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1. Introduction

(1.1) Let f : Cn+1 ~ C be a map given by a polynomial with complex coef-
ficients which will be also denoted by f. It is known (see, for example, ([17,
Appendix Al]) that there is a finite set r C C such that the map

is a locally trivial C~-fibration. The smallest set r veryfing this condition is called
the bifurcation set of f and will be denoted by r f . r f contains the set E f of critical
values of f but it might be bigger, since f is not a proper map. For example, if
f = x(xy-1) then 03A3f =  but 0393f = {0}.

Fix to e C such that 1 to | &#x3E; max{|03B3| : 03B3 ~ 0393f}. The geometric monodromy
associated with the path s H to e203C0is, s E [0, 1] is a diffeomorphism of f-1 (t0)
onto itself which induces an isomorphism:

that will be called the monodromy of f at infinity. It follows from the monodromy
theorem (e.g. in the form it is stated in (4, III. 2.3)) that the eigenvalues of T~f : =
TJllz 0 Idc are roots of unity.
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Trz is an invariant of the right equivalence class of f (we say that f, g :
Cn+1 ~ C are right equivalent if there is a diffeomorphism 03A6 : Cn+1 ~ Cn+l 1
such that f = g o 03A6), in particular it is also an invariant of the embedded affine
variety {f = 01 C Cn+1. One expects that the study of Ti can be useful in order
to have a better understanding of the classification of polynomial maps up to right
equivalence.

In this paper we study the monodromy at infinity of polynomials f E C [X1, ... ,
Xn+1] verifying the following condition:

For the sake of brevity, a polynomial f verifying condition ( * ) will be called a
( * )-polynomial.

In Section 2 we list the main properties of ( * )-polynomials. The most important
ones are the following: the fibers of the map f : Cn+1 ~ C have the homotopy
type of a bouquet of n-spheres, and the fibration provided by f over a circe of large
radius in C is equivalent to a fibration of type S2n+1 - K ~ S1(i.e. to an open
book decomposition). We also prove that T f is determined by the highest degree
form f d of f. If X f C P n denotes the hypersurface given by f d = 0, it is easy to
see that X f has only isolated singularities. The main goal of this paper is to obtain
information about the complex monodromy of f at infinity in terms of topological
invariants of the embedded hypersurface X f C Pn.

In Section 3 we study the semi-simple part of T f (equivalently, its characteristic
polynomial char~f), and we prove that it is completely determined by local data:
it depends only on the number of variables, the degree of f, and the characteristic
polynomials of the (local) monodromies of the singularities of Xi.

In contrast to this, we show in Section 4 that the unipotent part of T f does not
depend only on local data, but also on the position of the singularities of X f in Pn.
For example, it is proved in (4.6) that the number of Jordan blocks of T f associated
with the eigenvalue 1 is the (n - 1 )th Betti number bn-1(X~f) if n is even and
bn- 1(X~f)-1 if n is odd. On the other hand, it is well-known that the middle Betti
number of a hypersurface with isolated singularities is not a purely local invariant
but it depends on the position of the singular points (see for example [26], [5]). A
concrete example showing how this reflects on the monodromy at infinity is given
in (6.4).

In general, it is not possible to determine T f in terms of the Betti numbers
of Xi and local data, because even when the position of the singularities of
X f does not have any influence on its Betti numbers (for example if X f is an
irreducible curve), it can have an influence on the block structure of the monodromy
at infinity. In Section 6 we exemplify the case when X f is a plane sextic with six
cusps (Zariski’s example). It is well known that the position of the cusps determines
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the Betti numbers of the 6-fold cyclic covering of P2 ramified along X f (and then
it determines whether the fundamental group of P2 - X f is abelian or not). In
(6.5) we compute the unipotent part of T~f in terms of the Betti numbers of the
6-fold cyclic covering.
We study the nilpotent (or unipotent) part of T f is given in two steps. In

Section 4 we construct a compactification of the fibration of f at infinity, and
we prove that its monodromy T determines completely T~f. In Section 5 we
consider a projective map 7r/: X’ ~ D which is a fibration over the punctured disc
D - {0} with monodromy T-d. Moreover, the singularities of x’ and (1r/)-1(0)
are isolated. This allows us to determine the monodromy T d completely: while
(Td)~1 1 is determined in terms of the local monodromies of the singularities of

X~f, the block structure of (Td)1 is given by the weight filtration (of the mixed
Hodge structure) of the d-fold cyclic covering of Pn branched along X f .

By the correspondance proved in Section 4, the results of Section 5 give much
information about the unipotent part of T~f.

In the computation of (Td), 1 the results of the Appendix (written by the first
author and J.H.M. Steenbrink) are crucial.

(1.2) Unless otherwise stated, all cohomology and homology groups have coef-
ficients in the field C of complex numbers. The following notations will be used
through the paper:

. BR - {(x1,...,xn+1) E cn+l 1 ¿:Ixrl |  RI, BR its closure, aBR its
boundary.

. Dr = {t E C| |t| (  r}, Dr its closure, Sr = ~Dr.
2022 Given f E C[X1,..., Xn+1] the gradient of f will be denoted ~f = (~f 1,9x

..., ~f/~xn+1). If Cn+1  Pn+1 is the embedding given by (x1, ..., xn+1) ~
[1 : Xi ... : xn+1] the hyperplane {x0 = 0} C pn+l 1 will be denoted by
H~. If fd is the highest degree form of f we will denote the hypersurface in
H°° given by f d = 0 by X f or by X °° if it is clear from the context which
is the polynomial we are referring to. We always assume that d &#x3E; 1.

2022 Let H be a finitely dimensional C-vector space, cp: H ~ H a linear map, A E
C a complex number. We denote by H À the space of generalized eigenvectors
of eigenvalue À, i.e.

and ~03BB := ~|H03BB : H03BB ~ H03BB. We denote by #k~03BB the number of k-dimensional
Jordan blocks of cpa, #~03BB = 03A3k1 #k~03BB and #k~ = ¿,xEC #k~03BB.

e If 1 &#x3E; 0 is an integer, we denote by ci (~): Hel - Hel the linear map defined
by cl(~)(x1, .... xl) = (~(xl), x1, ···, xi-1).
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2. Polynomials with good behaviour at infinity

(2.1) In this section we will list the main properties of the (*)-polynomials and we
will prove that the highest degree form of a (*)-polynomial determines its behaviour
at infinity. For technical reasons, it will be more convenient to reformulate the (*)
condition as follows: Let f E C[X1, ... , Xn+1] be a polynomial of degree d and
denote f = fd + fd-1 + - ... its decomposition into homogeneous components.
Then f is a ( * )-polynomial if and only if

The proof is easy and it is left to the reader. The (*)-polynomials have a number
of good properties which are summarized in the following:

(2.2) THEOREM ([13], [15]). Let f be a (*)-polynomial. Then:

(i) The bifurcation set r f is exactly the set E f of critical values.
(ii) The singular fibers f-1 (s) (s ~ 03A3f) have only isolated singularities.

For s E E f, denote by 03BCs the sum of the Milnor numbers of the isolated
singularities of f -1 (s). Set 03BC~ = 03A3s~03A3f03BCs.

(iii) Any fiber f-1 (s) has the homotopy type of a bouquet of n-dimensional spheres.
The number of spheres in the generic fiber is 03BC~, the number of spheres in a
singular fiber f - 1 (s) is 03BC~ - 03BCs.

(iv) For any r &#x3E; 0 with the property that E f C D,, there exists Ro » 0 such
that for any t E Dr, R  Ro, f-1(t) intersects ~ BR transversely and the
restriction

is a C°°-locally trivial fibration of pairs of spaces.
Thefibration f: f-1(Sr)~BR ~ Sr isequivalenttothefibration f: f-1(Sr) ~
S, and it will be called the fibration of f at infinity. The fibration f : f -1 (Sr) n
0-BR ---+ S, extends to a C°°-trivial fibration f : f-1(Dr) fl 19BR , D,.

(v) There exists Rô » 0 such that for any R’  R’ 0

is a C~-locally trivial fibration (called the Milnor fibration at infinity), which
is equivalent to the fibration of f at infinity.

(vi) Let Xi be the intersection of the hyperplane at infinity H°° with the projective
closure Xt = f-1(t) g Pn+1 of any fiber f -1 (t). Then the hypersurface X~f
has only isolated singularities.

Proof. In [6] it is proved that a (*)-polynomial (in the sense of (2.1)) is quasi-
tame, a condition introduced by the second author in [13]. Now (i)-(iv) follow
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from [13], (v) follows from [15] and (vi) from an easy verification. ~

(2.3) Let (F, âF) denote the fiber of the fibration (2.2.(iv)). Then the last part of
(iv) implies that there is a smooth representative Tgeom of the geometric monodromy
which is the identity on aF. This allows us to define a variation map Var :
Hn(F) ~ Hnc(F) by Var [03C9] = [T*geom(03C9) - 03C9]. (For the definition at the level
of integer homology, see for example [1]). The variation map fits in the following
diagram:

where Tj and Tt:: are the corresponding monodromies and k is the natural map.
The following result will be crucial in the study of the unipotent part of T~f:

(2.4) PROPOSITION. Var is an isomorphism.
Proof. Since the fibration at infinity is equivalent to the Milnor fibration at

infinity (2.2.(v)), Var is the variation map of a fibration of type S2n+1 - K - Si.
Similarly as in the local case of isolated hypersurface singularities, the variation
map is an isomorphism by Alexander duality (see [1] for more details). Actually,
(2.4) is equivalent to the non-degeneracy of the Seifert form of the open book
decomposition. c

(2.5) REMARK. Theorem (2.2) and proposition (2.4) hold not only for (*)-
polynomials but for a larger class of polynomials which includes the ’tame’ ([2])
and ’quasi-tame’ polynomials ([13]), the ’M-tame’ polynomials ([15]) and the
convenient polynomials, non-degenerate with respect to their Newton boundary at
infinity ([8]).

(2.6) THEOREM. Let f = fd + fd-1 + ···, g = gd + gd-1 + ··· be t,,i,o (*)-
polynomials of degree d such that fd = gd. Then the fibrations at infinity of f
and g are equivalent (in the sense of [25], p. 11). In particular all the invariants,
introduced in (2.2) and (2.3) for f and g, are equivalent.

Proof. Notice that the set of (*)-polynomials with fixed highest degree form
fd form a connected, smooth, quasiprojective variety. Thus, in order to prove the
theorem, it is enough to prove the following claim:



210

CLAIM. Let f = fd + fd-t + ··· be a (*)-polynomial. Fix 0  i  d - 1 and
consider the family of polynomials fs = f + (s - 1) fi, s E C. Fix 1 » q &#x3E; 0
such that each fs is a (*)-polynomial four 18 - 1|  17. Then there exist r » 0 and

Ro » 0 such that:

(i) 03A3fs g Dr for 18 - 1|  ~;
(ii) fs 1(t) intersects 0 - BR transversely for |s - 1|  ~, R  R0 and t ~ DT.

Now, the proof of the theorem is the following: Set

where B1(~) = {s | |s - Il  ~}. Then the projection q : (03B5,~03B5) ~
Sr x B1(~) is a locally trivial fibration and for any s E B1(~), 1|q-1(Sr {s})
is the fibration of fs at infinity. Then the result follows from [25, p. 53].

Proof of the claim: Assume that (i) is not true. Then, by the curve selection
lemma ([11], [15]), there exist real analytic curves x(t) E Cn+1, and s(t) E C
(0  t  03B5) such that |s(t)-1| ~ ~, ~ fs(t)(x(t)) ~ 0, and limt~0 fs(t)(x(t)) = oo.
The last limit implies that limt-o Ilx(t)1I = 00. Put x(t) = t-ny(t) with n &#x3E; 0,
y(t) = yo + tyl + - - ., y 54 0. Then:

In particular 8 fd ( yo ) = 0. Identity (1) gives

where c = 1 if i  d - 1 and c = s(0) if i = d - 1. This identity, multiplied
by y(t), rewritten using the Euler-relations, differentiated with respect to t, and
compared with its initial form (2), gives:

Therefore fd-1 (YO) = 0, which contradicts condition (*).
Part (ii) follows from a similar argument. Fix an r y 0 which satisfies (i).

Assume that (ii) is not true for q, r and any Ro W 0. Then there exist analytic
curves x(t) E Cn+1, A(t) e C and s(t) E C, (0  t  -), with Is(t) - 1| ~ ~,
|fs(t)(x(t))|  r, limt.0 IIx(t)1I = 00, and

Let x(t) = t-ny(t) as above. Since fs(t)(x(t)) has order 0,
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Hence 03BB(t) · x( t) . x’(t) + s’ (t) . t-nifi(y(t)) = 0 (mod t0), which gives 03BB(t) = 0
(mod t(2-i)n+I). Now (3) gives (mod tn+l) the same equation as (2) which gives
again the contradiction âfd(yo) = fd-1(y0) = 0. 0

(2.7) Theorem (2.6) says that the behaviour of f = fd + fd-l + ... at infinity
depends only on fd, in particular f can be replaced by any polynomial f ’ =
fd + fd’- where f§ 1 is a polynomial such that its zero set in Pn does not intersect
Sing(X°°). For example, we can take f§_j = ld-1 where 1 is a generic linear
form. This fact gives the hope that the topological invariants of f associated to
its behaviour at infinity can be explicitly described in terms of invariants of the
embedded hypersurface XI C Pn.

3. The semi-simple part of Tr
(3.1) Let f = fd + fd-l be a (*)-polynomial. We introduce some notations.
Let Sing(XOO) = {p1, ... , Pk 1. For 1  i  k, let gi: (H~, pi) ~ (C, 0) be a
local equation defining the isolated hypersurface singularity germ (XI, pi). We
denote by 03BCi its local Milnor number, by Fi its local Milnor fiber, and by Ti
its algebraic monodromy acting on Hn-1 (Fi). In this section we determine the
characteristic polynomial of Tf (or equivalently, its semi-simple part) in terms of
the characteristic polynomials of the local algebraic monodromies {Ti}i=1,...,k.

(3.2) First assume that X°° is non-singular. Then fd: (Cn+ 1 0) - (C, 0) defines
an isolated singularity and, by similar argument as in (2.6), the fibration of f at
infinity is the same as the fibration of fd at infinity, which is identical with the
local Milnor fibration of the germ fd defined at 0. In particular, its Milnor number
is iL- = (d - 1)n+1, its monodromy has (finite) order d, and its characteristic
polynomial is

(3.3) THEOREM. Assume that f is a (*)-polynomial. Then, with the notations
introduced above one has:

In particular, g’ + 03A3ki=1 03BCi = IL gen-
Before we start the proof of theorem (3.3), we make some preparations:
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(3.4) LEMMA. Consider the family of polynomials fs = fd + sfd-1, where s E C.
There exists r &#x3E; 0 such that the set of critical values of fs is contained in Dr for
any s with Isl ~ 1.

The proof is similar to the proof of the Claim in (2.6), and it is left to the reader.

(3.5) We recall the definition of the zeta function of a locally trivial fibration E -
S1 over the one-dimensional circle S1. Let F be its fiber and Tq: Hq(F) ~ Hq(F)
the algebraic monodromies induced by its characteristic map. Then define:

If f is an arbitrary polynomial and r is large enough so that r f C Dr, then 03B6~(f)
is, by definition, 03B6(f-1(Sr) - Sr).

(3.6) Proof of (3.3). Fix r big enough so that the conclusion of Lemma 3.4 holds
for r. For any s e C with |s| ~ 1 and t E ST, set

Xt,s is the projective closure of the affine variety f-1s(t). Since for any s ~ 0
the polynomial fs satisfies (*), for any s ~ 0 the space Xt,s is non-singular. The
intersection Xt,s n H~ is exactly XI, in particular it has only isolated singularities
(cf. 2.2.(vi)). On the other hand, Xt,o is singular with isolated singularities exactly
at the singular points of XI.

Let Bi be a small open ’ball’ in pn+1 1 with center at pi, (1  i  k). More
precisely, consider a real analytic function ri defined in a neighborhood of pi with
non-negative values such that r-1i(0) = {pi}, and take Bi = r-1i([0, ~0)). Here 170
is small enough such that Bi’s are disjoint and the following conditions hold:

(i) r¡l(17) is smooth and intersects Xt,o, H°° and XI transversely for any
~  ~0, t ~ Sr and i = 1, ..., k,

(ii) The ‘ball’ r-1i([0, ~]) and its intersections with Xt,o, H°° and X~ retract to pi
for any q  170, (in other words, Bi is a ’Milnor ball’ at pi for the analytic sets
Xt,o, H°° and X~). Fix 170 and the balls {Bi}i=1,...,k. Let Bi be the closure
of Bi, and aÈi its boundary.
Now we are going to consider balls BR in the affine space cn+1. Choose Ro
big enough so that one has:

(iii) BBR intersects fÕ1(t) transversely for any R  R0 and t E ,S’r,
(iv) 9J9R intersects OBi transversely for any R  Ro and i = 1, ... , k.

Fix a R0 with these properties and set CR0 = Cn+1 - BR0. Since f-1s(t)
is smooth for any s, t and f-10(t) intersects ~BR0 transversely, there exists
1 ~ 03B5 &#x3E; 0 such that for any s E C with s  03B5 one has:

(v) f-1s(t) intersects ~BR0 transversely for any t,
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(vi) Xt, s intersects âB2 transversely for any t and i = 1,..., k.

Obviously, in general Ro does not satisfy the condition (2.2.(iv)) for all s.
With these choices, the map:

is a locally trivial fibration of a triple of spaces. By the transversality conditions
one has the equivalence of the fibrations:

respectively of

By a Mayer-Vietoris argument one has:

Set:

Consider the map F ~ Sr x Dé induced by the projection. For any s e D, the
induced map (xs, Ys, Zs) ~ Sr is a locally trivial fibration of a triple of spaces,
and the fibrations Zs ~ Sr and 8Ys - Sr are independent on s. Then, by
Mayer-Vietoris one has:

for any |s|  e. Now (5) and (6) give

Notice that the right hand side of (7) is completely local, it is concentrated in the
balls {Bi}i. The rest of the proof is now devoted to compute 03B6(y0 ~ Sr) and
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03B6(y03B5 ~ Sr). Since the balls {Bi}i i are disjoint, these zeta functions are prod-
ucts over the singular points pi of X~: 03B6(ys ~ Sr) = jIi 03B6(ysi - Sr), where
ysi = ys fl Bi and s = 0 or = -.

Fix a point pi e Sing(X~) and choose coordinates so that pi = [0 : ... : 0 : 1]
and fd-1 = xd-1 (cf. 2.6-2.7). We recall that we fixed a circle of big radius Sr and
after that we fixed the balls Bi and R0 (thus R0 and Bi depend on the choice of r).
In local coordinates (yo, ... , Yn) (using the notation y2 = xi/xn+1 for i = 0,..., n
and y = (y1, ... , yn)) one has:

and we can assume that Bi = {|y0|2 + ~y~2 ~ 03C1i} for some small Pi &#x3E; 0. Then

y0i = {(y0, y, t) ~ (Bi ~ Cpj x Sr | gi(y) = tyôÎ and the map y0i ~ Sr is
induced by the first projection. We will show that 03B6(y0i ~ Sr) = 1. For this

consider the neighborhood Ni = {(y0, y)| 1  R0|y0|2, |y0|2 + ~y~2  03C1i}. Then
it is not difficult to see that

is a subbundle of y0i ~ Sr which is an equivariant strong deformation retract. In
particular, 03B6(y0i ~ Sr) = 03B6(y’0i ~ Si ).
Now set p = 1/R0 and consider the map Yo’i ~ Sr X D* given by

(y0, y, t) ~ (t, yo). By construction, this is a fiber bundle (with fiber Fi), thus
03B6(y’0i ~ Sr) = 1 by [14, 3.3.9].

The next step is the computation of 03B6(y03B5i - Se ). Let r, Ro, pi be as above.
Then E is fixed and is sufficiently small with respect to r, Ro, pi (see conditions (v)
and (vi) above). Then:

Consider, similarly as above,

with the projection onto Sr. Then y03B5i ~ ST and Y,’i ~ Sr are equivalent fiber
bundles. Now take the projection Ti: Y’ - Sr X DP given by ( yo, y, t) - (t, yo).
This is a fiber bundle over Sr X D*03C1 - {(t, yo) |tyd0 = 03B5y0} with fiber Fi and the
fiber of T2 over any point of 0394 :{(t, yo) E Sr X D*03C1|tyd0 = syo) is contractible.
For a fixed value t = t0 ~ Sr, the punctured disk {t0} X D*03C1 intersects A in (d - 1)
points ql , ... , qd-1. If to E R+ (i.e. if to = r), these points are:

They are situated on the circle
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Consider also the points rk E S(t0), k = 1,..., d - 1 :

Now the fiber F03B5i of y’03B5i over to is T-1 ({t0} x D*03C1). S(to) is a strong deformation
retract of {t0} x D*03C1 and the retraction can be lifted, therefore F03B5i has the homotopy
type of 7-1 (S(to)). The points rk lay on the arc qkqk+1, T (rk) ~ Fi and T-1 (qk)
is contractible. Therefore 03C4-1(qkqk+1) has the homotopy type of the suspension
S(Fi) of Fi. In particular 03C4-1(S(t0)) ~ SI V (Vd-1 S(Fi)).

If we now lift the path given by a 1--+ to e27ria E Sr, a E [0, 1], then the points
qk, respectively rk, move on the path:

respectively on

Obviously rk(0) = rk and rk(1) = rk-1 (with the notation ro = rd-1). Thus
via the paths r2(03B1), ..., rd-1 (a), we can identify the fibers of the bundle T over
the points {rk}d-1k=1. We determine now the geometric monodromy acting on Si V
(Vd-1 S(Fi)). It is clear that the action on S1 is trivial. By the above identifications,
the action on Vd-1 S(F;) is given by cd-1 (S(Tgeom)) (see (1.2)), where S(Tgeom)
is the suspension of the geometric monodromy Tgeom induced by the loop q =
r1(03B1) o ··· o rd-1(03B1). If 03B3 is given by 03B1 ~ (t(a), yo(a)) then the loops ’Yu defined
by 03B1 ~ (t(a), uyo(a)) for u E [c, 1], (1 &#x3E; c &#x3E; 0) are homotopic to 03B3. Moreover,
the image of the loop 03B3u is on the torus Tu = Sr x (yo 1 lyol = u03C103B5} and for
c  u  1 the torus Tu does not intersect A. Now, the fibration induced by T over
Te is a pullback of a representative Gi: Bi ~ DP of gi via the map 03BE : Tc ~ D*
given by (t, yo) - - eyo + tyo.

Let L and M be oriented loops on Te which generate its first homology group,
i.e. L = [s ~ (to, cp, e203C0is)] and M = [s ~ (to e 21ris c03C103B5)]. Then we have
[03B3c] = -L + (d - 1)M in H1(Te,Z). Now, first notice that the monodromy
induced by M is trivial. To see this, notice that for c sufficiently small and y0 ~ 0
fixed, the winding number of the loop 03B1 ~ yo(-e + to e203C0i03B1yd-10) (with respect
to the origin) is zero. Therefore 03BE*[M] is trivial in Hl (D;). On the other hand,
03BE*[L] = 1 E Hl (D*03C1). Therefore Tgeom is the inverse the geometric monodromy of
gi. The corresponding algebraic monodromy acting on Hn(V d-1 S(Fi)) is Ai =
cd-1(T-1i). Thus ((Yéi ~ Sr) = (det (A - Id - Ai))(-1)n and since Ti is a real
operator with eigenvalues on the unit circle det(A - Ai) = chari(03BBd-1). Then (7)
reads:
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Now, for s = 0, fs is exactly the homogeneous polynomial fd, considered as
a germ fd: (Cn+1, 0) ~ (C, 0). fd defines a singularity with one-dimensional
critical locus and its zeta function is computed in [21]:

where 03B6(fgen) is the zeta function of a generic homogeneous singularity of degree
d, i.e. 03B6(fgen) = (1 - 03BB)(chargen(03BB))(-1)n. Since 03B6~(f03B5) = (1 - 03BB). (char~f)(-1)n,
the result follows from (8) and (9). 0

4. The algebraic monodromy Tf via a compactification
(4.1 ) In the next two sections we will study the structure of the Jordan blocks of T f
for a (*)-polynomial f. For this purpose we will consider a fibration 7r: ~ ~ Sr
which compactifies the fibration of f at infinity. The main result of this section is
that the algebraic monodromy T~f can be completely determined from the algebraic
monodromy T of the projective fibration 7r (and conversely).

One interesting byproduct of this correspondence is that the number of Jordan
blocks of TT corresponding to eigenvalue one is the (n - 1 )-th Betti number
bn-1(X~) if n is even and bn-1(X~) - 1 if n is odd. In particular, the unipotent
part of the monodromy at infinity depends not only on local data associated to the
singularities of X°° but also on their position.

In the next section we determine the dth power of T. This gives much informa-
tion about the unipotent part of Tf via the correspondence of this section.

(4.2) We introduce some notations. Let f e C[X1,..., Xn+1] be a (*)-polynomial.
By (2.6) we can assume that f has the form f = fd + xn+1 where fd is homoge-
neous of degree d. Fix r such that E f C DT. Set:

and let 7r: ~ ~ Sr be the second projection map. Put:

Fix to E Sr. Then 03C0: (~, ~0) ~ Sr is a locally trivial fibration of pairs of spaces
and 7rlxo is exactly the fibration of f at infinity. Let T : Hn(Xt0) ~ Hn(Xt0)
be the algebraic monodromy of 7r. Property (2.2.(v)) implies that there exists a
sufficiently large ball BRo and a representative Tgeom : Xt0 ~ X to of the geometric
monodromy of 7r such that Tgeom |Xt0-BR0 is the identity. Therefore, the diagram
in (2.3) can be extended to the following diagram:
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where 1* and i* are the natural maps. Recall that i*i* Var = k o Var = Tf - Id.
(4.3) Since f is a (*)-polynomial, Xto is a smooth hypersurface in Pn+1. Let
S be the polarization form of Hn(Xto), i.e. S(a, (3) = fXto a A (3 for a, (3 E
Hn(Xto). Then it is well-known that Hl (Xk) = Hq(Pn+1) if q =1 n and Hn(Xt0)
decomposes in a direct sum Hn(Pn+1)~(Pn+1)~Pn(Xt0), orthogonal with respect to S.

Since the hyperplane section at infinity X°° has only isolated singularities, the
primitive decomposition Hq(X~) = Hq(Pn) ~ Pq(X~) satisfies Pq(X~) = 0
if q ~ n - 1, n. The numbers pq(X~) = dim Pq(X~) (q = n - 1, n), are in
general non-zero, and in general, they depend on the position of the singularities
of X~.

On the other hand, the Euler characteristic of X°° does not depend on it. One
has:

(4.4) Since X0t0 has the homotopy type of a bouquet of n-spheres (cf. 2.2.(iii)), the
exact sequence of cohomology with supports has the following form:

The sequence is equivariant with respect to the monodromy action. This action on
HnX~ (Xt0), Hn+1X~ (Xto) and Hn+1(Xt0) is the identity. Recall also the duality iso-
morphism H*X~(Xt0) ~ H2n-*(X~). In the sequel we will identify HnX~(Xt0)
with its image in Hn(Xt0).

(4.5) LEMMA. There is an equivariant direct sum decomposition

which is orthogonal with respect to the form S. In particular, the monodromy T
decomposes as T = Id ~ Tl.

Proof. Consider the orthogonal decomposition HnX~ (Xt0) = Hn(Pn+1) ~
PnX~ (X ta) and the corresponding decomposition of j*:
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Then PnX~(Xt0) has a natural polarized Hodge structure and the inclusion j’ is
a morphism of polarized Hodge structures (where on Pn(Xt0) the polarization is
induced by S). It follows that the restriction of S to PnX~(Xt0) is non-degenerate
hence the result follows. 0

We have a perfect pairing Q : Hnc(X0t0) ~ Hn(X0t0) ~ C given by a 0 03B2 ~
X0t0 a 1B 03B2 and the morphisms i* and i* are adjoint with respect to Q. Thus

im(i*) ~ (ker(i*))~ = (HnX~(Xt0))~. Since Q is compatible with the mon-
odromy action this isomorphism is equivariant.

The following theorem describes the monodromy Ti in terms of T and the
Betti numbers of Xoo.

(4.6) THEOREM.

(a) For any 03BB ~ 1, (T~f)03BB = T03BB.
(b) Assume À = 1. Then :

(i) #1(T~f)1 = bn(X~) + pn-1(X~) - #T1,
(ii) #2(T~f)1 = #1T1 - bn(X~),
(iii) #l+1(T~f)1 = #lT1 for l  2.

In particular #(T~f)1 = dim(ker Ti - Id) = pn-1(X~).
Proof. Part (a) follows from (4.4). Let V1 dénote the composed map

By (2.4) we have that VI is onto. By (4.2), (4.4) and (4.5) one has the following
commutative diagram:

Now part (b) follows from this diagram and (4.5). CI

(4.7) COROLLARY Assume 1 is not an eigenvalue of any of the local monodromies
Ti (i = 1, ... , k), (cf. 3.1). Then #l(T~f)1 = 0 for l &#x3E; 1 (i.e. (Tj)1 = Id).

Proof. From (3.3) and from the Euler-characteristic formula (4.3) we deduce
that pn-1(X~) - pn(X~) = dim Hn(X0t0)1. Then the exact sequence (4.4) gives
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that pn(Xto)1 1 = 0, or (i*) 1 = (i*)1 = 0. Hence (Tf)1 1 = Id from the last dia-
gram. 1:1

(4.8) COROLLARY. Let (, ) be the intersection form on Hn(Xg) (or, by Poincare
duality, the form (a, (3) H f a A a on Hnc(X0t0)). Then one has:

ln particular, the intersection form depends on the position of the singular points
of X~.

(4.9) REMARK. Notice that, similarly as in the local case of isolated hypersurface
singularities, the intersection form (, ) and the monodromy T f can be determined
from the variation map Var. To see this, set H : = Hn(X0t0, R), denote by b : H -
H* the map given by b(x) = ~x, ·~ and by T~f,c the monodromy action on H. Then
the variation map is a map Var: H* ~ H and (after a canonical identification of
H** and H) one has:

Actually, all these invariants are defined over the integers, Var is unimodular and it
is equivalent to the Seifert form of the Milnor fibration at infinity (cf. 2.2.(v)).

5. The dth power of the monodromy

(5.1) In this section we determine the dth power of T (T being the transformation
introduced in Section 4). Since the Jordan block structure of the unipotent parts
of T and Td are the same, this will provide much information about the unipotent
part of Ti via (4.6).

In the computation of Td there are two (rather different) cases. If 03BB ~ 1 then

(Td)a is completely local: in (5.3) we describe it in terms of the local transforma-
tions Ti. The result (and also its proof) is topological. On the other hand, if À = 1,
then (Td)1 is described Hodge theoretically (cf. 5.5) in terms of local data and the
weight filtration (of the mixed Hodge structure) of the d-fold cyclic covering of
H°° branched along Xi.

For this purpose we will introduce a map 03C0’: ~’ ~ D’, where D’ is a disk in the
complex plane, which induces a fibration over the punctured disk with algebraic
monodromy T-d, and such that the central fiber has only isolated singularities.
The map ’Tr’ provides smoothings of these singularities and we will determine the
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relation between the monodromies of these smoothings and the transformations Ti.

(5.2) We start with some preliminary constructions. 
As in the previous section, we can assume that f = fd + xd-1n+1. Set:

where D denotes a disk of small radius in the complex plane and let 7r 00: ~~ ~
D denote the map induced by the projection onto D. The map 7r 00 induces a
locally trivial fibration over D - {0} with fiber 7r,,’ (t) = X1/t, and the algebraic
monodromy acting on Hn(X1/t) is T -1. Notice that the singular locus of ~~ is
X°° x {0}.

Consider now the pullback of the map 03C0~ over the map 8: D’ ~ D defined by
03B4(t) = td, D’ being again a disk of small radius. Then ~~  03B4 D’ can be identified
with

Moreover, the pullback 03C0’~ of 7r,, is induced by the second projection. Obviously,
~~  03B4 D’ over D’* : = D’ - {0} is a fiber bundle with the same fiber as 7r 00’ and
with algebraic monodromy T-d.

Consider now the space:

and the map 7r’: X’ -* D’ induced by the second projection. Then 0: ~’ ~ ~~  03B4

D’, given by 03B8([x], t) H ([tx0 : x1 : ... : Xn+1], t) is the normalization map, and
identifies the fiber bundles over D’* induced by 03C0’~ and 7r’. Denote X’s = (03C0’)-1 (t)
for t E D’.

Therefore, we have constructed a map 7r’: x’ ~ D’ which is a fiber bundle
over D’*, with the same fiber as 7r 00 and with algebraic mondromy T -d . Moreover,
Sing(~’) = Sing(X’0) is the finite set Sing(X°°) X {0}. The singularities of X’0
are the d-th suspensions of the singularities of X~ and the map 7r’ provides their
smoothings.

Set Sing(X’0) = {p’1,..., p’k}, p’i = [0 : pi] and let F’i, T’i denote the Milnor fiber
and the algebraic monodromy (acting on Hn(Ff) of the smoothing of (Xô, pi)
given by 7r’.
Now we will formulate the first part of the main result of this section.

(5.3) THEOREM. Let Hn(F)03BE be the generalized eigenspace with respect to
the eigenvalue ç of T~f. Then, for any root of unity À =1 1, we can identify

~03BEd=03BBHn(F)03BE with the generalized A -eigenspace of ~ki=1(Hn-1(Fi)~(d-1)) pro-
vided by the operator ~ki=1 cd-1(T-d). By this identification:
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REMARK. Recall that for 03BB ~ 1 one has: [(T~f)d]03BB = [T d]A (cf. 4.6.a).
Proof of (5.3): From the Leray spectral sequence associated to the specialization

map restricted to Xt (for t ~ 0 and fixed) we get a sequence of vanishing cycles,
equivariant with respect to the monodromy:

where Pn+1(X’0) ~ ker[Hn+1(X’0) ~ Hn+1(X’t)] denotes the primitive coho-
mology. In particular, for ,B =1= 1 we have

We want to relate now the action of T’ on Hn (Fi) with that of Ti on Hn-1 (Fi).
This is now a local problem. Fix pi E Sing(X°° ) and assume that pi = [0 : ... :

0:1]. We have to study the (local) smoothing:

given by (yo, y, t) ~ t. In the sequel D denotes a sufficiently small disc. Consider
the map cp: y ~ D x D given by cp(yo, y, t) = (t, yo). Then it is not difficult to
verify that cp defines an isolated complete intersection singularity. In the sequel
cp: Y - D x D will denote a ’good representative’ of this icis in the sense of [10].
The discriminant of cp is given by à = {yd0 = ty0} C D x D. Moreover, the
following properties hold:

(i) Over the complement of A, p is a fiber bundle with fiber Fi,
(ii) ~-1((t, yo)) is contractible for (t, yo) E A,

(iii) the monodromy of the fiber bundle (over D x D - A) is abelian, the mon-
odromy induced by a small oriented circle around A (constructed in any
transversal slice at a smooth point of A) is Ti,

(iv) pri o cp is the local smoothing of Xi given by 03C0’, in particular FI can be
identified with cp-1 ({t = to 1) for t0 ~ 0 sufficiently small.

Fix to &#x3E; 0 sufficiently small. Then {(t, yo) E D x Dit = t0} intersects A at the
points qo = (to, 0) and qk = (e203C0ik/d-1 · d-1t0, to), where 1  k  d - 1. Let Ik
be the real segment q0qk (k=1,... ,d-1) and I = Ud-1 Ik C {t = t0} C D x D.
Then I is a strong deformation retract of {t = t0} and this retraction can be lifted
via ~. In particular, Fi has the homotopy type of cp-1 (I). Let rk be the middle
point of the segment Ik. Since cp-1 1 (qk) is contractible for any k = 0, ... , d - 1 and
cp-1 (rk) ~ Fi, the space cp-1 (Ik) has the homotopy type of the suspension S(Fi)
of Fi. It follows then that F’i ~ Vd-1 S(Fi).

In order to compute the monodromy action on ud-1 S(Fi), notice first that the
reduced homology of Vd-1 S(Fi) is generated by the suspension of the cycles of
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the spaces ~-1(rk). Let t = to e203C0i03B1, a E [0, 1]. Then the points r1, ···, rd-1
move along the paths

r (a) = (to e203C0ri03B1, e203C0i(03B1+k)/(d-1)· d-1t0), 03B1 ~ [0, 1], 1 ~ k ~ d - 1.

We identify the fibers ~-1(rk) (1  k  d - 1) via the paths 03C4k(03B1) (1  k  d - 2).
Then, with the notations introduced in (1.2) the monodromy T’ is of the form
cd-1(M), where M is induced by the geometric monodromy Mgeom: ~-1(r1) -
~-1(r1) induced by the loop 1 = rd-1(03B1) o ... o r1(03B1). Now the linking number
of y with {y0 = 01 is one, and with {yd-10 = t} is d - 1. Thus M = Tl and one
has:

k

By (4.6), (T-d)03BB = (T-df)03BB. Also, cd-1(Ti)-1 is conjugate to Cd-1(Ti-1). Thus
taking inverses in the above equality the theorem follows. ~

(5.4) EXAMPLE. The theorem above determines, in terms of the local mon-
odromies, the Jordan blocks of Tf corresponding to eigenvalues e, with 03BEd ~ 1.
In some cases all the eigenvalues e satisfy 03BEd ~ 1, this fact can be verified by the
computation of the characteristic polynomial of Tr (cf. 3.3). In these cases, the
above theorem describes completely T~f.

For example, if fd E C [X, Y, Z] is a product of d linear forms defining d lines in
p2 intersecting at one point, then the monodromy at infinity of any (*)-polynomial
with highest degree form fd satisfies the above condition. It tums out that Tr is
of finite order, in particular it can be completely determined from (3.3).

As we will see (in the next theorem and in some of the examples of Section 6),
it is not possible to obtain a similar description of the stucture of the Jordan blocks
associated to the dth roots of unity, because this information is not purely local
anymore.

(5.5) THEOREM. Consider the morphism of mixed Hodge structures:

Recall that X’0 is the d-fold cyclic covering of H°° branched along XOO. Then there
is an exact sequence of mixed Hodge structures:

In particular, for any 1 one has:
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and

Proof. The exact sequence is given by Theorem 2 in the Appendix, since sp* is
injective (cf. the exact sequence (10) in the proof of (5.3)). Since the weight filtration
on Hn (X,,) 1 is the monodromy weight filtration of the nilpotent endomorphism N
one has: #l(T-d)1 1 = dim GrWn-l+ 1 ker N.

The local equation defining X’ in a neighborhood of p2 (in Cn+2) is Bi :=
9i + xot - xô = 0. Let Fi, Ti denote the corresponding Milnor fiber and mono-
dromy acting on Hn+1(Fi). It follows from the Sebastiani-Thom formula that
there is an isomorphism Hn+1(Fi) ~ Hn - (Fi) compatible with the actions of Ti,
respectively of Ti.

From the following exact sequence (cf. [22]):

one has the identifications: dim GrWn-l+1Hn+1{p’i}(~’) = ngrwl+lkerj
dim GrWn-l+1 ker Ngi = #l(Ti) 1 = #l(Ti)1. ~

Notice that Theorems (5.3), (5.5) and (4.6) give an almost complete description
of the nilpotent (or unipotent) part of T f .

The next criterion shows that even in the case A = 1 the transformation (T-d) 1
can be local if the local transformations Ti satisfy some restrictions.

(5.6) PROPOSITION. With the notations previously introduced, assume that one
has:

(a) #s(Ti)1 = 0 for s &#x3E; 1 and i = 1, ... , k.
(b) Ti has no dth root of unity different from 1 as eigenvalue for i = 1,..., k.

Then (Td) 1 (acting on Hn(X’t)1) is the identity. In particular :
(a’) #k(T~f) 1 = 0 for k &#x3E; 2.

(b’) #k(T~f)03BB = 0 for 03BBd = 1, 03BB ~ 1 and k &#x3E; 1.
Actually, in this case the monodromy at infinity T f can be completely determined
from the local monodromies Ti and the Betti numbers of X°°. (See (5.3) and the
last relation #2(T~f)1 = pn- 1 (X’) of (4.6).)

Proof. From the exact sequence (10) one has that
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The relation T! = cd-1(Tdi) (see the proof of (5.3)), and (b) give that dim Hn(F’i)1 =

dim Hn-1(Fi)1.
On the other hand, from (5.5) or from Theorem 2 in the Appendix one has:

Then from (a) above and from the Sebastiani-Thom formula one has

Now from (11) and (12) we get that (Td)1 = Id on Hn(X’t)1, therefore (a’ ) and
(b’) follow from (4.6).

Notice also that Pn+1(X’0) = 0. a

(5.7) REMARK. The vanishing of Pn+1(X’0) = 0 under assumptions (a) and (b)
above means that the only root of the Alexander polynomial 03941X~ of the hypersur-
face X °° is 1 (cf. [9], [5, Chapter 6, 3.24]), and then it is 03941X~(t) = (t - 1)03B4, 03B4 =
dim Pn(X~). We recall that 03941X~ agrees with the characteristic polynomial of the
monodromy acting on H’- 1 (Fd), where Fd is the Milnor fiber of the map germ
fd: (Cn+1, 0) ~ (C, 0), cf. [5].

The above proposition has the following consequence, which is significant on
its own, and can be formulated independently of the results of the paper:

(5.8) COROLLARY. Let X °° C Pn be a hypersurface with isolated singularities,
and of degree d. Assume that the local monodromies Ti of these singular points
satisfy:

(a) #s(Ti)1 = 0 for s &#x3E; 1 and i = 1,..., k; and
(b) Ti has no d-th root of unity different from 1 as eigenvalue for i = 1,..., k.

Then the d-fold covering Y of Pn branched along X °° has the following properties:

(a’) the primitive cohomology Pn+1(Y) = 0, and
(b’) the mixed Hodge strucure on Hn(y) is pure of weight n.

6. Examples

(6.1 ) The case n = 1.
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Write fd in the form fd = 03A0mi=1 l03B1i, where li are different linear forms. If f is a
(*)-polynomial then by (2.6) its monodromy at infinity is completely determined
by the integers ai E N*. Moreover, f is "good" in the sense of Neumann (cf. [16])
and it has a RPI splice diagram which describes completely the link at infinity of
an arbitrary fiber f-1(t) (defined as f-1(t) n SR, R W 0) and the Waldhausen
(splice) decomposition of the link complement SR - f-1(t). This diagram provides
the whole set of invariants of the Milnor fibration at infinity (cf. [7], [16]). By the
algorithm described in ([16, Section 4]) we deduce easily that the splice diagram
of f at infinity is:

(the root vertex is marked ’o’).

It follows (from (3.3) or [7, 11.3]) that the characteristic polynomial of T f
is:

Set q = d(d - 1) 03A0mi=1 ai. Then 03BBq = 1 for any root A of the characteristic

polynomial. Then by [7, Theorem 14.1] one has

where di = gcd(d, cxi ) and cx = gcd(03B11, ... , am). It follows that:

(6.2) REMARK. In the above case, the link of f at infinity can be realized as
the link of an isolated curve singularity g: (C2, 0) ~ (C, 0) if and only if either
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m = 1 and al = d or m = d and al = ... = ad = 1. In these cases f can
be assumed to be f = xa + x d-1 or f = xd + x2 respectively. Exactly in these
cases the minimal RPI splice diagrams do not have edges. In all other cases the
minimal splice diagram satisfies ’reverse Puiseaux inequalities’ (cf. [16]), i.e. all
’edge determinants’ are negative (recall that the ’edge determinants’ associated
with the germ of a plane curve singularity are positive).

(6.3) Lines in general position.

Let 11, ... , 1 d E C [XI, X2, X3] be distinct linear forms defining a set of lines in
p2 such that no more than two lines meet at a point. Let f be a (*)-polynomial
with highest degree form l1 ·····ld. It follows from Theorem (5.3) and Proposition
(5.6) that Ti can have Jordan blocks of size bigger than one only for eigenvalue
1. The number of the blocks associated with eigenvalue one can be computed from
Theorem (4.6), it is (d - 1)(d - 2)/2. The generalized eigenspace of (T~f)1 has
dimension (d - 1)(d - 2) (from 3.3). Therefore, there are no Jordan blocks of
size one associated to the eigenvalue 1. The monodromy at infinity can now be
completely determined using Theorem (3.3).

(6.4) Quintic hypersurfaces in p4.

As a first example of the influence of the position of the singularities of X°° on
the block structure of the monodromy at infinity, consider the hypersurfaces Y, Z
described in ([26, pp. 50 and 55]). Both are quintic hypersurfaces in P4 with 108
nodes but b4(Y) = 19 while b4(Z) = 20. Let fy (resp. fz) be (*)- polynomials
of degree 5 which have as highest degree form a polynomial defining Y (resp. Z)
in P4. Set Ty = Tz, Tz = Th As in the previous example, Ty and Tz can
have Jordan blocks of size bigger than one only for eigenvalue 1. The number of
the blocks of size two can be computed using Theorem (4.6) and it turns out to be
100 for Y and 99 for Z (dim H4(X0t0)1 = 204 in both cases). Combining this with
Theorem (3.3) we can completely describe Ty and Tz.

(6.5) Zariski’s sextics.

Let f6 e C[X1, X2, X3] be a form defining a plane sextic in p2 with six cusps
and no other singularities. Let f be any (*)-polynomial with highest degree form
f6. Then from (4.7) and (5.3) it follows that Tf has no Jordan blocks of size bigger
than one associated neither to the eigenvalue 1 nor to eigenvalues A with 03BB6 ~ 1.

Also, from the sequence (10), the computation of the action of monodromy on
~ki=1 Hn(F’i) in the proof of (5.3) and from (4.6.a), it follows that Tf can have
Jordan blocks of size at most two. The number of them depends on the position of
the cusps, more precisely:

. #2T~f = 10 if the six cusps are on a conic,
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Because from the computation of the characteristic polynomial of T f in Section 2
and the sequence in (4.4) one gets that

(where Xt is defined in the proof of (5.3)). On the other hand, from Theorem (5.5)
one gets that:

where 6 = dim H3(X’0), X’0 being the hypersurface in p3 defined by X6 = f6,
i.e., the 6-fold cyclic covering of P2 branched along the curve XI. The possible
values of ô are known to be 2 if the six cusps are on a conic or 0 if they are not (cf.
[27, VIII, Sect. 3]), and then the result follows.

APPENDIX: On the local invariant cycle theorem
by R. Garcia L6pez and J.H.M. Steenbrink

In this note all cohomology groups will be assumed to have coefficients in the field
Q of rational numbers. We prove the following two theorems:

THEOREM 1. Let X be a complex analytic space which can be embedded in a
projective variety as an open analytic subset. Let 7r: X - D be a flat projective
holomorphic map onto the unit disk D in the complex plane. Let Z be the singular
locus of X, set Y = 7r-l(O) and assume that Z C Y. Let Xt be the generic fiber
of 03C0. Let k E N and let T E Aut(Hk(Xt)) be the monodromy transformation of 03C0
around the critical value 0. Then the sequence

is exact.

REMARKS. 1. The first map in the sequence above is the restriction map.
2. If Z = 0, the theorem is due to Katz in the setting of 1-adic cohomology and

to Clemens and Schmid in the Kâhler case ([3]).
3. The hypothesis Z C 03C0[-1(0) is equivalent to the generic fiber of 7r being

smooth.

Proof. After possibly shrinking D, we may assume that the restriction of 7r over
the punctured disk D - {0} is a C°°- fiber bundle and that the inclusion Y - X is a
homotopy equivalence. Let then X be the limit fiber of 7r, defined as X = X x D H,
where H is the universal covering space of D - {0}. We recall that Xt and X are
of the same homotopy type. In the sequence
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one has Im(03B2) = Ker(T - Id) by the Wang sequence. The terms in this sequence
carry mixed Hodge structures (MHS) such that a and Q become morphisms of
MHS. We use Saito’s formalism of mixed Hodge modules ([18]).

2022 For Hk(X) one has the limit MHS ([20], [23]) given by Hk() ~ Hk(Y,
03A8fQHX).

2022 Let C C Y be any closed analytic subset, let i: Y - X and j : X - C - X
be the inclusion maps. Then

By [20], Ker(T-Id) has weight ~ k. Hence it suffices to show thatWkHk(X -
Y) = a(WkH k(X - Z)), where W, denotes the corresponding weight filtration.
One has the exact sequence of MHS

Fix a projective variety W containing X as an open analytic subset. Without loss
of generality we can assume that W - Z is smooth. By excision we have an
isomorphism of MHS Hk+1(W - Z, W - Y) - Hk+1(X - Z, X - Y). We also
have the exact sequence of MHS

Now WkHk+I(W - Z) = 0 as W - Z is smooth, moreover WkHk(W - Z) =
Im(Hk(W) ~ Hk(W - Z)) and similarly for WkHk(W - Y), so WkHk(W -
Z) ~ WkHk(W - Y) is surjective. We conclude that WkHk+1(W - Z, W - Y) =
0. Hence a : WkHk(X - Z) ~ WkHk(X - Y) is surjective. o

REMARK. M. Saito has informed us that the theorem above follows also from
the results in [19]. Actually, if IH*(X) denotes the intersection cohomology of X
then, with the notations above one has a factorization

and Theorem 1 follows then from [19, (3.8)].
If the central fiber has only isolated complete intersection singularities (icis)

then we have:

THEOREM 2. In addition to the hypothesis of Theorem 1 and with the same
notations, assume that Y = 7r-1(0) has only icis and set dim(X) = n + 1. Then
there is an isomorphism:

where sp* denotes the morphism induced in cohomology by the specialization map.
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REMARKS. (1) The isomorphism above is also an isomorphism of mixed Hodge
structures.

(2) In the applications in Section 5-6 of the paper above, X is a hypersurface
with isolated singularities. Given p E Z, let gp: (Cn+2, 0) ~ (C, 0) be a map germ
defining the germ (X, p) and let Fp, Tp be the corresponding Milnor fiber and local
monodromy acting on Hn+1 (Fp). Then we recall that there is an isomorphism:

Proof. We claim first that there is an isomorphism WnHn(X - Z) ~ WnHn(X -
Y). One can prove as in the proof of Theorem 1 that WnHn+1(X - Z, X - Y) = 0,
so from the exact sequence of the pair (X - Z, X - Y) it follows that in
order to prove the claim it is enough to show that the map Hn-1(X - Y) -
Hn (X - Z, X - Y) is surjective. Since the singularities of Y are icis, it follows
from the long exact sequence of vanishing cycles that the monodromy acts as the
identity on Hk() for k ~ n. Assume that n &#x3E; 2. Then the map above fits in a
commutative diagram with exact row:

and the MHS of Hn-2()(-1) is pure of weight n. Since the singularities of the
total space X are also icis, we have that Hn - (X - Z) - Hn-1(X) ~ Hn - (Y)
and since Y is complete the weights of Hn-1 (Y) are  n - 1. It follows then that
the map 03B3 above is injective. On the other hand, one has isomorphisms:

The first is a Thom isomorphism, the second follows from the fact that the
singularities of Y are icis (so HZ-2(Y) = HZ-1 (Y) = 0) and the third is induced
by the specialization map. So dim Hn(X - Z, X - Y) = dimHn-2(X), thus 03B3
is an isomorphism and the claim follows. The case n = 1 is similar and left to the
reader.

Since Y - X is a homotopy equivalence, from the exact sequence of the
couple (X, X - Z) we get the exact sequence:

Since the singularities of Y and X are isolated, it follows from [24], [12] that
WnHn+1 (Y) = 0 and WnHn+1Z (X) ~ Hn+1Z (X). So we have:
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with coker(b) - Hn+1Z(X). The horizontal sequence comes from the Wang
sequence and is exact by the claim above and the fact that the weights of ker(T- Id)
are  n. The theorem follows then from an easy diagram-chase. 0
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