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Abstract. We completely determine the residual spectrum of Sp4 which is the orthogonal complement ot the
cuspidal spectrum in L2d(G(F)BG(A)), the discrete spectrum of S p4. They are spaces of residues of Eisenstein
series associated to the cuspidal representations of the Levi factors of parabolic subgroups. We follow Langlands
to analyze intertwining operators and L-functions in the constant terms of Eisenstein series.

1. Introduction

Let G = Sp4 be the symplectic group of degree two defined over a number field F and
G(A) be its adele group. By the general theory of Eisenstein series (Langlands [18]),
one knows that the Hilbert space L2(G(F)BG(A)) has an orthogonal decomposition of
the form

where B is a Borel subgroup and Pi are standard maximal parabolic subgroups in G for
i = 1, 2. The purpose of this note is to describe explicitly the spaces L2d(Pi) and L2d(B)
associated to the discrete spectrum in L2(Pi), i = 1, 2, and L2(B) (Theorems 3.3, 4.1
and 5.4). They are the non-cuspidal discrete spectrum, called the residual spectrum. They
are spaces of residues of Eisenstein series associated to the cuspidal representations of
the Levi factors of parabolic subgroups. In order to obtain the residues of Eisenstein
series, we follow Langlands [18], that is, we use the fact that the constant terms of
Eisenstein series in the Fourier expansion determine the analytic behavior of Eisenstein
series themselves, such as poles and square integrability. The constant terms of Eisenstein
series are a sum of intertwining operators which can be normalized by certain L-functions
attached to the cuspidal representations of the Levi factors of parabolic subgroups (cf.
[17] and [27]).

For L2d(P) with P Siegel parabolic subgroup, the Levi factor is M = GL2. Jacquet-
Langlands theory tells us the discrete spectrum and the corresponding L-functions of
GL2. We have to look at Eisenstein series associated to cuspidal representations of
GL2. The L-function in the constant terms of Eisenstein series is exactly the Jacquet-
Langlands L-function and Hecke L-function. The poles and irreducibility of the images
of local intertwining operators associated to tempered representations are well known. We
prove the same results for non-tempered cases by inducing from Borel subgroups. Here
we need an observation due to Shahidi concerning the effect of intertwining operators
when induced from Borel subgroups because the intertwining operator associated to the
longest element of Weyl group of the split component of the Levi subgroup of Siegel
parabolic subgroup, is not any more associated to the longest element of the Weyl group.
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So we cannot use Langlands’ classification theorem directly. In this way we obtain a
decomposition of L2d(P), P Siegel parabolic, parametrized by cuspidal representations
1r of GL2 with trivial central characters and L(1 2 , x) ~ 0. However we were unable to
prove multiplicity one results. This requires further research.

For L2d(P), P non-Siegel parabolic subgroup, the Levi factor is SL2 x GL1. The
L-functions in the constant terms of the Eisenstein series associated to cuspidal repre-
sentations of SL2 x GLI are exactly Gelbart-Jacquet L-functions ([5]). We analyze the
intertwining operators in the same way as in the Siegel case. Consequently we obtain a
decomposition of L2d(p) with P non-Siegel parabolic, parametrized by monomial rep-
resentations of GL2. Recall that a cuspidal representation o, of GL2 is called monomial
if u -- 03C3 ~ ~ for a quadratic grôssencharacter ~ of F. In this case also, multiplicity one
results require further research. We note that Schwermer [23] obtained similar results for
GSP4 for the above maximal parabolic cases when F = Q.

The most interesting and surprising of all is the analysis of L2d(B) since not every
element of the global L-packet appears. In fact only those for which a certain parity
sign, determined by certain subtle identities of Labesse-Langlands [16] satisfied by local
standard intertwining operators for SL2, is positive will appear.

Let us describe our result more precisely. For M, v grôssencharacters of F, we
define a character X = X(p, v) of B. Then only the quadratic characters X = ~(03BC, 03BC),
03BC2 = 1, contribute to Ld(B). The trivial character gives only constants. For M a non-
trivial character, the pole of the Eisenstein series only at 61 = al + 2 2 contributes
to Ld(B), where al is the short root and a2 the long one. Let (respectively T)
be the simple reflection in the hyperplane orthogonal to al (respespectively a2). For
.f E I(03B21 , ~) = IndGB(~ Q9 e(01,HB( )) ), let H(f, ~) = Res03B21 Res~039B,03B1v1~=1 E(g,f,039B) be
the iterated residue of the Eisenstein series and B(p) be the space spanned by H (1, x) .
Then B(J-l) C L2d(B). The constant term of H(f, ~) is a sum of two normalized inter-
twining operators R(03C303C3,03B21,~) and R(03C303C3,03B21, ~) from I(03B21, ~) to I(-03B21, ~). In
order to analyze the image of the intertwining operators, we look at the local intertwin-
ing operators R(arar, (31, xv) and R(ara, (31, xv ) from I(03B21, xv ) to I( -(31, xv ), where
xv - ~(03BCv, 03BCv). Here we use Shahidi’s idea of inducing in stages via the non-Siegel
parabolic subgroup, that is, use the fact that I(03B21, ~v) = IndGP(| |v03BCv, x IndSL2B0(03BCv)),
where Bo is the corresponding Borel subgroup of SL2. Suppose pv is not trivial. Then

IndSL2B0(03BCv) is reducible. Fix a non-trivial additive character e = ovev of AIF. Let

IndSL2B0(03BC0) - 03C0+(03BCv) Et) 7r-(Mv), as in [16], i.e., with 03C0+(03BCv) generic with respect
to ev. Let ~(03C0+(03BCv)) = 1 and ~(03C0-(03BCv)) = -1. Observe that for almost all v,

03C0+(03BCv) is spherical. Then the common image of R(03C303C3, 01, ~v) and R(ara, 03B21, ~v)
is a sum of two Langlands’ quotients J±(03BCv) of IndGP(| |v03BCv x 03C0±(03BCv)), respective-
ly. If pv is trivial, IndSL2B0(03BCv) is irreducible. In this case, we take 03C0_(03BCv) = 0. Let
03C0(03BCv) = {03C0+ (Mv), 7r- (tiv) and if 03C0v E 03C0(03BCv), let ~(03C0v) be the corresponding sign. Let
J(03BCv) = {J+(03BCv), J_ (yv) Then we define J(03BC) to be the collection

for almost all v,
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We note that fj,,,E(,7r,) is well defined and independent of the choice of 03C8. Then we
obtain irreducible decomposition of Ld(B) as follows:

where 4 runs through all non-trivial quadratic grôssencharacters of F and B(03BC0) is
the space of constant functions. For each li, the constant term map gives rise to an
isomorphism from B(tL) to J(p). Here the condition 03A0v ~(03C0v) = 1 comes from subtle
analysis of the normalized intertwining operator R(T, 01, Xv) which is the intertwining
operator for IndSL2B0(03BCv), as in [16]. For TIv ~(03C0v) = -1, there is a cancellation between
the two intertwining operators R(03C303C3, 03B21, ~v) and R(03C303C3, 01, ~v).

In a separate paper [35], we give the Arthur parameter for the representations in
J(p) and verify Arthur’s conjecture on the multiplicity formula (See [1] for Arthur’s
conjecture). It turns out that the parity sign ~(03C0v) enters into the multiplicity formula, as
anticipated by Arthur [1]. Keys-Shahidi [12] generalized the parity sign to general quasi-
split groups. Using their result, we can generalize our result, at least, to split classical
groups.

Watanabe [31 ] studied a subspace L2d(B, KS) consisting of Ks-invariant elements of
Ld(B), where Ks = Koo x 03A0v~S Kv x fl,,,Cs Ker(rv), is a compact subgroup of G(A),
where rv : Kv H G(kv ) is the reduction homomorphism and S is a finite set of places of
F (See Section 2 below for notations). In particular, he obtained the result that only the
quadratic characters X (M J-L), J-L2 = 1 of B, contribute to L3(B, Ks) and that the trivial
character gives the constants. As explained above, our results reaffirm his description of
the subspace L2d(B, KS) of Ld(B). He also made a conjectural description of Ld(B)
based on his calculation, conjecturing that B(p) is irreducible. As explained above, we
see that his conjecture is not true.

After this paper was accepted for publication, the author learned that T. Kon-No
announced a similar result. But his results are over a totally real number field.

Let F be a number field and G = S’p4 be the symplectic group of degree 2, that is

Let T and U be a maximal split torus and a maximal unipotent subgroup of G, respec-
tively, as follows:

Then B = T U is a Borel subgroup in G.
Let X(T) (respectively X*(T)) be the character (respectively cocharacter) group of

T. There is a natural pairing (, ) : X(T) x X*(T) ~ Z. We take cxl , a2 E X(T) such that
ai (t(a, b)) = ab-1 and a2 (t (a, b)) = b2. Then A = {03B11, 03B12} is a set of simple roots and
e+ = {03B11, a2, a3 = al + cx2, cx4 = 203B11 + 03B12} is a set of positive roots. Further, 03B21 = 03B14 2
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and 03B22 = a3 are the fundamental weights of G with respect to (B, T). The coroot
corresponding to ai is denoted by ai for 1  i  4. Here 03B1v1(t) = diag(t, t-1, t-1, t),
03B1v2(t) = diag(1, t, l,t-1). a’f == ai + 203B1v2, aj == ai + a2 . We have ~03B1i, 03B1vi~ = 2, for
i = 1,2. ~03B11, 03B1v2~ = -1, ~03B12, 03B1v1~ = -2.

Since G is simply connected, X(T) = Z(31 + Z03B22 and X*(T) = Zai + Z03B1v2.
Set a* - X(T) Q9 R, aè = X(T) Q9 C, and a = X*(T) Q9 R = Hom(X(T), R),
aC = X*(T) Q9 C. Then {03B21, 03B22} and {03B1v1 , 03B1v2} are the pair of dual bases for a* and a.
The positive Weyl chamber in a* is

Let a (respectively T) be the simple reflection in the hyperplane orthogonal to al ( a2
respectively). Then the Weyl group is given by

Let Kao be the standard maximal compact subgroup in G(A~) and Kv = C(Ov)
for finite v. The product K = K~  03A0 Kv is a maximal compact subgroup in G(A).

Let Pl be the Siegel parabolic subgroup generated by the short root al and P2 be the
non-Siegel parabolic subgroup generated by the long root a2.

We know that the discrete spectrum of GL2 is, for w a grôssencharacter of F, trivial
on F+~ (F+~ is defined through the identification of A F = (Ax)l 1 x F+~),

where L20(GL2, 03C9) is the space of cuspidal representations with the central character cv
and Lsp is the space spanned by the functions x(det g), ~2 = úJ. (See, for example,
[4].)

3. Décomposition of L2d(P) for the Siegel parabolic subgroup
We have a Levi decomposition P = P1 = MN,

Let a* p = X(M) Q9 R = R02, ap = IR,8i and pp be the half sum of roots generating
N, i.e., pp - 2 02. Let a = fl2 and identify s E C with sa E aè. Heré we follow the
conventions of Shahidi [27]. Let 7r = ~03C0v be a cuspidal representation of M = GL2.
Given a K-finite function in the space of 7r, we shall extend cp to a function Ç3 on
G(A) and set Vs(g) = (g) exp(s + pp, HP(g)~, where Hp is the Harish-Chandra

homomorphism (see Shahidi [27, p. 551]). Define an Eisenstein series

It is known (Langlands [ 18]) that E(s, 0, g, P) converges for Re s » 0 and extends to a
meromorphic function of s in C, with only a finite number of poles in the plane Re s  0,
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all simple and on the real axis since the central character w of 7r is trivial on F+~. It is
also known (Langlands [18]) that L2d(P) is spanned by the residues of the Eisenstein
series for Re s &#x3E; 0. We also know ([ 18]) that the poles of the Eisenstein series coincide
with those of its constant terms. It is enough to consider the constant term along P. The
constant term of E(s, , g, P) along P is

where 03A91 = {1, 03C3} and for f E 1(s,1r) = IndGP 03C0 ~ exp(s, Hp ( )), and Re s W 0,

where Nw = un wNw- , where N is the unipotent radical opposed to N (i.e., generated
by negative roots in N). We note that for each s, the representation of G(A) on the space
of Vs is equivalent to I(s, 03C0). We know that

where f = ~fv, f v is the unique Kv-fixed function normalized by fv(ev) = 1 for almost
all v.

Let L M = GL2(C) be the L-group of M. Denote by r the adjoint action of L M on
the Lie algebra Ln of LN, the L-group of N. Then r = ri 0 r2, ri = 02, r2 = A2 P2,
where p2 is the standard representation of GL2(C) (see Shahidi [28, p. 287]). Since
M (s, 7r, w) is the identity for w = 1, it is enough to consider M(s, 7r, w) for w the
longest element in 03A91, i.e., w = 03C3. Then it is well known (Shahidi [27, p. 554])
that

where S’ is a finite set of places of F, including all the archimedean places such that
for every v e S, 7rv is a class 1 representation and if f = ~fv, for v ~ S, f v is the

unique Kv-fixed function normalized by fv(ev) = 1. Here r2 denotes the contragredient
of ri for each i and f v is the Kv-fixed function in the space of I(-s, w(03C0v)). Finally
Ls(s, 03C0, i) = 03A0v~S L(s, 03C0v, i), where L(s, 03C0v, i) is the local Langlands’ L-function
attached to 7rv and ri (see Shahidi [27, p. 554]).

(A) Analysis of LS (s, 7r, f 1 ).

where w is a uniformizing parameter. So LS(s, 7r, fi) is exactly the (partial) Jacquet-
Langlands L-function. We know ([11]) that it is absolutely convergent for Re s &#x3E; 1 and
hence it has no zero there. We also know ([11]) that the completed L-function L(s, 7r, rl)
can be continued to an entire function in s and so it has no pole for Re s &#x3E; 0.



134

(B) Analysis of LS(s, 7r, r2) .
For v e S,

So LS(s, 7r, f2) is the (partial) Hecke L-function. We know that it has no zero for
Re s &#x3E; 1. We also know ([34]) that the completed L-function L(s, 7r, f2) has a pole
for Re s &#x3E; 0 if and only if s = 1 and úJ7r = 1.

(C) Analysis of A(s, 7r,, w) for v E S.
We will show

PROPOSITION 3.1. For each v ~ S,

can be continued to holomorphic function for Re s &#x3E; 0.

If 7r v is a tempered representation, we know that A(s, 03C0v, w) is holomorphic for
Re s &#x3E; 0 due to Harish-Chandra (Theorems 5.3 and 5.4 in [29]). In this case, we can
see easily from Jacquet-Langlands theory ([4, p. 113]) that L(s, 03C0v)-1 L(2s, wv)-1 is

holomorphic and non-zero for Re s &#x3E; 0. This proves the proposition in the tempered case.
So it is enough to consider the case where 7r v is complementary series representations.
Let 7r, = 03C003BC1,03BC2 with 03BC1, /L2 characters of F . Let ~(03BC1 , 03BC2) be the character of T defined
by ~(03BC1,03BC2)(t(a,b)) = /LI (a)/L2(b). Then we have

Let M 1 = c1 | 1 v s 1 and M2 = c2| 112 v where ci, C2 are unitary characters of Cw and
0  Im si  lo27ri . Let ~(t(a, b)) = ci (a)c2(b), v(t(a,b)) = |a|s1v|b|s2v|ab|sv. Then ~
is a character of T(Fv) n Kv. Then it is enough to consider the intertwining operator
A(03BD, ~; 03C3). We have

LEMMA.

By Winarsky [32, p. 952], we know that if wa is a simple reflection, (1-q-s03B1v)A(03BD, ~;
wa) is entire for ’rJa trivial and A(03BD,~;03C903B1) is entire for ~03B1 non-trivial, where ~03B1(t) =
77 o 03B1v(t), va(t) - v o 03B1v(t) = |t|s03B1v. Now we can see that v03B12(t) = |t|s+s2v, ~03B12(t) =
C2(t); (03BD)03B11(t) = |t|2s+s1+s2v, (~)03B11(t) = CiMc2M; (03C303BD)03B12(t) = |ts+s1v,
(03C3~)03B12(t) = c1(t). From these, we can see at once our assertion for p-adic cases.

For real places, Shahidi [26, p. 110] showed that 0393(1 2(03BD03B1 + ~03B1))A(03BD, ’rJ; Wa) is entire,
where ~03B1(t) = sgn(t)~03B1, Ea = 0, 1. The complex places go in the same way. Therefore
again these prove Proposition 3.1.

(D) Conclusion.
In conclusion, E(s, , g, P) has a pole in the half plane Re s &#x3E; 0 if and only if

03C903C0 = 1 and s = 2 and L(1 2, 03C0) ~ 0. We know the following

PROPOSITION 3.2. For each v, the image of A(1 2 , 1rv, TUT) is irreducible.
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Proof If 7r v is tempered this is well known by Langlands’ Classfication Theorem ([2,
Lemma 4.5]) since 03C3 is the longest element in the Weyl group of the split component
of M in G modulo that in M. If 7r v = 03C003BC1,03BC2 is a complementary series representation,
then |03BC1(x)| = |x|r, |03BC2(z)| = |x|-r, 0r 1 2. By (3.1),

where v = exp(A, HB ( )) with A = (S 1 - S2) 01 + ( 2 - s2)03B22, Re (s1 - S2) = 2r,
Re (1 2 - S2) = 2 - r. So Re 039B is in the positive Weyl chamber.

It is enough to consider the image of A(v, "1; 03C3), which is an intertwining operator
associated to the Borel subgroup. Here 03C3 is not any more the longest element of the
Weyl group associated to the Borel subgroup. We need the following observation due to
Shahidi.

Observation. Let G be a reductice group and P = MN be a parabolic subgroup.
Let Po = MoNo C P be an another parabolic subgroup with Mo C M. Let I(A, 7r) =

IndGP(03C0 ~q~039B,HP()~) and 7r = IMo (Ao, 03C00) = Indm (03C00 Q9 q~039B0,HMP0()~) be an irreducible
representation of M, where 7ro is a tempered representation of Mo and Ao is in the
corresponding positive Weyl chamber. Then I(A, 7r) = 1(À + Ao, 7ro), where Ã extends
A to (a0)*C, i.e., ~, HP0(a)~ = (A, Hp(a)) for all a E Apo. By inducing in stages and
the factorization property of intertwining operators, we have

where w is the longest element of the Weyl group of the split component of M in
G and w is that of Mo in G and iu = wow with wo is the longest element of the
Weyl group of the split component of Mo in M. Here the operator AMo (Ao, 1ro, wo):
IM° (Ao, 7ro) H IM° (wAo, 03C903C00) establishes an isomorphism since IM° (Ao, iro) is irre-

ducible, and is identified with its induced map. Therefore, if +039B0 is in the positive Weyl
chamber, then the image of A(039B, 1r, w) is irreducible since the image of A(+0, 1ro, w)
is irreducible by Langlands’ classification theorem ([2, Lemma 4.5]).

In our case, from (3.1), 7r = 03C003BC1,03BC2 = IndGL2B0 (7ro (D q~039B0,HB0()~), where Ao = rai.
Also = 1 2  = 1 2 03B22. So  + 039B0 = 2rol + ( 2 - r)/?2 belongs to the positive Weyl
chamber. This proves Proposition 3.2.

The residue of E(s, , g, P) at s = 1 2 is a certain automorphic form H(g, ), con-
centrated on the class of P (see Jacquet [10, p. 187] for the definition). In order to
prove that H(g, ) is square integrable, we write the intertwining operators M(s, 7r, w)
as follows:

We normalize T(s, 03C0v, w) by
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Let T(s, 7r, w) = ~v T(s, 7r,, w). Then the constant term of H(g, §3) is given by

Since TaTfl2 = -,Q2, Langlands’ square integrability criterion shows that H(g, cp) is

square integrable (see [10, p. 187] or [18, p. 104]). Furthermore, the space spanned by
the constant terms is irreducible. So the same is true of the space spanned by the H(g, ).
Denote it by B(7r) . Then we have proved

THEOREM 3.3. For P Siegel parabolic,

where 7r runs over cuspidal representations of GL2 with trivial central characters and

Remark 3.1. We don’t know whether the multiplicity of B(03C0) in L2d(P) is one.

Remark 3.2. Let’s look at Fourier coefficients of the highest rank terms. By Shahi-
di [27], for X a non-degenerate character of U(F)BU(A), the highest rank terms of the
Fourier coefficients are given by

They are holomorphic for Re s &#x3E; 0. Therefore, B(7r) is not generic in the sense of [27,
p. 555].

4. Décomposition of L2d(P) for the Non-Siegel Maximal Parabolic Subgroup
We have a Levi decomposition P = MN;

i.e., M = GL1 x SL2. In this case, a*P = X(M) ~R = JR,81, ap = R(03B21v) and p p = the
half sum of roots generating N, i.e., p p = 203B21. Also a = ,81 and we identify s ~ C with
s ~ a*C.

We know that the discrete spectrum of SL2 is

where LÕ(SL2) is the space of cuspidal representations and L2co is the space of constant
functions.
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For 1r a cuspidal representation of M = GL 1 x SL2, 1r = 03B8~03C3, where 03C3 is a cuspidal
representation of SL2 and 0 is a grôssencharacter of F. We define the Eisenstein series
exactly the same way as in the Siegel parabolic case. In this case, the constant term along
P is given by

where Q2 = {1, 03C303C3}. Since M = GLI x SL2, LM = GLI (C) x SO3(C) and rl =
pl Q9 To, where pi is the standard representation of GLI (C) and To is the standard

representation of SO3(C). Then for w = 03C303C3,

where S is a finite set of places F, including all the archimedean places, such that for
every v e S, 7rv is a class 1 representation and if f = ~fv, for v e S, f v is the unique Kv-
fixed function normalized by fv (ev) = 1. Here LS (s, 7r, 1) = 03A0v~S L(s, 1rv, rI), where
L(8, 1rv, 1) is the local Langlands’ L-function attached to 03C0v and rl (see Shahidi [27,
p. 554]).

(A) Analysis of LS(s, 1r, fi). For v e S, w is a class 1 representation of SL2(Fv) . Then
03C3v C v|SL2(Fv), where w = 03C003BCv,03BDv, is a class 1 representation of GL2(Fv). Then

where L2(8, av, Bv) is the Adjoint square L-function and E, is the Gelbart-Jacquet lift
of &#x26;, to GL3 (see [5]). Here the L-function does not depend on the choice of cr due to
the following lemma ([3, Lemma 1.9.2]).

LEMMA. Every automorphic representation a of SL2 is contained in an automorphic
representation a of GL2. If a and 1 contain a, then 1 =  Q9 úJ for a character w

of A F.
It is well known that Ls (s, 7r, fi ) = LS(s, 03A3 Q9 0) converges absolutely for Re s &#x3E; 1

and therefore it has no zero there (see, for example, [6, p. 69]).
By Gelbart-Jacquet [5, Theorem 9.3], we know that L2(s, , 03B8) is entire for any 0,

if cr is not monomial. We say that a cuspidal representation 03C3 of SL2 is monomial if a
cuspidal représentation cr of GL2 is monomial, where 03C3 c Õ’18£2. Recall that a cuspidal
representation à on GL2 is called monomial if à £i cr Q9 ri for a grôssencharacter ri of
F, il 2 = 1, ri ~ 1. In this case, ri determines a quadratic extension E of F. Then there
exists a grôssencharacter Q of E such that cr is the automorphic representation 03C0(03A9) of
GL2 attached to 03A9 (see [5, p. 491] for more details). Let n’ be the conjugate of n. Then
Ç2 satisfies 03A9 ~ 03A9’, because 03C0(03A9) is not cuspidal if 9 = 03A9’. The Gelbart-Jacquet lift E
of cr is
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where P is the standard maximal parabolic subgroup of GL3 of type (2, 1). If 03A903A9’-1 =
7y o NE/F, where  is a grôssencharacter of F, then 7r(nn’ -1) is not cuspidal and

Here we note that 03A903A9’-1 is of order two and so  is a quadratic character. By [16,
p. 774], there are three different pairs (~, 03A9), (~1, 03A91) and (q2, 03A92) such that cr = 03C0(03A9) =
03C0(03A91) = 03C0(03A92).* But by [11, p. 397], cr = cr Q9 . Therefore, ~,  and 1Jij are exactly
such quadratic characters. So L(s, 03A3 ~ 0) has a simple pole at s = 1 if 0 is one of the
above three characters and L(s, 03A3 ~ 0) is independent of the choice of data (0, n) -

Otherwise, 03C0(03A903A9’-1) is a cuspidal representation and

Here we note that in this case ~ is uniquely determined by a ([16, p. 774]). So, L(s, 03A3~03B8)
has a simple pole at s = 1 if 0 = q.

(B) Analysis of A(s, 1rv, w) for v E S. If 7rv is a tempered representation, we know
that A(s, 03C0v, w) is holomorphic for Re s &#x3E; 0. In this case, we can see from Gelbart-

Jacquet [5] that L(s, 1rv, rI) is holomorphic and non-zero for Re s &#x3E; 0. Therefore

is holomorphic for Re s &#x3E; 0.

Let’s consider the case 7r, non-tempered. Then 7r, = 03B8v ~03C3v, w C à IGL2(Fv)’ where
à = 1r J-Ll ,J-L2 is a complementary series representation of GL2(Fv ). Then

So in the same way as in Siegel parabolic case,

is holomorphic for Re s &#x3E; 0.

(C) Conclusion. E(s, cp, g, P) has a pole in the plane Re s &#x3E; 0 if and only if s = 1
and 7r = 03B8 Q9 a where is a monomial representation and 0 is determined by 03C3 as in
Theorem 4.1 below. In that case, as in the Siegel parabolic case, the residues at s = 1
form an irreducible component of L2d(P). Denote it by B(7r). Then we have proved

THEOREM 4.1. For P non-Siegel maximal parabolic,

where 7r = 0 Q9 03C3, (J’ runs over monomial representations and 0 is determined by 03C3, i. e.,
if 03C0(03A903A9’-1) is a cuspidal representation, then 0 = ri; if nn’ -1 =  o NE/F, then 0 = 17,
 or ~ (the three quadratic characters determined by ) .

* Thanks are due to the referee who pointed this out.
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Remark 4.1. We do not know whether the multiplicity of B(1r) in L’(P) is one.

Remark 4.2. As in the Siegel parabolic case, B (1r) is not generic in the sense of [27,
p. 555].

5. Décomposition of L2d(B) for the Borel Subgroup B
We fix an additive character 03C8 = ~v03C8v of A/F and let 03BE(z, Ji) be the Hecke L-function
with the ordinary r-factor so that it satifies the functional equation e(z, J-t) = E(z, 03BC)03BE(1 -
Z, 03BC-1), where E(z, J-t) = I1v f(Z, 03BCv, 03C8v) is the usual E-factor (see, for example, [34,
p. 158]). If p is the trivial character po, then we write simply e(z) for 03BE(z, 03BC0). We have
the Laurent expansion of e(z) at z = 1:

For grôssencharacters 03BC, 03BD of F, we define a character X = ~(03BC, v) of T(A) by
~(03BC, 03BD)(t(a, b)) = 03BC,(a)03BD(b). Let I(~) be the space of functions (P on G(A) satisfying
0393(ntg) = ~(t)03A6(g) for any u e U(A), t E T(A) and g E G(A). Then for each A E a*C,
the representation of G(A) on the space of functions of the form

is equivalent to I (039B, ~) = IndGB~ ~ exp(039B, HB()), where pB is the half-sum of positive
roots, i.e., pB = 03B21 + A. We form the Eisenstein series:

where f = 03A6e~039B+03C1B,HB()~ E I(A, x). The Eisenstein series converges absolutely for
Re A E C+ + PB and extends to a meromorphic function of A. It is an automorphic form
and the constant term of E(g, f, A) along B is given by

where W is the Weyl group and for sufficiently regular A,

where Uw = U n wUw-1, U is the unipotent radical opposed to U. Then M(w, A, X)
defines a linear map from I(A, x) to I(w039B, wx) and satisfies the functional equation of
the form

And the Eisenstein series satisfies the functional equation
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Let S be a finite set of places of F, including all the archimedean places such that
for every v ~ S, xv, lbv are unramified and if f = Q9lv for v e S, f v is the unique
Kv-fixed function normalized by fv(ev) = 1. We have

Then by applying Gindikin-Karpelevic method (Langlands [17]), we can see that for

where L(s,,q,) is the local Hecke L-function attached to a character rw of Fv and s E C,
and 1, is the Kv-fixed function in the space of I(w039B, wx) satisfying v(ev) = 1. Let

We normalize the intertwining operators A(w, A, xv ) for all v by

Let R satisfies the functional equation

We know, by Winarsky [32] for p-adic cases and Shahidi [26, p. 110] for real and complex
cases, that

is holomorphic for any v. So for any v, R(w, A, xv ) is holomorphic for A with Re( (A, oz’»
&#x3E; -1, for all positive cx with wa  0. For X = ~(03BC, v), x o ai = 03BC03BD-1, ~ o av = v,
~  03B1v3 = pv, ~  03B1v4 = 03BC. We list the elements of the Weyl group, together with their
actions on the positive roots and on T(F):

Let Si = {039B ~ a*C|~039B, 03B1vi~ = 1} for i = 1, 2, 3, 4 and Aj = Si ~ Sj for i ~ j. We
note that A12 - - PB and 039B13 = 039B14 = 03B21 = 03B14 2; A23 - t. A24 = 03B22 = 03B13 ; A34 = 01 -
Each Si is rewritten as S’ = (Cu + vi, 1  i  4, where ui 1 = 03B22 = a3, u 2 = 03B21 = 03B14 2,
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u3 = 03B11, u4 = a4 and vi = T for i = 1, 2, 3, 4. Then we take a coordinate zi (A) on Si
as A = zi(A)ui -f- vi for A E Si, 1  i  4.

Let 03A6(039B) be an entire function of Paley-Wiener type (see [33, p. 257]) on a* with
values in I(~) and 03A6(039B, g) is the value of 03A6(039B) at g. Let f(039B) = 03A6(039B)e~039B+03C1B,HB()~.
Langlands’ theory (see, for example, [33, p. 257]) says that L2(B) is generated by

for all such f(039B), where Ao satisfies (Ao - pB, aV) &#x3E; 0 for all positve roots a. In order
to get discrete spectrum, we have to deform the contour Re A = Ao to ReA = 0. Since
the poles of the functions M(w, A, x) all lie on Si which is defined by real equations,
we can represent the process of deforming the contour and the singular hyperplanes Si
as dashed lines by the following diagram in the real plane as in [18, Appendix 3].

The integral at ReA = 0,
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gives the continuous spectrum of dimension 2. As can be seen in the diagram, if we
move the contour along the dotted line indicated we may pick up residues at the points
03BB1. 03BB2, A3, 03BB4·

where A E Si. Then we deform the contours ReA = Ai to ReA = vi, i.e., to the point
where zi(039B) = 0. The integrals at ReA = vi,

give the continuous spectrum of dimension 1. The square integrable residues which arise
during the deformation span the discrete spectrum, i.e., Ld(B). As we see in the diagram,
we have to consider

We set

for A E S’i, i = 1, 2, 3, 4. Let Wi = lw ~W |w03B1i  01 for i = 1, 2, 3, 4. Then the
constant term Ei0(g, f, A) of Ei(g, f, A) along B is given by

We recall Langlands’ square integrability criterion for autormorphic forms through
their constant terms in our case ([18, p. 104] or [10, p. 187]). We write the intertwining
operator M(03C9, 039B, ~) with an exponential factor as follows. Let f = 03A6e~039B+03C1B,HB()~,
then we have

where T(w, A, X) is a linear operator from I(~) to I(03C9~). Suppose Mi (w, A, X) has a
pole at A = (3 for w E Wio C Wi. Then the residue of E&#x26;(g, f, A) at A = fl is

Then we have
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LEMMA (Langlands). Res03B2Ei(g,f,039B) is square integrable if and only if Re(03C903B2) is in

{-a03B11 - b03B12|a, b &#x3E; 01 for all w E Wio.

LEMMA 5.1.

We note that for any v, R(w, A, ~v) is holomorphic for Re z &#x3E; - 1 2.

PROPOSITION 5.1.1. If it is not trivial, then only the residues at A = 03B21, i. e., z = 2,
of El (g, f, A) contribute to Ld(B) when X = ~(03BC, 03BC) with J.L2 = tto.

Proof. From Lemma 5. l, we can see that M1(03C9, 039B, ~) has a pole only at z = 1 2
when 03BC2 = Mo. Then

Here by the functional equation,

By Langlands’ square integrability criterion, Res131 E1(g, f, A) is square integrable.

PROPOSITION 5.1.2. Suppose 03BC = 03BC0 is trivial. Then El (g, f, A) has a pole at A = PB
and A = 03B21. Furthermore,
(i) Res pB El (g, f, A) is constant, and
(ii) Res131 E1(g, f, A) is not square integrable.

Proof. From Lemma 5.1, we see that M1(03C9, 039B, ~) can have a pole at z = 1, i.e.,
A = 03B21 and at z = 2 , i.e., A = pB .
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(i) A = pB . At z = 2 , only M1 (errera A, x) has a simple pole. So

The map f M RespBEl (g, f, A) defines an intertwining map from I(PB, X) to Ld(B).
Since X is trivial, the induced representation I(PB, X) has a K-fixed vector fo which is
cyclic. For fo, ResPB EJ (g, fo, A) is constant. Here RespB El (g, fo, A) is orthogonal to
all cusp forms. So it is constant. Since fo is cyclic for the whole I(03C1B, X), we see that
Res03C1B El (g, f, A) is constant for all f.

(ii) A = 03B21. At z = 2, Ml (ra, A, X) has a simple pole. But since 03C303B21 = 03B12 2, the
residue from Ml (03C3, A, X) is not square integrable. So it is enough to show the following
two lemmas.

LEMMA 5.1.3. At z = 1 2, Ml (ara, A, X) and Ml (arar, A, X) may have double poles.
But the double poles cancel each other, i. e., the order of the pole at z 1 of E1(g, f, A)
is at most one.

Proof.

Here R(T, 03B21, x) is the identity since x is the trivial character. So the above expression
is zero by the cocycle relation.

LEMMA 5.1.4. If a function f satisfies Res03B21 M1(03C3, 039B, ~)f = 0, then
Resy (M1 (03C303C3, A, ~)f + MI (03C303C3, A, x)f ) = 0.

Proof. Since Res03B21 M1(03C3, 039B, ~)f = (*)R(03C3,03B21, ~)f(03B21) = 0, we have
R(03C3, 03B21, ~)f(03B21) = O. Consider f = f(039B) as a function of z since A = za3 -f- 2 and
we have the Taylor expansion of f at z = 2 : f(039B) = f(03B21) + (z - 1 2)Df(03B21) + ...,
where Df(03B21) is the derivative of f at z = 1 2 . Recall the Laurent expansion (5.1) of
g(z). We have

Then we have
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R(03C303C3, A, x) and R(T, A, x) are holomorphic around z = 2 as a function of z and we
have the Taylor expansion

where L and N are certain intertwining operators which are derivatives at z = 1 2 of
R(03C303C3, 039B, ~) and R(, 039B, ~), respectively. Here we used the fact that R(, -03B21, ~) is

the identity since x is trivial. Then since 03C303C303B21 = -03B21,

Then by direct computation, we can see that

Here R(03C303C3, 03B21, ~)f(03B21) = R(03C3, 03C303B21, ~)R(03C3, 03B21, ~)f(03B21) = 0. So the residue is

zero.

LEMMA 5.2.

We see that only when p = lio, i.e., x is the trivial character, M2 (w, A, x) has a pole
at A = a3, i.e., z = 1. We have

PROPOSITION 5.2.1. Reso:3E2(g, f, A) is zero.
Proof. At z = 1, M2( rar, A, X) and M2(arar, A, X) both have simple poles. So
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Here 03C303C3 = Tara and R(03C303C3, a3, X) = R(03C3, a3, ~)R(03C3, a3, X) and R(03C3, a3, X) is
identity since X is the trivial character. So the above expression is zero.

For the sake of completeness, we calculate ihe remaining iterated residues. We do
not obtain anything new as Langlands’ theory says.

PROPOSITION 5.2.2.

(i) Res03C1B E2(g, f, A) is constant.
(ii) Res a2 E2 (g f, A) is not square integrable or zero.

Proof. (i) A = pB . From Lemma 5.2, at z = 2, only M2(arar, A, X) has a simple
pole. So as in Proposition 5.1.2 (i), Res03C1BE2(g, f, 039B) is constant.

(ii) A = 03B12 2. At z = 0, R(arar,A,xv) may have a pole. In that case we rewrite
M2(arar, A, X) using (5.3) as follows:

where (03C303C3, 039B, ~v) is the expression (5.3) and 03BES(z, 03BC0) = 03A0v~S Lv(z, 03BC0) is the
partial Hecke L-function. 03BES(z, 03BC0) has a pole only at z = 1. Therefore M2(03C303C3, A, x)
has a simple pole at z = 0. But since 03C303C3 03B12 2 = - 03B12 2, the residue is not square integrable.
On the other hand, T2(03C3, A, x) and T2(03C3, 039B, x) have simple poles at z = 0. But their
residues cancel each other.

Remark 5.1. As the referee pointed out, the Eisenstein series E3(g, f, A) and

E4(g, f, 039B) are related to the Eisenstein series E1(g, f, 039B) and E2(g, f, 039B) by means
of the functional equations (5.2) of the Eisenstein series. Thus it is sufficient for a clas-
sification of discrete spectrum to consider contributions of E1(g, f, 039B) and E2(g, f, 039B)
to L2d(B).

(3) Conclusion

In conclusion, we have proved the following

PROPOSITION 5.3. For x the trivial character, the only square integrable residues
of Eisenstein series are constants. Among non-trivial characters, only the quadratic
characters x = ~(03BC, J-L), J-L2 = 1, contribute to Ld(B). In this case, the Eisenstein series
have poles only at A = 03B21.

For 03BC a non-trivial quadratic grôssencharacter, let H(g, f, 03BC) = Res/31 El (g, f , A).
Then the residue map f ~ H (g, f, 03BC) defines an intertwining map
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Let B(p) be the image of this intertwining map. Then we have an orthogonal decompo-
sition

where p runs through all non-trivial quadratic grôssencharacter of F and B (J-to) is the

space of constant functions which come from the trivial character.

We determine the spaces B(p) precisely. Here a certain parity sign determined by
the identities of Labesse-Langlands [16] for local intertwining operators of SL2, plays
a decisive role in determining B(p). The components of B(ti) are exactly the elements
of the global L-packet which satisfy the parity sign condition.

We look at the constant term of H(g, f, p) along B:

Here we have the functional equation of the form

But observe that 03B21 = 03B21 and Txv - xv for ~v = ~(03BCv, 03BCv) with 03BC2v = 03BC0. So the

constant term of H(g, f, J-L) along B is given by

We note that R(, 03B21, ~v) is an intertwining operator from I(03B21, ~v) into itself since
03B21 = 03B21 and Txv - Xv. Here we use Shahidi’s idea of inducing in stages via the
non-Siegel parabolic subgroup since its Levi is M = GLI x S’L2. We use the fact that
i(03B21, ~v) = IndG (j |v03BCv x IndSL2B0 (03BCv)), where Bo is the corresponding Borel subgroup
of S’L2 and is the absolute value. Suppose fi, is not trivial. Then IndSL2B0(03BCv) is

reducible. Let IndSL2B0 (03BCv) = 7r+ (03BCv) E9 03C0-(03BCv), as in Labesse-Langlands [16, p. 747],
i.e., with 03C0+(03BCv) generic with respect to 1/Jv. Let ~(03C0+(03BCv)) = 1 and ~(03C0-(03BCv)) =
-1. Observe that for almost all v, 7r+(pv) is spherical. If pv is trivial, IndSL2B0 (03BCv) is

irreducible. In this case, we take 03C0-(03BCv) = 0. Let 7r(pv) = {03C0+(03BCv), 03C0-(03BCv)} and if
7rv E 7r(pv ), let e(7rv ) be the corresponding sign. Then

Let J±(03BC0) be the Langlands’ quotients of IndGP(~v03BCv x 03C0±(03BCv)), respectively.
By Langlands’ classification theorem, the common image of the intertwining operators
R(ara, /3i, Xv ) and R(arar, /3i, Xv ) is the direct sum of J±(03BCv). Let

Observe that R(T, (31, ~v) is the normalized intertwining operator for IndSL2B0 (03BCv). By
Labesse-Langlands [16, p. 747], 
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Then we define J(tL) to be the collection

We note that 03A0v ~(03C0v) is well-defined and independent of the choice of 1j;. Here if
FL ~(03C0v) = -1, then by (5.5) and (5.6), the constant term of H(g, f, J-L) along B is zero.
So it is zero.

Therefore we have proved

THEOREM 5.4. We have an irreducible decomposition of Lâ(B) as follows:

where 03BC runs through all non-trivial quadratic grossencharacters of F and B(03BC0) is
the space of constant functions. For each J.L, the constant term map gives rise to an
isomorphism from B(03BC) to J(03BC).

Remark 5.2. In a separate paper [35], we give the Arthur parameter for the represen-
tations in J(J.L) and verify Arthur’s conjecture on the multiplicity formula (see [1] for
Arthur’s conjecture). It turns out that the parity sign ~(03C0v) enters into the multiplicity
formula as anticipated by Arthur [1].

Remark 5.3. Kudla-Rallis-Soudry [15] obtained also B(03BC) in Theorem 5.4, for each
quadratic grôssencharacher J.L, from Eisenstein series associated to characters of the Siegel
parabolic subgroup when F is a totally real number field. But they did not show that
B(03BC)’s exhaust L2d(B). They described the irreducible constituents, using theta corre-
spondence, in terms of distinguished representations which admit one family of nonde-
generate Fourier coefficients (associated to a GL2 orbit of a fixed binary form). More
precisely, let x be a grôssencharacter of F. Then x defines a character of M = GL2 by
x(g) = x(det g). For a function f E 1(s, x) = Indpx Q9 exp(s, Hp( )) (recall that we
identify SEC with s03B22 ~ a*C in Section 3), we define an Eisenstein series

We note that

where we consider X as a character of B in an obvious way. Therefore, E(g, s, f, P) is
an automorphic form concentrated on the class of B (see [10, p. 187] for the definition).
Kudla-Rallis [ 13] proved that the Eisenstein series E(g, s, f, P) has a pole if and only
if either X = 1, s = 1, 2 or X2= 1, ~ ~ 1, s = 1
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By [30, Theorem 3.1], we know that the residues of E(g, s, f , P) at s = 2 for x = 1
are constants. For x = 1, the residue at s = 2 is not square integrable. For each ~ ~ 1,
~2 = 1, by taking the residues at s = 2 , we obtain an intertwining map

By Lemma

where Eo (g, s, f, P) is the constant term of E(g, s, f, P). Therefore we have El (g, f, A) =
E(g, s, R(03C3, A, x) f , P) (see Arthur [33]). Even though I(1 2, ~v) might be smaller than
I(03B21, X,), the image of R~ is exactly the same as B(~) in Theorem 5.4, This follows
from the work of Jantzen [36] who computed the Langlands’ parameters of the irre-
ducible subquotients of 7(- xv ), which coincide with those of I(03B21, xv ) or from simply
observing that the map R(u, A, xv ) : I(03B21, xv ) ~ I(1 2, xv ) is surjective. We describe the
result of Kudla-Rallis-Soudry [15] for Ld(B) in terms of distinguished representations.

Let V, (,) be an isotropic quaternary space. Write V = V0+V1,1, where V1,1 is a

hyperbolic plane and Vo is a binary space and dim Vo=2. Let

Then OV0 is a GL(2, F)-orbit in Sym2(F). Then Im(Rx) - ~03A0(V0) for some binary
quadratic space Yo with ~V0 = x. Here II(VÓ) is a certain distinguished representation
attached to quadratic forms (see [15] for notations). It has the property that for f E II(Yo),
the non-degenerate 03B2-th Fourier coefficient of f is zero unless (3 E OVO. Also 03A0(V0) is
in L2d(B) if and only if vo is anisotropic, i.e., xvo =1= 1. Therefore

where vo runs over all binary anisotropic quadratic spaces and B(1) denotes the space
of constant functions. Kudla-Rallis-Soudry [15] showed that the multiplicity of II(VÓ)
is one. 

Remark 5.4. It should be noted that our sign condition in Theorem 5.4 is comparable
to the Hasse invariants in [15]. Therefore, our condition 03A0v ~(03C0v) = 1 is exactly the
same as their "coherent condition," i.e., the condition of existence of a global quadratic
space Yo (see [15, Proposition 2.6]).

Remark 5.5. Watanabe [31 ] also showed that the irreducible constituents of L2d(B, KS)
are of multiplicity one.
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