M2T, xmn(r)+1) ~ x + p7rr g( x)
(mod Mr+e+1, xmn(r)+1).Since v(p) = e, we have that mn+1(r+e) = mn(r).

For every n big enough, let tn be the number among {j|0  j  r} such
that mn(tn) = min{mn(j)| 0  j  r}. We can write uopn(x) ~ x + 7rrh(x)
(mod xmn(tn)) where h(x) E O[x]. By Lemma 3.5, uopn+1(x) ~ x + p7rrh(x)
(modM2r, xmn(tn)) ~ x + p03C0rh(x) (mod Mr+e+1, xmn(tn)). All coefficients of
uopn+1(x) - x mod xmn(tn) are in M+e. Thus mn+1(j)  mn(tn) » mn(r) =
mn+1(r + e) for all j  r + e. D

Now we check the lowest degrees of f ouopn(x) - f(x) and uopn 0 f( x) - f(x)
modulo .M r for r  3e + 1. Wherever convenient we write £n(x) for f ouopn(x) -
f(x) and Rn(x) for uopn o f(x) - f(x). By Proposition 3.4, there exists n such
that o(sn(j)) &#x3E; 3e for all j  3e. By replacing f by fon, we may assume that
o(s1(j)) &#x3E; 3e for all j  3e. For convenience, we replace s1(j) by s(j).

When r  e, because for v(a) = 0, p At and s &#x3E; 3e,

(x + 03C0g(x) + axm)tps ~ xtps + tapsxps(t-1)+mps (mod Mr+1, higher degree),
we have that in Ln ( x) mod M r+ 1 the lowest degree contributed by the monomial
aixi of f(x) with v(ai)  r is po(i)(mn(0) - 1) + i. By the definition of s(j), the
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lowest degree of £n(x) mod Mr+1 is min {po(s(j))(mn(0) - 1) + s(j) ; j  r}
when n is large enough. Therefore if we set

then the lowest degree of £n(x) mod Mr+1 is pdr(mn(0) - 1) + cr, for sufficiently
large n.

When e  r  2e, write r = e + r’ where 0  r’  e. Because for v(a) = 0,
pt and s &#x3E; 3e,

(mod Mr+ 1, higher degree),

we have that in £n(x) mod Mr+1 the lowest degree contributed by the mono-
mial aixi of f(x) with v(ai)  r’ is po(i)-1(mn(0) - 1) + i and the lowest
degree contributed by the monomial aj xj of f(x) with T’  v(aj)  r is

po(j)(mn(0) - 1) + j. Therefore if we set

then the lowest degree of £n(x) mod Mr+1 is pdr ( mn (0) - 1) + cT, for sufficiently
large n.

Using a similar argument, when r = 2e + r’ where 0  r’  e, if we set

then the lowest degree of £n(x) mod Mr+1 is pdr(mn(0) - 1) + Cr, for sufficiently
large n.

For the lowest degree of Rn(x) mod Mr+1, we have the following.
LEMMA 3.7. If for every j  r we have mn(r)  mn(j) - r, then the lowest
degree of uopn o f(x) - f(x) mod Mr+1 is pd0mn(r).

Proof We consider modulo Mr+1. The lowest degree of Rn(x) contributed
by the monomial bixi of uopn(x) with v(bi)  r is greater than pd0(i - r). The
lowest degree contributed by the monomial bix2 of uopn(x) with v(bi) = r is pd0i.
Therefore by the definition of mn( j ) and by mn (j) - r &#x3E; mn (r) for all j  r, we
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have that the lowest degree equals to pdomn( r). CI

Now we use the equality f o uopn - f = uopn o f - f to find the relationship
between s(j)’s and mn(i)’s. Keep the notations about dr and cT as above. Notice
that these dr’s have the properties that dr  dr- and dr+e  dr - 1.

LEMMA 3.8. If dr = dr-1, then when n is large enough the lowest degree of
uopn o f - f mod Mr+1 is pd0mn(t) - (ct-cr), for some t  rwhichisindependent
of n. In fact, t is the number such that dr = dr-l =... = dt  dt-l and mn(t)
has the property that when n is big enough mn(j)  Mn B, for all j  r,

where Br is independent of n.
If dr  dr- then the lowest degree of uopn o f - f mod .Mr+I is pdOmn( r)

and we have {mn(r)}n  {mn(j)}n for every j  r.
Proof. Suppose that n is large enough such that the lowest degree of Gn (x ) mod

M r+ 1 is pdr(mn(0) - 1) + cr. We use induction on r. First we consider £n(x) ~
R,(x) mod .M2. The lowest degree of Ln( x) mod M2 is pd1 (mn(0) - 1) + c1.
If dl = do, this means d0  o(s(1)). Since s(0) = pdo (Theorem 3.2), we
have c1 = co = s(0) = pd0. Hence the lowest degree of Rn(x) mod M2 is
pd1(mn(0) - 1) + ci = pd0mn(0) - (Co - c1). If mn(1)  mn(0) - 1, then
by Lemma 3.7, the lowest degree of Rn (X) is pd0mn(1), which is not equal to
pdo M@ (0). It is a contradiction. Thus mn(1)  mn (0) - 1.

If dl  do, then since {pd1(mn(0) - 1) + c1}n  {pd0mn(0)}n, we have
that the lowest degree of Rn(x) mod M2 is  {pd0mn(0)}n. Notice that the
lowest degree of Rn(x) mod M2 is either greater than pd0(mn(0) - 1) or equal
to pd0mn(1). Suppose that the lowest degree is greater than pdo (mn(0) - 1). This
contradicts that the lowest degree is  {gd0mn(0)}n. Therefore the lowest degree
is pd0 mn(1) and so {mn(1)}n  {mn(0)}n. This proves our assertion for the case
r = 1.

Suppose our assertion is true for j  r. We consider £n(x) ~ Rn(x) (mod
Mr). The lowest degree of Ln( x) mod Mr is pdr-1 (mn(0) - 1) + Cr-l and equals
to the lowest degree of Rn(x) mod Mr, which is pd0mn(t) - (ct - cr-1) for some
t  r - 1 such that dr-i 1 = ... = dt  dt-1. Now consider £n(x) ~ Rn (x ) (mod
Mr+1). The lowest degree of £n(x) mod Mr+1 is pdr (mn(0) - 1) + cr. Suppose
that dr = dr-le Since pdr-1 (mn(0) - 1) + cr-1-pdr (mn(0) - 1) - cr = Cr- 1 -Cr,
we have that the lowest degree of 1?,,, (x) mod Mr+1 is equal to pd0mn(t) - (ct - cr).
Our assumption also tells us that ~j  r - 1, mn(j)  mn(t) - Br-l for n big
enough. Choose Br such that Br &#x3E; Br-1 + r and p d0 Br &#x3E; ct - cT. If there

exists n’ such that mn’(r)  mn’(t) - Br, then mn’(r)  mn,(j) - r. Hence by
Lemma 3.7, the lowest degree of Rn’(x) mod M r + is pdomn’( r)  pdomn,(t) -
(ct - Cr). This contradicts the result that the lowest degree of Rn(x) mod Mr+1 is
pd0mn(t) - (ct - cr) for n big enough. Therefore we have mn(r)  mn(t) - Br
when n is large enough.
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If dr  dr-1, then {pdr(mn(0) - 1) + cr}n  {pdr-1(mn(0) - 1) + cr-1}n.
We have that the lowest degree of Rn(x) mod Mr+1 is  {pd0mn(t)}n. The
lowest degree of Rn(x) mod Mr+1 is either greater than pd0(mn(tn) - r) for
some tn  r or equal to p d0 Tnn(r). If this degree is greater than pdo (mn(tn) - r),
then we have {pd0mn(tn)}n  {pd0mn(t)}n. This contradicts our assumption
that mn(tn)  mn(t) - Br-l. Thus the lowest degree of Rn(x) mod Mr+1 is
pdomn( r) and we have that {mn(r)}n  {mn(j)}n, dj  r. ~

REMARK 3. If {mn(r)}n  {mn(j)}n for every j  r, then by Lemma 3.7,
when n is large enough the lowest degree of Rn(x) mod Mr+l is pdomn(r).
Lemma 3.8 tells us that if dr = dr-l, then the lowest degree of Rn(x) mod Mr+l
is pd0mn(t) - (ct-cr) for some t  r. Therefore we have pd0mn(r) = pd0mn(t) -
(ct - cr), which contradicts the assumption that {mn(r)}n  {mn(t)}n. Hence
dr  dr-1. This implies that dT  dr-i if and only if {mn(r)}n  {mn(j)}n for
every j  r.

Suppose that there exists r such that e + 1  r  2e and dr  dr- i . Then when
n is large enough the lowest degree of £n(x) mod Mr+1 is pdr(mn(0) - 1) + cr
and the lowest degree of Rn(x) mod Mr+1 is pd0mn(r). Hence for n big enough
we have that

By Proposition 3.6, we have that {mn(r + e)}n  {mn(j)}n for all j  r + e.

Since dr+e  dr+e-1, by the same argument as above, we have that

Because mn+1 (r + e) - mn(r + e) = mn(r) - mn-l (r), it follows that

Notice that dr &#x3E; dr+e.
THEOREM 3.9 (General Case). Let u(x), f (x) be invertible and noninvertible,
respectively, in S0(O). Suppose further that u’(0) - 1 (mod M) and f o u =
u o f. If we denote wideg( uopn (x) - x) by in, then there exist M and A &#x3E; 0 such
that when n &#x3E; M,
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Proof. We only have to show that there exists r such that e + 1  r  2e
and dr  dr-1. This follows immediately from the fact that dt z dt-i 1 and
de &#x3E; Cle - 1  d2e. 0

REMARK 4. In our proof we only need the assumption that f o u = U o f
(mod M3e+l).

1 have used Mathematica to run the following examples. All power series are
considered over Z2.

EXAMPLE 2. u1(x) = 3 x + 3x2 + x3

This is an automorphism of the formal group F(x, y) = x + y + xy. As what
we calculated before (Proposition 2.2), mn+1(0) = pmn(0) when n  1.

EXAMPLE 3. u2(x) = 9x + 6x 2 + x3

This is a kind of ’condensation’ case. U2 (X) commutes with 4x + x 2and mn+l 1 (0) =
pmn(0) - 1.

EXAMPLE 4. U3 (x) = 3 x + x3
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This is an interesting example. Although U3(X) can not commute with any non-
invertible series (Example 1), we still have mn+1(0) - rran(0) = p(mn(0) -
mn-1(0)). Indeed, since u3(x) - u2(x) (mod 2Z), we have that in(u2) =
in(u3).
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