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The inverse problem of Galois theory asks whether an arbitrary finite group
G can be realized as Gal(K/Q) for some Galois extension Il of Q. When such
a realization has been given for a particular G then a natural sequel is to find
arithmetical realizations of the irreducible representations of G. One possibility is
to ask for realizations in the Mordell-Weil groups of elliptic curves over Q: Given
an irreducible complex representation T of Gal(K/0), does there exist an elliptic
curve E over Q such that T occurs in the natural representation of Gal(K/Q) on
C0 ÍZ E(K)? The present paper does not attempt to investigate this question directly.
Instead we adopt Greenberg’s point of view in his remarks on nonabelian Iwasawa
theory [5] and consider a related question about root numbers. Let pE denote the
representation of Gal(K/Q) on C0s E(K) and (r, 03C1E~ the multiplicity of T in PE,
and write L(E, T, s) for the tensor product L-function associated to E and T. The
conjectures of Birch-Swinnerton-Dyer and Deligne-Gross imply that

(cf. [10], p. 127), whence for representations T with real-valued character the root
number W ( E, T ) should satisfy

The reasoning here is based on the conjectural functional equation of L(E, , s ),
which for representations with real-valued character relates L ( E, T, s ) to itself and
therefore gives us (0.2) as a consequence of (0.1). Now if W(E, ) = - 1 then (0.2)
implies that the multiplicity of T in C 0s E(K) is odd and hence positive. Thus
we are led to our basic question: Given T, an irreducible complex representation
of Gal(K/Q) with real-valued character, does there exist an elliptic curve E over
Q such that W(E,) = -1 ?

The best-known and most easily stated sufficient condition, and the one which
figures in Greenberg’s paper [5], is the following:

PROPOSITION A. If dim T is odd or det T is nontrivial then there exists an elliptic
curve E over Q such that W(E, ) = - 1.

* Research partially supported by NSF grant DMS-9396090
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Our primary concem is therefore with representations of even dimension and trivial
determinant. By way of illustration, consider the case of a Galois extension of Q
with Galois group A5, the altemating group on 5 letters. Up to isomorphism, A5 has
exactly four nontrivial irreducible representations, all with real-valued character:
two of dimension 3, one of dimension 4, and one of dimension 5. Since A5 is
simple all of these representations have trivial determinant. In view of Proposition
A, only the representation of dimension 4 presents an issue.

PROPOSITION B. Let K be a Galois extension of Q with Gal(K/Q) ~ A5, and
let  be the 4-dimensional irreducible representation of Gal(K/Q), unique up to
isomorphism. There exists an elliptic curve E over Q such that W(E,) = -1 if
and only if some decomposition subgroup of Gal(K/Q) is isomorphic to A4, S3,
or (Z/2Z)2.

Buhler ([1], pp.47 and 136-141) has tabulated 174 fields K with Gal(K/Q) ~ A5,
and about half of the fields in his table satisfy our criterion. For example, if Il is
the splitting field of x5 + 1 Ox 3 - 10x2 + 35x - 18 (the field of conductor 800 in
the table) then the decomposition groups of Gal(K/Q) at 2 are isomorphic to A4,
and hence there exists an E for which W ( E, T ) = -1. In fact one can take for
E any elliptic curve over Q with split multiplicative reduction at 2. On the other
hand, if Il is the splitting field of x5 + 6x4 + 19x3 + 25x2 + 11x +2 (the field of
conductor 1501 in the table) then none of the groups in Proposition B occurs as a
decomposition group, and consequently W (E, 7) = 1 for every E over Q.

Proposition B illustrates the type of statement which can be deduced from
our main result, Theorem 3. However, we would like to emphasize that Theorem
3 is far from being a definitive result of its kind, because the underlying local
calculations do not cover all possibilities when the residue characteristic is 2 or
3. While this defect tums out not to matter in the case of A5 and in many other
cases, the effect in general is that the necessary conditions afforded by Theorem
3 are weaker than the sufficient conditions. A second point about the theorem is
that usually there is no way to predict what it says about a given group G and a
given irreducible representation 7 of G except by calculating the restriction of 7 to
various small subgroups of G. Consider for example the next simple group after A5,
namely PSL(2, F7). Up to equivalence PSL(2, F7) has five nontrivial irreducible
representations: two of dimension 3, which do not have real-valued character, and
one each of dimensions 6, 7, and 8. Of concem here are the representations of
dimensions 6 and 8. The disparate behavior of these two representations under
restriction to subgroups is reflected in the following proposition. Let Dn denote
the dihedral group of order 2n.

PROPOSITION C. Let K be a Galois extension of Q with Gal(K/Q) ~ PSL(2,F7),
and let (6) and 7(8) be the irreducible representations of Gal(K/Q) of dimensions
6 and 8 respectively, unique up to isomorphism.
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(1) There exists an elliptic curve E over Q such that W(E, (6)) = -1 if and
only if some decomposition subgroup of Gal(Il /Q) is isomorphic to S4, A4,
D4, or (7-/2Z)2.

(2) There exists an elliptic curve E over U such that W(E, (8)) = -1 if and
only if some decomposition subgroup of Gal(K/Q) is isomorphic to S4, D4,
or S3.

A beautiful example of a Galois extension of Q with Galois group PSL(2, F7) has
been given by Trinks (see LaMacchia [7], p. 990, or Matzat [9], p. 212): Il is
the splitting field of the polynomial x7 - 7x + 3. In this example the decom-
position groups at 3 are isomorphic to S3, but none of the other groups listed
in Proposition C occurs as a decomposition group. Hence there is an elliptic
curve E over Q for which W(E, (8)) = - 1 but none for which W(E,(6)) = -1.
We shall see that W(E,(8)) = -1 whenever E has split multiplicative reduction
at 3.

To complete our survey of illustrative special cases, let us note that there are
situations in which W(E, T) is always 1:

PROPOSITION D. Let Il be a Galois extension of Q such that Gal(K/Q) ~
Dq x Dr x DS x Dt with distinct primes q, r, s, t  5, and let T be an irreducible
16-dimensional representation of Gal(K/Q). Then W(E, ) = 1 for every elliptic
curve E over Q.

As with other deductions from Theorem 3, Proposition D does not appear to be
predictable on a priori grounds. However, there is one case in which a result like
Proposition D would be entirely expected, namely the case where the Schur index
of r is even (by contrast, every irreducible representation of Dq x Dr x D,, x Dt
has Schur index 1). The point here is that the representation pE of Gal(K/Q)
on C oz E(K) is the complexification of a representation over Q. Hence if T
is any irreducible representation of Gal(K/Q) then (T, pE) is divisible by the
Schur index m(T) of T. In particular, if tr  is real-valued and m(r) is even
then (0.2) would imply that W(E, T) = 1. The next proposition verifies this
conclusion under some condition at the primes 2 and 3. Since the Schur index
of an irreducible representation with real-valued character is either 1 or 2 (the
Brauer-Speiser theorem), to say that m() is even is to say that m( T) = 2.

PROPOSITION E. Let Il be a finite Galois extension of Q and r an irreducible
complex representation of Gal(K/Q) with real-valued character. Assume that the
decomposition subgroups of Gal(K/Q) at 2 and 3 are abelian. If m() = 2 then
W(E, ) = 1 for every elliptic curve E over Q.

Given the incompleteness of our local calculations at the primes 2 and 3, some
extraneous condition at these primes seems inevitable, but the particular condition
chosen here could be replaced by a number of alternative hypotheses. For example,
instead of imposing a condition on the decomposition groups at 2 and 3 we could
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require that E have semistable reduction at 2 and 3, or more generally that E attain
semistable reduction over abelian extensions of Q2 and Q3. In any case, the main
point is that if m(T) = 2 then root numbers are of no use in detecting the possible
occurrence of T in the Mordell-Weil group of an elliptic curve over Q. This is an
inherent limitation of our point of view.

In conclusion let us point out that Theorem 2 of the present paper is a gener-
alization of the local results in [11], the latter being the special case where T is
the trivial representation. We also take this opportunity to mention the paper of
Kramer and Tunnell [6], which should be added to the list of references in [11].
The ingredients in the proof of Theorem 2.7 of [6] and of Proposition 2 of [11] are
the same; the latter result merely carries the argument one step further.

It is a pleasure to thank John Millson for clarifying a property of Stiefel-Whitney
classes and Brian Conrey for providing the reference [5].

1. A local calculation

By a representation of a group G we shall always mean a finite-dimensional
representation over the complex numbers, understood to be continuous if G has a
natural topology. The contragredient of a representation 7r will be denoted 7r*. We
say that 7r is self-contragredient if 03C0 c-’- 7r*, symplectic if the space of 7r admits a
nondegenerate symplectic form invariant under 7r, and realizable over a subfield E
of C if there is an E-form of the space of 7r which is preserved by 7r. We mention
in passing that if the image of 7r is finite then 7r is realizable over R if and only if 7r
is orthogonal, i.e. if and only if the space of 03C0 admits a nondegenerate symmetric
bilinear form invariant under 7r.

By a character of G we shall mean either a one-dimensional representation (i.e.
a ’quasicharacter’ X : G - C ) or the trace of a representation of dimension
 1, depending on the context. In the case of ’one-dimensional characters’ the two
meanings coincide, of course. Of particular importance to us are one-dimensional
characters of Gal(F/F), or equivalently, of Gal(Fab/F), where F is a local field
of characteristic 0 and Fab its abelian closure. We shall routinely identify such
characters with finite-order characters of F x by agreeing that

~(x) = ~((x-1, Fab/F)) (x ~ F ), (1.1)

where (*, Fab/F) is the reciprocity law homomorphism as normalized by Artin.
For example, 1 F can denote either the trivial character of Gal( F/ F) or the trivial
character of F X , and if Il is a quadratic extension of F then XK/F can denote
either the quadratic character of Gal(F/F) with kemel Gal(F/K) or the quadratic
character of F  with kemel NK/F(K ). We remark that the choice of x -1 rather
than x on the right-hand side of (1.1) is made for the sake of consistency with [2]
and [18].

If Il is any finite extension of F then we denote by indK/F and resK/F the
induction and restriction functors associated to Gal(F/F) and its subgroup of finite
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index Gal(F/K). In the case where F is nonarchimedean we shall make frequent
use of the fact that the Artin conductor-exponent a(*) satisfies the formula

a(indK/F03C0) = d(K/F) dim 03C0 + f(KIF)a(7r), (1.2)

where 7r is an arbitrary representation of Gal(F/K) and d(K/F) and f(K/F)
denote respectively the exponent of the relative discriminant of Il over F and the
residue class degree of li over F. A general reference for the properties of a(*)
that will be needed here is [15].

Given a representation 7r of Gal(F/F), an additive character 0 of F, and a
Haar measure dx on F, let f( 7r , 03C8, dx) denote the associated epsilon factor. If
the determinant of 7r is trivial then we define the root number W(03C0) of 7r by the
formula

the point being that when det 03C0 is trivial the right-hand side of (1.3) - which is in
any case independent of the choice of dx - is independent of the choice of 0 as well.
If 7r is self-contragredient as well as of trivial determinant then H(03C0) = ±1. This
is in particular the case for the representations of primary interest here, namely
those of the form 7r = 03C3 ~ T with 03C3 a symplectic representation of Gal(F/F)
and T an arbitrary representation of Gal(F/F) with real-valued character. Indeed
the self-contragredience of a 0 T and the triviality of det a 0 r follow from the
formulas

and

respectively, because a symplectic representation is self-contragredient, even-
dimensional, and of trivial determinant, while a representation with finite image is
self-contragredient if and only if its character is real-valued.

Although our goal is to calculate W(03C0) in a case where this quantity is indepen-
dent of any choices, the method of calculation forces us to consider representations
for which the root number depends on the choice of 0. Such a root number is still
defined by the right-hand side of ( 1.3) but should in principle be denoted W(03C0,03C8).
However, to avoid carrying 1b in the notation, let us agree that for each local field
F of characteristic 0 we choose the additive character

where Qp is the topological closure of Q in F,
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and f xlp denotes the image of x under the composition of natural maps

With this convention we have 1b R- = 1b F o trK/ F for a finite extension li of F, and
consequently if 7r is a representation of Gal(F/K) then

Formula (1.4) is the analogue for root numbers of (1.2) and an expression of the
fact that ’epsilon factors are inductive in dimension 0’. For further background on
root numbers the reader is referred to [2], [18], or [12].

Later in the paper we shall encounter representations of the Weil group W ( F / F)
and of the Weil-Deligne group W’(F/F) as well as representations of Gal(F/F).
Thus it is appropriate to note that all of the definitions and conventions just men-
tioned are meaningful in the larger context. In particular, if 03C3 is a symplectic
representation of W(F/F) or W’(F/F) and T is a representation of Gal(F/F)
with real-valued character, then it is still true that W(03C3 ~ T) is a well-defined num-
ber equal to f 1. We also point out that formula (1.1 ) allows us to identify arbitrary
characters of F’ (not necessarily of finite order) with characters of W (F/F) and
hence with characters of W’(F/F).
Some two-dimensional representations

By a dihedral representation we shall mean an irreducible two-dimensional repre-
sentation which has finite image and is realizable over R. Equivalently, a dihedral
representation is a two-dimensional representation with image a dihedral group of
order 6. The equivalence of the two definitions follows from the fact that a finite
subgroup of GL(2, R) is conjugate to a subgroup of O(2, R) and is therefore either
cyclic or dihedral.

To avoid a possible ambiguity we make one further remark. In part (i) of the fol-
lowing proposition we consider a representation of the form indH/F~, where H/F
is a quadratic extension of nonarchimedean local fields of characteristic 0 and cp is
a character of H". Since we do not assume that ~ has finite order the representation
indH/F~ must be interpreted a priori as a representation of W(F/F) rather than
of Gal(F/F). However, we prove that if indH/F~ is irreducible and symplectic
then ~|F  coincides with ~H/F, the quadratic character of Fx corresponding to 
H. Since F is nonarchimedean, the equality ~|F  = XH/F implies that p has
finite order, whence indH/F~ is a representation of Gal( F 1 F).

PROPOSITION 1. Let F be a nonarchimedean local field of characteristic 0.

(i) Let H be a quadratic extension of F and ~ a character of H x . The repre-
sentation indH/F~ is irreducible and symplectic if and only if ~|F  = XH/F
and ~2 ~ 1H.
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(ii) A representation ofGal( F / F) is dihedral if and only if it has the form indH/F~
for some quadratic extension H of F and some character rp of H x satisfying
rplFx = 1 p and rp2 =1= 1H.

Proof. Both assertions are quite standard, but for the sake of completeness we
provide a detailed argument.

(i) A two-dimensional representation is symplectic if and only if it has trivial
determinant, because Sp(2, e) = SL(2, C). Now according to the formula for the
determinant of an induced representation (cf. [2], p. 508),

Therefore indH/F~ is symplectic if and only if ~|F  = ~H/F. We claim that under
these equivalent conditions, indH/F~ is irreducible if and only if ~2 fl 1 H. Indeed
the condition ~|F  = XH/F implies that yJ o NH/F = 1F and consequently that
~ o 03B3 = ~-1, where 1 denotes the nontrivial automorphism of H over F. Hence
the standard criterion ~ ~ (p o y for the irreducibility of indH/F~ is equivalent to
the condition ~ ~ cp-1, i.e. ~2 ~ 1H.

(ii) Let 03C0 be a dihedral representation of Gal(F/F), viewed as a map

Since 7r is (absolutely) irreducible the image of 7r is not contained in SO(2,R).
It follows that the fixed field of 03C0-1(SO(2,R)) is a quadratic extension H of F
and that 7r ~ indH / FCP for some character (p of H . Then det 7r = xH/F, whence

~|F  = 1F by (1.5). Also reSH/F03C0 ~ ~ EB ~-1, because the nontrivial coset
of SO(2,R) in O(2, R) acts on SO(2,R) by inversion. Since the image of 7r is

nonabelian resH/F03C0 is not scalar, and consequently ~2 ~ 1H.
For the converse we use the fact that an irreducible representation with finite

image and real-valued character is either symplectic or realizable over R. Suppose
that H is a quadratic extension of F and yJ a character of H  such that ~|F  = 1 F
and ~2 ~ 1H. The condition ~|F  = 1F implies first that ~ has finite order and
second that ~ o -y cp-l, where i is the nontrivial automorphism of H over F.
Since ~ ~ cp-1 it follows that ~ o q fl (p. Therefore indH / FyJ is irreducible. Also
det(indH/FCP) = xH/F by (1.5) and

by the formula for an induced character. Thus indH/F~ is a two-dimensional
irreducible representation with finite image, real-valued character, and nontrivial
determinant. Since a symplectic representation has trivial determinant we conclude
that indH/F~ is realizable over R.
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REMARK. It can happen that indH/FCP is dihedral even though cp2 = 1H. Propo-
sition 1 merely asserts that indH/FCP can also be written as indH’/F~’ with H’/F
quadratic, ~’|F  = 1F, and (~’)2 ~ 1HI.

Statement of Theorem 1

To state the theorem, fix a nonarchimedean local field F of characteristic 0 and
let H be the unramified quadratic extension of F. Put q = xH/F. We also fix a
two-dimensional symplectic representation u of Gal( F/ F) which is irreducibly
induced from a tame character of H X . Thus a is irreducible, symplectic, and of the
form

where ~ is a character of H x with a(~) = 1. According to Proposition 1, ~|F  = 71
and ~2 ~ 1 H. Let 03B8 denote the unramified quadratic character of H X , so that
03B8|F  = ~, and put

and

Then |F  = 1F and 2 ~ 1H. Consequently, Proposition 1 implies that &#x26; is

dihedral.

Let OH denote the ring of integers of H. Since H is unramified over F there is
a unit UH/F C O H such that H = F( UH/F) and u2H/F E F. The value of ~(uH/F)
is independent of the choice of uH/F, because ~|F  = ~ and therefore ~|O F is
trivial. For the same reason, ~(uH/F) = ±1.

Given representations p and r of Gal(F/F), we define their inner product (p, T)
by

where on the right-hand side p and Tare viewed as representations of Gal(K/F)
for some finite Galois extension Il of F and (trp, tr r) is the usual inner product on
characters of Gal(K/F). Thus if p is irreducible then (p, T) is just the multiplicity
of p in T.

We denote 1F simply by 1.

THEOREM 1. Let T be a representation ofGal(F / F) with real-valued character.
Then
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To prove the theorem it will suffice to treat two special cases:
(i) T is symplectic.
(ii) T is realizable over R.
Indeed every representation of Gal(F/F) with real-valued character is a direct
sum of representations of types (i) and (ii), and as functions of T, both sides of the
formula to be proved are multiplicative across direct sums. We begin by proving
the theorem for representations of type (i).

The case where T is symplectic

Suppose that T is symplectic. Then det T is trivial, dim T is even, and also ~03B6, ~ is
even for any irreducible representation 03B6 of Gal(F/F) which is realizable over R.
Hence the right-hand side of the formula to be proved is 1, and Theorem 1 follows
in this case from a general fact:

PROPOSITION 2. If a and T are symplectic representations of Gal( F / F), then
W(03C3~) = 1.

Proof. Let V and W be the spaces of a and T. Thus V and W are equipped
with nondegenerate invariant symplectic forms, and we may view Q and T as maps
Gal(F/F) ~ Sp(V) and Gal(F/F) ~ Sp(W). Put U = V 0 W and 7r == a 0 T.
The tensor product of the symplectic forms on V and W is a nondegenerate
symmetric bilinear form on U which is invariant under 7r. Furthermore, 7r has

trivial determinant, so that we may view 7r as a map Gal(F/F) ~ SO(U). Hence
by Deligne’s theorem on root numbers of orthogonal representations ([3], p. 301),
W(03C0) is 1 or -1 according as 7r does or does not lift to the spin cover Spin(U) ~
SO(U). Now the natural embedding

afforded by the tensor product does lift to Spin( U ), because the fundamental group
of Sp(V) and of Sp(W) - hence also of Sp(V) x Sp(W) - is trival. Since (1.6)
lifts to Spin(U), so does 7r, and therefore W(Jr ) = 1.

REMARK. For later reference we note that Deligne’s theorem (hence also Propo-
sition 2) holds with Gal(F/F) replaced by W(F/F), cf. [3], p. 314.

The theorem of Frôhlich-Queyrut

To prove Theorem 1 in the case where r is realizable over R we will need the

following result:

PROPOSITION 3. Let Il be a nonarchimedean local field of characteristic 0,
L the unramified quadratic extension of 1(, and À a character of Lx such that
03BB|K  = XL/K. Then
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where uL/K E O£ is any element such that L = K(uL/K) and u 2 E I(.
Proof. Let ~ be the unramified quadratic character of LX. Then ~|K  = XL/K.

Hence putting Â = ~03BB we have Â |K  = 1 K, so that

by the theorem of Frôhlich-Queyrut ([4], Thm. 3). On the other hand, let 03C9 be a
uniformizer of Il and let n(03C8K) be the largest integer n such that 1b R- is trivial on
03C9-nOK. Since 0 is unramified,

Comparison with our previous formula for W() yields

This is the stated result, because

The case where T is realizable over R

In the case where r is realizable over R we first prove a preliminary version
of Theorem 1 in which the exponent ~1,) + ~~,) + (il, T) is replaced by
a(03C3 ~ T)/2 - a(T). To see that the latter expression is an integer, write a =
indH/F~. Then o, 0 T = indH/F(~ ~ resH/F) and consequently

by (1.2).

PROPOSITION 4. If T is realizable over R, then

Proof. As functions of T, both sides of the formula to be proved define homo-
morphisms from the Grothendieck group of virtual representations of Gal(F/F)
realizable over the reals into the group {±1}. Hence it suffices to verify the for-
mula on a set of generators of the Grothendieck group. In fact applying Serre’s
induction theorem ([13], Prop. 2, p. 177) we see that we may restrict our attention
to representations of the form T = indK/F7r, where Il is a finite extension of F
and 03C0 a representation of GaI(F/A") of one of the following types:
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(b) 7r is a quadratic character of Gal(F/K).
(c) 7r = x e y, where X is a character of Gal(F/K) of order  3.
(d) 7r is dihedral.

Before tuming to a consideration of cases we observe that if T = indK/F03C0
then 

_

whence

by (1.4). Also

because the product of the root number of a representation and the root number of
its contragredient is the determinant at -1 (cf. [12], p. 144 or [18], (3.4.7)). Now
according to the formula for the determinant of an induced representation, the final
expression in (1.9) is det (-1)/det 03C0(-1). Hence (1.8) and (1.9) give

On the other hand, by (1.2) we have

and also

via (1.7). Hence

Combining (1.10) and (1.11), we conclude that for T = indK/F03C0 the assertion of
Proposition 4 is equivalent to the formula

Next we observe that (1.12) is satisfied whenever K contains H. Indeed if K
contains H then



322

so that

(recall that ~|O F is trivial). This result does coincide with (1.12), because
[Il : F] = 2[K : H] and f (K/F) = 2f(K/H).

It remains to prove (1.12) for 03C0 as in (a), (b), (c), or (d), and li a finite extension
of F not containing H. The latter assumption implies that f (KIF) is odd, whence
(1.12) becomes

Put L = HL and 03BB = ~ o NL/H, so that L is the unramified quadratic extension
Of ll and resK/FO" = indL/K03BB. Then

Consequently

and

by (1.2) and (1.4) respectively. After substitution of (1.14) and (1.15) into (1.13)
the statement to be proved is

Note that

since xL/h = xH/F o NKIF = q o NKIF. We now proceed to a consideration of
cases.

(a) If 03C0 = 1 h then (1.16) follows from (1.17) and Proposition 3, because
L = K(uH/F) and
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(b) If 03C0 is a quadratic character of Gal(F/K) with kernel Gal(F/K’) then

as virtual representations. In view of the transitivity of induction the proof of the
proposition for T = indh/F7r reduces to the case treated in (a).

(c) If 7r = x ED X then it is more convenient to verify (1.13) than (1.16). Since
ais self-contragredient we have (X (D resK/F03C3)* = ~ ~ resK/F03C3, whence

The right-hand side of (1.13) is also 1, because det 7r( -1) = 1, dim7r = 2,
a(03C0) = 2a(x), and a(7r 0 resKI Fa) = 4a((x o NL/K)03BB). This last point follows
from (1.2) on noting that

and that x (D reSK/FOr = indL/K((~ o NL/K)03BB).
(d) If 7r is dihedral then by Proposition 1 we can write 7r = indM/K03BC with a

quadratic extension M of K and a character y of M 1 such that p |K  = 1 K. There
are now two cases, according as L = M or L -1 M.

Case 1: L = M. Let 1 be the nontrivial automorphism of L over Il . The
condition 03BC|K  = 1 j; implies that y o 03B3 = 03BC-1. Since 7r = indL/K03BC it follows
that resL/K03C0 = 03BC ~ 03BC-1. Also a(7r) = 2a(p) and det 03C0(-1) = ~L/K(-1) = 1
because L is unramified over Il . Thus the assertion of (1.16) is that

Since 03BC|K  = 1K this follows from (1.17) and Proposition 3.

Case 2: L :1 M. In this case LM is a biquadratic extension of IF. Let P be
the third quadratic extension of K contained in LM. Since LM = LP and L
is unramified over IF the extension L M/ P is unramified and L M = P(uH/F).
Furthermore, the character v of (LM)  defined by

satisfies
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by (1.17). Therefore

by Proposition 3. In fact

because v(uH/F) = ~(u2H/F)[K:F]03BC(-u2H/F) = 1.
On the other hand,

Therefore

and

by (1.2) and (1.4). Formula (1.4) also tells us that

Replacing L by P everywhere in the preceding calculation, and then using the fact
that LM = PM, we deduce that

But

because indP/K1P = 1K ~ ~P/K and

(~L/K is unramified). Together, (1.21) and (1.22) give
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Combining this with (1.18), (1.19), and (1.20), we conclude that

Now a(7r) = d(M/K) (mod 2): this can be seen either by using the fact
that a(7r) = d(M/IF) + a(03BC) and MIK’ = lh or by noting that D(MIK) =
a(~M/K) = a(det 03C0) and quoting a theorem of Serre ([13], thm. 1, p. 173). Thus
the exponent d(M/K) in (1.23) can be replaced by a(7r), and (1.16) follows.

Completion of the proof

The final step of the proof depends on a general fact about conductors.

LEMMA . Let 7r be an irreducible representation of Gal( F / F) and cp a tamely
ramified character of Gal( F / F). If a(~ Q9 03C0) ~ a(03C0) then 7r is one-dimensional
and either 7r or cp 0 7r is unramified.

Proof. Let V be the space of 7r and I the inertia subgroup of Gal(F/F), and
let V1r(I) be the subspace of V consisting of vectors fixed by I. Then

a(03C0) = dim V - dim V1r(I) + higher-order terms,

where the ’higher-order terms’ depend only on the action of the higher ramification
groups on V. Since ~ is tame, the assumption that a(~ ~ 7r) ~ a(7r) means that

dim V(~~03C0)(I) ~ dim V03C0(I)

and hence in particular that

As I is normal in Gal(F/F) these spaces are invariant subspaces for the irre-
ducible representations ~ ~ 7r and 7r respectively. Consequently, one of the two
spaces coincides with {0} and the other with V. Hence one of rp 0 7r and 7r is
ramified and the other unramified. If 7r is unramified then 7r can be viewed as an
irreducible representation of the procyclic group Gal(F/F)/I, so that 7r is one-
dimensional. On the other hand, if yJ 0 7r is unramified, then 7r 1 l acts by scalar
multiplication by the character rp-III, whence 7r (I) is central in 7r(Gal(F / F)).
Since 7r(Gal(F / F))/7r(I) is cyclic it follows that 7r(Gal(F/F» is abelian and
again we conclude that 7r is one-dimensional.

The following proposition completes the proof of Theorem 1.
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PROPOSITION 5. If T is a representation of Gal( F / F) which is realizable over
R then

a(o, 0 T)/2 - a(T) - (7,1) + ~,~~ + (T, à) (mod 2).
Proof. Since the statement to be proved is additive in T, we may assume that T

is either irreducible or of the form 7r 0 7r* with 03C0 irreducible. In the latter case T is

symplectic and the required congruence follows from Theorem 1 (already proved
for symplectic representations) and Proposition 4. Henceforth we assume that r is
irreducible. In this case the statement to be proved is

a(03C3 ~ )/2 - a() ~ { (mod 2) if  ~ 1, ~, or  
(1.24)

0 (mod 2) otherwise.

Let 7r = res H/ FT. Then

so that

Since a(*) is invariant under restriction to the Galois group of an unramified

extension, we also have

Hence (1.24) is equivalent to

1 (mod2) if  ~ 1, ~, or  
(1.25)a(~ ~ 03C0) - a(03C0) ~ {0 (mod 2) otherwise. (1.25)

Now if  = 1 or  = ~ then 7r = IF and a(~ 0 03C0) - a(7r) == a(~) = 1, so that in
particular a(~ 0 7r) - a(03C0) == 1 (mod 2) as stated in (1.25). On the other hand, if
 ~  then

and since 0 is unramified we obtain

At this point we recall that ~2 ~ 1 H . Since (~|F )2 = 7î2 = 1 F and H X =
F  O H, it follows that ~2|O H is nontrivial, or in other words that ~2 is ramified.
Thus a(~2) = 1 and the right-hand side of (1.26) is -1. Hence (1.25) holds also
for 7 -- il.
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Next suppose that T is not isomorphic to 1, ~, or à. We claim that a(~ ~ 7r)
and a(03C0) are equal, whence congruent modulo 2. To see this, first consider the
case where 7r is irreducible. If a(~ ~ 7r) i a(03C0), then 7r is one-dimensional by
the lemma, and consequently T is also one-dimensional. Since T is realizable over
R but different from 1 and q, we deduce that r is a ramified quadratic character.
As H is unramified over F it follows that 7r is also a ramified quadratic character.
Since ~2|O H is nontrivial, as we saw a moment ago, it follows that 7r and ~03C0 are
both ramified, contradicting the lemma. Next suppose that 7r is reducible. Since 
is irreducible we can write 7r = K e 03BA’ with irreducible representations K and K’
such that T = indH/F03BA = indH/FK’. If a(~ 0 7r) ~ a(7r) then a«p 0 r,) 0 a(K)
or a«p 0 03BA’) ~ a(03BA’); say a(~ ~ 03BA) ~ a( K). Then rc is one-dimensional by the
lemma. If K is unramified we can write K = resH/Fl with an unramified character
t of Gal(F/F). Then T = indH / FK == ¿ EB ~, contradicting the irreducibility of r.
Hence is ramified. The lemma now implies that pK is unramified. Consequently,
ôK is also unramified, so that 03BA = resH/Fl for some unramified character t of

Gal(F/F). Then

Taking determinants, we obtain det T = ¿ 2 det â, and since T and ô, are both
realizable over R, we deduce that t 4 = 1. We now consider two possibilities:
t2 - 1 or t2 0 1. If c2 = 1 then t is the unramified quadratic character 7î of F x ,
whence reSII/Ft is trivial and the conclusion of (1.27) becomes T = , contrary to

hypothesis. On the other hand, if 2 ~ 1, then t is one of the two unramified quartic
characters of F , whence resH/F¿ is the unramified quadratic character 03B8 of HX.
Therefore (1.27) becomes

Since T is realizable over R whereas 03C3 is irreducible symplectic, we have a contra-
diction here too, and we conclude that our original hypothesis a( t.p 0 7r) ~ a(03C0)
was in error.

2. Complementary calculations

As before, F denotes a nonarchimedean local field of characteristic 0. If n is a

positive integer then sp(n) denotes the representation of W’(F/F) commonly
referred to as the ’special’ or ’Steinberg’ representation of dimension n.

PROPOSITION 6. Let r be a representation of Gal( F / F) with real-valued char-
acter. Then
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Proof. We may assume that T is either irreducible or of the form 7r (D 7r* with
7r irreducible and 7r ~ 7r*. Suppose first that T is irreducible. If T is ramified then
the corollary on p. 146 of [12] gives

This is the stated formula, because (1, T) = 0. If T is unramified then T is an

irreducible representation of the procyclic group Gal(F/F)/I, hence equal to a
character, hence equal to a character X with X2 = 1 (since tr 7r is real-valued). In
this case [12] gives

Again this agrees with the stated formula, for as X is unramified we have

~(-1) = 1.
The case where T = 7r ~ 7r* is similar. If 7r is ramified then

and if 7r is an unramified character X then

Recall that both characters of FI and representations of Gal(F/F) can be
viewed as representations of W( F / FY.
PROPOSITION 7. Let X be a character of F x andT a representation of Gal(F/F)
with real-valued character. Then

Proof. This follows from the calculation

and the formula for the determinant of a tensor product.

3. Elliptic curves

Now let F be an arbitrary local field of characteristic 0, archimedean or nonar-
chimedean, and put 03C9 = 1 * |[F:Qp], where Qp is the topological closure of Q in F
and |*| is the absolute value on F extending the standard absolute value on Qp.
In the nonarchimedean case 03C9 denotes a uniformizer of F and v is the standard
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valuation on F, normalized so that v(03C9) = 1. Thus and v are related by the
formula 03C9(x) = q-v(x) with

Furthermore, if q - -1 (mod e) with e = 3, 4, or 6 then we define a representation
Qe of Gal(F/F) by the formula

where H is the unramified quadratic extension of F and e is either of the tamely
ramified characters of H  of exact order e such that e|F  = 1. Such characters
exist because e divides the quantity q + 1 = ( q2 - 1)/(q - 1). Note also that e is
dihedral by Proposition 1. As before, we let q = xH/F ·

Let E be an elliptic curve over F, j its modular invariant, and A, c4, and
C6 the covariants associated to some generalized Weierstrass equation for E over
F. The representation of W’(F/F) canonically associated to E over F will be
denoted OÉIF or simply UEIF in cases where the distinction between YV’(F/F)
and W(F/F) is nonexistent or irrelevant. We define

and

More generally, given an arbitrary representation T of Gal(F/F) with real-valued
character, we put

Since ak/F 0 03C91/2 is symplectic and W(*) is invariant under twisting by real
powers of 03C9, the right-hand side of (3.1 ) is well-defined and equal to ±1.

THEOREM 2. (i) If p = oo then W(E/F, r) = (-1)dim .
(ii) If p  oo and v(j)  0 then

where X is the character of FX associated to the extension F(-c6) of F. (Thus X
is trivial if E has split multiplicative reduction, X = 17 if E has nonsplit multiplica-
tive reduction, and X is a ramified quadratic character of Fx if E has additive
reduction.)
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and

Then

where  = âe.
Proof. (i) If F = C then T is isomorphic to the direct sum of dim T copies of

the trivial character, so that

Identifying W(C/C) with C , we have 03C3E/C ~ ~ ~ ~, where ~ is the character
z 1--+ z-1. Hence

Together, (3.2) and (3.3) give the stated formula.
If F = R then T is the direct sum of dim T characters drawn from the set

{1R, sgn}, where sgn is the sign character. Also 03C3E/R = indC/R~ (induction from
W(eje) to W(C/R)). Since rese/Jae sgn = le we have 03C3E/R ~ sgn ~ 03C3E/R, and
consequently (3.2) holds with C replaced by R. As W(03C3E/R) = -1 in this case too
(cf. [11], p. 123), we obtain the stated formula once again.

(ii) In this case E has potential multiplicative reduction and 03C3’E/F ~ sp(2) ~
xw-l (cf. [12], p. 150, and [14], p. 276). Since twisting by 03C9-1 does not change
W(*),
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The stated formula now follows from Proposition 6, because

(iii) The argument is essentially a repetition of the proof of Proposition 2 of
[ 11 ] with the added ingredient of Theorem 1. _

Let Funr C F be the maximal unramified extension of F and L C F the

minimal extension of Funr over which E acquires good reduction ([16], p. 498,
Cor. 3). We shall view (1E/F as a faithful representation of the group

The structure of W(L/F) can be described as follows: If we write (O) for the
infinite cyclic group generated by an inverse Frobenius élément $ e W(L/F) and
A for the image in W(L/F) of the inertia subgroup Gal(F/Funr) of W(F/F),
then

(cf. [14], p. 312) and consequently

In particular, W( L / F) is abelian if and only if the semidirect product in (3.5) is
actually direct, and in any case the group

is an abelian subgroup of W(L/F) of index 2.
Suppose now that q - 1 (mod e). Then the field Il = F(03941/e) is abelian over

F. On the other hand, the valuation of A relative to a uniformizer of Il is divisible

by 12. Since p  5 it follows that E has good reduction over Il and therefore
also over Funr 1(, whence L C Funr I( by the minimality of L. Consequently
W(L/ F) is abelian, and since 03C3E/F is semisimple we have 03C3E/F ~ 03B6 ~ 03B6’ with
characters 03B6,03B6’ of F . In fact since aE/ F 0 03C91/2 has trivial déterminant we can
write 03C3E/F 0 03C91/2 ~ ~ 0 ~-1 with X = 03B6 ~ 03C91/2, and then Proposition 7 gives

Now ~|O F has order e, because the image of inertia in W(L/F) is 039B ~ Z/eZ.
Using this fact one checks that x(-1) = E, whence (3.6) gives the stated
formula.

Next suppose that e = 3, 4, or 6 and q - -1 (mod e). Then there is no totally
ramified abelian extension of F of degree e. Since the subfield L~03A6~ of L fixed
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by ~03A6~ is a totally ramified extension of F of degree e it follows that W(L/F) is
nonabelian. Hence the semidirect product in (3.4) is not direct, and consequently
03C3E/F is irreducibly induced from a character of the index-two abelian subgroup
W(L/H), say UEIF indH/Fç with 03B6 a character of H . Put 03C3 = G"E/F 0 wl/2.
Then u ~ indH/F~ with p = 03B6(03C91/2 o NH/F), and since Q is symplectic we have
rplFx == ri and rp2 :1 1 by part (i) of Proposition 1. Put  = 0p, where 0 is the
unramified quadratic character of H". Then part (ii) of Proposition 1 implies that
the representation  = indH/F is dihedral. In fact â = â e, because ~|O H (hence
also |O H) has order e. The stated formula for W(E/F,) now follows from
Theorem 1, because a case-by-case check shows that ~(uH/F) = -~.

In principle, Theorem 2 provides a complete determination of W(E,T) when
p  5. However, in certain situations there are alternative formulas for W(E, T)
which are easier to use and are also valid for p = 2 or 3:

PROPOSITION 8. (i) If p  oc and E has good reduction then W( E / F, r) ==
detT(-1 ).

(ii) If p  oo and T is unramified then

(iii) If T is symplectic then W (E / F, ) = 1.
Proof. (i) If E has good reduction over F then (TE/F 0 03C91/2 ~ ~ ~ ~-1 with

an unramified character x of W(F/F). Hence the assertion follows from Pro-
position 7.

(ii) Quite generally, if u’ is a representation of W’(F/F) and T an unramified
representation of Gal(F/F), then

where n(03C8F) is the largest n such that 1b F is trivial on 03C9-nOF. Taking 0" = 03C3’E/F
we obtain the stated formula, because

when tr T is real-valued.
In the absence of a convenient reference let us indicate how (3.7) can be

deduced from standard formulas in the literature. First of all, if 03C3’ = (03C3, 0) = 03C3
is a representation of the ordinary Weil group W (F/F), then (3.7) follows from
formula (3.4.6) of [18]. In the general case where 03C3’ = (03C3,N) with a nilpotent
endomorphism N, we have
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with

and

(notation as in [18] or [12]: O is an inverse Frobenius element of W(F / F), V is
the space of 03C3’, VN is the kernel of N, and VI and VN are the spaces of inertial
invariants of V and VN). It follows from the definitions that if T is unramified
then

where

On combining the special case 03C3’ = 03C3 of (3.7) with (3.8) and (3.9) we obtain (3.7)
in general, because

(cf. [18], p. 21, or [12], p. 139).
(iii) This follows from part (i) of Theorem 2 if p = oo, from part (ii) of Theorem

2 if p  ~ and v( j )  0, and from the remark after Proposition 2 if p  oo and
v( j) j 0 (take 03C3 = 03C3E/F ~ 03C91/2).

In the case where p = 2 or 3 and v(j)  0 we prove only a minimal result
sufficient for present applications. We begin with a lemma. Given an elliptic curve
E over F and a positive integer m, let E[m] denote the kemel of multiplication by
m on E(F).
LEMMA. Suppose that p = 2 or 3 and f (F/Qp) is odd. Let E be the elliptic
curve

and put

Then
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Proof. If p = 2 then the duplication formula ([17], p. 59) shows that E[3]
consists of the origin, the two points

and the six points

with all possible choices of 03C92/3 and 3. Since

where ( is a primitive cube root of unity, it follows that F(E[3]) = H(03C91/3).
Similarly, if p = 3 then E[4] consists of the origin, the three points of order 2
(namely (0, 0) and (03C9, 0) with both choices of 03C9), the eight points

with6= 1:f: V2, a fixed choice of V2, all four choices of w 1/4, and 03C9 = (w 1/4)2,
and the four points

with a fixed choice of J2, all four choices of (-w)I/4, and -03C9 = (-03C91/4)2.
In this case

where 03B6 is a primitive eighth root of unity. Therefore F(E[4]) = H(03C91/4).

Given A, B E F with 4A3 + 27 B2 f:- 0, let EA,B denote the elliptic curve

and

its modular invariant.
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PROPOSITION 9. Suppose that p = 2 or 3 and J(F/Qp) is odd. There is a
nonempty open subset U of F X F such that if(A, B) E U, then 4A3 + 27B2 ~ 0,
v(jA,B)  0, and

where 6 is 1 or -1 according as p is 2 or 3, and

Proof. Let e be as in the lemma and let U be the set of all pairs (A, B) e F x F
such that 4A3 + 27B 20 0, v(jA,B)  0, and F(EA,B[e]) = H (w 1 /1). Then U is
nonempty by the preceding lemma and open by Krasner’s Lemma, which implies
that the function ( A, B) 1-+ F(EA,B[e]) is locally constant (cf. the appendix to [8]).
We claim that if (A, B) e U then W(EA,B/F, r) is as stated. Put a = indH/F~,
where cp is either of the two tamely ramified characters of H" such that ~|F  =
~H/F and ~|O H has order e. Also write E = EA,B and j = jA,B. It suffices to
show that a E / F 0 W 1/2 - Q, for our claim then follows from Theorem 1 (one
must also check that (uH/F) = ~(uH/F) = 6). Now the assumption v(j)  0
implies that E has good reduction over the field L = F°°r(E[e]) and that L is
the minimal extension of F°nr with this property ([16], p. 498, Cor. 3). Since

F(E[e]) = H( wl/e) we have

Thus if A is the image of inertia in W(L/F) and 4l E W(L/F) is an inverse
Frobenius element then equations (3.4) and (3.5) in the proof of part (iii) of Theorem
2 continue to hold in the case at hand. Furthermore, the semidirect product in (3.5)
is not direct, because H(03C91/e)/F is nonabelian (F does not contain a primitive
eth root of unity). Hence arguing as before we find that UEIF 0 03C91/2 ~ indH/F~’
with a character ~’ of H  such that ~’|O H has order e. Since UEIF 0 w 1/2 is
symplectic it follows from Proposition 1 that ~’|F  = ~, whence ~’ = ~±1.
Therefore 03C3E/F ~ 03C91/2 ~ (7, proving our claim.

4. The global root number

Now we switch to a global setting. Henceforth F denotes a number field and Fv its
completion at a place v. Extending v to a place of F, we may identify the decom-
position group of v in Gal( F/ F) with Gal(Fv/Fv), and if T is a representation of
Gal( F/ F) then the restriction of T to Gal(Fv/Fv) will be denoted Tv. Thus given
T and v, and given an arbitrary irreducible representation p of Gal(Fv/Fv), we can
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speak of the multiplicity (p, v~ of p in Tv. We shall be interested in ~03C1, v~ for p
belonging to a certain finite set Rv defined as follows. If v is an infinite place of F
then Rv consists of all irreducible representations of Gal( F v / Fv), i.e. the trivial
character if Fv -- C and the trivial and sign characters if Fv = R. If v is a finite
place of F, then Rv consists of the trivial character, all quadratic characters, and
the dihedral representations â e, where e = 3, 4, or 6 and qv - -1 (mod e). Here
qv is the order of the residue class field of Fv, and we recall that

where H is the unramified quadratic extension of Fv and tpe is either of the tamely
ramified characters of H  of order e such that e|F v = 1. We note that for all v
the elements of Rv are realizable over Q.

Given an elliptic curve E over F, we define its root number W(E) by the
formula

where v runs over all places of F. More generally, if T is a representation of
Gal(F/F) with real-valued character, then we put

THEOREM 3. Let T be a representation ofGal( F / F) with real-valued character.

(i) Suppose thatforsome place v0 of F and some p E Rvo the multiplicity (p, Tvo)
is odd. Then there is an elliptic curve E over F such that W(E, ) = -1.

(ii) Conversely, suppose that for each place v of F at least one of the following
conditions is satisfied:
(a) (p, Tv) is even for every p E Rv, and v does not divide 2 or 3.
(b) Tv is symplectic.

Then W (E, T) = 1 for every elliptic curve E over F.

We have formulated the theorem in such a way that it includes the case where T

has odd dimension or nontrivial determinant as well as the case where T has even

dimension and trivial determinant. However, these two cases are fundamentally
different and the proof of the theorem will be divided accordingly.

The case of odd dimension or nontrivial determinant

To begin with T denotes an arbitrary representation of Gal(F/F) with real-valued
character. We identify det T with an idele class character of F by the global analogue
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of (1.1). Since det T has finite order - in fact order dividing 2 - we can also think
of det T as a primitive ray class character and evaluate it on nonzero integral ideals
of F relatively prime to 91(det 7), where n(*) denotes the conductor of *. In
particular, if E is an elliptic curve over F such that 9l(E) and 91( T) are relatively
prime, then det (n(E)) is defined, and

(03C9v denotes a uniformizer of Fv). Put

PROPOSITION 10. If n(E) and n() are relatively prime, then

Proof. This is a special case of a well-known formula, but we recall the proof.
Our hypothesis means that if v is a finite place of F then E has good reduction
over Fv or Tv is unramified. We claim that

in either case. Indeed if E/Fv has good reduction then W(E/Fv,v) = det Tv ( -1 )
by part (i) of Proposition 8, while a(E/Fv) = 0 and W(E/Fv) = 1 (for the latter
point, apply part (i) of Proposition 8 again with T equal to the trivial representation).
On the other hand, if Tv is unramified then det v(-1) = 1 and W(E/Fv, Tv ) =
det v(03C9v)a(E/Fv)W(E/Fv)dim  by part (ii) of Proposition 8. Therefore

using part (i) of Theorem 2. The result follows on noting that
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and that

(the idele class character det T is trivial on the principal idele -1).

If X is a quadratic idele class character of F we let EX denote the twist of E by
X. The following corollary is also well known:

COROLLARY. If ~ is a quadratic idele class character of F of conductor relatively
prime to n(E), then

Proof Observe that W(Ex) = W(E, X) and apply Proposition 10.

We shall prove Theorem 3 for representations of odd dimension or nontrivial
determinant by showing that the conclusion of part (i) of the theorem always holds
and the hypothesis of part (ii) never holds. The former objective is accomplished
by the following result, which contains Proposition A of the introduction.

PROPOSITION I l. If r has odd dimension or nontrivial determinant then there
exists an elliptic curve E over F with 91( E) relatively prime to 91( T) such that
W(E,) = -1.

Proof. Suppose first that dim T is odd. Choose an elliptic curve E over F
such that 91( E) is relatively prime to 91( T) and E has multiplicative reduction at
some prime. (This amounts to choosing a generalized Weierstrass equation over
OF which satisfies appropriate congruences at finitely many primes.) Since E has
multiplicative reduction at some place, M(E) is not the square of an ideal of F,
whence there exists a quadratic idele class character X of F which is unramified at
infinity and of conductor relatively prime to 91( E)91( T) and for which ~(n(E)) =
-1. The corollary implies that either W(E) or W(EX) is -1. Since 91(E) and
91( EX) differ by the square of an ideal (in fact 91( EX) = 91( E)91(X)2), Proposition
10 implies that either W(E, T) or W(Ex, T) is -1.

Henceforth we assume that dim T is even. Then det T is nontrivial. Suppose in
addition that

and choose an elliptic curve E over F such that 91( E) is relatively prime to
6ÇYt( T) and E has additive reduction at all places of bad reduction. (Take any E
such that 91(E) is relatively prime to 6SJ’t(T) and then replace E by Ex, where



339

x is a quadratic idele class character which is ramified at the prime ideals where
E has multiplicative reduction and unramified at all other prime ideals dividing
6n()n(E).) Then n(E) is the square of an ideal, whence W(E,) = -1 by
Proposition 10.

Finally, suppose that det T is nontrivial but that

Choose a prime ideal p not dividing 6n() such that det-r(p) = -1, and then
choose an elliptic curve E such that 9l(E) is relatively prime to 6SJ’t(T) and has
multiplicative reduction at p. After replacing E by a quadratic twist we may assume
that p is the only place where E has multiplicative reduction. Then IR(E) equals p
times the square of an ideal, whence W(E, ) = -1 by Proposition 10.

To complete the proof of Theorem 3 in the case at hand it suffices to show
that if T has odd dimension or nontrivial determinant then there is a place v of
F for which neither condition (a) nor condition (b) of part (ii) of the theorem
is satisfied. This is a consequence of the following lemma, for if K is a finite
Galois extension of F such that r factors through Gal(K/F), then every cyclic
subgroup of Gal(K/F) is a decomposition group at infinitely many primes
(Chebotarev).

If T is a representation of a group G and D is a subgroup of G then D denotes
the restriction of T to D.

LEMMA . Let G be a finite group and T a representation of G with real-valued
character. If T has odd dimension or nontrivial determinant then there is a cyclic
subgroup D of G and a character X of D with x2 = 1 such that the following
assertions hold:

Proof. If dim T is odd take D to be the trivial group and X the trivial character.
Otherwise choose an element g e G such that det (g) = -1, and let D be the
cyclic subgroup of even order generated by g. Then TD is a direct sum of characters
of D, and since each character of order  3 appears with the same multiplicty as
its complex conjugate, we have

where X is the unique quadratic character of D. Since det TD is nontrivial we
conclude that (X, 7D) is odd, and this conclusion implies in turn that TD is not

symplectic.
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The case of even dimension and trivial determinant

In contrast to the case just treated, now it is only the primes dividing both 91( E)
and 91(-F) which contribute to W(E, T):

PROPOSITION 12. Suppose that T has even dimension and trivial determinant,
and let E be an elliptic curve over F and v a place of F. If W(E/Fv, v) = -1
then v divides both n(E) and n().

Proof. If v is an infinite place of F then W(E/Fv) = 1 by part (i) of Theorem
2. If v is a finite place of F where E has good reduction or T is unramified, then
W(E / Fv, Tv) = 1 by parts (i) and (ii) of Proposition 8.

Now fix a representation T of Gal(F/F) of even dimension and trivial determi-
nant and suppose that vo is a place of F such that (p, 7v,) is odd for some p E Rvo.
Then vo is finite: for if Fv0 ~ C then Rvo == {1} and

while if Fv0 = R then Rv0 = {1, sgn} and

We will produce an elliptic curve E over F with good reduction at all prime
divisors of M(7) other than vo such that W( E / Fvo, v0) = -1. Then W(E, 7)
W(E/Fv0, v0) = -1 by Proposition 12, proving part (i) of Theorem 3.

The choice of E proceeds by a consideration of cases. Suppose first that (x, Tvo)
is odd for some character X of F v0 such that X 2 = 1. Let E be an elliptic curve
over F with potential multiplicative reduction at vo and good reduction at all prime
divisors of n() different from vo. Also let 03B6 be the character of F ô corresponding
to the extension Fv0(-c6)/Fv0, where c6 is the weight-six covariant of some
generalized Weierstrass equation for E over F. After twisting E by a quadratic
idele class character of F with vo-component X03B6-1, we may assume that 03B6 = x.
Then W(E, ) = W(E/Fv0, v0) = -1 by part (ii) of Theorem 2. 

X2Next suppose that (X, v0~ is even for all characters X of F v0 such that X2 = 1.
Then there exists  = e ~ Rvo (with e = 3, 4, or 6) such that ~, 7vo) is odd.
Assume first that vo does not divide 2 or 3, and let E be an elliptic curve over F
such that v0(j)  0 and v0(0394) = 12/ e (notation as in Theorem 2). For example,
take E to be the curve y2 - x3 + Ax + B, where vo ( A) = 1 and vo ( B ) = 2 if e = 4
and v0(A) = 2 and v0(B) = 6/ e if e = 3 or 6. Imposing appropriate congruences
at finitely many other places, we may assume that E has good reduction at all
prime divisors of M(7) other than vo. Then W(E, T) = W(E/Fv0, v0) = -1 by
part (iii) of Theorem 2. If vo divides 2 or 3 then we repeat the argument just given
but we appeal to Proposition 9 rather than to part (iii) of Theorem 2.
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This completes the proof of part (i) of Theorem 3 for representations of even
dimension and trivial determinant. As for part (ii) of Theorem 3, observe that if
condition (a) holds for a given place v then W(E/Fv,v) = 1 by Theorem 2,
while if condition (b) holds then W(E/Fv,v) = 1 by part (iii) of Proposition 8.
Hence under the hypothesis of part (ii) of Theorem 3 we have W(E/Fv,v) = 1
for every v, and therefore W ( E, T ) = 1.

5. Examples

We say that a finite group D is a Galois group over Qp if D is isomorphic to
Gal(K/Qp) for some Galois extension Il of Qp, or equivalently, if there is a
surjective homomorphism Gal(Qp/Qp) ~ D. Here ’homomorphism’ means ’con-
tinuous homomorphism’, where D is given the discrete topology.

Proof of Proposition B

Proposition B of the introduction is a consequence of Theorem 3 and the following
proposition. Recall that if T is a representation of a group G and D a subgroup of
G then D denotes the restriction of T to D.

PROPOSITION 13. Let T be the 4-dimensional irreducible representation of A5
and D a subgroup of A5.

(i) If D is isomorphic to A4, S3, or (?l/2?l)2, then ~1, D~ = 1.
(ii) Suppose that D is a Galois group over Qp for some p  oc but is not

isomorphic to one of the groups mentioned in (i). Then D is either cyclic or
isomorphic to D5. Furthermore:
(a) If D ~ D5 then 7D is the direct sum of the two faithful irreducible

representations of D, and p  5.
(b) If D is cyclic then 7D is symplectic.

Proof. (i) The following three assertions comprise a more precise version of
the statement to be proved:

(1) If D ~ A4 then D ~ 1 EB 7r, where 7r is the 3-dimensional irreducible

representation of D.
(2) If D ~ S3 then D ~ 1 ~ ~ ~ 03C3 where o, is the 2-dimensional irreducible

representation and E the quadratic character of D.
(3) If D EÉ (Z/2Z)2 then TD EÉ 1 e 61 1 e b2 e b3 , where the 03B4i are the three

quadratic characters of D.

Assertion (1) is a consequence of the fact that TD is faithful and det 7D real-valued.
Then (3) follows because every subgroup of A5 which is isomorphic to (Z/2Z)2 is
contained in a subgroup isomorphic to A4. As for (2), if D ~ S3 then the fact that
TD is faithful and det 7D trivial implies that 03C4D  03C3 ~ ~ EB 1 or 7D u e 03C3. To

exclude the latter possibility, observe that the restriction of 7D to the subgroup of
order 3 in D contains the trivial representation (this follows from (1)).
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(ii) Since A5 is not solvable it is not itself a Galois group over Qp. Furthermore,
any maximal proper subgroup of A5 is isomorphic to A4, D5, or S3. Hence if D
is not isomorphic to one of the groups mentioned in (i) then D is either cyclic or
isomorphic to D5.

(a) If D ~ D5 then 7D is the direct sum of the two 2-dimensional irreducible
representations of D: indeed at least one occurs because TD is faithful, and then
both occur because tr 7 is rational-valued.

Since 5 does not divide 22 - 1 or 32 - 1, no quadratic extension of Q2 or Q3
has a ramified cyclic extension of degree 5. It follows that D5 is not a Galois group
over Q2 or Q3.

(b) If D is cyclic then 03C4D is symplectic by the following lemma.

LEMMA . Let D be a finite group and r a representation of D with real-valued
character, even dimension, and trivial determinant. If D is cyclic or of odd order
then 7 is symplectic.

Proof. Suppose first that D has odd order. If 03C0 is a nontrivial irreducible repre-
sentation of D then 7r ~ 7r*, but 7r and 7r* have the same multiplicity in T because
tr 7 is real-valued. Hence T is a direct sum of representations of the form 7r e 7r*
plus some number of copies of the trivial representation. Since dim T is even the
multiplicity of the trivial representation is also even, whence T is symplectic. A
similar argument applies if D is cyclic of even order: 7 is a direct sum of represen-
tations of the form X (D X, where X is a character of order  3, plus some number of
copies of the trivial character and of the unique quadratic character E. Since det r is
trivial the multiplicity of c is even, and then the multiplicity of the trivial character
is also even because dim T is even.

Buhler’s field of conductor 800

Let Il be the splitting field over Q of the polynomial x5 + 10x3 - 10x2 + 35x - 18.
Then Gal(K/Q) ~ A5, and the ramified primes are 2 and 5 with decomposition
groups isomorphic to A4 and Z/52 respectively ([1], p. 47). Let T be the 4-
dimensional irreducible representation of Gal(K/Q) and E any elliptic curve over
Q with split multiplicative reduction at 2. By Proposition 12,

W(E, 7) = W(E/Q2, 2)W(E/Q5, TS).
On the other hand, part (i) of Proposition 13 and part (ii) of Theorem 2 imply
that W(E/Q2,2) = -1. while part (ii)(b) of Proposition 13 and part (iii) of
Proposition 8 imply that W(E/Q5,5) = 1. Therefore W(E, ) = -1.
Proof of Proposition C

Proposition C follows from Theorem 3 and the next result.

PROPOSITION 14. (1) Let T = 7(6) be the 6-dimensional irreducible representa-
tion of PSL(2, F7) and D a subgroup of PSL(2, IF7).
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(i) If D is isomorphic to S4 or A4 then (1, TD) = 1; if D is isomorphic to
(Z /2Z)2 then (1, D~ = 3; and if D is isomorphic to D4 then there is a quadratic
character X of D such that (X, D~ = 1.

(ii) If D is a Galois group over Qp for some p  oo but is not isomorphic to one
of the groups mentioned in (i) then 7D is symplectic.

(2) Let T = T(8) be the 8-dimensional irreducible representation of PSL(2, IF7)
and D a subgroup of PSL(2, IF7).

(i) If D is isomorphic to D4 or S3 then ~1, D~ = 1. If D is isomorphic to S4
and p is the 2-dimensional irreducible representation of D then (p, TD) = 1, and

if t : Gal(Qp/Qp) ~ D is any surjective homomorphism then p = 2 and p o t
coincides with the representation Q3 of Gal(Q2/Q2).

(ii) If D is a Galois group over Qpfor some p  oo but is not isomorphic to one
of the groups mentioned in (i), then TD is symplectic., 

Proof. (1) Before embarking on the verification of statements (i) and (ii) it is
helpful to note the following facts:
(A) If C is a subgroup of PSL(2, IF7) of order 2 then the trivial character of C

occurs in TC with multiplicity 4 and the nontrivial character with multiplicity
2.

(B) If C is a subgroup of PSL(2, IF7) of order 3 then all three characters of C occur
in 7c with multiplicity 2.

(C) Let P ~ D4 be a 2-Sylow subgroup of S4 and K the 2-dimensional irreducible
representation of P. Let c be the quadratic character of S4. Then fp f- det K.

The first two assertions can be read from a character table (see e.g. [9], p. 263). For
the third, observe thatc is the sign character, hence nontrivial on 4-cycles.

(i) The statement to be proved is contained in the following more detailed
assertions:

(1) If D ~ S4 then D ~ 1 E9 p E9 if, where p is the 2-dimensional irreducible

representation of D and if the 3-dimensional irreducible representation with
nontrivial determinant.

(2) If D -’ A4 then 03C4D ~ 1 ~ 03B6 ~ 03B6 ~ 7r, where 03B6 is either of the cubic characters
of D and 7r the 3-dimensional irreducible representation of D.

(3) If D ~ (Z/2Z)2 then 7D 1 E9 1 E9 1 E9 03B41 ~ 03B42 ~ b3, where the bi are the
distinct quadratic characters of D.

(4) If D ~ D4 then 7D 1 E9 1 ~ ~1 ~ ~2 ~ r, where r, is the 2-dimensional
irreducible representation of D and ~1 and X2 are the two quadratic characters
of D distinct from det Ii.

First suppose that D ~ (Z/2Z)2. Then TD coincides with 1 ~ 1 ~ 1 ~ 03B41 ~ 03B42 ~ 03B43
on each two-element subgroup of D, by (A). Since D is the union of its two-element
subgroups, (3) follows. Next suppose that D ~ A4. Since 7D is faithful, 7r occurs
in TD, whence either 7D 7r ~ 03B6 ~ 03B6 ~ 1 or 7D 7r EB 1 E9 1 E9 1 or D ~ 7r ~ 7r.
The second and third possibilities are inconsistent with (B) and (3) respectively,
and we obtain (2). Tuming to (1), suppose that D ~ S4, and let c = det  = det p
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be the quadratic character of D. Using the fact that det TD is trivial, we deduce
from (2) that D ~  e p e 1 or TD 13f ( 0 E) e p e E. To exclude the latter
possibility, choose an involution g E D such that c(g) = - 1, and observe that
(g) and p(g) have eigenvalues 1, 1, -1 and 1, -1 respectively. We see that the
hypothesis D ~ ( 0 E) e p ~ ~ is inconsistent with (A), and (1) follows. Finally,
if D ~ D4 then D is contained in a subgroup D’ of PSL(2, F7) isomorphic to S4,
and if p is the 2-dimensional irreducible representation of D’ then pD is the direct
sum of the trivial and a nontrivial character of D. Also r, occurs in 7D because TD
is faithful. Hence (4) follows by a straightforward argument from (1) and (C).

(ii) If D is a solvable subgroup of PSL(2, F7) and is not isomorphic to one of the
groups mentioned in (i) then D is either cyclic, or isomorphic to Z/7S x Z/3Z, or
isomorphic to S3. In the first two cases 7D is symplectic by the previous lemma. If
D ~ S3 then we deduce from (B) and the triviality of det D that D ~ 03BB~03BB~03B4~03B4,
where A is the two-dimensional irreducible representation of D and b a character
of D with 62 - 1 (actually b - 1 by (A)). Therefore TD is symplectic in this case
as well.

(2) Again it is helpful to make some preliminary observations:

(A) Let 03B8 be either of the 3-dimensional irreducible representations of PSL(2, F7).
Then 0 0 03B8* ~ 1 ? T.

(B) Let 7r be the 3-dimensional irreducible representation of A4. Then 7r 0 7r ~
03C0 ~ 03C0 ~ 03B6 ~ 03B6 ~ 1, where 03B6 is either of the cubic characters of A4.

(C) Let and  be the 3-dimensional irreducible representations of S4 with trivial
and nontrivial determinants respectively. Then  ~  ~  ~  ~ 03C1 ~ 1, where
p is the 2-dimensional irreducible representation of S4.

To verify (A) note that ~1,03B8~03B8*~ = 1 by Schur’s Lemma. Since the dimensions
of the nontrivial irreducible representations of PSL(2, IF7) different from Tare 3,
6, and 7, a comparison of dimensions gives 03B8 ~ 03B8* ~ 1 3 T. A similar argument
applies to (B): we have ~1, 03C0 ~ 03C0~ = ~1, 03C0 ~ 7r*) = 1 by Schur’s Lemma, whence
7r 0 03C0  1 e (*) e (**) with (*) equal to a direct sum of copies of7r and (**) equal
to a direct sum of copies of 03B6 ~ 03B6. Since 7r 0 7r has odd dimension, we see that ( * )
is actually a direct sum of copies of 7r E9 7r: furthermore, ( * ) is not the empty direct
sum because a tensor product of faithful representations of a group with trivial
center is faithful. Comparing dimensions, we conclude that (*) = 7r e 7r, and (B)
follows. Finally, (C) follows from (B) and Schur’s Lemma.

(i) If D is isomorphic to S3 or D4 then 0D éÉ p EB det Il, where y is the 2-
dimensional irreducible representation of D. In particular, 0D is the direct sum
of two inequivalent irreducible representations. Therefore (1, (0 0 0*)D) = 2
by Schur’s Lemma, whence (A) gives ~1, D~ = ~1, (03B8 0 03B8*)D~ - ~1,1~ = 1.

Next suppose that D ~ S4. Then OD coincides with the 3-dimensional irreducible
representation of D with trivial determinant. Hence (p, D~ = 1 by (A) and (C).
Furthermore, if P  I  D is a tower of normal subgroups such that D/I and I/P
are cyclic and P is a p-group then I is isomorphic to A4 and P is the 2-Sylow
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subgroup of I. Hence if t : Gal(Qp/Qp) ~ D is a surjective homomorphism then
p = 2 and 03C1 o  = 3.

(ii) If D is cyclic or of odd order then 7D is symplectic by the lemma. If
D ~ A4 then BD is the 3-dimensional irreducible representation of D, whence
TD is symplectic by (A) and (B). Finally, if D ~ (Z/2Z)2 then 0D is the direct
sum of the three nontrivial characters of D, so that the trivial character of D has
multiplicity 3 in (03B8 ~ 0*)D and each nontrivial character multiplicity 2. Hence TD
is symplectic by (A).

The example of Trinks

Let us retum to the example of Trinks mentioned in the introduction: Gal(K/Q)
~ PSL(2,F7) with li equal to the splitting field of X7 7x + 3. We claim that
of the groups S4, A4, D4, (Z/2Z)2, and S3, only S3 occurs as a decomposition
subgroup of Gal(K/Q). Hence Proposition C implies that there is an elliptic curve
E over Q for which W(E, (8)) = -1 but none for which W (E, (6)) = -1.

Since x7 - 7x + 3 has discriminant 3878, the decomposition subgroups of
Gal (K/Q) at a prime p ~ 3, 7 are cyclic. Furthermore, since (x+4)7 - 7 (x +4) + 3
is an Eisenstein polynomial at 7, the decomposition subgroups at 7 have order
divisible by 7. Hence to verify our claim it suffices to see that the decomposition
subgroups at 3 are isomorphic to S3. Now the factorization

over Z/9Z lifts to a factorization over Z3, because for A = 23[z] we have

and

Furthermore, if f(x) is a lift of xl - 3X2 - 4 then f(x + 1) is an Eisenstein

polynomial and

disc( f ) ~ 33 (mod 34),

whence the splitting field of f over Q3 is a totally ramified extension of Q3 with
Galois group S3. Thus if D is a decomposition subgroup of Gal(K/Q) at 3 then D
is isomorphic to a subgroup of PSL(2, IF7) having S3 as quotient group. Any such
group is isomorphic to S4 or to S3 itself. Since S4 is not a Galois group over Q3,
we conclude that D is isomorphic to S3, as claimed.

Suppose now that E is any elliptic curve over Q with split multiplicative
reduction at 3. Then W(E/Q3,(8)3) = -1 by part 2(i) of Proposition 14 and
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part (ii) of Theorem 2, while W(E/Q7,(8)7) = 1 by part 2(ii) of Proposition 14
and part (iii) of Proposition 8. Hence Proposition 12 gives

Proof of Proposition D

Finally, Theorem 3 applied to the following result yields Proposition D:

PROPOSITION 15. Let G = Dq X Dr X Ds X Dt with distinct primes q, r, s, t  5,
and let T be an irreducible 16-dimensional representation of G. Let D be a subgroup
of G, and assume that D is a Galois group over Qp for some p  00.

(a) Suppose that m divides qrst and m &#x3E; 1. If D ~ Dm or D ~ Dm X (Z/2Z)
then TD is a direct sum of 2-dimensional irreducible representations, and p  5.

Next suppose that mn divides qrst and m, n &#x3E; 1. If D ~ Dm X Dn then TD is
a direct sum of 4-dimensional irreducible representations, and again p  5.

(b) If D is not isomorphic to one of the groups mentioned in (a), then TD is
symplectic.

Proof. We merely sketch the argument, leaving the details as an exercise. The
key point is that neither (Z/2Z)3 nor any group admitting (Z/2Z)3 as quotient
is a Galois group over Qp for p  3, while neither (Z/2Z)4 nor any Dm (m an
odd integer  5) is a Galois group over Q2. Using these facts one finds that D is
isomorphic to a group on the following list:

(1) Dm, where m &#x3E; 1 and m|qrst.
(2) Dm X (Z/2Z), where m &#x3E; 1, m|qrst, and m :1 qrst.
(3) Dm X Dn, where m, n &#x3E; 1 and mn 1 qrst.
(4) (Z/2Z)v, where 0  v  3.
(5) H X (Z/~Z), where H is as in (1), (2), (3), or (4), R &#x3E; 1, and either lm 1 qrst (if
H is as in (1) or (2)) or Imn 1 qrst (if H is as in (3)) or 11 qrst and the number
of primes dividing ~ is at most 4 - v (if H is as in (4)).

Cases (1), (2), and (3) are the ones mentioned in part (a) of the proposition, and
the stated decomposition of TD follows from the fact that T is the exterior tensor
product of irreducible 2-dimensional representations of the factors Dq, Dr, DS, and
Dt. Cases (4) and (5) correspond to part (b) of the proposition. In case (5), TD is
symplectic because it is the exterior tensor product of an orthogonal representation
of H and a symplectic representation of 7l /~Z (namely a representation of the form
x EB X where X is a character of 7l / R7l). In case (4) the key point is that v  4. Indeed
if P ~ (Z/2Z)4 is any 2-Sylow subgroup of G then Tp contains each character of
P with multiplicity one. Hence if D ~ (Z/2Z)v then TD contains each character
of D with multiplicity 24-v, and for v  3 we conclude that TD is symplectic.
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6. The Schur index

As before, F denotes a number field. If T is an irreducible representation of
Gal(F/F) then T factors through a finite quotient of Gal(F/F) and therefore its
Schur index m(T) is defined.

PROPOSITION 16. Let T be an irreducible representation of Gal(F/F) with real-
valued character. Assume that Tv is symplectic whenever v is a place of F dividing
2 or 3. If m() = 2 then W(E, ) = 1 for every elliptic curve E over F.

Proof. Let v be a place of F not dividing 2 or 3. It suffices to verify that Tv
satisfies condition (a) in part (ii) of Theorem 3. Suppose then that p e Rv is given,
and choose a finite Galois extension Il of F such that r factors through the group
G = Gal(Il /F) and p factors through a decomposition subgroup D of G at v.
Identify Tv with TD and write pG for the representation of G obtained by inducing
p from D. Since p is realizable over Q so is pG, and consequently m(r) divides
(pG, T). Hence if m(T) = 2 then (p, TD) is even by Frobenius reciprocity.

To deduce Proposition E of the introduction we use:

LEMMA . Let G be a finite group, D an abelian subgroup, and T an irreducible
representation of G with real-valued character. If m(T) = 2 then TD is symplectic.

Proof. We must check that if X is a character of D such that x2 = 1, then

(X, TD) is even. This follows from Frobenius reciprocity, because m(T) divides
~~G,~.

Since it is not yet known whether an arbitrary finite simple group can be
realized as a Galois group over Q, it may be premature to inquire too deeply about
the corresponding irreducible representations. Nevertheless, in light of Theorem 3
the following question seems natural:

Question. Given a nonabelian finite simple group G and an irreducible even-
dimensional representation T of G with real-valued character and Schur index 1,
does there exist a subgroup D of G and a one-dimensional character X of D with
X2 = 1 such that D is a Galois group over Qp for some p  oo and (X, D~ is
odd?

Of course Proposition D shows that for an arbitrary finite group the answer is
negative in general, even if one formulates the question in such a way as to allow
the representations c7e.

7. A final remark

In conclusion, we point out that just as the inverse problem of Galois theory
becomes easy if in place of the base field Q we allow number fields of arbitrarily
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large degree, so also the realization problem for Galois representations becomes
easy if in place of elliptic curves we allow abelian varieties of arbitrarily large
dimension:

PROPOSITION 17. Let K be a finite Galois extension of Q and r any represen-
tation of Gal(K/Q). Then there exists an abelian variety A over Q such that T is
equivalent to a subrepresentation of the natural representation of Gal(K/Q) on
C ~Z A(K).

Proof. Choose an elliptic curve E over Q with positive Mordell-Weil rank,
view E as an elliptic curve over Il, and put

(restriction of scalars from li down to Q). It will suffice to show that the regular
representation of Gal(K/Q) occurs as a subrepresentation of C 0 A(K), for then
T occurs as a subrepresentation of C 0 Am(K) for some m.

Put G = Gal(K/Q) and write n for the cardinality of G. We make the identifi-
cation

writing elements of En(Q) as formal sums

with eg E E(Q). Given g e G, let g denote any extension of g to an automorphism
of Q. According to the definition of restriction of scalars ([19], p. 5), there is a map
B : A - E defined over Il such that the associated map 0 : A - En given on
Q-points by

is a K-isomorphism.
Define an action of G on En(K) by the formula

Note that this is not the natural action of G on En(K) when En is regarded as a
variety over Q. For a E A(I(), (7.1) and (7.2) give
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It follows that A(K) and En(K) are isomorphic as G-modules. But En(K) con-
tains the G-submodule En(Q), and as a G-module, C 0 En(Q) is isomorphic to r
copies of the regular representation, where r &#x3E; 0 is the rank of E(Q) (cf. (72)).
This completes the proof.
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