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Abstract. In this paper we study the semi-simple and unipotent part of the monodromy at infinity of
a polynomial map which satisfies a natural restriction.

1. Introduction

(1.1) Let f: C**! — C be a map given by a polynomial with complex coef-
ficients which will be also denoted by f. It is known (see, for example, ([17,
Appendix A1]) that there is a finite set I' C C such that the map

f |Cn+1_f-1(p): crtl _ f_l(r) -C-T

is a locally trivial C°°-fibration. The smallest set I' veryfing this condition is called
the bifurcation set of f and will be denoted by I'y. I'; contains the set X ¢ of critical
values of f but it might be bigger, since f is not a proper map. For example, if
f=z(zy—1)thenZ; = @ but 'y = {0}.

Fix ty € C such that |t| > max{|y| : 7 € T's}. The geometric monodromy
associated with the path s — ty e*™*, s € [0, 1] is a diffeomorphism of f~!(¢)
onto itself which induces an isomorphism:

T¢y : HM(f~'(t), Z) = H"(f~'(t0), Z)

that will be called the monodromy of f at infinity. It follows from the monodromy
theorem (e.g. in the form it is stated in (4, III. 2.3)) that the eigenvalues of 77° :=

T]?f’z ® Idc are roots of unity.
* Supported by the EEC within the framework of the Human Capital and Mobility Program and
by DGICYT, PB 91-0231-C02-01.
** Partially supported by the Netherlands Organisation for the Advancement of Scientific Research
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T{7 is an invariant of the right equivalence class of f (we say that f,g :

C™! — C are right equivalent if there is a diffeomorphism ® : C*t! — C»+!
such that f = g o ®), in particular it is also an invariant of the embedded affine
variety {f = 0} C C™*!. One expects that the study of T'?° can be useful in order
to have a better understanding of the classification of polynomial maps up to right
equivalence.

In this paper we study the monodromy at infinity of polynomials f € C[Xy,...,
X 41] verifying the following condition:

Fort € C — Xy, the closure in P"*of the affine

hypersurface { f = t} C C™*lis non-singular. *)

For the sake of brevity, a polynomial f verifying condition () will be called a
(*)-polynomial.

In Section 2 we list the main properties of (*)-polynomials. The most important
ones are the following: the fibers of the map f : C"t! — C have the homotopy
type of a bouquet of n-spheres, and the fibration provided by f over a circe of large
radius in C is equivalent to a fibration of type $2"t! — K — S (i.e. to an open
book decomposition). We also prove that T'?° is determined by the highest degree
form fg of f. If Xz° C P™ denotes the hypersurface given by fq = 0, it is easy to
see that X 2° has only isolated singularities. The main goal of this paper is to obtain
information about the complex monodromy of f at infinity in terms of topological
invariants of the embedded hypersurface X ° C P™.

In Section 3 we study the semi-simple part of 7'7° (equivalently, its characteristic
polynomial char$’), and we prove that it is completely determined by local data:
it depends only on the number of variables, the degree of f, and the characteristic
polynomials of the (local) monodromies of the singularities of X 7°.

In contrast to this, we show in Section 4 that the unipotent part of T does not
depend only on local data, but also on the position of the singularities of X 7° in P™.
For example, it is proved in (4.6) that the number of Jordan blocks of 7'¢° associated
with the eigenvalue 1 is the (n — 1)th Betti number b,,—1(X$°) if n is even and
bn-1(X7°) = 1if n is odd. On the other hand, it is well-known that the middle Betti
number of a hypersurface with isolated singularities is not a purely local invariant
but it depends on the position of the singular points (see for example [26], [5]). A
concrete example showing how this reflects on the monodromy at infinity is given
in (6.4).

In general, it is not possible to determine 7'¢° in terms of the Betti numbers
of X?° and local data, because even when the position of the singularities of
X7 does not have any influence on its Betti numbers (for example if X 2° is an
irreducible curve), it can have an influence on the block structure of the monodromy
at infinity. In Section 6 we exemplify the case when X ¢° is a plane sextic with six
cusps (Zariski’s example). It is well known that the position of the cusps determines
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the Betti numbers of the 6-fold cyclic covering of P? ramified along X 7. (and then
it determines whether the fundamental group of P? — X 7 is abelian or not). In
(6.5) we compute the unipotent part of T}” in terms of the Betti numbers of the
6-fold cyclic covering.

We study the nilpotent (or unipotent) part of T7° is given in two steps. In
Section 4 we construct a compactification of the fibration of f at infinity, and
we prove that its monodromy T' determines completely T¢°. In Section 5 we
consider a projective map 7’: X’ — D which is a fibration over the punctured disc
D — {0} with monodromy T"~¢. Moreover, the singularities of X’ and (7')~1(0)
are isolated. This allows us to determine the monodromy T¢ completely: while
(Td);e] is determined in terms of the local monodromies of the singularities of
X$°, the block structure of (T9); is given by the weight filtration (of the mixed
Hodge structure) of the d-fold cyclic covering of P™ branched along X2°.

By the correspondance proved in Section 4, the results of Section 5 give much
information about the unipotent part of 77°.

In the computation of (7¢); the results of the Appendix (written by the first
author and J.H.M. Steenbrink) are crucial.

(1.2) Unless otherwise stated, all cohomology and homology groups have coef-
ficients in the field C of complex numbers. The following notations will be used
through the paper:

e Bg = {(z1,.--,Znt+1) € C™*! | T |2} < R}, Bg its closure, dBg, its
boundary.

e D, ={te C||t| <}, D, its closure, S, = 8D.

e Given f € C[X},..., Xn+1] the gradient of f willbe denoted 8f = (8f /8,
veey0f |02nq1). IFC™H! — P™*Histhe embedding givenby. (2, ..., Tnyy) —
[1:2:...: Ty the hyperplane {zo = 0} C P™*! will be denoted by
H*>_If fqis the highest degree form of f we will denote the hypersurface in
H® given by fa = 0 by X2° or by X*° if it is clear from the context which
is the polynomial we are referring to. We always assume that d > 1.

e Let H be a finitely dimensional C-vector space, ¢: H — H alinear map, A €
C a complex number. We denote by H), the space of generalized eigenvectors
of eigenvalue ), i.e.

Hy={z€ H|3neN* with (p—A-1d)"z =0}
and o := @|y,: Hx — H). We denote by #i¢ the number of k-dimensional
Jordan blocks of y, #px = 3 k51 #rpx and #rp = 305 cc #rpn

e If | > 0 is an integer, we denote by ¢;(¢): H® — H®! the linear map defined
by Cl(‘P)(xl, oo axl) = (QO(CL'I),.’L'], v ,xl—l)'
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2. Polynomials with good behaviour at infinity

(2.1) Inthis section we will list the main properties of the (*)-polynomials and we
will prove that the highest degree form of a (x)-polynomial determines its behaviour
at infinity. For technical reasons, it will be more convenient to reformulate the ()
condition as follows: Let f € C[Xj,..., X,+1] be a polynomial of degree d and
denote f = fy + fi—1 + - - - its decomposition into homogeneous components.
Then f is a (*)-polynomial if and only if

{z € C"| 0fs(z) = fa-1(2) = 0} = {0}.

The proof is easy and it is left to the reader. The (*)-polynomials have a number
of good properties which are summarized in the following:

(2.2) THEOREM ([13], [15]). Let f be a (*)-polynomial. Then:

(1) The bifurcation set Iy is exactly the set ¥ ; of critical values.

(ii) The singular fibers f~'(s) (s € © 1) have only isolated singularities.
For s € Xy, denote by 15 the sum of the Milnor numbers of the isolated
singularities of f~1(s). Set p>® = Tsex Ms-

(iii) Any fiber f! (8) has the homotopy type of a bouquet of n-dimensional spheres.
The number of spheres in the generic fiber is 1*°, the number of spheres in a
singular fiber f=1(s) is u*® — ps.

(iv) For any r > 0 with the property that Xy C D,, there exists Ry > 0 such
that for any t € D,, R > Ry, f~!(t) intersects O Bg transversely and the
restriction

f:(f~Y8,) N Br, f~1(S,)NdBR) — 8,

is a C*°-locally trivial fibration of pairs of spaces.
Thefibration f: f~1(S,)NBr — S, is equivalent to the fibration f: f~1(S,) —
S, and it will be called the fibration of f at infinity. The fibration f: f~1(S5,)N
O0Br — S, extends to a C*°-trivial fibration f: f~'(D,) N Bgr — D,.

(v) There exists Ry >> O such that for any R’ > Ry,

p= —f— : 0Bgp — f_l(O) — 5!
A1l
is a C*-locally trivial fibration (called the Milnor fibration at infinity), which
is equivalent to the fibration of f at infinity.
(vi) Let X ° be the intersection of the hyperplane at infinity H *° with the projective
closure X; = f~1(t) C P! ofany fiber f~'(t). Then the hypersurface X °
has only isolated singularities.

Proof. In [6] it is proved that a (*)-polynomial (in the sense of (2.1)) is quasi-
tame, a condition introduced by the second author in [13]. Now (i)—(iv) follow
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from [13], (v) follows from [15] and (vi) from an easy verification. O

(2.3) Let (F, OF) denote the fiber of the fibration (2.2.(iv)). Then the last part of
(iv) implies that there is a smooth representative Tyeom of the geometric monodromy
which is the identity on OF. This allows us to define a variation map Var :
H"(F) — H}(F) by Var[w] = [Tgom(w) — w]. (For the definition at the level
of integer homology, see for example [1]). The variation map fits in the following
diagram:

% —

HZ(F) —= HZ(F)

k Var k
T —1d

H"(F) H"(F)

where T'7° and T3 are the corresponding monodromies and k is the natural map.
The following result will be crucial in the study of the unipotent part of T7°:

(2.4) PROPOSITION. Var is an isomorphism.

Proof. Since the fibration at infinity is equivalent to the Milnor fibration at
infinity (2.2.(v)), V ar is the variation map of a fibration of type S?"*+! — K — §1.
Similarly as in the local case of isolated hypersurface singularities, the variation
map is an isomorphism by Alexander duality (see [1] for more details). Actually,
(2.4) is equivalent to the non-degeneracy of the Seifert form of the open book
decomposition. a

(2.5) REMARK. Theorem (2.2) and proposition (2.4) hold not only for (x)-
polynomials but for a larger class of polynomials which includes the ‘tame’ ([2])
and ‘quasi-tame’ polynomials ([13]), the ‘M-tame’ polynomials ([15]) and the
convenient polynomials, non-degenerate with respect to their Newton boundary at

infinity ([8]).

(2.6) THEOREM. Let f = fg+ fa1+ -, g = gq + ga_1 + -+ be two (¥)-
polynomials of degree d such that fq = g4. Then the fibrations at infinity of f
and g are equivalent (in the sense of [25], p. 11). In particular all the invariants,
introduced in (2.2) and (2.3) for f and g, are equivalent.

Proof. Notice that the set of (x)-polynomials with fixed highest degree form
fa form a connected, smooth, quasiprojective variety. Thus, in order to prove the
theorem, it is enough to prove the following claim:
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CLAIM. Let f = fg+ fya—1 + --- be a (x)-polynomial. Fix 0 < ¢ < d — 1 and
consider the family of polynomials fy = f+ (s —1)fi, s € C.Fix1> 7 >0
such that each f is a (*)-polynomial for |s — 1| < 7. Then there exist » > 0 and
Ry > 0 such that:

(i) Xy, C D, for|s—1| < n;

(ii) f;!(t) intersects O Bp transversely for [s — 1| < 1, R > Roand t € D,.

Now, the proof of the theorem is the following: Set
& = {(=,t,8) € Br, x S, x B1(n) | fs(z) = t},
0 = {(=z,t,8) € £ |z € dBR,},
where Bi(n) = {s | |s — 1| < n}. Then the projection ¢ : (£,08) —

Sr x Bi(n) is a locally trivial fibration and for any s € B1(n), 44-1(s, x{s})
is the fibration of f; at infinity. Then the result follows from [25, p. 53].

Proof of the claim: Assume that (i) is not true. Then, by the curve selection
lemma ([11], [15]), there exist real analytic curves z(t) € C"*!, and s(t) € C
(0 < t < ¢) suchthat|s(t)—1| < 7,0 f,)(z(t)) = 0,and lim;_,o f,(z)(2(t)) = oo.
The last limit implies that lim;_,¢ ||z(t)|| = oco. Put z(t) = t~"y(¢) with n > 0,
y(t) = yo + ty1 + - - yo # 0. Then:

Afaly(®) + "0 faca(y() + -+ + s(tfi(y() +---=0. ()
In particular 0 f4(yo) = O. Identity (1) gives
fs(y(t)) +1"-c-0fi-1(y0) =0 (mod t"*!), ?2)

where ¢ = 1ifi < d—1and ¢ = s(0) if ¢ = d — 1. This identity, multiplied
by y(t), rewritten using the Euler—relations, differentiated with respect to ¢, and
compared with its initial form (2), gives:

n-t"l.c. (d— l)fd_l(yo) = 0 (mod tn).

Therefore f;—1(yo) = 0, which contradicts condition (*).

Part (ii) follows from a similar argument. Fix an 7 3> 0 which satisfies ().
Assume that (ii) is not true for n, r and any Ry > 0. Then there exist analytic
curves z(t) € C™t1, A(t) € Cand s(t) € C, (0 < ¢t < ¢), with |s(t) — 1] < 7,
| fsy(@())] < 7, limgg [|z(2)]| = oo, and

Dy - (a(t)) = A(t) - (D). @
Let z(t) = ¢7"y(¢) as above. Since f;)(z(t)) has order 0,
Ofs(oy(2(t)) - 2'(t) + 5'(t) - fi(2(t)) = 0 (mod 1°).
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Hence \(t) - z(t) - 2/(t) + s'(t) - t"“fz(y( )) = 0 (mod t°), which gives A\(t) = 0
(mod t@=9+1) Now (3) gives (mod t"*1) the same equation as (2) which gives
again the contradiction 8f4(y0) = fi-1(%0) = a

(2.7) Theorem (2.6) says that the behaviour of f = f; + f4—; + -+ at infinity
depends only on fy, in particular f can be replaced by any polynomial f' =
fa+ fi_, where f}_, is a polynomial such that its zero set in P" does not intersect
Sing(X ). For example, we can take f;_, = 197! where [ is a generic linear
form. This fact gives the hope that the topological invariants of f associated to
its behaviour at infinity can be explicitly described in terms of invariants of the
embedded hypersurface X*° C P™.

3. The semi-simple part of T7°

(3.1) Let f = fq+ fa—1 be a (x)-polynomial. We introduce some notations.
Let Sing(X*°) = {p1,...,pk}- For 1 < i < k, let g;: (H®,p;) — (C,0) be a
local equation defining the isolated hypersurface singularity germ (X°°,p;). We
denote by u; its local Milnor number, by F; its local Milnor fiber, and by T;
its algebraic monodromy acting on H"~!(F;). In this section we determine the
characteristic polynomial of T'7° (or equivalently, its semi-simple part) in terms of
the characteristic polynomials of the local algebraic monodromies {7 };=... k.

(3.2) First assume that X is non-singular. Then f;: (C"*!,0) — (C, 0) defines
an isolated singularity and, by similar argument as in (2.6), the fibration of f at
infinity is the same as the fibration of f; at infinity, which is identical with the
local Milnor fibration of the germ f; defined at 0. In particular, its Milnor number
is pgen = (d — 1)™*1, its monodromy has (finite) order d, and its characteristic
polynomial is

chargen(A) 1= det(A - Id — Tie)

gen

=(\- 1)(—1)n+1()\d NG P (=) d
Set char()) = det() - Id — T$°), char;(\) = det() - Id — T). Then we have:

(3.3) THEOREM. Assume that f is a (x)-polynomial. Then, with the notations
introduced above one has:

char;( /\d 1)

char?®()) = chargen(2) - H D=

In particular, p>° + Ele Ki = Pgen-

Before we start the proof of theorem (3.3), we make some preparations:
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(3.4) LEMMA. Consider the family of polynomials fs = fq+ sfa—1, where s € C.
There exists v > 0 such that the set of critical values of f; is contained in D, for
any s with |s| < 1.

The proof is similar to the proof of the Claim in (2.6), and it is left to the reader.

(3.5) We recall the definition of the zeta function of a locally trivial fibration £ —
S over the one-dimensional circle S!. Let F be its fiberand T9: HI(F) — H9(F)
the algebraic monodromies induced by its characteristic map. Then define:

((E — 81) =[] det(A-1d - T9)(=D",
q

If f is an arbitrary polynomial and r is large enough so that 'y C D, then {*°( f)
is, by definition, ((f~1(S,) = S,).

(3.6) Proof of (3.3). Fix r big enough so that the conclusion of Lemma 3.4 holds
for r. For any s € C with |s| < 1and t € S, set

X:s = A{[z] € prtl | fa(z1,.. s &n41) + sTofic1(21,y .. . Tnt1) = txg}.

X, , is the projective closure of the affine variety f;"!(¢). Since for any s # 0
the polynomial f; satisfies (*), for any s # O the space X; , is non-singular. The
intersection X ;N H * is exactly X °°, in particular it has only isolated singularities
(cf. 2.2.(vi)). On the other hand, X ¢ is singular with isolated singularities exactly
at the singular points of X *°.

Let B; be a small open ‘ball’ in P*t1 with center at p;, (1 €7 < k). More
precisely, consider a real analytic function r; defined in a neighborhood of p; with
non-negative values such that r;"1(0) = {p;}, and take B; = r;"!([0, 79)). Here 7o
is small enough such that B;’s are disjoint and the following conditions hold:

@ r; 1(77) is smooth and intersects X;o, H° and X*° transversely for any
n<n,t€Sandi =1,...,k,

(ii) The ‘ball’ r; 1([0, 7)) and its intersections with X. ¢,0, H° and X *° retract to p;
for any 7 < 79, (in other words, B; is a ‘Milnor ball’ at p; for the analytic sets
X0, H® and X ). Fix 7o and the balls {B;};=,. k. Let B; be the closure
of B;, and 8 B; its boundary.

Now we are going to consider balls Bg, in the affine space C"t1. Choose Ry
big enough so that one has:
(iii) 8]5:}3 intersects f; 1(t) transversely forany R > Rgandt € 5,

(iv) 0 Br intersects 0 B; transversely forany R > Rpandi =1,...,k.

Fix a Ry with these properties and set Cgr, = C™*! — Bp,. Since f;!(t)
is smooth for any s,¢ and f; () intersects O Bp, transversely, there exists
1> € > 0 such that for any s € C with |s| < € one has:

(v) f71(t) intersects 0 Bg, transversely for any ¢,
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(vi) X, intersects OB; transversely forany tand i = 1,.. ., k.
Obviously, in general Ro does not satisfy the condition (2.2.(iv)) for all s.
With these choices, the map:
(f1(S0), £571(Sr) N BRo, £7(S:) NCRy) = S, [s] <€ 4

is a locally trivial fibration of a triple of spaces. By the transversality conditions
one has the equivalence of the fibrations:

oY (S)NBry — S, and  f7Y(S,)N Bg, — S,
respectively of
(f1(S:)NdBg, — S;) and (f7'(S,)N&Bg, — S).

By a Mayer-Vietoris argument one has:

¢*°(fe) _ C(fs_l(sr) NCRry, — Sr)

¢>(fo) ~ C(fo'(Sr)NCry — Sr)’ ®)

Set:
F ={(z,t,8) € Cry X S, x D,: fs(z) =t}
If A C Cg,and s € D, then set F(A); := F N (A x S, x {s}). Denote:

Vs = -7:((Ui'clei) N CRo)s’ 0Ys = .’F((ULIBB,-) n CRo)sa
Zs = ]:(CRO - U§=IB,;)3.

Consider the map F — S, x D, induced by the projection. For any s € D, the
induced map (X,, Vs, Z5) — S, is a locally trivial fibration of a triple of spaces,
and the fibrations Z;, — S, and 0)Y, — S, are independent on s. Then, by
Mayer-Vietoris one has:

(Vs — Sr) - ¢(Zs — Sr).

C(F(CRry)s = Sr) = (@Y, = 5,) (6)
for any |s| < €. Now (5) and (6) give
¢ (fe) _ C(f(CRo)e — S;) _ (Ve = Sr) 7

¢®(fo) ~ ((F(Cry)o—Sr)  C((Vo—Sr)

Notice that the right hand side of (7) is cofnpletely local, it is concentrated in the
balls {B;}i. The rest of the proof is now devoted to compute (()p — S,) and



214 R. GARCIA LOPEZ AND A. NEMETHI

(Y. — S,). Since the balls {B;}; are disjoint, these zeta functions are prod-
ucts over the singular points p; of X°°: {(Vs — S;) = [L; ((Vsi — Sr), where
YVa=Y,NB;ands=0o0r=c¢.

Fix a pomt Pi € Sing(X ) and choose coordinates so that p; = [0:...:0: 1]
and fy_1 = :cn 11 1 (cf. 2.6-2.7). We recall that we fixed a circle of big rad1us S, and
after that we fixed the balls B; and R (thus Ry and B; depend on the choice of 7).
In local coordinates (yo, . . . , Y ) (using the notation y; = z;/zn41fori =0,...,n
andy = (y1,...,Yn)) one has:

Cry = {(0,¥) | 1+ [|lylI* > Rolyol*, o # 0},

and we can assume that B; = {|yo|? + ||y||* < p:} for some small p; > 0. Then
Yoi = {(y0,¥,t) € (BiNCry) x S, | gi(y) = tyd} and the map Vo; — S, is
induced by the first projection. We will show that ((Jp; — S,) = 1. For this
consider the neighborhood N; = {(%0,%) | 1 > Rolvo|?, |vo|*>+ ||¥l|*> < pi}. Then
it is not difficult to see that

Voi = {(y0,9,) € Nix S | 90 #£ 0, gi(y) = ty§} — S,

is a subbundle of ); — S, which is an equivariant strong deformation retract. In
particular, {(Yo; — Sr) = (Vg — Sr).

Now set p = /1/Rp and consider the map )y, — S, x D} given by
(y0,y,t) — (t,y0). By construction, this is a fiber bundle (with fiber F;), thus
¢(Yy; — Sr) = 1by[14,3.3.9].

The next step is the computation of {((V.; — S,). Let r, Ry, p; be as above.
Then ¢ is fixed and is sufficiently small with respect to 7, Ry, p; (see conditions (v)
and (vi) above). Then:

Vei = {(v0,9,1) € (Bi X Cry) X S | yo # 0 and ty§ — eyo = gi(y)}-
Consider, similarly as above,
Vi={(40,9t) EN; xS |yo#0 and tyd —eyo = gi(¥)}

with the projection onto S,. Then Y,.; — S, and V!, — S, are equivalent fiber
bundles. Now take the projection 7;: Y/, — S, x D’ given by (y0,9,t) — (¢, %0).
This is a fiber bundle over S, x D% — {(t, o) | tyo = eyp} with fiber F; and the

fiber of 7; over any pointof A := {(t, Y0) € Sy x D} | tyd = eyo} is contractible.
For a fixed value t = ty € S, the punctured disk {to} x D7 intersects A in (d — 1)
points qi,...,q4—1. If tg € Ry (i.e. if o = r), these points are:

gk = (t(),CZMk/d_1 pe) k=1,...,d-1.
They are situated on the circle

S(to) = {(t,%) € S» x D% |t =to,|yol = pe}-
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Consider also the points i, € S(t9), k=1,...,d — 1:
T = (to’e27ri(k+,i-,)/d—1 . Pe)-

Now the fiber Fy; of .; over to is 77! ({to} x D3). S(to) is a strong deformation
retract of {¢o} x Dy and the retraction can be 11fted therefore F;; has the homotopy
type of 771(S(to)). The points 7 lay on the arc gxqxi1, 7~ (%) =~ F; and 771 (gy)
is contractible. Therefore 77! (gxqx+1) has the homotopy type of the suspension
S(F;) of F;. In particular 7~'(S(to)) = §' V (V4 S(F)).

If we now lift the path given by a — to 2™ € S,, a € [0, 1], then the points
gk, respectively 7, move on the path:

Qk(a) — (tO eZm'a’ eZm'(—a-i—k)/(d—l) A pe),

respectively on
ri(a) = (t €3, 2otk )/ p) o e [0,1].

Obviously 74(0) = 7, and ri(1) = 7,—; (With the notation r9 = r4—;). Thus
via the paths rz(a) .., Td—1(c), we can identify the fibers of the bundle 7 over
the points {'r'k},c 1- We determine now the geometric monodromy acting on S V
(V4—1 S(F;)). Itis clear that the action on S! is trivial. By the above identifications,
the action on \/4_; S(F;) is given by ca—1(S(Tgeom)) (see (1.2)), where S(Tgeom)
is the suspension of the geometric monodromy Teor induced by the loop v =
ri(a)o---org_1(a). If v is given by a — (t(c), yo(c)) then the loops 7, defined
by a — (t(a),uyo(a)) for u € [c,1], (1 > ¢ > 0) are homotopic to . Moreover,
the image of the loop 7, is on the torus Ty, = S; X {yo | |yo| = up.} and for
¢ < u < 1 the torus T, does not intersect A. Now, the fibration induced by 7 over
T, is a pullback of a representative G;: B; — D, of g; viathe map { : T, — D;
given by (t,y0) — —eyo + .

Let L and M be oriented loops on T, which generate its first homology group,
ie. L = [s — (to,cpe €¥™*)] and M = [s — (to ™%, cp.)]. Then we have
[ve] = =L + (d — 1)M in H;(T,,Z). Now, first notice that the monodromy
induced by M is trivial. To see this, notice that for ¢ sufﬁc1ently small and yo # 0
fixed, the winding number of the loop a — yo(—¢ + to e2’”°‘ ~1) (with respect
to the origin) is zero. Therefore £, [M] is trivial in H;(D}). On the other hand,
&«|L] = 1 € Hy(D}). Therefore Tgeom is the inverse the geometric monodromy of
gi. The correspondmg algebraic monodromy acting on Hy(V4_ S(F)) is A;
ca—1(T;Y). Thus ¢(Vei — Sr) = (det(A-Id — A4;))(~D" and since T is a real
operator with eigenvalues on the unit circle det(A — A;) = char;(A\%~1). Then (7)
reads:

k
¢®(fe) = ¢®(fo) - [] char;(A4=1)=1", ®)

=1
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Now, for s = 0, f, is exactly the homogeneous polynomial f;, considered as
a germ fz: (C™*1,0) — (C,0). f; defines a singularity with one-dimensional
critical locus and its zeta function is computed in [21]:

k
((fa) = C(fgen) ’ H()‘d - 1)“‘(_1)n+la &)
i=1

where (( fgen) is the zeta function of a generic homogeneous singularity of degree
d,i.e. ((fgen) = (1— A)(chargen(A))=1". Since (**(f.) = (1 - A)- (chary)(-1",
the result follows from (8) and (9). a

4. The algebraic monodromy 7'7° via a compactification

(4.1) In the next two sections we will study the structure of the Jordan blocks of T
for a (*)-polynomial f. For this purpose we will consider a fibration 7: X — S,
which compactifies the fibration of f at infinity. The main result of this section is
that the algebraic monodromy 7°° can be completely determined from the algebraic
monodromy T of the projective fibration 7 (and conversely).

One interesting byproduct of this correspondence is that the number of Jordan
blocks of T'¢° corresponding to eigenvalue one is the (n — 1)-th Betti number
bn—1(X ) if n is even and b,,—1 (X *°) — 1 if n is odd. In particular, the unipotent
part of the monodromy at infinity depends not only on local data associated to the
singularities of X °° but also on their position.

In the next section we determine the dth power of T'. This gives much informa-
tion about the unipotent part of 7'¢° via the correspondence of this section.

(4.2) We introduce some notations. Let f € C[X}, ..., X,41] bea(*)-polynomial.
By (2.6) we can assume that f has the form f = f; + a:fl_j_ll, where f; is homoge-
neous of degree d. Fix r such that ¥; C D,. Set:

X ={([zo,...,zn41],2) € Pt x S, | fa(z) + .’L'Ox;dz:-l] = t:lig }

and let 7: X — S, be the second projection map. Put:

X® xS, ={([z],) e X |zo=0}, X0=X—-X®xSG,,
Xe =p7'(t) (t€S), X0=X,nX° (t € 5,).

Fixtg € S,. Thenn: (X, X?) — S, isalocally trivial fibration of pairs of spaces
and 7 yo is exactly the fibration of f at infinity. Let T’ : H"(Xy,) — H"(Xy,)
be the algebraic monodromy of 7. Property (2.2.(v)) implies that there exists a
sufficiently large ball Bg, and a representative Tgeom : Xz, — Xy, of the geometric
monodromy of 7 such that Tgeom |x, - B o is the identity. Therefore, the diagram
in (2.3) can be extended to the following diagram:
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» ¥k

H™(X4,) H™(X?)
T-1d Var
s 0

H™(X4,) HZ(X3)

where 7, and i* are the natural maps. Recall that i*i, Var = k o Var = T¢° — Id.
(4.3) Since f is a (*)-polynomial, Xy, is a smooth hypersurface in P™*1. Let
S be the polarization form of H"(Xy,), i.e. S(a,3) = fX¢0 aApforapf €
H™(X4,). Then it is well-known that H9(X, ) = HI(P™"t!)if ¢ # nand H"(X,,)
decomposes in a direct sum H™ (P™*1)®P"(Xy,), orthogonal with respect to S.

Since the hyperplane section at infinity X ° has only isolated singularities, the
primitive decomposition Hg(X*°) = Hy(P™) @ Py(X ) satisfies Pg(X*°) = 0
if ¢ # n — 1,n. The numbers py(X*°) = dimP,(X*°) (¢ = n — 1,n), are in
general non-zero, and in general, they depend on the position of the singularities
of X*°.

On the other hand, the Euler characteristic of X does not depend on it. One
has:

d-1

k
Pr-1(X%) = pa(X%) = ——[(d = 1)" = (=1)"] = > i
=1

(4.4) Since X?O has the homotopy type of a bouquet of n-spheres (cf. 2.2.(iii)), the
exact sequence of cohomology with supports has the following form:

0 = Hw(Xsp) 35 HM(Xyp) S HYXD) —» Hytl(Xyg) — H™(Xz) — 0.

The sequence is equivariant with respect to the monodromy action. This action on
H% oo (X3, ), H¥t (Xy,) and H™1(X,,) is the identity. Recall also the duality iso-
morphism H¥ oo (Xt)) = Hpp—«(X*°). In the sequel we will identify H% o (X4,)
with its image in H™(Xy,).

(4.5) LEMMA. There is an equivariant direct sum decomposition
H™(X4y) = Hyoo (Xto) ® (H (X1o)) ™,
which is orthogonal with respect to the form S. In particular, the monodromy T
decomposesas T = Id T’
Proof. Consider the orthogonal decomposition Hy. (X:,) = H™(P™!) @
P%o0 (X3,) and the corresponding decomposition of j,:

je = W@ j: HM(P™) @ Pleu(Xy,) — H™(P™) @ P(Xy,).
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Then P% o (X,) has a natural polarized Hodge structure and the inclusion j is
a morphism of polarized Hodge structures (where on P"(X},) the polarization is
induced by S). It follows that the restriction of .S to P%«(X4,) is non-degenerate
hence the result follows. a

We have a perfect pairing Q : H}(X?) ® H*(X)) — C givenby a ® 8 —
Jxo @ A B and the morphisms i, and ¢* are adjoint with respect to Q. Thus
to
im(i,) =~ (ker(¢*))t = (H%w(Xy))t. Since @ is compatible with the mon-
odromy action this isomorphism is equivariant.

The following theorem describes the monodromy T'¢° in terms of 7' and the
Betti numbers of X *°.

(4.6) THEOREM.

(@) Forany A # 1, (T{°)x = T
(b) Assume A = 1. Then:
(@) #1(T5°)1 = bu(X ) + pr—1(X ) — #T1,
(i) #2(T%°); = #1T; — ba(X),
@iii) #141(T§°)1 = Ty forl > 2.

In particular #(T¢°); = dim(ker T'° — Id) = pp—1(X*).
Proof. Part (a) follows from (4.4). Let V; denote the composed map

AMx0); ¥ gn(x0), “im(a,),.

By (2.4) we have that V] is onto. By (4.2), (4.4) and (4.5) one has the following
commutative diagram:

0 im(i.)l H"(X?o)l Pn_l(Xoo)

T —1d Vi (T) —1d 0

0 im(3 )1 H™ (X Pr_i(X)
Now part (b) follows from this diagram and (4.5). O

(4.7) COROLLARY. Assume 1 is not an eigenvalue of any of the local monodromies
T;(i=1,...,k), (cf. 3.1). Then #I(Tf")] =0forl>1(ie (Tf°)1 = 1d).

Proof. From (3.3) and from the Euler—characteristic formula (4.3) we deduce
that p,_1(X*°) — p(X ) = dim H™(X2 )1. Then the exact sequence (4.4) gives

0
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that P*(X;,); = 0, or (¢*); = (4.)1 = 0. Hence (T%°); = 1d from the last dia-
gram. m]

(4.8) COROLLARY. Let {, ) be the intersection form on Hy(X g) (or, by Poincare
duality, the form (o, 3) — [a A B on H?(Xg) ). Then one has:

dim H,(8X{) = rank(, ) = rank(T§; — Id)
= rank(T¢° — Id) = p*° — pn—1(X*).

In particular, the intersection form depends on the position of the singular points
of X*°.

(4.9) REMARK. Notice that, similarly as in the local case of isolated hypersurface
singularities, the intersection form (, ) and the monodromy T'f° can be determined
from the variation map V ar. To see this, set H := Hj, (Xt%, R),denoteby b: H —
H* the map given by b(z) = (z, -) and by T¢;, the monodromy action on H. Then
the variation map is a map Var: H* — H and (after a canonical identification of
H** and H) one has:

T§, = (=1)""'Varo (Var*)™!
T = ((T)?;)*)_l; and
b= —(Var)™! = (=1)" o (Var*)"L.

Actually, all these invariants are defined over the integers, Var is unimodular and it
is equivalent to the Seifert form of the Milnor fibration at infinity (cf. 2.2.(v)).

5. The dth power of the monodromy

(5.1) In this section we determine the dth power of T (T" being the transformation
introduced in Section 4). Since the Jordan block structure of the unipotent parts
of T and T are the same, this will provide much information about the unipotent
part of T¢° via (4.6).

In the computation of T there are two (rather different) cases. If A # 1 then
(T4), is completely local: in (5.3) we describe it in terms of the local transforma-
tions T;. The result (and also its proof) is topological. On the other hand, if A = 1,
then (T'%), is described Hodge theoretically (cf. 5.5) in terms of local data and the
weight filtration (of the mixed Hodge structure) of the d-fold cyclic covering of
H* branched along X7°.

For this purpose we will introduce a map 7': X’ — D', where D' is a disk in the
complex plane, which induces a fibration over the punctured disk with algebraic
monodromy T~¢, and such that the central fiber has only isolated singularities.
The map 7’ provides smoothings of these singularities and we will determine the
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relation between the monodromies of these smoothings and the transformations 7.

(5.2) We start with some preliminary constructions.
As in the previous section, we can assume that f = f; + w‘fl;ll Set:

Yoo = {([e],t) € P™' X D | - (fa(o1,..., Tng1) + 2oT5yy) = a5},

where D denotes a disk of small radius in the complex plane and let 7.,: X, —
D denote the map induced by the projection onto D. The map 7., induces a
locally trivial fibration over D — {0} with fiber 72!(¢) = X; /t» and the algebraic
monodromy acting on H"(X/,) is T~'. Notice that the singular locus of X, is
X x {0}.

Consider now the pullback of the map 7, over the map §: D’ — D defined by
6(t) = t%, D' being again a disk of small radius. Then X, xs D’ can be identified
with

{([z],t) € P"*! x D" | t¢ - (fa(z1,..., %ne1) + moxi:_ll) = zg}.

Moreover, the pullback 7/ of 7, is induced by the second projection. Obviously,
Xoo X5 D' over D' := D' — {0} is a fiber bundle with the same fiber as 7, and
with algebraic monodromy 7~¢.

Consider now the space:

X' = {([z],t) € P""' x D' | fa(z1,...,2nt1) +t- o2y = zf}

and the map 7’: X' — D’ induced by the second projection. Then 8: X' — X, X5
D', given by 6([z],t) — ([tzo : 21 : ... Tnt1],t) is the normalization map, and
identifies the fiber bundles over D™* induced by 7/ and /. Denote X! = (7/)~!(¢)
fort € D'

Therefore, we have constructed a map n': X’ — D’ which is a fiber bundle
over D'*, with the same fiber as ., and with algebraic mondromy 7"~¢. Moreover,
Sing(X’) = Sing(X}) is the finite set Sing(X *°) x {0}. The singularities of X,
are the d-th suspensions of the singularities of X ° and the map 7’ provides their
smoothings.

Set Sing( X)) = {p},..., P}, = [0: p;] and let F}, T} denote the Milnor fiber
and the algebraic monodromy (acting on H"(F})) of the smoothing of (X}, p!)
given by 7’.

Now we will formulate the first part of the main result of this section.

(5.3) THEOREM. Let H"(F')¢ be the generalized eigenspace with respect to
the eigenvalue £ of T§°. Then, for any root of unity A # 1, we can identify

@®ga=)H"(F)¢ with the generalized \-eigenspace of ®F_ (™ 1(F;)®d=1) pro-
vided by the operator ®%_,cq_1(T~*). By this identification:

[(T3°) s = ®y[ea1(T5 )]
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REMARK. Recall that for A 5 1 one has: [(T5°)%]y = [T (cf. 4.6.a).

Proofof (5.3): From the Leray spectral sequence associated to the specialization
map restricted to X, (for ¢ # 0 and fixed) we get a sequence of vanishing cycles,
equivariant with respect to the monodromy:

k
0 — H™(Xg) — H™(X}) - @ H(F}) - P"*'(Xp) — 0 (10)

=1

where P"11(X{) ~ ker[H"!(X{) — H™"'(X{)] denotes the primitive coho-
mology. In particular, for A # 1 we have

k
H™(X)x = D H™(F)x.

=1

We want to relate now the action of 7} on H™(F}) with that of T; on H"~!(F;).
This is now a local problem. Fix p; € Sing(X ) and assume thatp; = [0: ... :
0 : 1]. We have to study the (local) smoothing:

y = {(y01y>t) | g‘i(y) + tyO = yg} — D

given by (yo,y,t) — t. In the sequel D denotes a sufficiently small disc. Consider
the map ¢: Y — D x D given by ¢(yo,¥,t) = (t,y0). Then it is not difficult to
verify that ¢ defines an isolated complete intersection singularity. In the sequel
¢: Y — D x D will denote a ‘good representative’ of this icis in the sense of [10].
The discriminant of ¢ is given by A = {yg = tyo} C D x D. Moreover, the
following properties hold:

(i) Over the complement of A, ¢ is a fiber bundle with fiber F;,
(i) ¢~ 1((t, o)) is contractible for (¢,yo) € A,

(iii) the monodromy of the fiber bundle (over D x D — A) is abelian, the mon-
odromy induced by a small oriented circle around A (constructed in any
transversal slice at a smooth point of A) is T3,

(iv) pr1 o ¢ is the local smoothing of X given by 7', in particular F can be
identified with o~ ({t = to}) for ¢y # O sufficiently small.

Fix to > 0 sufficiently small. Then {(¢,y0) € D x D |t = to} intersects A at the
points go = (to,0) and g = (e2™k/4=1. 435 ¢0), where 1 < k < d — 1. Let I,
be the real segment gogx (k=1,...,d-1)and I = Uﬁ;ll I, c {t =1t} C DxD.
Then I is a strong deformation retract of {¢ = ¢o} and this retraction can be lifted
via ¢. In particular, F} has the homotopy type of ¢~!(I). Let r1, be the middle
point of the segment I;. Since ¢~ !(qy) is contractible forany k = 0,...,d — 1 and
¢~ !(rx) =~ F,, the space ¢~ (Ij) has the homotopy type of the suspension S(F;)
of F;. It follows then that F} ~ \/,_; S(Fj).

In order to compute the monodromy action on \/,_, S(F;), notice first that the
reduced homology of V4_; S(F;) is generated by the suspension of the cycles of
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the spaces ¢~ 1(rt). Let t = to €™ ,a € [0, 1]. Then the points r1,...,74_
move along the paths

ri(a) = (to 2™, 2 e tR)/[@=1) a5y | a€0,1], 1<k <d-1.

We identify the fibers ¢~ !(r1) (1 < k < d—1) viathe paths rx(a) (1 < k < d—2).
Then, with the notations introduced in (1.2) the monodromy 77 is of the form
cd—1(M), where M is induced by the geometric monodromy Mjeom: e l(r) —
¢~ 1(r) induced by the loopy = r4_1(a) o - - - o r1() . Now the linking number
of v with {yo = 0} is one, and with {y¢~! = ¢} is d — 1. Thus M = T and one
has:

k

(T~4)r = Plear (T

=1

By (4.6), (T~%), = (Tf‘d),\. Also, cq_1(T;)~! is conjugate to cg_1(7;"). Thus
taking inverses in the above equality the theorem follows. a

(5.4) EXAMPLE. The theorem above determines, in terms of the local mon-
odromies, the Jordan blocks of T¢° corresponding to eigenvalues &, with € £ 1.
In some cases all the eigenvalues ¢ satisfy £€¢ # 1, this fact can be verified by the
computation of the characteristic polynomial of T¢° (cf. 3.3). In these cases, the
above theorem describes completely 7'¢°.

For example, if f; € C[X,Y, Z]is a product of d linear forms defining d lines in
P? intersecting at one point, then the monodromy at infinity of any (*)-polynomial
with highest degree form f; satisfies the above condition. It turns out that T'%° is
of finite order, in particular it can be completely determined from (3.3).

As we will see (in the next theorem and in some of the examples of Section 6),
it is not possible to obtain a similar description of the stucture of the Jordan blocks
associated to the dth roots of unity, because this information is not purely local
anymore.

(5.5) THEOREM. Consider the morphism of mixed Hodge structures:
N i= log((T™%)1): E™(X{)1 — H™(X{)i(~1).

Recall that X ) is the d-fold cyclic covering of H* branched along X *°. Then there
is an exact sequence of mixed Hodge structures:

k
0— HY(X}) — ker N — @Hg;}‘(x') — 0.
=1
In particular, for any | one has:
k
(T~ = dimGry_  H™Y(Xg) + Y #(T)1,

=1
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and

k
#(T™%, = dim H™(Xy) + _ dimker(T; — Id).

=1

Proof. The exact sequence is given by Theorem 2 in the Appendix, since sp* is
injective (cf. the exact sequence (10) in the proof of (5.3)). Since the weight filtration
on H"(X}); is the monodromy weight filtration of the nilpotent endomorphism N
one has: #,(T~%); = dimGr}Y_,, , ker N.

The local equation defining X’ in a neighborhood of p} (in C**2) is §; :=
gi + xot — wg = 0. Let Fi, T, denote the corresponding Milnor fiber and mono-
dromy acting on H "+1(I3‘i). It follows from the Sebastiani-Thom formula that
there is an isomorphism H™t!(F;) ~ H"!(F;) compatible with the actions of T,
respectively of T;.

From the following exact sequence (cf. [22]):

0 — HEH(X') — Ht(B)y S B (B)y — HH(X) 0

{r} {r!}
one has the identifications: dim Gr!”, +1H?p*,f}1(2\f' ) = dimGr)’, kerj =
dimGr¥_,, ker Ny, = #(T3)1 = #(T3)1. 0

Notice that Theorems (5.3), (5.5) and (4.6) give an almost complete description
of the nilpotent (or unipotent) part of T¢°.

The next criterion shows that even in the case A = 1 the transformation (7'~%),
can be local if the local transformations T; satisfy some restrictions.

(5.6) PROPOSITION. With the notations previously introduced, assume that one
has:

(@) #s(T;)1 =0 fors>1landi=1,...,k.
(b) T; has no dth root of unity different from I as eigenvalue fori =1, ... k.

Then (T%), (acting on H™(X1)1) is the identity. In particular:

@) #k(T}"’)l =0fork > 2.
(0) #6(T)r = 0for X = 1, A # Land k > 1.

Actually, in this case the monodromy at infinity T7° can be completely determined
from the local monodromies T; and the Betti numbers of X*°. (See (5.3) and the
last relation #2(Tj?°)1 = pn—1(X*®) of (4.6).)

Proof. From the exact sequence (10) one has that

H™(X! LA ,
dim ZEOL _ S i B (FY), — dim PP (X)), (11)
H"™(X,)

i=1
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Therelation T/ = c4_1(T#) (see the proof of (5.3)), and (b) give that diim H™( F! =
dim H™~1(F});.
On the other hand, from (5.5) or from Theorem 2 in the Appendix one has:

k

ker[T~¢ — Id: H*(X{); —» H™(X{ im H"
[ (X1 — H™( t)l]:;dlmﬂ{;:_';(é\"). (12)

dim H~(Xy)

Then from (a) above and from the Sebastiani—-Thom formula one has

dim HH (X') = dim(ker[T; — 1d: H™'(Fy) — H™'(E)))
= dim H""Y(F);.

Now from (11) and (12) we get that (T?); = Id on H"(X});, therefore (a’) and
(b") follow from (4.6).
Notice also that P"*!(X}) = 0. a

(5.7) REMARK. The vanishing of P"*!(X}) = 0 under assumptions (a) and (b)
above means that the only root of the Alexander polynomial A}(oo of the hypersur-
face X is 1 (cf. [9], [5, Chapter 6, 3.24]), and then itis AL oo () = (1 —1)° ,6 =
dim P"( X ). We recall that A .. agrees with the characteristic polynomial of the
monodromy acting on H"~(F}), where Fy is the Milnor fiber of the map germ
fa: (C™10) — (C,0),cf. [5].

The above proposition has the following consequence, which is significant on
its own, and can be formulated independently of the results of the paper:

(5.8) COROLLARY. Let X*° C P" be a hypersurface with isolated singularities,
and of degree d. Assume that the local monodromies 7; of these singular points
satisfy:

(a) #5(T;)1 =0 fors>1landi=1,...,k;and
(b) T; has no d-th root of unity different from 1 as eigenvalue for: = 1,...,k.

Then the d-fold covering Y of P™ branched along X * has the following properties:

(a') the primitive cohomology P"*!(Y) = 0, and
(b’) the mixed Hodge strucure on H"(Y') is pure of weight n.

6. Examples
(6.1) The casen = 1.



ON THE MONODROMY AT INFINITY OF A POLYNOMIAL MAP 225

Write f, in the form fy = [~ *, where [; are different linear forms. If f is a
(*)-polynomial then by (2.6) its monodromy at infinity is completely determined
by the integers a; € N*. Moreover, f is “good" in the sense of Neumann (cf. [16])
and it has a RPI splice diagram which describes completely the link at infinity of
an arbitrary fiber f~!(¢) (defined as f~!(t) N Sg, R > 0) and the Waldhausen
(splice) decomposition of the link complement Sk — f ~!(¢). This diagram provides
the whole set of invariants of the Milnor fibration at infinity (cf. [7], [16]). By the
algorithm described in ([16, Section 4]) we deduce easily that the splice diagram
of f at infinity is:

oy —1 1 (1)

o — 1 ) (the root vertex is marked ‘e’).

It follows (from (3.3) or [7, 11.3]) that the characteristic polynomial of Tj?°
is:
/\(d Da; _ 1

charP(\) = (A — 1) - (A4 — m21’[ e o

Set ¢ = d(d — 1)[i%; @i. Then \? = 1 for any root A of the characteristic
polynomial. Then by [7, Theorem 14.1] one has

mi(% -1
(A-1)m1(A - 1)
where d; = ged(d, ;) and a = ged(ay, - . . , am ). It follows that:

det((A- 14 = TF°) limzseys-1) =

o u® =d*-3d+1+m,
0#2T]?°=Z§’;1di—a—m+l,

o (Tf°)1 =14,

e T%° is of finite order if and only if d; =lfori=1,...,m

(6.2) REMARK. In the above case, the link of f at infinity can be realized as
the link of an isolated curve singularity g: (C2,0) — (C,0) if and only if either
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m=1anda; =dorm =dand a; = --- = ag = 1. In these cases f can
be assumed to be f = z¢ + 237! or f = z¢ + 2¢ respectively. Exactly in these
cases the minimal RPI splice diagrams do not have edges. In all other cases the
minimal splice diagram satisfies ‘reverse Puiseaux inequalities’ (cf. [16]), i.e. all
‘edge determinants’ are negative (recall that the ‘edge determinants’ associated
with the germ of a plane curve singularity are positive).

(6.3) Lines in general position.

Let ly,...,l3 € C[X}, X2, X3] be distinct linear forms defining a set of lines in
P2 such that no more than two lines meet at a point. Let f be a (*)-polynomial
with highest degree form /; - - - -- 1. It follows from Theorem (5.3) and Proposition
(5.6) that T'¢° can have Jordan blocks of size bigger than one only for eigenvalue
1. The number of the blocks associated with eigenvalue one can be computed from
Theorem (4.6), it is (d — 1)(d — 2)/2. The generalized eigenspace of (7°); has
dimension (d — 1)(d — 2) (from 3.3). Therefore, there are no Jordan blocks of
size one associated to the eigenvalue 1. The monodromy at infinity can now be
completely determined using Theorem (3.3).

(6.4) Quintic hypersurfaces in P*.

As a first example of the influence of the position of the singularities of X on
the block structure of the monodromy at infinity, consider the hypersurfaces Y, Z
described in ([26, pp. 50 and 55]). Both are quintic hypersurfaces in P* with 108
nodes but b4(Y) = 19 while by(Z) = 20. Let fy (resp. fz) be (x)- polynomials
of degree 5 which have as highest degree form a polynomial defining Y (resp. Z)
in P%. Set Ty = T}’;ﬁ , Tz = Tf; As in the previous example, Ty and Tz can
have Jordan blocks of size bigger than one only for eigenvalue 1. The number of
the blocks of size two can be computed using Theorem (4.6) and it turns out to be
100 for Y and 99 for Z (dim H*(X)1 = 204 in both cases). Combining this with
Theorem (3.3) we can completely describe 7y and T'z.

(6.5) Zariski’s sextics.

Let fs € C[X1, X2, X3] be a form defining a plane sextic in P? with six cusps
and no other singularities. Let f be any (*)-polynomial with highest degree form
f6. Then from (4.7) and (5.3) it follows that 7°7° has no Jordan blocks of size bigger
than one associated neither to the eigenvalue 1 nor to eigenvalues A with A6 # 1.
Also, from the sequence (10), the computation of the action of monodromy on
@F_| H"(F) in the proof of (5.3) and from (4.6.a), it follows that T'?° can have
Jordan blocks of size at most two. The number of them depends on the position of
the cusps, more precisely:

e #T7° = 10 f the six cusps are on a conic,
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o #,T7° = 12 if they are not.

Because from the computation of the characteristic polynomial of T'¢° in Section 2
and the sequence in (4.4) one gets that

dim H%(X7); = Y dim H*(X;)y = 58,
N6=1
(where X is defined in the proof of (5.3)). On the other hand, from Theorem (5.5)
one gets that:

#(T76), = dim H*(X}) = 46 + 6,

where § = dim H3(X}), X}, being the hypersurface in P3 defined by z§ = fs,
i.e., the 6-fold cyclic covering of P? branched along the curve X . The possible
values of 6 are known to be 2 if the six cusps are on a conic or 0 if they are not (cf.
[27, VIII, Sect. 3]), and then the result follows.

APPENDIX: On the local invariant cycle theorem
by R. Garcia Lépez and J.H.M. Steenbrink

In this note all cohomology groups will be assumed to have coefficients in the field
Q of rational numbers. We prove the following two theorems:

THEOREM 1. Let X be a complex analytic space which can be embedded in a
projective variety as an open analytic subset. Let m: X — D be a flat projective
holomorphic map onto the unit disk D in the complex plane. Let Z be the singular
locus of X, set Y = n71(0) and assume that Z C Y. Let X; be the generic fiber
of m. Letk € N and let T € Aut(H*(X;)) be the monodromy transformation of ©
around the critical value 0. Then the sequence

H*X - 2) —» H*X,) =% H*(X,)

is exact.

REMARKS. 1. The first map in the sequence above is the restriction map.

2.If Z = (), the theorem is due to Katz in the setting of I-adic cohomology and
to Clemens and Schmid in the Kihler case ([3]).

3. The hypothesis Z C 7~!(0) is equivalent to the generic fiber of 7 being
smooth.

Proof. After possibly shrinking D, we may assume that the restriction of 7 over
the punctured disk D — {0} is a C*°- fiber bundle and that the inclusion Y — X isa
homotopy equivalence. Let then X be the limit fiber of 7, definedas X = X xpH,
where H is the universal covering space of D — {0}. We recall that X; and X are
of the same homotopy type. In the sequence

H*(X — 2) =% HYX - Y) 2 HF(X)
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one has Im(3) = Ker(T — Id) by the Wang sequence. The terms in this sequence
carry mixed Hodge structures (MHS) such that a and 3 become morphisms of
MHS. We use Saito’s formalism of mixed Hodge modules ([18]).

o For H k(X' ) one has the limit MHS ([20], [23]) given by H "(X ) ~ Hk(Y,
¥,Q¥).

e Let C' C Y be any closed analytic subset, let:Y — X and j: X —C — X
be the inclusion maps. Then

HY(X - C) ~ HX(Y,"Rj.5*Q¥)
gives H*(X — C') aMHS.
By [20], Ker(T —1d) has weight < k. Hence it suffices to show that W, H*(X —

Y) = a(W,H*(X — Z)), where W, denotes the corresponding weight filtration.
One has the exact sequence of MHS

HYX -Z)- HYX -Y)— H**Y (X -2, X -Y).

Fix a projective variety W containing X as an open analytic subset. Without loss
of generality we can assume that W — Z is smooth. By excision we have an
isomorphism of MHS H*t\(W — Z,W —Y) ~ H*(X — Z, X —Y). We also
have the exact sequence of MHS
HYW - Z) - HF(W -Y) - HFYY (W - Z,W - Y) —» HY (W - 2).

Now W H**(W — Z) = 0 as W — Z is smooth, moreover Wy H¥(W — Z) =
Im(H*(W) — H*¥(W — Z)) and similarly for Wy H*(W —Y), so Wy H¥(W —
Z) — Wy H*(W -Y ) s surjective. We conclude that Wy H*t\ (W - Z, W -Y) =
0. Hence a : Wy H¥(X — Z) — W HF(X - Y) is surjective. a

REMARK. M. Saito has informed us that the theorem above follows also from
the results in [19]. Actually, if 7 H*(X') denotes the intersection cohomology of X
then, with the notations above one has a factorization

THYX)— HYX - Z) —» H¥(Xy)

and Theorem 1 follows then from [19, (3.8)].
If the central fiber has only isolated complete intersection singularities (icis)
then we have:

THEOREM 2. In addition to the hypothesis of Theorem 1 and with the same
notations, assume that Y = n~1(0) has only icis and set dim(X) = n + 1. Then
there is an isomorphism:
ker[T' — Id: H"(X;) — H"(X})]
im[sp*: H*(Y') — H"(X;)]

where sp* denotes the morphism induced in cohomology by the specialization map.

~ H7*(X),
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REMARKS. (1) The isomorphism above is also an isomorphism of mixed Hodge
structures.

(2) In the applications in Section 5-6 of the paper above, X is a hypersurface
with isolated singularities. Givenp € Z, let g,: (C"*2,0) — (C,0) be a map germ
defining the germ (X, p) and let F},, T}, be the corresponding Milnor fiber and local
monodromy acting on H™*1(F}). Then we recall that there is an isomorphism:

H?pﬁl(X) =~ coker[T}, — Id: H"!(F,) — H""}(F,)).

Proof. We claim first that there is an isomorphism W, H*(X -Z) ~ W, H™(X —
Y). One can prove as in the proof of Theorem 1 that W, H" (X - Z, X -Y) = 0,
so from the exact sequence of the pair (X — Z,X — Y) it follows that in
order to prove the claim it is enough to show that the map H" (X - Y) —
H™"(X — Z,X —Y) is surjective. Since the singularities of Y are icis, it follows
from the long exact sequence of vanishing cycles that the monodromy acts as the
identity on H*(X) for k # n. Assume that n > 2. Then the map above fits in a
commutative diagram with exact row:

H2(X)(-1)

X

H"\ (X -2) —H""Y(X-Y) —H' X -2,X-Y)

and the MHS of H"2(X)(—1) is pure of weight n. Since the singularities of the
total space X are also icis, we have that H"}(X — Z) ~ H* 1(X) ~ H*\(Y)
and since Y is complete the weights of H"~1(Y') are < n — 1. It follows then that
the map +y above is injective. On the other hand, one has isomorphisms:

HYX - Z,X —Y) >~ H" (Y — Z)(-1)
~ H"2(Y)(-1) ~ H"2(X)(-1).

The first is a Thom isomorphism, the second follows from the fact that the
singularities of Y are icis (so H Z_Z(Y) = H3}(Y) = 0) and the third is induced
by the specialization map. So dim H*(X — Z, X —Y) = dim H*~2(X), thus v
is an isomorphism and the claim follows. The case n = 1 is similar and left to the
reader.

Since Y — X is a homotopy equivalence, from the exact sequence of the
couple (X, X — Z) we get the exact sequence:

HMY) -5 W, HNX - Z) > W,HF" (X) » W, H (V).

Since the singularities of Y and X are isolated, it follows from [24], [12] that
W,H™'(Y) = 0 and W, H3 "' (X) ~ Hp*!(X). So we have:
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H™(Y)

I

0— W,H"(X - Z) — H"(X)

H™(X)

with coker(§) ~ HZ*!(X). The horizontal sequence comes from the Wang
sequence and is exact by the claim above and the fact that the weights of ker(7'—1Id)
are < n. The theorem follows then from an easy diagram-chase. a
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