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1. Introduction and notation

1.1.

Let Il be a local field which is complete with respect to a discrete valuation v.
Considering a finite morphism 0: V - V on a smooth, projective variety V over
K, Call and Silverman introduced the notion of weak Néron model associated to
the pair (V/K, 1 ) in order to study the canonical local heights defined in [6]. They
raised the question of whether or not a weak Néron model always exists. This
paper is the attempt to answer their question. It tums out that the answer is closely
related to the theory of dynamical systems associated with the given morphism,
over non-archimedean fields.

First, let us fix the following data which will be used throughout this paper:
K a local field, complete with respect to a discrete valuation v;

11, the absolute value induced by v;
Ov the ring of integers = {x e K : v(x)  0};
M the maximal ideal of Ov = {x E A : v(x) &#x3E; 01;
7r a uniformizer of M ;
k the residue field of Ov = Ov/M. We will assume the residue field

is algebraically closed;
Il an algebraic closure of K;
Cv the completion of K with respect to an extension of v.

For the convenience of readers, we repeat the definition of weak Néron model
given in [6]. There is an alternative notion of weak Néron model, see [2].

Let S = Spec(Ov) and V/ K be a smooth variety over K. Let 0 : V/K ~ V/ K
be a finite morphism over K. We will write (VI K, 1) to denote a given morphism
on a variety described as above.
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DEFINITION. An ,S-scheme V is called a weak Néron model of (V/K, ~) if it is
smooth, separated and of finite type over S and if there exists a finite morphism
03A6 : V - V over S so that the following axioms hold :

(1) The generic fibre VK of V is isomorphic to V over Il.
(2) V(K) ~ V(Ov).
(3) The restriction of the morphism (1) to the generic fibre of V, denoted 03A6K, is ~.

EXAMPLE 1.1. If V is an abelian variety and 0 is an endomorphism of V with
finite kemel, then (V/li , ~) has a weak Néron model, namely, the Néron model of
the abelian variety V. Of course, a Néron model satisfies the property called the
universal mapping property which is stronger than axiom (3) in our definition.

EXAMPLE 1.2. Another example of weak Néron model which does not come
from Néron model can be given as follows:

Let O(z) = j(z)jg(z), where f (z) and g(z) are two polynomials in the poly-
nomial ring K[z]. If f(z) and g(z) are coprime, then it is clear that O(z) defines
a morphism over Il from Pl to itself. Moreover, by multiplying elements in Ov,
one can assume both f(z) and g(z) are in Ov[zJ. If the resultant of f (z) and g(z)
is a unit of Ov, then O(z) extends to a finite morphism over S from Pl to itself .
Therefore P1/S gives a weak Néron model of the pair (P1/K, 0).

We prove our main results in Section 3. The first result (Theorem 3.1) is to
give a necessary condition for the existence of a weak Néron model. We consider
the rational n-periodic points p E V(K). By n-periodic point we mean a point
p E V (I?) such that on(p) = p where on denotes the nth iterate of 0. If (V/K, ~)
has a weak Néron model, then it’s necessary that the linear map (on)* on the cotan-
gent space at the point p has all its eigenvalues integral over Ov. Since there exist
morphisms on Pl having repelling periodic points (see the remark in Section 3.1),
one can not expect a weak Néron model always to exist. Therefore we consider the
case that (V/K, ~) does not have a weak Néron model and proceed as follows:

Assume that (V/K, çl) does not have a weak Néron model and let X be an S-
scheme with generic fibre V. We assume that every A’-rational point of V extends
to a unique section on the smooth locus (X))smooth of X. This is possible by the
process of smoothening, see [2, Chapter 3]. The map 0 extends at least to an
S-rational map

on (X )Smooth. By blowing up some closed subscheme of the special fibre of X , ~
extends to an S-morphism from another scheme X’ to X. We test 0 on the new
scheme X’. Again, 0 extends to an S-rational map from (X’)smooth to itself. We
continue this process inductively. We see that either 0 extends to an S-morphism
Oç on some scheme (Xz)smooth or one needs to repeat the process of blowing-up
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infinitely many times and gets a family of schemes {Xi}~i=0 and a family of S-
rational maps {~i}~i=0, where ~i is the S-rational maps on Xi represented by ~.
In the first case, we let Xj = Xj+1 = ··· for j large enough. We define the set
F~(K) consisting of p E V(K) such that the section P extending p is contained in
the domain of ~m on schemes Xm for m large enough. We have the result that the
family of morphisms {~i}~i=0 is equicontinuous on the set F~(K) (Proposition 3.2).
Here, we consider V as a rigid analytic space and 0 as an analytic map. In the case
that V is a smooth projective curve, F~(K) is exactly the set where {~i}~i=0 is
equicontinuous (Theorem 3.3).

It is Theorem 3.3 that relates the problem of weak Néron models to the theory of
dynamical systems over a non-archimedean field. In Section 4, we restrict ourselves
to the case that V = pl and give some applications to p-adic dynamical systems.
First, we consider the dual graphs of the special fibres of the family of schemes
{Xi}~i=0. Since the generic fibre of X i is P1, the dual graph of its special fibre
is a finite tree, denoted by TfjJ,i. Corresponding to the family of schemes {Xi}~i=0
is a family of finite trees {T~,i}~i=0. The family of trees {T~,i}~i=0 becomes a
direct system over non-negative integers via the injective maps 03BCij : T~,i  T~,j
corresponding to the strict transformation of the blowing-ups Pij : Xj ~ Xi for
i  j. Let T~,K denote the direct limit of {T~,i}~i=0. As an equivalent statement
of Theorem 3.3, we show that its boundary ~T~,K corresponds to the complement
of F~(K) which we denote by J~(K) (Theorem 4.3). Borrowing the terminology
from the theory of dynamical systems, we call F~(K) the rational Fatou set and
J~(K) the rational Julia set.

Theorem 4.3 can be used to study the property of the rational Julia set of the
dynamical systems over a non-archimedean field. We are able to show that the
rational Julia set is compact in P1(K) in the case that 0 is a polynomial map on
pl (Theorem 4.8). Note that in our case the result does not follow automatically,
since P1(K) is not compact in our case.

In the last paragraph, we give two examples to illustrate the general theory. The
first one is a well known example in complex dynamical systems which gives that
the Julia set is the whole space P1(C). However, in our situation, we show that
the same map has empty Julia set when one consider the dynamical systems being
over a non-archimedean field. In the second example, we give a map with Julia
set contained in the integers OF of some finite extension F over Qp. Moreover,
we show the dynamics of 0 on J fjJ (F) is symbolic dynamics. For the definition of
symbolic dynamics, see [7] or Example 4.11.

1.2.

We will fix V to be a smooth, projective variety over K and the pair (V/K, ~)
is as described above. For the convenience of discussion, we will say a smooth
scheme has the e.e.p. (abbreviation for extending the étale points) property if it
satisfies axioms (1) and (2) in the definition of weak Néron model. As pointed out
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in [4], a flat scheme over the spectrum of a discrete valuation ring is determined by
its generic fibre and its formal completion along its special fibre. We will follow
this principle to study the weak Néron model and describe the obstruction to its
existence in terms of the rigid analytic structure on the analytification of the variety
V.

In the following, we use letters X, Y, Z, ... , to denote S-schemes and

 ,  , ,..., to denote their formal completion along their special fibres. We
will be studying the formal analytic varieties associated to these formal schemes.
We denote the formal analytic varieties associated to these formal schemes by
K, K , K , .... For the definition and detailed discussion of formal analytic
varieties and their relationship with formal schemes, see [3], [4] and [5].

There is a natural chordal distance (v-adic distance) function defined on the
projective n-space Pn. We use Il , 11, to denote the chordal distance on Pn. If V
is embedded into Pn, we use Il , ~v to denote the chordal distance on V induced
by the embedding. We will use the following notations:

Let X be a scheme of finite type over the base S and let Yk be a closed subscheme
of the special fibre of X. Assume that Yk is given the induced reduced structure
defined by the sheaf of ideals IYk . Let X be the blowing-up with respect to IYk on
X. Following [2], we call the open subscheme X1r,Yk of X the dilation of Yk in X,
where

: the sheaf of ideals IYk · O,x is generated by 03C0}.
We use the following notation to express how an S-rational map

extends to a morphism on a third scheme Z.

DEFINITION. Given schemes X, Y, Z and an S-rational map

assume that there are S-morphisms f : Z ~ X and g: Z ~ Y so that when f
restricts to f -1 (dom(cp)), the following diagram commutes.
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Then we will say the following diagram commutes.

2. Preliminaries

Let X C PnOv be a quasi-projective S-scheme and let p E XK(K) be a rational
point. Assume that p extends to a section P on X. Let fi denote the closed point
where P meets Xk. We see that p extends to a section Pl on the dilation X03C0,p
by the universal property of dilation [2, Prop. 3.2.1(b)]. We still dénote the closed
point where Pi meets with the special fibre of X03C0,p by p. We will need to blow up
p consecutively. We let (l)03C0,p denote the l -th dilation of p.
LEMMA 2.1. Let X C Pw be a quasi-projective S-scheme having a reduced
special fibre. Let p E XK(K) be a rational point and let P ç X be an S-
section that extends p. Then the formal analytic variety ((l)03C0,p)K is isomorphic to
XK(p,03C0l).

Proof. Since X is quasi-projective, the dilation of fi on X can be realized as
a subscheme of the dilation of fi on PnOv. It is enough to show the proposition
in the case that X = PnOv. Let p = [xo, ... , xn] be a point of PnK and let P be
the section extending p on PnOv. Without loss of generality, we may assume that
x0 = 1 and Xi E Ov for i = 0,..., n. That is, p is in the affine patch An0 of
PnOv . The formal analytic variety associated with the formal completion of Aü, is
isomorphic to Spf K~z1,..., zn~. The chordal metric is just the norm on the unit
ball SpfK~z1,..., zn) induced from Cnv. The formal analytic variety associated
with the dilation Pôv,1r of p on Pw is isomorphic to B(p,03C0) ~ SpfK~(z1 -
x1)/03C0,...,(zn - xn)/03C0~.

By induction, (n(l)Ov,p)K is isomorphic to

This proves the proposition. Il

LEMMA 2.2. Let X, Y be S-schemes locally of finite type and flat over S having
reduced special fibres Xk, Yk. Let 0 : XK ~ Yh be a K-morphism between the
generic fibres and let
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be the rational map represented by ~.
Let a E XK(K) be a point such that

Assume that a extends to a section Sec(a) on X, and consider the 1-th dilation

X(l)03C0,03B1 of Ci, then we have the following commutative diagram:

where Pa is the l-th dilation Pa : X(l)03C0,03B1 ~ X and  is a morphism representing the
rational map ~ o Pa .

Proof Let U = Sp f B be a formal neighborhood of (YK)+(~(03B1), 1), where B
is an K-affinoid algebra.

By Lemma 2.1, the formal analytic variety associated with the l-th dilation X(l)03C0,03B1
is XK(03B1, 03C0l). Since, on the generic fibre, we have the J( -morphism cP : XK ~ YK
and its analytification cPan: K ~ K. The assumption on a implies that

is an analytic map between affinoid varieties. It therefore gives rise to an analytic
map of formal analytic varieties.

By [4, Prop. 1.3], we conclude that 0 extends to an S-morphism

LEMMA 2.3. Let X, Y be smooth S-schemes of finite type over S and having
reduced special fibres. Assume that both X and Y satisfy the e. e. p. property and
XK,YK are smooth and projective over K and let Il, ~XK, Il, ~YK denote the
chordal metric on XK and YK respectively. Let 0 be an S-morphism from X to Y.
Then, for any 03B1 E XK(K), we have:

for any z E XI;(Il ).
Proof. If ~z,03B1~XK = 1, the assertion is trivial since the chordal metric is

bounded by 1. Therefore, we may assume that Ilz, allxIB  1. Since X satisfies
the e.e.p. property, a extends to a section over S, denoted by Sec(a). We see that
z also extends to a section over S and meets with Sec(a) at the same point on the
special fibre of X. Let Sec(z) denote the section extending z. By making a finite
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extension L of Il and replacing 7r by Te, where T is a uniformizer of OL, we may
assume that z is rational over Il and liz, 03B1~XK = |03C0l|v for some positive integer
1. Let z, a denote the points where Sec(z), Sec(03B1) meet with the special fibre of
X.
We will prove the inequality between chordal metrics by induction on 1.

(i) 1 = 0: as explained above, the assertion is true,
(ii) assume that the proposition is true for all integers less than or equal to 1, with

l  0.
(iii) suppose that ~z,03B1~XK = |03C0l+1|v:

Since ~z,03B1~XK  |03C0l|v, we have z C XK(03B1, 03C0l). It follows from the hypoth-
esis of the induction that

By Lemma 2.1, we have that XK(03B1, 03C0l) ~ ((l)03C0,03B1)K and the image under ~ is
contained in YK(~(03B1),03C0l) ~ ((l)03C0,~(03B1))K. The K-analytic map ~an : XanK ~
YIIn induces an analytic map on the formal analytic varieties:

It follows from [4, Prop. 1.3], the K-morphism ~ : XK ~ YK extends

uniquely to an S-morphism 03A6(l) : X(l)03C0,03B1 ~ Y(l)03C0,~(03B1). Let X(l+1)03C0,03B1 be the dilation
of Ci on X(l)03C0,03B1 and consider the following commutative diagram.

Since Ilz, 03B1~XK = |03C0l+1|v, z = Õ on X(l)03C0,03B1, Sec(z) factors through X(l+1)03C0,03B1 by
the universal property of dilation. On the other hand, 03A6(l) is an S-morphism
and 03A6(l) = 03A6(l) o Pl+1, we see that on spécial fibres, (03A6(l))k factors through
the point ~(03B1). Since the scheme X(l+1)03C0,03B1 is flat over S, it follows that 03A6(l)
factors through Y(l+1)03C0,~(03B1) by the universal property of dilation, where Y(l+1)03C0,~(03B1)
dénotes the dilation of ~(03B1) on Y(l)03C0,~(03B1).
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By Lemma 2.1, we conclude that ~~(z),~(03B1)~YK  l7rl+llv = ~z,03B1~XK. This
establishes the induction steps and proves the lemma. 0

3. Main results

In this section, we will prove our main results. One of the results gives a necessary
condition for a pair (V/K, 4» to have a weak Néron model; the other one gives a
partial converse to the necessary condition in the case that V is a smooth projective
curve over K.

3.1. A NECESSARY CONDITION

We begin with the following definition:

DEFINITION. A point p E V(K) is called a rational periodic point associated
with 0 if ~n(p) = p for some positive integer n, where on = ~ o ~···o~ denotes
the n-th iterate of 0. The set consisting of all the rational periodic points is denoted
by Per~(K).

THEOREM 3.1. Let V be a smooth variety over li and let ~: V/K ~ V/K be
a finite morphism. Assume that Per~(K) is non-empty and let p E Per~(K) such
that ~n(p) = p. If (VIK, 4» has a weak Néron model, then all the eigenvalues of
the linear map

on the cotangent space at p are integral over OVe
Proof. Let V/S be a weak Néron model for (V/Ii7, ~) and let

be the morphism such that (bK = 0 on VK ~ V. Let 03A9V/S be the sheaf of relative
differentials of V over S.

Since V is a weak Néron model for (V/Ii , 0), it follows that the rational point
p extends to a section

over S by the e. e. p. property of weak Néron model. Moreover, we have 03A6n o P = P
since ~n(p) = p. It follows
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Note that P* gives a functor from the category of coherent sheaves on V to the
category of coherent sheaves on S, see [10, Prop. 11.5.8(b)]. In particular, P*03A9V/S
is a coherent sheaf on S. Let M = 0393(S, p*nv/s), then M is a finitely generated
free Ov-module, since V is smooth over S.

On the other hand, (03A6n)* induces a morphism

of sheaves. Applying the functor P*, we get a map

By equation (1) and (2), P* and P* o (03A6n)* are the same functor, hence

By taking the functor F(S, .), we get a Ov-homomorphism of 0,-modules. Name-
ly,

By definition, 03A9V/K,p is just the vector space obtained by tensoring M with Il
over Ov and (~n)* is just the map gotten from the above Ov-homomorphism by
tensoring with AB

Since M is a free Ov-module and (~n)* restricted to M gives an endomorphism
on M, a standard determinant argument shows that the eigenvalues of (on)* are
integral over Ove D

REMARK. This theorem shows that there are many counterexamples to the
existence of a weak Néron model. For example, let O(z) = z2 + z - 1/7 2 be a
morphism on Pl over 117. Then, 0(1/z) = 1 /Jr and 0’(1/z) - 2/03C0 + 1 which is
not integral over Ov, provided v(2) = 0. By the above theorem, (P1/K, ~) does
not have a weak Néron model.

3.2. SEQUENCE OF BLOWING-UPS

From Theorem 3.1, we know that one cannot expect a weak Néron model always
to exist. A natural question to ask then is to find the obstruction to the existence of
a weak Néron model. It tums out the obstruction is closely related to a set called
the Julia set defined in the theory of dynamical systems associated with the given
morphism 0.



286

Since V/A" is projective, there is a (smooth) closed embedding V  PNK into
some projective N-space over K. Let X ç PNOv be the schematic closure of V
in PNOv. In general, one can not expect X to be smooth. However, due to the
smoothening process, we may assume that the smooth locus Xsmooth has the e.e.p.
property.

The morphism ~: V/K ~ V/K extends at least to an S-rational map

over S. Restricting ~ to the open subscheme Xsmooth of X, if p induces a finite
morphism 4l : Xsmooth ~ Xsmooth over S then Xsmooth can be taken to be a weak
Néron model for (V/K, 0).
We assume that (VIK, Ç) does not have a weak Néron model. In the following

we give an algorithm consisting of sequences of blowing-ups. Starting with Xo =
X, let 1 j 0 and assume that we have X, and an S-rational map

such that:

(a) (Xi)smooth satisfies the e. e. p. property.
(b) ~i is the rational map represented by ~ ~ (~i)K .

It is well known that one can eliminate the points of indeterminacy of a rational
map by blowing up a coherent sheaf of ideals determined by the points of indeter-
minacy (see [10, 11.7]). Applying the smoothening process, we may assume that
there exists a morphism

such that:

(1) Pi+ 1 is a composition of blowing-ups and (Xi+1)smooth satisfies the e. e. p.

property.
(2) There is a unique morphism

which represents the rational map pi o Pi+1 from (Xi+1)smooth to (Xi)smooth.
That is, in our notation, the following diagram commutes.
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Let

be the rational map represented by the morphism

on the generic fibre of Xi+,.
If ~i+1|(Xi+1)smooth is a morphism from (Xi+1)smooth to (Xi+ )smooth, then we

stop the above process and let

Note that, in this case we do not require ~i+1 |(Xi+1)smooth to be a finite morphism. If
~i+1|(Xi+1)smooth is not a morphism, then repeat the process.

Inductively, we get a sequence of schemes {Xi}~i=0 satisfying (1) and (2). For
any a E V(K), we let Sec(03B1)i denote the section extending a on X i . This is
possible since Xt satisfies the e. e. p. property. We denote the point where Sec(03B1)i
meets with (Xi)k by (03B1)i. If no confusion will arise, we’ll drop the subscript i.
We define the following set:

DEFINITION. Let F~(K) ç V(K ) be a subset of V(K) so that:
For any a e F~(K), there exists an integer Na such that Sec(a), e dom(~i)

for all i  Na .

3.3. PROPERTIES OF F~(K)
Consider the metric ~,~V induced by the embedding V ’-7 PNK, as described in
1.2. Our goal is to describe the set F~(K) in terms of the behavior of the iterates
of 0 with respect to the chordal metric on the variety V.

PROPOSITION 3.2. The family of morphisms {~i}~i=1 is equicontinuous on the
set F~(K).

Proof. Let a E F~(K), by definition, there exists an integer N such that
ce E dom(~i) for all i  N. Let ~ , ~XN denote the chordal metric on XN induced
by an embedding of XN into PMOv for some integer M, then we have

for some positive integer r.

The right half of the inequality is Lemma 2.3. As for the other half of the inequality,
one can deduce it from the fact that there is a birational morphism XN - Xo
coming from a finite sequence of blowing-up and then apply Lemma 2.1.



288

We see that 11 , 11 x, is equivalent to ~, ~X0 and it is enough to prove the
proposition in the case that N = 0, therefore we assume N = 0. Let us consider
the following diagram:

Since fi E dom(pi) for i  0, there exists an open neighborhood Ui Ç Xi
of 03B1 such that P-1i+1(Ui) ~ Ui . By induction, we conclude that there is an open
neighborhood Uo C Xo of 03B1 in X o such that (Pi o P2 o ··· o Pi)-1(U0) ~ Uo. It
follows that fi E dom(~i0) on Xo. Let Vi dénote the open subscheme dom(~i0) of
(Xo)smooth for i  0. We see that ~i0 is a morphism from v into (Xo)smooth.

Because the domain of an S-rational map is stable under flat base change
([2, Prop. 2.6]), we are free to make any finite extension of K. We may apply
Lemma 2.3. By Lemma 2.3, we conclude that ~~i(z),~i(03B1)~V  ~z,03B1~V for
z E Vi,K(K). This shows that the family of morphisms {~i}~i=0 is equicontinuous
at a. Since a is any point of F~(K), {~i}~i=0 is equicontinuous on F~(K). 0

In the case that V is a curve over K, we have the following stronger result.

THEOREM 3.3. Let V be a smooth projective curve over K and let ~: V ~ V
be a morphism. Then, a E F~(K) if and only if the family of morphisms {~i}~i=0
is equicontinuous at a.

We need to prove the following lemma first:

LEMMA 3.4. Let X, Y, Z be S-schemes such that their generic fibres XK, YK, ZK
are smooth, projective curves over K. Let ~: XK ~ Yh be a finite morphism, and
let
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be morphisms over S.
Assume that Z and X are ffat over S and the following diagram commutes.

Then, there exists an S-scheme X’and a sequence of dilations P : X’ - X and
f’ : Z ~ X’ such that the following diagram is commutative.

Proof. Since we only need to blow up closed points on X, we may assume that
Zk and X k are irreducible. The map f k : Zk -7 X k is either constant or surjective
since Zk and Xk are curves over Spec(k).

Suppose that fk is constant, let x = fk(Zk) be the image of fk on the special
fibre of Z. If x e dom(~), then we can take X’ such that x is not in the center of
the blowing-up and we are done. Therefore, assume x ~ dom(~), let X’03C0,x be the
dilation of x in X. Since Z is flat over S and fk(Zk) = x, f factors through X’ 7r,x
by the universal property of dilation. Let f’ : Z - X’03C0,x denote this map. 

By considering the rational map

we have the following commutative diagram
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Replacing X by X’1r,X, we can repeat the above argument. Since only finitely
many steps of blowing-up are needed, we may therefore assume that

is surjective.
Since X k is a curve over k and f k is surjective, it follows that f k is flat. X and

Z are flat over S, it follows from [17, IV 5.9] that f is flat.
Since f is surjective, it is faithfully flat. The rational map g = f o 0 is an

S-morphism by assumption. We conclude that 0 is an S-morphism ([9, 20.3.11 ]).
There is no need to blow up in this case (X’ = X). The lemma is proved. 0

Proof of Theorem 3.3. The necessary condition is Proposition 3.2.
Assume 03B1 ~ F~(K) but {~n} is equicontinuous at a. By definition, there exist

a sequence of integers {ni}~i=1 such that ni  ni+ 1 and Õni is in the center of the
blowing-up pni+1 : Xni+1 ~ Xni.

Since {~n} is equicontinuous at a, given 6=1 there exists a 6 &#x3E; 0 such

that ~~n(z), ~n(03B1)~V  1 for all z E V(Cv) with ~z,03B1~V  b and all ~n. By
letting b be smaller, we may assume that b = 7rl for some positive integer 1 and
~z,03B1~V  l7rllv.

Let X(l)03B1 be the lth dilation of Õ on Xo. Note that z = à in Xil) if and only if
~z,03B1~v  |03C0l|. Since Õ is in the center of blowing-up on Xn, , we have X(l)03B1 C Xn
for some n. Let m C {ni} and m &#x3E; n and let P : Xm ~ Xn be the sequence of

blowing-ups Xm ~ Xm+1 ··· ~ Xn. Let X(l)*03B1 be the inverse image of X(l)03B1 in
Xm. We have the following diagram:



291

Let Om denote the composition of morphisms ~m-1,..., ~0 and consider the
diagram:

where 03A6m+1 denotes the rational map represented by

Since Ilz, ail ~  l7rllv ifandonlyifSec(z) C X(l),*03B1, we have ~~i(z),~i(03B1)~V 
1 for all z with Sec(z) C X(l)*03B1 and all Í, by the assumption on the equicontinuity
of morphisms {~i}. By Lemma 2.2, 03A6m+1 is a morphism when it restricts to X(l)*03B1.
Let us consider the following diagram:

Let I~0 be the coherent sheaf of ideals of the blowing-up Pl : X1 ~ Xo. From

the algorithm in 3.2, we see that 03A6-1m (I~0) is the sheaf of-ideals of the blowing-up
Pm+ 1 : Xm+1 ~ Xm. We only need to show that 03A6-1m(I~0) is invertible on X(l)03B1,
but this is clear by Lemma 3.4. Since m is any integer greater than n, this shows that
fi is not in the center of blowing-ups for m &#x3E; n which contradicts the assumption
that a / F~(K). This proves the Theorem. ~

REMARK. In complex dynamical systems, the set of points where the family
of morphisms {~n}~i=1 is equicontinuous is called the Fatou set. Borrowing this

terminology, we will call F~(K) the rational Fatou set. Its complement, J~(K) def

V(K) B F~(K), is called the rational Julia set.

4. Applications

In this section we give some applications of the main theorems to the dynamical
systems associated with morphisms on P 1.
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Throughout this section, VK will be P1 and ~(z) = f(z)/g(z) will be a
non-constant rational map on P1, where f(z), g(z) are coprime polynomials with
coefficients in K. The following terminology is standard in the classical theory of
dynamical systems:

DEFINITION. Let ~ : P1K ~ P1K be a non-constant morphism and let p E Pern~
be a periodic point of period n for some positive integer n. We say p is a repelling
periodic point if |(~n)’(p)|v &#x3E; 1; otherwise it is a non-repelling periodic point.

4.1. THE JULIA SET

By Theorem 3.1, if (V/K,~) has a weak Néron model, then the linear map (1n)*
on the cotangent space of a rational periodic point p e Pern~ must have integral
eigenvalues. The following proposition is just a corollary to Theorem 3.1.

PROPOSITION 4.1. Let 1: P1K ~ P1K be a non-constant morphism and let
p E Pern~(K) for some n. If (Pk, ~) has a weak Néron model, then p is a non-
repelling periodic point.

Proof. Since plis smooth and of dimension one over K, the vector space
S2p yI;,P is a one dimensional vector space over AB the linear map (1n)* is just
multiplication by an element c in K. By Theorem 3.1, the linear map

has all the eigenvalues integral over Ov, therefore, c e Ov.
It is an elementary fact that (~n)’(p) = c, therefore |(~n)’(p)|v  1. That is, p

is non-repelling. ~

4.2. TREES

Assuming that (P1/K,~) does not have a weak Néron model, we start with
Xo = phv and perform sequences of blowing-ups as described in 3.2. We still
denote by {Xi}~i=0 the family of schemes that satisfy the e.e.p. property obtained
by blowing-ups. Note that the irreducible components of the special fibres of X,’s
are isomorphic to P1k over Spec(k).

DEFINITION. The dual graph of Xi,k, denoted by T~,i, is the graph with a vertex
for each component of Xi,k and an edge between vertices corresponding to inter-
secting components.

We have therefore a family of finite graphs {T~,i}~i=0 corresponding to {Xi}~i=0.
The family of graphs satisfy the following properties:

PROPOSITION 4.2. (1) For each i, T~,i is a finite tree.
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(2) For each pair of integers i, j  0 such that i  j, there is a map of finite graphs
pzj : T~,i ~ T~,j corresponding to the blowing-up Pij : Xj ~ Xi such that:

(a) 03BCij is injective,
(b) Pii = identity,
(c) Pik flik 0 03BCij whenever i  j  k.

(3) The S-rational map

represented by the K-morphism ~ on the generic fibres induces a map

such that ~#i is compatible with 03BCij. More precisely, we have the following commu-
tative diagram:

for all i, j such that i  j.
Proof. (1) To show the graph T~,i is a tree, we need to show:

(a) T~,i is connected,
(b) T~,i does not have loops.

(a) follows from the fact that X,’s are projective over S and (fi)*OXi = Os,
where fi is the structural morphism fi : Xi ~ S, then the special fibres Xi,k are
connected, see [10, Cor. III.11.3].

(b) is clear from the construction. Since each irreducible component of Xi,k is
non-singular, it follows that each component does not intersect with itself. Two
components intersect at most at one point since the Xi’s are obtained by sequence
of blowing-ups.

The finiteness of the graph follows from the fact that the Xi’s are of finite type
over S.

(2) By construction, for each pair of integers i, j with i  j, we have

Pij : Xj ~ Xi consisting of sequence of blowing-ups. We define Pii to be the
identity map on Xi .

Let {Ei,r}lr=1 be the set of irreducible components of Xi,k. Consider the strict
transformation of Ei,r under the birational morphism Pij, denoted by E’ . Then
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{E*i,r}lr=1 is a subset of the irreducible components of Xj,k. Define:

where ei,r( eir) are the vertices corresponding to Ei,r(E*i,r). Then, (a) and (b) are
clear from the definition of J1ij . (c) follows from the commutativity of the following
diagram:

(3) The S-rational map

is defined at points of codimension  1 since Xi is normal. Consider the generic
points of the irreducible components of Xi,k which are of codimension 1 in Xi, pi
is defined at these points. It follows that pi sends each irreducible component of
Xi,k into one of the irreducible components. Therefore, ~i induces a map among
vertices of To,,. To show that pi indeed induces a map ~#i : TcjJ,i ~ T~,i of trees.
We simply note that for two intersecting components of Xi,k, ~i either sends them
into the same component or two intersecting components.

The generic points (i,r of Ei,r are in the domain of ~i, therefore ~j (P- 1ij (03B6i,r)) =

P-1ij(~i(03B6i,r)). This shows p/ is compatible with 03BCij. D

By the above proposition, {T~,03BCij} is a direct system over integers N U{0}.
Let T~,K = lim T~,i denote the direct limit of graphs. It is obvious that T~,K is a

finite graph if the process of blowing-up stops after a finite stage; otherwise, it is a
infinite graph. It is also clear that Tç, R- is a tree.

By (3) of the above proposition, we see that the K-morphism ~: P1K ~ Pl K
induces a map

4.3. TREE AND THE JULIA SET

A tree T can be viewed as a metric space by defining the distance d(e, e’) between
two vertices e, e’ to be the infimum of the number of edges connecting e and e’.
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Fixing a vertex e, we can define the following sets:

03BBn(e) = the only vertex in Tn- j adjacent to e in T.

It is easy to see {Tn, 03BBn} form an inverse system of trees. Its inverse limit,
denoted by

8T consists of half lines of T (or ends of T). It is a topological space. If, furthermore,
T is locally finite, then OT is compact and totally disconnected, see [16, 2.2], where
T is locally finite if for every vertex there are only finitely many edges originated
from the vertex.

One can define an injective map

sending half lines of To, into P1K(K). z is defined as follows:
Let 1 E ~T~,K be a half line, then l is represented by an infinite sequence of

vertices {e = eo, e 1, ... , en,...,}. We may assume eo corresponds to the special
fibre of P1Ov, then e 1 corresponds to the special fibre of the dilation of a closed
point on P1k. For arbitrary j, ej+1 corresponds to the special fibre of the dilation of
a closed point on Ej which corresponds to ej. Then, i(l) = ~i(i)K. Since Il is
complete, i(l) is a point in P1K(K). One can also define i(l) in another equivalent
way, cf. [13].

As an equivalent statement of Theorem 3.3, we have:

THEOREM 4.3. i(~T~,K) = J~(K).
Proof If J~(K) = 0, the, by definition, F~(K) = P1K(K). We see that for

any point a e P1K(K), 03B1 is in the center for at most finitely many blowing-ups.
This shows T~,K is bounded, that is ~T~,K is empty.

Assume J~(K) is non-empty, let w e J~(K). By Theorem 3.3, 03C9 e J~(K) if
and only if w is in the center of infinitely many blowing-ups. It is clear from the
definition of T~,K, 03C9 is in the center of infinite blowing-ups if and only if there is a
half line 1, E ~T~,K such that i(l03C9) = 03C9. This completes the proof of the theorem. D

The following theorem which is proved in [15] is useful in our situation.

THEOREM 4.4. Let C be a projective curve. Let À, J-l be non-singular embeddings
of C(Cv) in PN(Cv), PM(Cv) respectively. There exists a positive constant C =
C( À, J-l) such that for all x, y E C( Cv),
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Proof. [15, pp. 27-29]. 0

The above theorem shows that smooth embeddings into projective spaces give
equivalent chordal metrics on a curve. As a result, we see that the equicontinuity
of families of morphisms is independent of smooth embeddings.

THEOREM 4.5. The set J~(K) is independent of the scheme Xo - the first scheme
that one starts with in the algorithm of blowing-ups.

4.4. THE JULIA SETS OF POLYNOMIAL MAPS

We give several applications of Theorem 4.3 to the dynamical systems over non-
archimedean fields. First, let’s prove the following lemma:

LEMMA 4.6. Let 0 : P1K ~ Pk be a non-constant morphism. Let a E P1K(K) be
a rational point, then there exists a constant C = C(~)  1 such that

for all p ~ P1K(K).
Proof. Since the chordal metric is bounded by 1, the assertion is certainly true

if ~p,03B1~v = 1. Therefore, we will assume IIp, allv  1. That is, p and a are in the
same affine patch of P ),- . Let z be an affine coordinate and let z(p) = x, z( a) = y
be the coordinates of p and a, where x, y E Ov (the integral closure in K). We
write ~(z) = [f(z),g(z)], where f(z),g(z) E Ov[z].Since ~(z) is a K-morphism,
there exist polynomials hf(z), hg(z) E Ov[z] such that

hf(z)f(z) + hg(z)g(z) = 7rJl for some integer 03BC  0. (3)

Let ~~(x)~v = max(|f(x)|v, IgWIv) and let ~~~v = max(~f~v, ~g~v), where
~f~v (~g~v) dénote the maximal absolute value of the coefficients of f (g respec-
tively). By the definition of the chordal metric, we have:

On the other hand, we have the following estimates:
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Substituting (6) into (4),

By (3),

Therefore,

where C = max

As a result of the above lemma, we have

PROPOSITION 4.7. J~,K = J~n,K for all integers n  1.
Proof Instead of proving the assertion about the Julia set, we prove the equiv-

alent assertion about the Fatou set.

By the definition of the Fatou set, it’s clear that F~(K) C F~n(K). Let 03C9 E

F~n(K) and let E’ = ~/Cn, where C is the constant in Lemma 4.6. By definition,
the family of morphisms{~rn}~r=0 is equicontinuous on F~n(K). Given any E’ &#x3E; 0,
there exists a 03B4 &#x3E; 0 such that whenever x, y E F~n(K) and Il x, yllv  b we have
~~rn(x),~rn(y)~v  E’ for all integer r  1.

Fix r and consider the set B03B4(03C9) = {z E F~n(K)| ~z,03C9~v  03B4}. Let
Btl(w) dénote the image of B03B4(03C9) under ~rn. Let us apply the morphisms
{~, cp2, ... , ~n-1} to B~’(03C9). Since the radius of B~’(03C9) is no more than E’, by
Lemma 4.6 we see that ~i(B~’(03C9)) has radius less than Ci~’ for i = 0,1, ... , n -1.
Now ~’ = f/cn, ~i(B~’(03C9)) has radius less than f for i = 0,1, ..., n - 1.
We have shown ~~rn+i(z), ~rn+i(03C9)~v  f for i = 0,1, ... , n - 1 whenever

~z,03C9~v  03B4. Since {~m}~m=1 = {~rn+i}~,i=n-1r=0,i=0 andtheargumentisindependent
of the integer r, the family of morphisms {~m}~m=1 is equicontinuous at w. This
shows F~n (K) ç F~(K) and completes the proof. D

THEOREM 4.8. Let ~(z) e K[z] be a polynomial map on Pk. Then, the rational
Julia set, J~(K) is compact with respect to the v-adic topology on P1.

Before proving Theorem 4.8, we need the following lemma. We use the notation
{Xi}~i=0 to dénote the family of schemes obtained by blowing-up as described in
3.2, where Xo = Pbv.
LEMMA 4.9. Let ~ be the polynomial map in Theorem 4.8 and let 1 = {e0,...,
ei,...} be a half line in ~T~,K. For any ei E l, let Ei be the corresponding
irreducible component in X M,k for some M. Let
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be the rational map represented by 1. Then, there exists an integer N = N(Ei)
such that

where (Ei denotes the generic point of Ei and Eo denotes the strict transformation
of the special fibre of Xo by the blowing-up XM ~ Xo.

Proof. To ease the notation, we let X = XM, F = Ei and ~ = ~M. Suppose
the lemma is false for F and consider the iteration of ~ on X. Let

be the orbit of the irreducible components of Xk under the iteration of p. We see
that none of the Fi’s satisfies the condition of the lemma, otherwise F would satisfy
the condition. Moreover, since there are only finitely many components of Xk, the
orbit of F is stationary. There are integers y, r such that ~03BC(03B6Fr) E Fr. On the
other hand, 0 induces a map

There corresponds an orbit of half lines under the iteration of 8çll . We let

denote the orbit and 03C9r = i(lr). By definition of the tree T~,K, we see that Fr
corresponds to a vertex of Ir, denoted by e’, and w, e (r)K.

Since ~03BC sends FT into Fr, e’ is fixed by (~~#)03BC. This implies that e’ also belongs
to l2r,...,lnr,.... We have ~n03BC(03C9r) E (r)K for all integer n. Let d(e0,e’) = u =
number of edges connecting eo to e’ in 1, and let t be a local coordinate of (Ê,)K.
Then, (r)K ~ SpfK~t~ and z = 03C9r + 7rUt. We have ~03BC(03C9r) = 03C9r + 7rUa for

some a E Ov, since ~03BC(03C9r) E (r)K.
Since 0 is a polynomial map, ~03BC is also a polynomial map. By substituting t

into z, we have:

where h(t) is a polynomial.
~03BC takes Fr to Fr, we see that h(t) must be a polynomial in Ov[t], otherwise one

can factor out 7ra in the denominator for some positive integer a, then ~03BC would
take Fr to some component other than Fr. Therefore, ~03BC induces a map:

We see that {~n03BC}~n=0 is equicontinuous on (r)K. However, w, e J cP ( I(),
{~m}~m=0 is not equicontinuous at 03C9r. By Propositon 4.7, {~n03BC}~n=0 is not equicon-
tinuous at or e (r)K, a contradiction. The lemma is proved. ~
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Proof of Theorem 4.8. If the degree of cP( z) is 1, then the statement is trivial.
Therefore, we only need to show the theorem in the case that J~(K) is non-
empty and the degree of O(z) is at least 2. The property that J~(K) is compact
is equivalent to that the corresponding tree T~,K is locally compact. Furthermore,
since deg ~  2 and J~(K) is independent of the Xo that one starts with, by
conjugating the fractional linear map h(z) = z/03C0m for some m, we may choose
O(z) to be the form:

O(z) = J( z) / 7rd for some integer d &#x3E; 0,

where f(z) ~ Ov[z] is a polynomial with the leading coefficient being a unit in Ove
Let Eo be the special fibre of P1Ov and let eo be the corresponding vertex in T~,K.
Let Io be the sheaf of ideals to be blown-up on Xo, it is obvious that Supplo =
roots of J(z), where f(z) denotes the polynomial of f reduced modulo 7r. We
use the notation in 3.2, at each stage of the blowing-up, we have the following
commutative diagram:

Let 1 = {e0,..., en,...} C ~T~,K. We show the proposition by induction on
the vertices en of 1.

(i) n = 0:
Consider Eo,i C Xi, the strict transformation of Eo under the blowing-up

Xi - ... - Xo. Let 1 = ~0o···o ~i-1 and let the restriction of *i- 1 to E0,i
be denoted by 03A6i-1, E0. Then we have the diagram:

Note that (03A6i-1)K = ~i.
Since Eo,, is the strict transformation of Eo, we may use z as a local coordinate

on E0,i. It is not hard to see that supp(03A6i-1,E0)-1I0 C roots of f (z). This shows
that E0,i intersects with other components of Xi,k at roots of f(z) for all integer
i  0. Therefore, only finitely many edges originate from eo.

(ii) Assume that there are only finitely many edges originating from en-1 for
n  1.
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(iii) Let E be the component in Xm,k corresponding to en for some m and
consider the rational map on X m :

represented by 0 on the generic fibre. By Lemma 4.9, there exists an integer N
such that ~rm(03B6E) = oô E Eo for all r  N. Let r  max(m, N) and consider the
following diagram:

where E*r denotes the strict transformation of E under the blowing-up Xr -
Xr-1 ~ ··· ~ Xm.

Then, 03A6r-1(03B6E*r-1) = 00 e P1k, where 03A6r-1 = ~r-1 o···o ~0. Consider the
formal analytic variety EK and let t be a local coordinate on EK. Let ú) = i(l).
We see that ú) E EK and z = ú) + 7r’t. Since (03A6r-1)K ~ ~r and 03A6r-1(03B6*Er-1) =
Ob e P1k, it is equivalent to saying:

for some d &#x3E; 1 and some polynomial g(t) e Ov[t].
Then Supp(03A6r-1)-1I0 C roots of g(t). For any r’ &#x3E; r, we still have

03A6r’-1(03B6*r’-1) = ~, but

Because 0’ has the form (9), one can check Supp(03A6r’-1)-1I0 ç roots of g(t).
This shows that E only intersects with other components at some fixed finite set
of closed points on E, that is, only finitely many edges originate from en. This
completes the steps of induction and proves the theorem. D

REMARKS. (1) Theorem 4.8 is trivial in the theory of dynamical systems over
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the complex numbers because in that case P 1 ( C ) is compact with respect to the
complex topology. However, in the non-archimedean case, P1K(K) is no longer
compact with respect to the v-adic topology, since Il is not a locally compact field.
(Il is locally compact if and only if k is finite.)

(2) It is easy to give counterexamples to Theorem 4.8 for non-polynomial maps,
for example: let

An easy calculation shows the tree T~,K is not locally compact, therefore J~(K)
is not compact.

4.5. EXAMPLES

In this paragraph, we compute the following two examples.

EXAMPLE 4.10. Let E be an elliptic curve over li and let G = 1 ± Il C Aut(E)
consist the inverse and the identity maps. By identifying Ph- - E/G, we see that
the multiplication by m-map induces a rational map:

In the case that li is the field of complex numbers, ~m provides an example that
the Julia set is the whole space P 1 (C) (see, for example: [1]). In the case that Il is
a non-achimedean field, we contend that (P1K, ~m) has a weak Néron model and
the rational Julia set J~m(K) = 0.

Our contention can be seen as follows:
Let SIS be the Néron model of E. By the universal mapping property of the

Néron model and a theorem of Mumford’s ([14, Theorem 111.12.1]), we see that
the action of G extends on E and X = 03B5/G is a separated, smooth scheme of finite
type over S. The same arguments and the fact that ~m commutes with the action of
G show that ~m extends to a finite ,S-morphism 03A6m on X. Therefore, (X/S, 03A6m)
is a weak Néron model for (Pk, ~m) and J~m(K) = 0.

EXAMPLE 4.11. Let F be a p-adic number field and let 1  2 be an integer
such that F contains the (1 - 1 )-th roots of unity and p does not divide (1 - 1).
Let ~(z) = f(z)/03C0F be a rational map such that f (z) is a monic polynomial and
f(z) ~ zl - z(mod03C0F), where 03C0F is a uniformizer in OF.
We will show that J~(F) ç OF and the dynamical systems on J~(F) associated

with 0 is symbolic dynamics in l-symbols. By symbolic dynamics we mean that:

(1) Each element 03C9 E J~(F) is represented by an infinite sequence (ao, a,,
a2,..., ), where ai ~ {1,...,l}.

(2) ~((03B10,03B11,03B12,...,)) = (03B11,03B12,03B13,...,).
To prove our claim, we first perform the sequence of blowing-ups as described in
3.2:



302

Starting with Xo = P 1 we see that we need to blow up the roots of the
polynomial f (Z-) (the reduction of the polynomial f (z) modulo 03C0F). By hypothesis,
we have that f (z) splits into linear factor over F and the roots of f(z) are distinct.
Therefore, 1 distinct closed points on the special fibre of P1OF need to be blown
up. Let us denote these 1 closed points by ÀI, Â2?... ? Â/ and their dilation by
Ei, ... , Ei. Let Xi denote the scheme obtained by the first blowing-up. Using the
notations in 3.2, we have the following commutative diagram:

where po is the rational map represented by çl : P1F ~ P1F. Let Eo denote the
special fibre of phF. It is not hard to see that ’Po takes Ei1,1  il  l, onto Eo
and the restriction ~0: Ei - Eo is of degree one.

As a result, we need to blow up 1 distinct closed points on each Ei,. Let
Ei1i2 1  i1  l, 1  i2  l, denote the dilation of these 1 closed points on Eç, . Let
X2 be the resulting scheme after we blow up 1 closed points on all Eil, we have
the following diagram:

where pi 1 is the rational map represented by 0. We arrange the indices so that ~1

maps E,,,2 onto Ei2 .
Inductively, the special fibre of the scheme Xr consist of Eili2...is where

1  ij  1 and 1  s  r and ~r-1 maps Ei1...is onto Ei2...is . The dual graph of the
special fibres of Xr consists of vertices {e0,..., ei1...is|1  ij  l, 1  s  r} cor-
responding to Eil ... i,,. As r - oo, we get the infinite tree T~,F defined in 4.2. One
can check that each half line of ~T~,F consists vertices f eo, eil, ... , eil...ir, ...}. By
Theorem 4.3, J~(F) = i(~T~,F). We can represent each point w E J~(F) by this
sequence of vertices, or equivalently, by sequence of indices (i l, i2, ... , ir, ...).
By the construction of T~,F and Proposition 4.2, ~((i1, i2, ... ) ) = ( i2, i3, ... ) . It is
also clear that Jç ( F) 9 OF. This completes the proof of the claim.

As a result of this claim, we have the following conclusions:
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(i) All the periodic points of ~, except {oo}, are contained in J~(F), therefore
all the periodic points are rational over F.

(ii) Let Per’ = Per~ B {~}, then the rational Julia set J~(F) is the closure of
Per’~ with respect to the p-adic topology.

(iii) If l = q = |OF/(03C0F)|, then J~(F) = OF.
We would like to end this paper by posing the following questions conceming

the structure of the rational Julia set:

(1) Over complex numbers, the Julia set can also be characterized as the closure
of the repelling periodic points. Does the same characterization still hold in
the case of p-adic number fields ? Namely, is the rational Julia set the closure
of the repelling rational periodic points ?

(2) Does there exist a morphism 0: P1 ~ P over a p-adic number field F such
that J~(F) = P1(F) ?

(3) Given a morphism 0: P1 ~ Pl over K, can one determine a finite set of
numerical invariants associated to ~ so that whether or not (P1/K, 0) has a
weak Néron model is determined by these numerical invariants ?

(4) If all the periodic points Per~ = U,,Per’ are non-repelling, is it true that

(P1/K, 4» has a weak Néron model?
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