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Let X be a (d + l)-dimensional smooth arithmetic scheme lying smoothly and
properly over an open subset U of Spec(OK) for some algebraic number field
K with geometrically connected fibres of dimension d. It is well-known, that
there is a duality pairing for the sheaf cohomology of X, which connects the
etale cohomology groups of a locally constant constructible sheaf F with the
cohomology with compact support of the sheaf FD(d), where (d) means the d-fold
Tate-twist (see [6]).

In this paper we will prove a duality theorem, which is exclusively formulated
in terms of the ordinary sheaf cohomology, not using cohomology groups with
compact support. One could also view the result as a computation of the cohomol-
ogy with compact support in terms of ordinary sheaf cohomology using a dualizing
sheaf.

With the above notations let U = Spec(OK,S) where S is a finite set of places
of K including the archimedian places. We write Sf for the set of finite places in
S and S~ for the set of archimedian places of K, thus S = Sf U Soe . As usual we
denote the maximal extension of K, unramified outside S by Ks. For an integer
n and an abelian group A we denote the kernel of the n-multiplication map by
nA. Let CSf(KS) be the Sf-idele class group of the field Ks (for a definition see
below) and we put In,u := nCs f ( s). The Gal(Ks/K)-module In,u is the direct
limit of its finite submodules and hence defines a sheaf of Z/nZ-modules on Uet.
Then the following holds.

THEOREM 1. Let U be an open subscheme of Spec(OK), where K is a finite
extension of Q. Further let

be a smooth and proper morphisms of schemes with fibres of pure dimension d. Let
n be an integer invertible on U and assume K to be totally imaginary if n is even.
Then for every locally constant, constructible sheaf F of71 / n71-modules on Xet the
cup-product
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defines a perfect pairing of finite abelian groups for all i.

Using generalized Poincaré-duality the heart of the proof of Theorem 1 is the
case d = 0, which can be reformulated in terms of Galois groups with restricted
ramification of algebraic number fields. The proof combines a result of Wingberg
on pro-p-extensions with restricted ramification with a theorem of Washington
on the behaviour of the prime-to-p part of ideal class groups in Zp-extensions of
algebraic number fields.

For a profinite group G and a prime number p we denote the maximal pro-p
factor group of G by G(p). Using the language of higher etale homotopy groups
we prove the following theorem for the case of arithmetic surfaces.

THEOREM 2. Assume that the fibres of 03C0: X - U are smooth, projective curves
of nonzero genus and let p be a prime number, which is invertible on U. Then one
has:

Combining Theorems 1 and 2 we conclude:

THEOREM 3. Assume that the fcbres of 03C0: X U are smooth, projective curves
of genus g and let p be a prime number invertible on U. Assume that p is odd or
that Il is totally imaginary. Then the following holds for the etale fundamental
group G := 7r¡t(X):

(i) If g  1 then G is a profinite duality group at p of dimension 4.
(ii) If g = 0 then G is a profinite duality group at p of dimension 2.

REMARK. (a) If p = 2 and K is not totally imaginary the theorem remains true,
if we replace the word duality group by virtual duality group, i.e. there is an open
subgroup being a duality group.

(b) Under certain restrictions to X and U it was shown in [8], that the maximal
pro-p factor group of G has similar duality properties.

1. In this section we prove a duality theorem for Galois groups with restricted
ramification of algebraic number fields which will imply Theorem 1 for the case
d = 0.

Let K be a number field and let S be a finite set of places of K which contains
all archimedian places. By KS we denote the maximal extension of K, which is
unramified outside S and we denote Ga1(Ks/ K) by Gs.

For an intermediate field K C L C Ks we use the following notations:
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We further use similar notations for the set of finite primes Sf in S. The definitions
are the same word-by-word, however we could not find them in the literature and
therefore we give the definitions. Let L be a finite extension of 1( in 1(s:

Further we denote:

where the limit runs through all finite subextensions L of K in KS.

REMARK: If K is totally imaginary, every extension of h’ is automatically unram-
ified at the archimedian places. In this situation the pair (Gs, Csf ) is a P-class
formation for the set P of prime numbers 1 with l~|#GS having analogous prop-
erties like the usual P-class formation (GS, CS) (see Proposition 10 below). Each
element of CS(K) which can be represented by an idele with support in the set of
archimedian places is an universal norm for (GS, CS). The advantage of (Gs, Csf )
is that it is free of this ’redundancy at infinity’, i.e. the group of universal norms in
CSf(K) is much smaller.

Let p be a prime number and we assume Ii to be totally imaginary if p = 2. By
Sp(K) we denote the set of places of K dividing p. For an abelian group A we
will denote the subgroup of elements which are annihilated by a power of p by
Torp(A).
THEOREM 4. If S D Sp(K) U S~(K) then Gs is a duality group at p of dimen-
sion 2 with p-dualizing module I = Torp(CSf(KS)), i.e. for every finite discrete
p-primary Gs -module M and all i, the cup-product

defines a perfect pairing offinite groups.

We will prove Theorem 4 in several steps.
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PROPOSITION 5. Under the above assumptions one has cdp(Gs) = 2. For a

finite discrete p-primary Gs-module M the cohomology groups Hi(GS, M) are
finite for all i. The p-dualizing module of GS is isomorphic to TorP(Csf (J( S)).

Proof. The statement about the cohomological dimension as well as the finite-
ness statement on the cohomology can be found at various places in the literature
(see [6], [4]). Following the description of the dualizing module of an arbitrary
profinite group in [10], [11] it holds for the p-dualizing module I of GS:

where L runs through the finite subextensions of K in KS.

Since fl2p E KS we can take the limit over all L which are totally imaginary.
Using Tate’s long exact sequence ([6] 1 Sect. 4 Thm. 4.10) we obtain the following
exact sequence:

Going to the limit over L and n we obtain:

where G v denotes the decomposition group in Gs of a fixed extension of v to KS.
Using the exact sequence

and the fact, that ESf(KS) is p-divisible we obtain the exact sequence

As yp. C Esf (Ks) and by the definition of Jsf we get the exact sequence

which proves the proposition. ~

In order to prove Theorem 4 we have to verify the vanishing of the following limit
for i = 0, 1 (cf. [10], [11]):
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where the limit runs through the open subgroups of U and the transition maps are
the duals of the corestriction maps.

It is easy to see that Do(ZlpZ) = 0 since p~|#GS. ln order to prove the
vanishing of D1(Z/pZ) the following theorem is crucial.

THEOREM 6. If S D Sp U S~ then CS(KS) is p-divisible.

REMARK. It is easily seen, that the p-divisibility of CS(KS) is equivalent to the
fact, that the local field (KS)v is a p-closed local field for all v E S(lis). If S
omits only finitely many primes of Ii this is an easy consequence of the theorem
of Grunwald-Hasse-Wang (see [7]). However if ,S is finite this is non-trivial. If S
does not contain Sp one even does not know, whether the supematural order of GS
is divisible by p°°.

In [13] Wingberg investigates the similarpro-p situation for Theorem 6. In order
to refer to his result we introduce the following notations:

KS(p) the maximal pro-p subextension of li in KS,
GS(p) the Galois group of KS(p)/K,
Kv the completion of the number field Il at the prime v,
IÉV (p) the maximal pro-p extension of liv,
Yv the Galois group of Kv(p)/Kv,
Tv the inertia group of v in Yv,
Gv the decomposition group of v in GS(p),
Hi * H2 the free pro-p product of the pro-p groups Fi and H2.

Using a theorem of Kuz’min, Wingberg proved the following theorem see [13]:

THEOREM 7. (Wingberg [13]). Assume 03BC2p ~ K and S D SP(K) U S~ and
suppose that CS(KS(p)) is not p-divisible. Then there exists a prime v E Sp(K)
such that the decomposition group Gv of v in the extension KS(p)/K is the full
group GS(p) and the following holds:

There exists a finite set T of primes of Ii containing S such that the homomor-
phism

induced by the maps: ~v’ : 9,, ,  Gal(K(p)/K) can G s(p) is an isomorphism.
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COROLLARY 8. If CS(KS(p)) is not p-divisible then there exists a prime v E
Sp(K) such that the following inequality holds

Proof of the corollary: As yp C K the following (in)equality holds by [9] II
Section 5 Thm. 4 for a prime v’ E Sp(K):

Now assume that #Sp(K) &#x3E; 1 (otherwisé the statement of the corollary is trivial)
and assume that CS(KS(p)) is not p-divisible. By Theorem 7 there exists a prime
v e Sp(K) such that GS = Gv and the free product decomposition of GS yields
the following inequalities:

which proves the corollary.

In order to prove Theorem 6 it is obviously sufficient to prove that the group
CS(LS(p)) is p-divisible for a cofinal set of finite extensions L of K in KS. Since
112p C KS we assume without loss of generality that 03BC2p C K, in particular K
is totally imaginary, containing the imaginary abelian field Q(03B62p). Now what we
need is a method of leaving the bad situations described in theorem 7. For this we
use a result of Washington, where kn denotes the unique subextension of degree
pn in the cyclotomic Zp-extension of a number field k and hn denotes the class
number of kn.

THEOREM 9. (Washington [12]). Let k be an imaginary abelian number field and
let

H = 111 prime number, 1 divides hn for some n}.
Then H is infinite.
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Now returning to our situation assume that L is a finite subextension of K in
KS and that CS(LS(p)) is not p-divisible.

CLAIM: There is a finite extension L’/L contained in Ks such that Cs(L’ s (p» is
p-divisible.

Proof of the claim: Following Theorem 9, choose a prime number 1 &#x3E; p and n
such that:

By class field theory there exists a finite cyclic unramified extension F/Q(03B6pn) of
degree 1. As the only prime of Q(03B6pn) which divides p is principal it completely
splits in F, hence there are 1 different primes dividing p in F. By condition (ii) we
see that F and L(Çpn ) are linearly disjoint over Q(03B6pn). Hence every prime v of
L(Çpn ) dividing p splits into 1 different primes in LF. Therefore the field LF has
the property that for every prime dividing p there are at least 1 - 1 other primes
having the same absolute local degree. By Corollary 8 we obtain that the group
Cs((LF)s(p)) is p-divisible which proves the claim.

Thus we have proved Theorem 6. D

Now we are able to prove the vanishing of Dl (see above).

Thus the proof of Theorem 4 is complete. Il

In order to get a better understanding of Theorem 4 we give the following propo-
sition for the case of totally imaginary K. (Compare [6] 1, Sect. 4, 4.2, 4.5, 4.6.)

PROPOSITION 10. Let K be a totally imaginary number field and let S ~ Soo(K)
be a finite set of primes. Then the following holds.

(i) The pair (GS, Csf ) is a P-class formation for the set P of primes 1 with

l~|#GS.
(ii) The reciprocity map: rec : Csf (K)  GabS is surjective with divisible kernel.
(iii) If p is a prime number such that all primes dividing p are in S and if M is a

finite p-primary GS-module then the cup-product defines isomorphisms:
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for all r.
Proof. Using the definition of Cs and CS f we get the following commutative

diagram with exact rows and columns:

Hence we obtain for all i  1 isomorphisms: Hi(GS, CS)  H’(Gs, Csf ).
Since (Gs, CS) is a P-class formation the same follows for (GS, Csf ). We call the
reciprocity maps associated to these class formations by rec and rec f and we denote
the kernel of rec (recf) by Ds (K) (Dsf (K)). It is well-known ([6] 1, Sect. 4, 4.5),
that rec is surjective and that DS(K) is divisible. Hence we get the following
commutative diagram with exact rows and columns:

This proves (ii). By Theorem 1.13 of [6] 1 Sect. 1 and by (ii) we obtain that a’’ is
an isomorphism for r  1 (cf. [6] 1 Sect. 4 Thm. 4.6.(a)). The statement for r = 0
follows from Proposition 5. For r  0 both groups are zero. 0

REMARK. Now we can conclude Theorem 4 from Proposition 10 (iii) and from
Theorem 6: Cs f is a quotient of Cs, hence p-divisible. Therefore the spectral
sequence
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degenerates to a sequence of isomorphisms: Hp(GS, Hom(M, CSf)) 
ExtpGS ( M, Cs f ), which by Proposition 10(iii) implies Theorem 4.

2. In this section we prove Theorem 1.
Let K be a number field, U C Spec( K) an open subscheme and let S be

the finite set of places of K, containing the archimedian places and such that
U = Spec(OK,S). As it is well known every finite discrete GS-module M defines
a locally constant constructible sheaf on Uet. If M is a discrete Gs module, anni-
hilated by some integer n, then M is the direct limit of its finite submodules and
therefore defines a sheaf of Z / nz-modules on Uet, which is the direct limit of locally
constant constructible sheaves. The following proposition is well-known.

PROPOSITION 11. Assume that n is invertible on U. Then for all i:

Proof. If M is finite this is [6] II, Sect. 2, 2.9. The general case follows since
etale cohomology as well as Galois cohomology commute with direct limits. ~

Therefore Theorem 1 for d = 0 is equivalent to Theorem 4 which is already proved.
Further one knows that the p-dualizing module of a duality group is divisible (or
else Torp(CSf(KS)) is p-divisible as Cs (Ks) is p-divisible). For further use we
note:

COROLLARY 12. The stalks of the sheaf In,U are injective Z/nZ-modules.

Now let X,7r,U,n be as in the introduction. By D(X, Z/nZ) resp. D(U, Z/nZ)
we denote the derived category of Z /nz-module sheaves on Xet resp. Uet. As 7r
and n fulfill the conditions of generalized Poincaré-duality we get the following
isomorphism of objects in D(U, Z/nZ) (see Theorem 3.2.5. in [1] XVIII):

Here (d) is the d-fold Tate-twist and [2d] is the shift by 2d.
By Corollary 12 the stalks of In,U (resp. 03C0*In,U) are injective Z/nZ-modules.

Therefore we have an isomorphism

Applying Rl’(U, -) on the left hand side of (*) we get a complex of abelian groups
whose rth cohomology group is isomorphic to
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By the proper-smooth base change theorem [5] VI, Sect. 4,4.2) the sheaves Ri7r *F
are locally constant and constructible on U. Applying R0393(U, -) on the right hand
side of (*) we get a complex of abelian groups whose rth cohomology group by
theorem 1 for d = 0 is isomorphic to

This proves Theorem 1. D

3. In this section we prove Theorems 2 and 3. For a scheme X we denote by
Xet its etale homotopy type, i.e. a pro-simplicial set. The etale homotopy groups
of X are by definition the homotopy groups of Xet and it is well-known that
these pro-groups are pro-finite, whenever the scheme X is noetherian, connected
and geometrically unibranch ([2] Theorem 11.1). By Xet we denote the universal
covering of Xet. If p is a prime number and Y is a pro-simplicial set, we denote the
pro-p completion of Y by Y.^p. The maximal pro-p factor group of a pro-group G
is denoted by G(p). For the following we need

PROPOSITION 13. Assume that Y is simply connected (i.e. 03C01(Y.) = 0) and that
03C0i(Y.) is pro-finitefor all i  2. Then we have isomorphisms for all i:

Proof. If G is an abelian pro-finite group, the canonical surjection: G - G(p)
has a kemel with trivial p-Sylow subgroup, i.e. the supernatural order of the
kemel is prime to p. Therefore G is a p-good pro-group in the sense of [2],
i.e. for every finite p-primary G(p)-module M the canonical homomorphism:
Hi(G(p), M)Hi(G, M) is an isomorphism for all i. Hence Proposition 13
follows by induction on i from Theorem 6.7. of [2]. D

Now let K be a number field, let U C Spec((OK) be an open subscheme and let p
be a prime number invertible on U. Then the following holds:

PROPOSITION 14. The higher etale homotopy groups of U have no p-part, i.e.

Further the canonical morphism:

with 03C0et1(U)(p) the maximal pro-p factor group of the etale fundamental group of
U is a weak homotopy equivalence.
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Proof. Let S be the finite subset of places of K, containing the archimedian
places and such that U = Spec(OK,S). Then GS(li ) - 7rlt(U) and Proposition 11
implies that the universal covering Ùet has no cohomology with values in p-primary
coefficient groups. Hence the pro-p completion of Ûet is contractible and therefore
the first statement of the proposition follows from Proposition 13. By a theorem of
0. Neumann (see [4] Prop. 22) for every finite p-primary GS(p)-torsion module M
the canonical homomorphism H’(Gs(p), M)Hi(GS, M) is an isomorphism
for all i. The same arguments as for the first statement then also show the second. D

Similar arguments apply in the geometric situation. Here we denote the genus of a
curve C by g(C).

PROPOSITION 15. Let k be a field and let C be a connected, smooth curve over
k. Assume either that C is incomplete or g(C) &#x3E; 0. Then

i.e. the canonical morphism

is a weak homotopy equivalence. If k is separably closed and p is an arbitrary
prime number then also the canonical morphism

is a weak homotopy equivalence.
Proof. First, if necessary, we replace k by a suitable extension, such that C is

geometrically connected. We denote the base change of C to an separable closure ks
of k by Cks. Since the morphism Cks - C is pro-etale the canonical morphism:

from the universal covering of Cks,et to the universal covering of Cet is a weak
homotopy equivalence. Therefore we can assume k to be separably closed also in
the first statement. In order to show the first statement we show that the higher
homotopy groups of Cet (which are abelian profinite groups) have no p-part for
an arbitrary prime number p. If either C is incomplete or p = char(k) then
Hiet(C, Z/pZ) = 0 for i  2. Therefore Hi(et, Z/pZ) = 0 for i  1, which implies
03C0eti(C)(p) = 0 for i  2. If C is complete and p =1 char(k) then Het(C, Z/pZ) = 0
for i &#x3E; 2 and Poincaré-duality [5] V, Sect. 2, Thm. 2.1) implies an isomorphism:
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H2et(C, Z/pZ) ~ H0et(C, Z/pZ)* = 7l/p71. If C’ is a finite etale cover of C of
degree n then the following diagram is commutative:

Therefore H2(Cet, 7l/p71) = 0 if and only if there are etale covers of C of degree
divisible by arbitrary high powers of p. This is obviously the case if and only if
g(C) &#x3E; 0. This proves the first statement. The same arguments also prove the
second statement. ~

Now let 7r: X - U be smooth, proper with fibres which are curves of nonzero

genus. We denote by U(i) = U the pro-scheme representing the universal covering
of U. By X(i) we denote the pro-scheme X x u U(i). Fixing a (geometric) base
point u of U we denote X x u u by Xu. Further let p be a prime number invertible
on U. Then by Theorem 11.5. of [3] and Propositions 14, 13 we get isomorphisms
for all r  1:

By Proposition 15 we obtain 03C0r(X(i)^pet) = 0 for r  2, in particular we have
Hret(X(i), Z/pZ) = 0 for r  2. If Y is a finite etale cover of X, the same argu-
ment applies for Y (i) (possibly Y is defined over an etale cover of U). Going to the
limit we obtain for the universal cover Xet of Xet: Hr(Xeh 7l/p7l) = 0 for r  1.
Since the groups 7r;t( X) are profinite they are p-good for r  2 and we obtain
0 = 03C0r(et)(p) = 03C0etr(X)(p) for r  2. This proves Theorem 2. D

Now Theorem 3 part (i) is an easy consequence of Theorem 2 and Theorem 1: For
every finite p-primary 03C0et1(X)-module M the canonical homomorphism

is an isomorphism for all r by Theorem 2. Hence Theorem 1 implies the duality
statement (i). Part (ii) is even easier. As the fibres are simply connected we have
an isomorphism 7rlt(X)  7rlt(U) which proves the assertion in view of Theorem
1 for U and proposition 14. ~
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