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0. Introduction

In the short paper [1] A. Beilinson introduced a generalized version of adeles,
with values in any quasi-coherent sheaf on a noetherian scheme X. In particular,
taking the structure sheaf OX one gets the cosimplicial ring of adeles A. (X, OX).
In each degree n, An (X, OX) is a subring (a "restricted product") of the product
of local factors Ilç OX,03B6. Here g = (xo, ... , xn ) runs over all chains of length n
of points in X. The Beilinson completion Ox,e is gotten by a process of inverse
and direct limits. For n = 0, OX,(x0) is simply the m-adic completion of the local
ring at xo. For applications to duality theory one is primarily interested in the
completion OX,03B6 along a saturated chain ç. As shown in [24], the semi-local ring
OX,03B6 carries a natural topology, and its residue fields carry rank n valuations.

In the present paper we isolate the completion 0 X,ç from its geometric envi-
ronment, and study it as a separate algebraic-topological object, which we call a
Beilinson completion algebra (BCA). The methods used here belong to commu-
tative algebra, analysis and differential geometry. Our main results have to do
with dual modules of BCAS, their functorial behavior and their interaction with
differential operators. These results, in tum, have some noteworthy applications
to algebraic geometry (see Subsection 0.3).

One may view our paper partly as a continuation of the work of Lipman, Kunz
and others on explicit formulations of duality theory (cf. [17, 18, 15, 11, 12, 7, 8,
10, 19, 6]). Their work deals with linear aspects of duality theory - construction
of dualizing modules, trace maps, etc. To that we have little new to add in the
present paper. The novelty of our work is in establishing the nonlinear properties
of duality theory. We show how duality interacts with differential phenomena,
such as D-modules and De Rham complexes. Such results seem to have been
beyond the reach of the methods of commutative algebra used henceforth in this
area.
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In the remainder of the introduction we outline the content of the paper.

0.1. BEILINSON COMPLETION ALGEBRAS

Let k be a fixed perfect base field. A local BCA A is a quotient of a ring
F((s))[[t]] = F((s1, ... , sm))[[t1, ... , tn]], where F is a finitely generated field
extension of k, and F((s1,..., sm)) = F((sm))··· ((si)) is an iterated field of
Laurent series. A is a complete noetherian local ring, and a semi-topological
(ST) k-algebra. On the residue field A/m there is a structure of m-dimensional
topological local field (TLF). (These terms are explained briefly in Sections 1

and 2.) The surjection F((s))[[t]] - A is not part of the structure of A. A general
BCA is a finite product of local ones.
We are interested in two kinds of homomorphisms between BCAs. The first is

called a morphism of BCAs, and the second is called an intensification homomor-
phism. Rather than defining these notions here (this is done in Sections 2 and 3),
we demonstrate them by examples. Let A := k(s)[[t]] and B := k(s)((t)). These
local BCAs arise geometrically: take X := A2k = Speck[s, t] and x = (0), y =
(t), z = (s, t) e X. Then A ~ OX,(y) and B -É OX,(x,y), the Beilinson comple-
tions of Ox along the chains (y), (x, y) respectively. The inclusion A ~ B is a
morphism, which in "cosimplicial" notation is ~+: OX,(y) ~ OX,(x,y). Now let
A := k((s))[[t]] ~ OX,(y,z). Then A ~ A is an intensification homomorphism,
which we also write as «0-: OX,(y) - Ox,(y,z).

Whenever A - B is a morphism and A ---t A is an intensification, there is a
BCA Ê = B ~(039B)A Â, a morphism Â -  and an intensification B - . This
situation is called intensification base change. In our example,  = k((s))((t)) ~
OX,(x,y,z).

BCAs and morphisms of BCAs constitute a category which is denoted by
BCA(k).

0.2. THE RESULTS

There are three main results in the paper. Their precise statement is in the body
of the paper, and what follows is only a sketch.
A finite type ST module M over a BCA A is a quotient of An for some n,

with the quotient topology (so if A/m is discrete, M has the m-adic topology.)
The fine topology on an A-module M is characterized by the property that each
finitely generated submodule M’ C M, with the subspace topology, is of finite
type. (More on ST modules in Section 1.) Given a TLF K (i.e. a BCA which is
a field), we denote by w(K) the top degree component of the separated algebra
of differentials 03A9·,sepK/k.
THEOREM 6.14 (Dual modules). Let A be a local BCA and M a finite type
ST A-module. Then there is a dual module DuaIAM, enjoying the following
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properties. To any morphism o,: K ~ A in BCA(k) with K a field, there is a
bijection

If a = T o f for some morphisms f : K - L and T: L - A, then

where ReSL/K: 03C9(L) ~ w(K) is the residue on TLFS, see [24], §2.4. If a, 0":
K ~ A are two pseudo coefficients fields (i.e. morphisms such that [A/m: K] 
oo) which are congruent modulo m, then the isomorphism

has an explicit formula in terms of "Taylor expansions" and differential opera-
tors.

In particular for M = A we set K(A) := DuaIAA, with the fine topology.
K(A) is an injective hull of the residue field A/m. Note that for a field K,
K(K) = 03C9(K). If M is any ST A-module we define

with the Hom topology. (When M is of finite type this is consistent with The-
orem 6.14.) We show that given an intensification homomorphism v : A ~ Â
there is a continuous homomorphism of ST A-modules

THEOREM 7.4 (Traces). Let A ~ B be a morphism in BCA(k). Then there
exists a continuous A-linear trace map TrB/A: K(B) ~ K(A). This trace is
functorial: TrC/A = TrB/A o Trc/B. It induces a bijection

The trace commutes with intensification base change: given an intensification
A - A, and letting B := B Q9 A A, we have

If u: K ~ A is a morphism with K a field, then
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THEOREM 8.6 (Duals of continuous differential operators). Suppose M, N are
ST A-modules with the fine topologies and D: M ~ N is a continuous DO.
Then there is a continuous DO

This operation is transitive in D and compatible with intensification base change
A - A. DualA (D) is unique, has an explicit description using the isomorphisms
03A8M03C3, 03A8N03C3, and is the adjoint of D w. r. t. suitably defined residue pairings.

0.3. APPLICATIONS

The primary. application of our results, and the original motivation of the paper,
is the explicit construction of residue complexes on k-schemes. This is carried
out in [25]. The construction is extremely simple, and we shall sketch it here.
Suppose X is a k-scheme of finite type and (x, y) is a saturated chain of points
in it (i.e. y is an immediate specialization of x). There are natural homomor-
phisms 0-: OX,(x) - OX,(x,y) and 0+: OX,(y) ~ OX,(x,y), the first being an
intensification and the second a morphism (cf. example in Subsection 0.1 above).
According to Theorems 6.14 and 7.4 we get an OX-linear homomorphism

Considering K(OX,(x)) as a skyscraper sheaf sitting on {x}-, we define

Then (ICi, 8x) is the residue complex on X (cf. [21, 5, 24, 22]).
A special feature of this particular construction of KX is that given a DO

D : M ~ N between OX-modules, there is a dual DO

which is a homomorphism of complexes. This implies that KX is a complex
of right Dx-modules. Conversely, Vx can be recovered from DOs acting on
KX. Another consequence of Subsection 0.1 is that FX := HomOX(03A9X/k, KX)
has a natural structure of double complex. Using 0§ we are able to analyze
the niveau spectral sequence converging to HDR(X), the algebraic De Rham
homology of X.
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0.4. PLAN OF THE PAPER

Section 1 : a quick review of semi-topological rings and modules, as well
as new facts on ST Hom modules.

Section 2: definition of BCAs and morphisms, including examples.
Section 3: definition of intensification homomorphisms, base change.
Section 4: general facts on continuous differential operators over ST alge-

bras ; the Lie derivative.

Section 5: the structure of the ring of continuous DOs D(K) over a TLF K;
03C9(K) is a right D(K)-module, and the action is by adjunction
in a suitable sense.

Section 6: existence of dual modules is proved.
Section 7: contravariance of dual modules w.r.t. morphisms is proved

(traces).
Section 8: the interaction between dual modules and DOs is examined,

leading to Theorem 8.6 and a few corollaries.

1. Some results on semi-topological rings

Let us recall some definitions and results from [24], §1. A semi-topological
(ST) ring is a ring A, with a linear topology on its underlying additive group,
such that for all a E A, left and right multiplication by a are continuous maps
03BBa, 03C1a: A ~ A. A ST left A-module is an A-module M, whose underlying
additive group is linearly topologized, and such that for all a E A and x E M, the
multiplication maps they define 03BBa: M ~ M and 03C1x: A - M are continuous.
ST left A-modules and continuous A-linear homomorphisms form a category,
denoted STMod(A). Similarly one defines ST right modules and bimodules.

Assume for simplicity that the ST ring A is commutative. In STMod(A) there
are direct and inverse limits, and a tensor product. Given a ST A-module M,
the associated separated module Msep = M/fOl- is also a ST A-module. The
category STMod(A) is additive, but not abelian. An exact sequence in it is, by
definition, a sequence M’  M  M" which is exact in the untopologized
sense (i.e. in Mod(A)), and such that both 0 and e are strict.

On any A-module M there is a finest topology making it into a ST module;
it is called the fine A-module topology. If M has the fine topology, then for
any ST A-module N, one has HomADt(M, N) = HomA(M, N), and this in fact
characterizes the fine topology. Trivially, if M has the fine topology, then so does
Msep. A free ST A-module is a free A-module with the fine topology. So F is
free iff F ~ ~ A with the (j) topology. A ST module M has the fine topology
iff it admits a strict surjection F  M with F free.
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DEFINITION 1.1. Let M, N be ST A-modules. The (weak) Hom topology on
the abelian group HomcontA (M, N) is the coarsest linear topology such that for
every x E M, the map px: HomcontA(M, N) ~ N, 0 H 0(x), is continuous.

Unless otherwise specified, this is the topology we consider on HomA’nt(M, N).
If M has the fine topology, we shall often drop the superscript "cont".

Remark 1.2. A basis of neighborhoods of 0 for the Hom topology is the
collection of open subgroups {V(F, U)}, where F runs over the finite subsets
of M, U runs over the open subgroups of N, and v(F, U) = {~ 1 ~(F) c Ul.
Such a topology is sometimes called the weak topology (cf. [14]). Usually, to
obtain a duality one needs a finer topology - the strong topology of [14], or the
compact-open topology of [20]. In the present paper duality is defined by indirect
means, and for our purposes the weak topology suffices (cf. Remark 8.3).

The next lemma summarizes the properties of the Hom topology. Its easy proof
is left to the reader.

LEMMA 1.3. Let A be a commutative ST ring.
(1) Let 0: M’ ~ M and 1/;: N ~ N’ be homomorphisms in STMod(A).

Then the induced homomorphism HomA’nt (M, N) ~ HomAnt (M’, N’) is

continuous.

(2) Let M, N be ST A-modules. Then HomA’nt(M, N) is a ST A-module. EndA’nt
(M) = Homc"t (M, M) is a ST A-algebra, and M is a ST left End cont (M)
module. The natural bijection M --=-+ HomAnt(A, M), x H px, is an iso-

morphism of ST A-modules.
(3) Suppose in (1) ~ is surjective and 1/; is a strict monomorphism. Then

HomcontA(M, N) - HomcontA(M’, N’ ) is a strict monomorphism.
(4) Let (M03B1)03B1~I be a direct system in STMod(A), with I a directed set. Then

for any ST A-module N the natural map
lim HomcontA (Ma, N) - Homcont (lim Ma, N)
~03B1

is an isomorphism of ST A-modules.

From parts (1) and (2) of the lemma1L-follows that HomAnt is an additive
bifunctor STMod(A)’ x STMOd(A) ~ STMod(A).

Tensor products are defined in ST M od (A). The usual tensor product M 0 A N
is given the finest linear topology s.t. the maps py: M ~ M 0A N, x’ H
x’ 0 y and Àx: N - M 0A N, y’ H x ~ y’ are all continuous (see [24],
Definition 1.2.11).

LEMMA 1.4 (Adjunction). Let A, B be ST rings (not necessarily commutative),
let L be a ST left A-module, N a ST left B-module, and M a ST B-A-bimodule.
Then

as topological abelian groups.
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Proof Immediate from the definitions of the Hom and 0 topologies. CI

We say a homomorphism 0: M ~ N of topological abelian groups is dense if
~(M) c N is (everywhere) dense.

LEMMA 1.5. Suppose A is a ST ring and M - M, N ~ N are continuous
dense homomorphisms of ST A-modules. Then M 0A N ~ M 0A N is dense.

Proof By transitivity of denseness it suffices to prove that M 0A N ~
~A N is dense. Choose a surjection from a free module A(I) = ~ A onto N.
This induces surjections M(I) ~ M 0 A N and (I) ~ Ñf 0 AN. But according
to [24], Proposition 1.1.8(c), M(I) ~ (I) is dense. D

DEFINITION 1.6. Let A be a commutative noetherian ST ring. A ST A-module
M is called of finite type (resp. cofinite type, resp. torsion type) if it is finitely
generated (resp. it is artinian, resp. SuppM C SpecA consists solely of maximal
ideals), and if it has the fine topology.

Denote the full subcategories of STMod(A) consisting of finite type (resp. cofi-
nite type) modules by STModf(A) (resp. STModcof(A)).

Generalizing the Zariski and Artin-Rees properties for noetherian rings with
adic topologies, we make the following definition. Let us point out that this
definition is stronger than [24] Definition 3.2.10.

DEFINITION 1.7. Let A be a noetherian commutative ST ring. A is said to be
a Zariski ST ring if
(i) Every ST A-module, which is either of finite type or of torsion type, is

separated.
(ii) Every (continuous) A-linear homomorphism between two ST A-modules,

each either of finite type or of torsion type, is strict.

PROPOSITION 1.8. Let A be a local Zariski ST’ring, with maximal ideal m.
Assume that A ~ lim~i A/mi+1 as ST rings. Let M, N be ST A-modules.
(1) If M, N are both of finite type then so is HomcontA(M, N).
(2) If M is of finite type and N is of cofinite type then Homc"t (M, N) is of

cofinite type.
(3) If M, N are both of cofinite type then HomAot(M, N) is of finite type.

Proof. (1) Let Ar ~ M be a surjection. By Lemma 1.3 (2) and (3), Hom
(M, N) y Nr is a strict monomorphism. Now use the Zariski property to
conclude that HomA (M, N) has the fine topology.
(2) Like (1).
(3) Let Mi : - HomcontA(A/mi+1, M), so Mi y M is strict, Mi has the fine

topology, and M = limi~ Mi. Similarly define Ni. By part (4) of Lemma 1.3,
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Now Mi and Ni are of finite type, so we can we can use part (1) and [24],
Proposition 1.2.20. D

COROLLARY 1.9 (ST version of Matlis duality). Let A be as in the proposi-
tion. Suppose l is an injective hull of A/m, endowed with the fine topology.
Then HomcontA(-, I) is an equivalence

2. Definitions and basic properties of BCAs

In this section k is a fixed perfect field. If A is a ST k-algebra and t = (tl, ... , tn)
is a sequence of indeterminates, we denote by A[[t]] = A[[t1, ..., tn]] the ring of
formal power series, with the topology given by

where for each i, A[t]/(t)i has the fine A-module topology. The ring of Laurent
series A((t)) is topologized by

and we define recursively

According to [24] §1.3, A[[É]] and A((t)) are ST k-algebras.
A topological local field (TLF) over k is a field K, together with a topology,

and valuation rings Oi, i = 1,..., n, such that the residue field Ki of Oi is the
fraction field of Oi+1, and K = Frac(O1). These data are related by the existence
of a parametrization: an isomorphism K ~ F((t1, ... , tn)) of ST k-algebras, s.t.
o ~ F((ti+1,..., tn))[[ti]]. Here F is a discrete field, and 01 Flk has finite rank.
The number n is the dimension of the local field K. Topological local fields
constitute a category TLF(k). For more details see [24] §2.1.

DEFINITION 2.1. A local Beilinson completion algebra (BCA) over k is a com-
mutative semi-topological local ring A, together with a structure of topological
local field on the residue field A/m. The following condition must be satisfied:
there exists a surjective homomorphism of k-algebras

which is strict (topologically), and induces and isomorphism of TLFs F((s)) ~
A/m. Such a surjection is called a parametrization of A.
A Beilinson completion algebra is a finite product of local BCAs.
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Remark 2.2. In greater generality one can define a BCA over any noetherian
ring R, to be any finite algebra over the R-algebra A(039E,OX) = 03A003B6~039E OX,03B6,
where E is a finite set of saturated chains in some finite type R-scheme X, and

A(2013, 2013) is Beilinson’s scheme theoretical group of adeles. See [1, 9, 24, 13] for
the definition of adeles, and cf. Examples 2.3 and 2.4 below.

Observe that a Beilinson completion algebra A is necessarily an r-adically com-
plete, noetherian, semi-local ring, where r is the Jacobson radical of A. If A is
artinian, then in the terminology of [24], it is a cluster of TLFs (a CTLF).

For any m E MaxA set res.dimmA := dimA/m, the local field dimension. We
say that A is equidimensional of dimension n if res.dimmA = n for all m. In
this case we set res.dimA := n, and

for 1 x i  n. Also we set O0(A) := A and ro(A) := A/r = 03A0 A/m.
The motivating example is:

EXAMPLE 2.3. Let X be a scheme of finite type over k, and let = (x0,..., xm)
be a saturated chain in X. Then the Beilinson completion OX,03B6 of the struc-
ture sheaf along 03B6 is defined; see [24] §3.1. We claim that Ox,e is an equidi-
mensional BCA, of dimension m. To see why, first choose a coefficient field

a: k(x0) ~ OX,x0 = OX,(x0). According to [24] Lemma 3.3.9, cr extends to
a lifting a ç: k(03B6) = k (xo) ç - OX,03B6. Sending t 1,..., tn to generators of the
maximal ideal mxo’ we get a strict surjection k(03B6)[[t1,...,tn]] ~ OX,03B6. Final-
ly, according to [24], Proposition 3.3.6, k(03B6) is a finite product of TLFs, all of
dimension m.

EXAMPLE 2.4. Consider a BCA A = F((sl, ... , sm))[[t1,..., tn]]. We claim it
is of the form OX,ç. Choose an integral k-scheme of finite type Y such that F =
k(Y). Set X := An+mY = An+m kY, and let 03B6 = (xo, ..., xm) be the saturated
chain xi := (t 1, ... , tn, Si ... , si), where we write An+mk = Speck[s, t]. Then
F((s))[[t]] ~ Ox,g (cf. [24] Theorem 3.3.2(c); it can be assumed that Y is

normal).

Let A be a local BCA of res.dim n. For every 1  i x n there is a subring
01, .... i (A) c A defined by

It is the largest subring of A which projects onto "’i (A), and it is actually the
valuation ring of a rank i valuation (hence local). In [24] the notation O(A) was
used for 01 ,...,n (A).
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DEFINITION 2.5 (Morphisms). Let A and B be Beilinson completion algebras.
A morphism f : A - B is a continuous k-algebra homomorphism, satisfying
the following local condition. Given a maximal ideal n c B, let m c A be the
unique maximal ideal such that f-1(n) c m. Set i := res.dimBn - res.dimAm,
which is assumed to be non-negative. Then f (Am) C 01,...,i(Bn), the induced
homomorphism Am ~ 03BAi(B/n) sends m to 0, and A/m - 03BAi(B/n) is a finite

morphism of local fields.

The composition of two morphisms is again a morphism, so we get a category,
which is denoted by BCA(k). The number i in the definition is called the relative
residual dimension of f at n, denoted res.dimnf. If f is equidimensional we shall
ommit the subscript n. We call f finite if B is a finitely generated A-module.
Observe that the full subcategory of BCA(k) consisting of fields coincides with
the full subcategory of TLF(k) consisting of TLFs whose last residue field is

finitely generated over k. (In characteristic 0 this is all of TLF(k).)
Here are some typical examples of morphisms of BCAs.

EXAMPLE 2.6. Let A := k[[s]], B := k((s))[[t]], and let f: A - B be
the inclusion. Then m = (s), n = (t), res.dimmA = 0, res.dim"B = 1 and

res.dimnf = 1.

EXAMPLE 2.7. Let X be a finite type k-scheme, 03B6 = (x, ... , y) a saturated
chain in X, A := OX,(y), B := OX,03B6, and ~+: OX,(y) - OX,03B6 the coface map.
Now res.dimA = 0, and res.dimB = res.dim8+ equals the length of 03B6.

EXAMPLE 2.8. Let X, Y be finite type k-schemes, f : X ~ Y a k-morphism,
y E Y any point and x a closed point in the fibre Xy := f-1(y). Since k(y) ~
k(x) is finite, f *: Oy,(y) ~ OX,(x) is a morphism of BCAS, with res.dimf * = 0.

DEFINITION 2.9. Let A be a local BCA over k, with maximal ideal m. A
coefficient fzeld (resp. quasi coefficient field, resp. pseudo coefficient field) for A
is a morphism 03C3: K - A in BCA(k), with K a field, and such that the induced
homomorphism K - A/m is bijective (resp. finite separable, resp. finite).

By definition, every local BCA has a coefficient field.

LEMMA 2.10. Let A be a local BCA over k, with maximal ideal m. Then:
(a) Suppose A is artinian and K ~ A is a pseudo coefficient field. Then A has

the fine K-module topology.
(b) Letting Ai := A/m’+’, the map A - limf-i Ai is an isomorphism of ST

k-algebras.

(c) Let K - A be a pseudo coefficient field, and let M be a torsion type ST
A-module (see Definition 1.6). Then M is a free ST K-module.
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(d) Suppose a : K ~ A is a morphism of BCAs, with K a field. Then there exists

a finite morphism f: L[[t]] - A extending a, i.e. a: K - L - L[[t]]  A.
Proof. (a) By [24] Proposition 2.2.2.

(b) This is true for F«I»[[É]] (by definition!) and hence, by [24] Proposi-
tion 1.2.20, for every quotient A.
(c) Set Mi := HomA(Ai, M), with the fine A-module topology. According to
[24] Corollary 1.2.6, M EÉ limi, Mi. Now Mi is a ST Ai-module with the fine
topology. Since Ai has the fine K-module topology, so does Mi. Passing to the
limit, M has the fine K-module topology, so it is a free ST K-module.
(d) According to [24] Corollary 2.1.19 we can find a finite morphism K((s)) =
L ~ A/m. As in the proof of ibid. Proposition 2.2.2, this extends to a morphism
L ~ lim_j Ai = A, which we then extend to f: L[[t]] ~ A by sending the ti
to generators of the maximal ideal ideal m. D

PROPOSITION 2.11. Let A be a BCA over k. Then:

(a) If f : A ~ B is a finite morphism in BCA(k), then B has the fine A-module
topology.

(b) Conversely, if B is a finite A-algebra, then B admits a unique structure of
BCA s.t. A - B is a morphism of BCAs.

(c) A is a Zariski ST ring. Moreover, every finite type or torsion type ST A-
module is complete.
Proof. (a) Let r C A and s c B be the Jacobson radicals. According to [24],

Proposition 2.2.2(b), Bi := B/si+1 has the fine Ai := A/ri+1 -module topology,
for each i  0. So Bi also has the fine A-module topology. Now use Lemma 2.10
(b) and [24] Proposition 1.2.20.
(b) According to [24] Proposition 2.2.2(c), this is true for Ai ~ Bi. Now use
B ~ lim+-i Bi.
(c) It suffices to consider A = F((s))[[t]]. By [24] Theorem 3.3.8, A is a Zariski
ST ring in the sense of ibid. Definition 3.2.10. This means that every finite type
ST A-module is separated, and every homomorphism between two such modules
is strict.
Now consider two torsion type ST A-modules, M and N. We may assume

A is local. Choose a pseudo coefficient field K - A. Then M, N are free ST
K-modules, and in particular they are separated and complete (cf. [24] Proposi-
tion 1.5). To prove that any homomorphism 0: M ~ N is strict, we may assume
it is injective. Then any K-linear splitting M ~ N is continuous, showing that
is strict.

Finally, given a homomorphism 0: M ~ N, with M, N either of finite
type or of torsion type, then the module M := ~(M), endowed with the fine
topology, is a ST module of both types. Therefore M ~ M and M y N are
both strict. ~
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3. Intensification base change

The operation of base change to be discussed in this subsection is a generaliza-
tion of the one in [24], §2.2. The important notion is that of an intensification
homomorphism u: A ~ A between two BCAs (Definition 3.6). Differentially u
is "étale": the differential invariants of Â descend to A. From the point of view
of valuations, Â is like a completion of A. Again k is a fixed perfect field.

DEFINITION 3.1. Let A, Â E BCA(k) have Jacobson radicals t,  respectively,
and let u: A ~ Â be a continuous k-algebra homomorphism, with u(t) c î.
(a) u is called radically unramified if î = Â - u(t).
(b) u is called finitely ramified if Â/Â.u(t) is artinian, and if for every m ~ MaxÂ

lying over some m G MaxA, letting n := res.dimÂ/m, the image of (A/m)
in the rank n valuation group of Â/ has finite index.

PROPOSITION 3.2 (Finitely ramified base change). Let K, K, A e BCA(k),
with A a local ring and K, K fields. Suppose f : K ~ 4 is a morphism in
BCA( k) and u: K ~  is a finitely ramified homomorphism. Then there exists
a BCA Â, a morphism /:  ~ Â in BCA(k), and a finitely ramified homomor-
phism v: A ~ Â, satisfying :
(i) v o f =  o u, and moreover the homomorphism A 0 K K - Â is dense.

(ii) res.dim = res.dimf.
(iii) Suppose : K ~ Û is a morphism in BCA(k), with  local, and let
n := res.dim - res.dim. Suppose also w: A ~ ê is a continuous homo-
morphism s.t. w o f =  o u, w(A) C O1,...,n(), and A ~ 03BAn() is finitely
ramified. Then there exists a unique morphism h: Â ~ C (of res.dim n) in
BCA(k), such that  =  o f and w = h o v.

Proof. Choose a finite morphism K((s))[[t]] - A (cf. Lemma 2.10), and
set

A is a BCA by Proposition 2.11, and Î, v are the obvious maps.
Let us prove that A ~K  ~ Â is dense. Denoting by K[s, s-1] the ring

of Laurent polynomials, we have K 0K A ~ t] ~K[s,s-1,t] A. By [24]
Lemma 1.3.9 the homomorphism K[,î,,î-1] ~ K((s)) is dense, and a similar

argument shows that so is [s, s-1, t] - ((s))[[t]]. Now use Lemma 1.5.
Finally, given Û, the arguments in the proof of [24] Theorem 2.2.4 imply

there is a morphism k«,î»[[É]] - ê, and tensoring with A we get : Â ~ ê.
Uniqueness follows from the denseness of A 0 K K - Â. D
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The algebra A in the proposition is unique (up to a unique isomorphism). We
shall denote it by

In contrast with the usual tensor product, this is not a symmetric expression
- we shall always put the algebra which is the range of the finitely ramified
homomorphism to the right.

In [24] § 1.5 the notion of a topologically étale homomorphism relative to k
was defined. A homomorphism v : A - A in STComAlg(k), the category of
commutative ST k-algebras, is called topologically étale relative to k if for any
separated ST A-module M, any continuous k-linear derivation 0: A - M has a
unique extension to a continuous derivation à: Â ~ M. Often we shall suppress
the phrase "relative to k"; this should not cause any confusion as we have no
notion of absolute topologically étale homomorphism.

LEMMA 3.3. 
_ _

(a) The homomorphism v: A ~ A = A 0 K K is flat.
(b) If u : K ~ K is topologically étale relative to k, then v: A ~ Â is topo-

logically étale and radically unramified.
Proof. (a) We have Â ~ A~K((s))[[t]] K((s))[[t]]. According to [3] Chapter 3,

§5.4, Proposition 4], the homomorphism K((s))[[t]] ~ K((s))[[t]] is flat; hence
so is A - Â.
(b) As in the proof of [24] Theorem 2.4.23, K((s))[[t]] - K((s))[[t]] is topolog-
ically étale. By [24] Proposition 1.5.9(b), so is A ~ Â. The ring A/A · v(m) ~
A/m ~K((s)) K((s)) is reduced, since K((s)) ~ ((s)) is separable (cf. proof
of [24] Theorem 2.4.23). This shows that Â - v(m) is the Jacobson radical

of A. D

Let A, Â be two local BCAs, with maximal ideals m, m respectively. Suppose
v : A ~ A is a finitely ramified, radically unramified homomorphism. Let
: K ~ A be a pseudo coefficient field, and assume there is some sub-

field K C Â/ such that K - K is topologically étale relative to k, and

A/m 0K  ~ Â/ is bijective. Then K - A/m is finite, and K ~  is

finitely ramified. Also, this K is unique. Since some lifting  ~ A exists, there
is a unique pseudo coefficient field

extending o, (cf. [24] formula (4.1.11)).

EXAMPLE 3.4. If v : A ~ A is topologically étale and K ~ A/m is purely
inseparable, then such a subfield K exists. Indeed, we have A/m = Â~AA/m, so
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A/m ~ A/m is also topologically étale. If u is a coefficient field, the statement
is trivial. Otherwise, see [24] formula (4.1.10).

We make grmA = ~i0 mi/mi+1 into a graded ST ring by putting on mi C A
the subspace topology, and putting on m2 /m2+ 1 the quotient topology. Similarly,
for a ST A-module M, grm M is a graded ST grm A-module.

PROPOSITION 3.5. In the situation above, suppose that v: A - Â is flat.
Then:

(a) For any finite type ST A-module M which has finite length, the canonical
homomorphism

is an isomorphism of ST K-modules.
(b) The canonical morphism A ~(039B)K  ~ Â in BCA(k) is an isomorphism.
(c) For any finite type ST A-module M, the canonical homomorphism

is an isomorphism of graded ST K-modules.
Proof. (a) The proof is by induction on the length of M. For M of length 1,

we have by assumption

Otherwise, we can find an exact sequence (of untopologized A-modules)

which gives rise, by flatness, to a homomorphism of exact sequences K~KM ~
A 0A M’ . By induction and the Five Lemma, we conclude that K 0K M EÉ
A 0A M. Since both modules have the fine -module topologies, this is a

homeomorphism.

(b) We have A ~(039B)K  ~ limi-i A/mi+1 ~K , and by Lemma 2.10 (b), Â ~
lim~i Â/i+1. Now use part (a) above, together with the isomorphism A 0A
(A/mi+1) ~ Â/i+1.
(c) By flatness and the fact that A and A are Zariski ST rings, it follows that
Â 0A miM ~ nli(Â 0A M) C A 0A M as ST Â-modules. Therefore Â 0A
(grmM)i ~ grm(Â~A M)i as ST A/m-modules. Now use part (a). D

DEFINITION 3.6 (Intensification). Let u : A ~ A be a continuous k-algebra
homomorphism between two BCAs. If u is flat, finitely ramified, radically unram-
ified and topologically étale relative to k, then is called an intensification
homomorphism.
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EXAMPLE 3.7. Let X be a finite type k-scheme, 03B6 = (x, ... , y) a saturated
chain in X, A := OX,(x)’ B := Ox,e, and â-: OX,(x) ~ Ox,e the coface map.
Then 0- is an intensification homomorphism (cf. Example 2.7).

THEOREM 3.8 (Intensification base change). Let A, A, B be local BCAS, let f :
A ~ B be a morphism in BCA(k), and let u: A ~ Â be an intensification
homomorphism. Then there is a BCA Ê = B ~(039B)A Â, a morphism f : Â ~ Ê
and an intensification homomorphism v: B ~ Ê, satisfying conditions (i)-(iii)
of Proposition 3.2 (but replacing the letters K, A with A, B).

Proof. Choose a coefficient field 03C3: K - A, and let 3’: K = K 0A A ~ A
be its unique extension. So Â EÉ A 0K K. Set B B 0K K. We can
find a surjective morphism K[[É]] -» A, and it gives Â ~ A ~K[[t]] K[[t]]. The
homomorphism [t] ~ B extends uniquely to a morphism K[[t]] - B : define it
inductively into Oi(B), i = res.dimf, ... , 2,1. Hence f : Â - B is also defined.
The uniqueness of Ê is clear from its construction. D

EXAMPLE 3.9. Let A := k(s)[[t]], Â := k((s))[[t]] and B := k(s)((t)), so the
inclusion A - A (resp. A - B) is an intensification (resp. a morphism). We
then have

PROPOSITION 3.10 (Associativity). Say C - B -  ~ Â - A are BCAs
and homomorphisms, where the "f- " are morphisms, and the "~" are intensi-
fications. Then there is a canonical isomorphism of BCAs

f Set B := ~(039B)Â  and C := B . By construction (cf. p
tion 3.2) we get an intensification homomorphism  ~ C 0t) B, and together
with the morphism  ~  ~ C ~(039B)B  we deduce, using Corollary 3.8,
the existence of a morphism h: C ~(039BÂ A -t C ~(039B)B B. The same corollary
says there is a morphism  ~  ~(039B)Â , and together with the intensification
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C ~ C 0.- A we get a morphism h’: C ~(039B)B  ~ C 0.- A. Since thé maps
from C0B ~Â  to both these BCAs are dense, h and h’ must be each other’s
inverse. D

4. Continuous differential operators

We begin with some general results on continuous differential operators (DOs)
over ST algebras. Let k be a discrete commutative ring, let A be a commutative,
separated, ST k-algebra, and let M be a separated ST A-module. For n  0,
the separated module of principal parts Pn,sepA/k is the ST A-A-bimodule (A 0k
A/In+1)sep, where I := ker(A ~k A ~ A). Set Pn,sepA/k(M) := (Pn,sepA/k 0A
M)sep, which is an A-module by a . ((1 0 1) 0 x) = (a 0 1) 0 x. The universal
continuous DO of order n is dM : M - Pn,sepA/k(M), dnM(x) = (1 0 1) 0 x (see
[4], Chapter 4 §16.8 and [24], §1.5). For any separated ST A-module N, dM
induces a bijection

There are inclusions

DiffcontA/k(M,N) is a filtered A-A-bimodule, where for D e DiffcontA/k(M,N) and
a, b E A we have aDb = a o D o b: M - N. Denote the order of the DO D by
ordA(D).

DEFINITION 4.1. Given a separated ST A-module M, let D(A; M) := DiffcontA/k
(M, M), which is a filtered k-algebra. For M = A we shall write simply D(A) :=
D(A; A).

Denote the left action of D(A; M) on M by D * x, for D e D(A; M) and
xEM.

Remark 4.2. D(A) can be made into a ST k-algebra by giving it the subspace
topology w.r.t. the embedding D(A) C Endcontk(A). However we shall not make
use of this topology.

LEMMA 4.3. Assume that for some n  0, Pn,sepA/k is a finite type ST left A-
module. If M is a finite type ST A-module, then so is Pn,sepA/k(M).

Proof. First note that Pn,sepA/k is a commutative ST ring, admitting two continu-
ous k-algebra homomorphisms A -+ Pn,sepA/k. By [24] Corollary 4.5, Pn,sepA/k ~AM



75

is a finite type ST Pn,sepA/k-module. The left A-module structure on Pn,sepA/k cornes
from the algebra homomorphism a H a ~ 1. From [24] Proposition 2.9 and our
assumption it follows that Pn,sepA/k ~ A M has the fine A-module topology. But
then the same is true for Pn,sepA/k(M) = (Pn,sepA/k ~A M)sep. D

Define

Corresponding to the decomposition P1,sepA/k = A E9 03A91,sepA/k we have A E9 T(A) =
Dl (A) C D(A), and just like in the discrete case, T(A) is a Lie algebra
over k.

LEMMA 4.4. Suppose A is another commutative, separated, ST k-algebra, and
u: A - Â is a topologically étale homomorphism relative to k. Then there is
an induced homomorphism of filtered k-algebras D(A) ~ D(Â), sending an
operator D: A - A to its unique extension D: Â ~ A. More generally, if M is
a ST A-module, there is a homomorphism D(A; Msep) ~ D(A; (A 0A M)sep).

Proof. The existence and uniqueness of this ring homomorphism are imme-
diate consequences of [24] Theorem 1.5.11(iv). D

The ring homomorphism D(A) ~ D(Â) restricts to a Lie algebra homomorphism
T(A) ~ T(Â).

PROPOSITION 4.5. Let A, Â be separated ST k-algebras, and let u: A - Â
be a flat, topologically étale homomorphism relative to k. Assume that for every
n  0, Pn,sepA/k is a finitely presented, finite type ST left A-module. Then the

homomorphism D(A) ~ D(Â) induces an isomorphism of filtered Â-D(A)-
bimodules

Proof. Since ~ commutes with lim~, it suffices to prove that for all n  0,
Â 0A Dn(A)~Dn(Â) is bijective. The assumptions imply that
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Now consider the separated algebra of differentials 03A9·,sepA/k, which is a graded ST
k-algebra (see [24] Definition 1.5.3). Then

is a graded Lie algebra. For instance, the exterior derivative d is an element of
degree 1 in T(03A9·,sepA/k).
We shall need a version of the Lie derivative for semi-topological algebras

(see [23] §2.24 for the differentiable manifold version).

PROPOSITION 4.6 (Lie derivative). Let A be a separated ST k-algebra and let
8 be a continuous k-derivation of A. Then there exists a unique continuous,
degree 0, k-linear derivation La of 03A9·,sepA/k, which extends 8 and commutes with
d. The map a H La is a homomorphism of k-Lie algebras T(A)~T(03A9·,sepA/k),
and is functorial with respect to topologically étale homomorphisms A~A in
STComAlg(k).

Proof. Let a E T(A) = Dercontk(A, A) be given. Since A is separated we
get a continuous A-linear map 03A91,sepA/k ~ A, which extends by universality to a
continuous degree -1 dérivation La.: 03A9·,sepA/k ~ 03A9·,sepA/k, the interior derivative.

Define La := ~ o d + d o La (i.e. the graded commutator of ~ and d). The
properties of La are easily deduced from its definition and the fact that d2 = 0.
To show uniqueness it suffices to consider L~(03B1) for a = a or cx = da, a e A.
But L~(a) = a(a) and L~(da) = d(L~(a)) = d o 8(a).
Now let ~1, ~2 E T(A). Then [L~1, L~2] is a continuous derivation of 03A9·,sepA/k

commuting with d, and for all a e A,

so [LaI, L~2] = L[~1,~2]. The functoriality of L follows from the same functoriality
of t (and d). D

LEMMA 4.7. Suppose 03A9n+1,sepA/k = 0 for some n. Then for any a E A, a E 03A9n,sepA/k
and 0 E T(A), one has Laa (a) = La (aa).

Proof. First note that

Since da = 0, ta8(a) = a~(03B1) and = 8(a)a+aLa(a), it follows that Laa(a) =
L~(a03B1). ~

Now assume k is a perfect field.

PROPOSITION 4.8. Let A e BCA(k), and let M be a finite type ST A-module.
Then for any n  0, Pn,sepA/k(M) is a finite type ST left A-module. In particular,
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so is P1,sepA/k = A ~ l,sep so A is differentially of finite type over k (In the senseP1,sepA/k = A ~ 03A91,sepA/k,
of F241 Definition 1.5.16).

Proof. We may assume A is a local ring. Choose a parametrization of A, i.e. a
surjective morphism of BCAs F((s))[[t]]~A. Let u = (u1,..., ul) be a separat-
ing transcendency basis for F over k. By [24] Corollary 1.5.19, k[u, s, t] ~ F((s))
[[t]] is topologically étale (rel. to k). Therefore, using [24] formula (1.4.2) and
Theorem 1.5.11, it follows that

is a free ST left F((s))[[t]]-module of finite rank. Now in general, if 0: M ~ N
is a strict surjection of ST k-modules, then so is 0 ~ ~: M 0k M-N 0k N;
and if M’ c M and N’ c N and submodules such that o(M’) C N’, then
0: MIM’ -» N/N’. also strict. This implies that Pn,sepF((s))[[t]]/k~Pn,sepA/k is a
strict surjection. Hence Pn,sepA/k is a ST module of finite type over A (as a left

module, via a H a 0 1).
Given a finite type ST A-module M as above, use Lemma 4.3. D

5. D-Modules over TLFs

Henceforth k is a fixed perfect field. Let K be a topological local field(TLF)
over k. We need to understand the structure of the ring D(K) of continuous
differential operators. First assume k has characteristic p. Let M be a free ST
K-module of finite rank. We know from [24] Theorems 2.1.14 and 1.4.9, that
D(K; M) admits the p-filtration

Here K(pn/k) = k 0k K, with 1 ~ 03BB = Àpn 0 1 for À e k. This filtration
is cofinal with the order filtration - see [24] Lemma 1.4.8. According to ibid.
Proposition 2.1.13, the relative Frobenius map K(pn/k)~K, 03BB~a ~ Àapn, is a
finite morphism in TLF(k).

In characteristic 0, D(K) is a "topologically étale localization" of a Weyl
algebra. Choose a parametrization K ~ F«,î» and a separating transcendency
basis u for F over k. Let t = (tl, ... , tm) := (u, s) = (UI’..., si ...) be the
concatenated sequence. Then k[t]~K is a flat, topologically étale homomorphism
in STComAlg(k). The ring D(k[t]) is a Weyl algebra over k : D(k[t]) ~ k[t] Q9kk[~1,...,~m], where Oi := 8ti’ and the multiplication is determined by (1 ~
~i)(tj ~ 1) = tj ~ ~i+(~i*tj)~1.By Proposition 4.5, we have D(K) ~ K ~k[t]
D(k[t]). Considering the faithful action of D(K) on K, we get a presentation
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for i = 1, ... , m and a E K (i.e. D(K) is a smash product of K and the universal
enveloping algebra of the abelian k-Lie algebra spanned by the derivations Oi).

DEFINITION 5.1. Let K be a TLF over k. Define w(K) to be the top degree
component of 03A9·,sepK/k. It is a free ST K-module of rank 1.
At this point we can exhibit the canonical right D(K)-module structure on 03C9(K)
(cf. [2], Chapter 4 §3.2).

PROPOSITION 5.2. For any K E TLF(k) there is a unique right D(K)-module
structure on w(K), written a * D, for a E w(K) and D E D(K), such that:
(i) If D = a E K then a * a = aa.
(ii) If D = 9 E T(K) then a * ~ = -La (a), where La is the Lie derivative (see

Proposition 4.6).
(iii) If chark = p and D E Dpn-1(K) for some n  0, then for every a E K,

~D*a,03B1~K/K(pn/k) = ~a,03B1*D~K/K(pn/k) ,
where (-, -)K/K(pn/k) is the trace pairing of [24] formula (2.3.8).
Proof. First assume chark = 0. Since [Lai, L~j] = 0, a * ai := -Lai (a) is an

action of k[~1,..., 0,,, ] on 03C9(K). According to the presentation (5.1), in order
to extend this to a right action of D(K) it suffices to show that

which is true since La2 is an even derivation of 03A9·,sepK/k and L~i(a) = ~i(a).
By Lemma 4.7, condition (ii) holds for an arbitrary derivation a = 03A3ai~i,
ai ~ K.

Next consider the case chark = p. Let D E Dn(K). By [24] Lemma 1.4.8,
D is K(pn/k)-linear. The trace pairing (-, -~K/K(pn/k) is perfect ([24] Propo-
sition 2.3.9), so by adjunction D acts on w(K). The functoriality of the trace
guarantees that this action is independent of n. We thus get a right action satis-
fying conditions (i) and (iii). In order to check (ii) it suffices to look at a = âi .
Let 0 := dt 1 039B··· 039B du - 1039B dt2+ 1039B··· A dtm. We can compute the différence :

since TrK/K(p/k) commutes with d and vanishes on 03A9m-1,sepK/k . ~

Let D(K)’ denote the opposite ring of D(K).

PROPOSITION 5.3. The right D(K) action on w(K) of the previous proposition
induces a canonical isomorphism of filtered k-algebras
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Proof. If chark = p we have, for every n  0, an isomorphism (of K-K-
bimodules) Tn : EndK(pn/k) (K)o  EndK(pn/k) (03C9(K)) induced by adjunction.
In the limit we get TK.

If chark = 0, choose a topologically étale homomorphism k[t]~K. Let
Tt: D(K)~D(K) be the involution such that TTIK is the identity and Tt(8j) =
-8j (cf. formula (5.1)). Let ~t: K  03C9(K) be the K-linear isomorphism
defined by Ot(1) = dt, 039B··· A dtm. Then for any D E D(K),

COROLLARY 5.4. Let K, K E BCA(k) be fields and let K -7K be a topolog-
ically étale homomorphism in STComAlg(k). Then w(K)-w(K) is a homo-
morphism of right D(K)-modules.

Proof. In characteristic 0 this follows from the covariance of the Lie deriva-
tive. In positive characteristics it follows from the fact that the trace map com-
mutes with base change, cf. [24] Proposition 2.3.11. D

On the category TLF(k) there is a functorial residue map. To each morphism
f: K -7 L it assigns a homomorphism of differential graded ST left 03A9·,sepK/k-
modules, ResL/K = Res f: 03A9·,sepL/k~03A9·,sepK/k (cf. [24] Theorem 2.4.3). The residue
pairing 

is a perfect pairing of ST K-modules, in the sense that the induced map w(L)-
HomcontK(L,03C9(K)) is bijective (cf. [24] Theorem 2.4.22 - Topological Duali-
ty).

THEOREM 5.5. Let K E TLF(k) and assume that k-tK is a morphism in
TLF(k). Given a DO D E D(K), let DV E Endk(03C9(K)) be its adjoint relative
to the residue pairing (-, -)K/k. Then for every a E 03C9(K),

In other words, the adjoint action of D(K) on 03C9(K) coincides with the canonical
right action.

Proof. We must show that for all a e K, a E w(K) and D e D(K),
(D * a, 03B1~K/k = (a, a * D~K/k. In characteristic p this follows immediately from
condition (iii) of Proposition 5.2 and the functoriality of the residue maps ([24]
Theorem 2.4.2).

In characteristic 0 first choose a parametrization K -É F((t)) = F((tl, ... ,
t,n)). Then k-+ F is finite separable and any k-linear DO is also F-linear. Given
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so ReSK/k(L~j (03BBti)) = 0. By continuity we conclude that

for all a.

To prove the theorem it suffices to consider either D = b ~ K or D = ~j.
For D = b we get

For D = ~j we use "integration by parts":

by (5.2). D

6. Duals of finite type modules

The purpose of this subsection is to establish the existence of a canonical dual

module DualAM to every finite type ST A-module M. If k~A is a morphism
in BCA(k), then we set DualAM := Homcontk(M, k), endowed with the fine
A-module topology. Otherwise we define DuaIAM using differential operators,
and show this definition is independent of choices made by a base change argu-
ment, which reduces things to the case when k-+,4 is a morphism. Recall that
k is a fixed perfect field. For a TLF K, 03C9(K) is the top degree component of

°k/k’ a rank 1 free ST K-module.

DEFINITION 6.1. Let A, K e BCA(k) be a local ring and a field, respectively,
and let o-: K~A be a morphism in BCA(k). For any finite type ST A-module
M define

the set of continuous K-linear homomorphisms, where M is a K-module via a.
Put on Dual, M the fine A-module topology.
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Remark 6.2. The module HomcontK;03C3(M,03C9(K)), with the (weak) Hom topology,
is a ST A-module. Therefore the identity map Dual03C3M~HomcontK;03C3(M,03C9(K)) is
continuous. However, this will not be a homeomorphism unless a: K~A is a
pseudo coefficient field and M is a finite length module.

Let A be a commutative noetherian local ring, with maximal ideal m, and let
I be an injective hull of A/m. Then M ~ HomA(M,I) is a duality between
finite type (i.e. finitely generated) A-modules and cofinite type (i.e. artinian)
A-modules. The module HomA(M,I) is called a Matlis dual of M (cf. [16]
§4).

LEMMA 6.3. Let a: K~A and M be as in Definition 6.1.
(a) Suppose T: L-tA and f : K~L are morphisms in BCA(k), with L a field,

and a = T o f. Then the map
DualM ~ Dual03C3M

~ ~ ResL/K  ~
is an isomorphism of ST A-modules.

(b) The (untopologized) A-module Dual03C3M is a Matlis dual of M. In particular,
Taking M = A, it follows that Dual03C3A is an injective hull of A/m. As a ST
A-module, Dual03C3 M is of cofinite type.
Proof. (a) First consider the case when T: L~A is finite; so A has the fine

L-module topology (Proposition 2.11 (a)). Then M is a free ST L-module of
finite rank. By Topological Duality ([24] Theorem 2.4.22), DualM~Dual03C3M
is bijective, and it is an isomorphism of ST A-modules since both modules have
the fine A-module topologies.

Next assume T: L-A is a pseudo coefficient field. Because w(K) (resp.
w(L)) is a simple, separated ST K-module (resp. L-module), and M ~ lim~n
Mlmn M, we can use [24] Proposition 1.2.22 to conclude that

and similarly for L. For any n  1, M/mnM is a finite type ST A/mn-module,
so we are back to the first step.

For the general situation, we may factor T through some pseudo coefficient
field T’: L’-A (cf. Lemma 2.10(d)), and use the functoriality of the residue
maps.

(b) By part (a) we can assume that 03C3: K~A is a pseudo coefficient field. Then
in (6.1) we can drop the superscript "cont", in which case the statement is well
known (cf. [16] p. 63, Example 1). D

Let A, A be local BCAs, with maximal ideals m, m respectively, and let v : A~A
be an intensification homomorphism. Note that v, being a local homomorphism,
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is faithfully flat. Let (1: K~A be a morphism in BCA(k), with K a field.
Assume that there is an intensification homomorphism u: K~K and a morphism
: ~Â s.t. Â c2 A0K k.

PROPOSITION 6.4. Let M be a finite type ST A-module, and set M = Â0AM.
Then any 0 E Dual(1M has a unique extension  E DualM. The resulting
continuous homomorphism

is injective, and induces an isomorphism of ST A-modules

Proof. Let n := res.dima. Then we can extend a to a a pseudo coefficient
field K((s)) = K((Sl,..., sn))-+A, and extend  to K«,î»--+A. By replacing
K,  with K((s)), ((s)) we can then assume that a, fi are pseudo coefficient
fields. This puts us in the setup of Proposition 3.5. For i  0 define

and similarly define i. Since Dual,M and Dual,M both have the fine topolo-
gies, it suffices to exhibit an isomorphism A 0A H2  Hi, with  := 10 0
extending 0. By Proposition 3.5(a),

Since K~ is topologically étale, K 0K 03C9(K) i 03C9(). Therefore K 0K
Hi  i; and again by Proposition 3.5(a), Â 0A Hi -1 1 i. ~

Let A be a local BCA with maximal ideal m. Suppose a, a’: K~A are pseudo
coefficient fields, such that 03C3 ~ 03C3’ (mod m). Let M be a finite type ST A-module.
Given a nonzero element x E M, its order with respect to m is

If ordm (x) = n, then the symbol of x is its image in mn/mn+1 c grmM.
DEFINITION 6.5. An m-filtered K-basis of M is a sequence x = (x0, x1,...)
of elements of M, such that the symbols of xo, xi, ... form a K-basis of grm M,
and such that ordm(ri)  ordm(xi+1).

Choose such a basis x. Then any x E M is expressed uniquely as a convergent
sum
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with Ai, Mi E K. Define functions Dij: K~K by the equation

LEMMA 6.6. Dij E D(K), i.e. it is a continuous differential operator over K
relative to k.

Proof. Pick two indices io, il, and let n := max{ordm(xi0), ordm(xi1)}. We
can compute the function Di0i1 for the module M/mn+1 M instead of M. Define

A- := o,(K) e m = 03C3’(K) ~ m C A.
This is a local BCA, with A-/m ~ K, and A-~A is a finite morphism. Let 1
be the length of M/mn+1 1 M over A-, and let E, E’ : Ki --=-+ M/mn+ M be the
K-linear homeomorphisms

(M/mn+ 1 M is a free ST K-module via a and via a’). According to [24] Propo-
sition 1.4.4, E, E-1, E’ and (E’)-1 I are DOs over A-, relative to k. Set

which is a DO over A-, and hence over K. Expanding D as an 1 x 1 matrix with
entries in D(K), one gets D = [Dij]. D

One can easily show that

and Dii = 1. Thus the matrix of DOs looks like this:

DEFINITION 6.7. In the situation described above, define a function

by the equation

for 0 E Dualam and Ai e K.
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The second sum in (6.2) makes sense, since there are only finitely many
nonzero terms in it. At first glance this somewhat strange définition seems to
depend on the basis x. We shall soon see that there is no dependence on the
basis, and that in fact 03A8M03C3,03C3’ is an isomorphism of ST A-modules. Immediately
from the définition we get
LEMMA 6.8. 03A8M03C3,03C3’ is a k-linear bijection, with inverse 03A8M03C3’,03C3. Given a third
pseudo coefficient field a": K~A one has 

Further properties of 03A8M03C3,03C3’ are less obvious.

LEMMA 6.9. Under the combined assumptions of Proposition 6.4 and Defini-
tion 6.7, one has

Here we are using the m-filtered basis (10xo, 1 ~ x1,...) on M to define 03A8M,’.
Proof. The DOs Dij E D(K) which appear in the definition of 03A8,’ are

precisely the images of the DOs Dij E D(K) under the natural ring homomor-
phism D(K)~D(K). By Corollary 5.4, 03C9(K)~03C9() is a homomorphism of
right D(K)-modules.

LEMMA 6.10. In the situation of Definition 6.7, suppose in addition that k~K
is a morphism in BCA(k). Then for any 0 E Dual,M, one has

Proof. Say 0(xi) = ai E w(K). Given x = 03A3i03C3’(03BBi)xi ~ M, with 03BBi e K,
we have by definition x = 03A3i,j03C3(Dij * 03BBi)xj. So

On the other hand, setting ~’ := 03A8M03C3,03C3’(~), one has

By linearity and continuity, it suffices to prove that for all 1, j à 0

but this is done in Theorem 5.5.
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LEMMA 6.11. Let K E BCA(k) be a field. There exists a field  e BCA(k) and
a homomorphism u: K-K in STComAlg(k) such that k~ is a morphism
in BCA(k) and u is an intensification. Moreover we can choose u to be dense.

Proof. Choose a parametrization K ~ F((t)). F is a finitely generated field
extension of k ; let s = (s 1,..., sm) be a transcendency basis for F/k. Then
k(s)~F is a finite morphism in BCA(k). The map k(s)~k((s)) is certainly
an intensification homomorphism. Applying finitely ramified base change (Theo-
rem 3.8) we get a dense intensification homomorphism K~K ~(039B)k(s) k((s)). Thus
the BCA K ~(039B)k(s) k«s» is a reduced cluster of TLFs, and we can take K to be
any local factor of it. D

PROPOSITION 6.12. Let A be a local BCA with maximal ideal m, and let

’: K-A be two pseudo coefficient fields, such that 03C3 ~ a’ (modm). Let
M be a finite type ST A-module. Then the map 03A8M03C3,03C3’ is an isomorphism of ST
A-modules, independent of the m-filtered K-basis x = (xo, x1, ...).

Proof. First we reduce the problem to the case when K --=-+ A/m, i.e. when
03C3, ut are coefficient fields. Let A- be the algebra 03C3(K) 0 m C A, cf. proof of
Lemma 6.6. The map 03A8M03C3,03C3’ is the same when restricting M to an A--module,
so we may replace A with A- . 

Choose an intensification homomorphism u : K~ as in Lemma 6.11, and
define A := A 0K K, w.r.t. the morphism 03C3: K-A. So the homomorphism
v: A~Â is also an intensification, Â is local with maximal ideal m = Â .
v(m), and Â/ ~ K. Let R: Dual,M  Homkont(M, k) be the Â-linear
isomorphism 0 H Resklk 0 cp of Lemma 6.3, and similarly define R’. According
to Lemmas 6.9 and 6.10, the diagram

is commutative. Since qm and qm, are injections, we deduce the independence
of 03A8M03C3,03C3’ of the basis x, and that 03A8M03C3,03C3’ is an A-linear bijection. Since both Dual,M
and Dual,, M have the fine topologies, 03A8M03C3,03C3’ is in fact a homeomorphism. ci

PROPOSITION 6.13. Under the hypothesis of Proposition 6.12, suppose T, T’ :
L-A are pseudo coefficient fields, and f : K-L is a (finite) morphism in
BCA(k), such that  ~ T’ (mod m), a = T o f and a’ = T’ o f. Then for any
0 E Dual,M one has
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Proof. After making a reduction as in Proposition 6.12, we can assume that
L ---=+ A/m. Now set A- := 03C3(K)~m c A. Choose a homomorphism u : K-K
as in Lemma 6.11, and define BCAs A- : := A- 0K K and := A 0K K,
w.r.t. the morphisms 03C3: K-+A--+A. Let v: A~Â be the resulting intensifica-
tion homomorphism. The algebra A- is local, with maximal ideal Â- . v(m).
Denote by r the Jacobson radical of Â ; so  = Â·v(m). Set L := Â/ ~ L0KK.
For each m e MaxÂ denote by f m : K -+ Lm, vm : A~Â and um : L-É+ the
localized homomorphisms. We have Â ~ A 0 L Lm, and there are coeffi-
cient fields Tm, Tm :  ~ Â extending r, r’. All the claims above follow from
Proposition 3.5.

Let M := A 0A M. For every m E MaxÂ there is a homomorphism

and a corresponding homomorphism qMv;’, which, by Lemma 6.9, intertwine
03A8M,’ with 03A8. There are also (injective) homomorphisms qMv;03C3 and qMv;03C3’.
Since the trace maps satisfy

we get

and similarly with 03C3’, T’, so the problem is reduced to the case when k~K is a
morphism.

In this case, using 6.10 twice and the transitivity of residues, we get

which, in virtue of Lemma 6.3(a), implies formula (6.4). Il

We are ready to prove the first main result of this article.

THEOREM 6.14 (Dual modules). Let A be a local Beilinson completion algebra
over k, and let M be a finite type semi topological A-module. Then the following
data exist:

(a) A ST A-module DuaIAM, called the dual module of M.
(b) For every morphism a: K--+A in BCA(k), with K a field, an isomorphism

of ST A-modules

These data satisfy, and are completely determined by the following conditions:
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(i) Let f : K-L and T: L-A be morphisms in BCA(k), with K, L fields, and
let a := , o f. Then for any ~ E DualAM,

03A8M03C3(~) = Resf  03A8M(~).
Here Res f : 03C9(L)~03C9(K) is the residue map in TLF(k), cf [24] §2.4.

(ii) Denote by m the maximal ideal of A. If 03C3, 03C3’: K~A are pseudo coefficient
fields such that 03C3~03C3’ (mod m), then

03A8M03C3’ = 03A8M03C3,03C3’  03A8M03C3,
where 03A8M03C3,03C3’ is the isomorphism defined in Definition 6.7.

Observe that if A = K is a TLF, then there is a canonical isomorphism DualxM
~ HomK(M,03C9(K)), corresponding to the identity morphism K~K, thought of
as a coefficient field.

Proof. The proof is divided into four steps.

(1) Fix a coefficient field To: Lo = A/m~A, and set DualM := Dual0M.
Given another coefficient field T: L0~A, we are forced by condition (ii) to
define 03A8M := 03A8M0,. For any other coefficient field T’: Lo-A this condition is
satisfied, on account of Lemma 6.8; condition (i) is irrelevant.

(2) Now let a: K~A be a pseudo coefficient field which factors through some
coefficient field T: Lo-tA (if a is a quasi coefficient field then there is precisely
one such T). Define Wu : DualM  Dual03C3 to be ~ ~ TrL0/K o 03A8M0,(~),
as is forced by condition (i). According to Proposition 6.13, this définition is
independent of the coefficient field T.

(3) Let a: K~A be any pseudo coefficient field. Choose some pseudo coefficient
field a’: K~A such that a ~ a’ (modm) and such that a’ factors through some
coefficient field. For example, take a’ := To o 1r o a, where 7r: A ~ Lo is
the natural projection. Define 03A8M03C3 := 03A8M03C3’,03C3 o 03A8M03C3’. Proposition 6.13 shows that
this definition is independent of the choice of a’, and furthermore it shows that
conditions (i) and (ii) hold for all pseudo coefficient fields.

(4) Finally let a: K-A be a morphism with res.dim 03C3  1. Choose a factor-
ization a = T o f , with T: L-A a pseudo coefficient field and f : K-L a
morphism. Define 03A8M03C3(~) := Resf o 03A8M(~), ~ E DualM. Now condition (ii) is
no longer relevant. To verify condition (i) it suffices to prove the independence
of this definition on T. So suppose that a also factors into a = T’ o f’.

First assume there exists some finite morphism g: L-t L’ such that T = T’  g
and f’ = g o f. Then applying condition (i) to T = T’ o g, we get

for ~ e DualM. By taking L’ to be the separable closure of L in Lo, and then
using formula (6.5), we can assume that L~L0 is purely inseparable.

It remains to consider the case when L, L’ c Lo, and both L~L0 and L’~L0
are purely inséparable. Choose j » 0 such that L(pj/k)0 C L ~ LI. Define LI :=
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KL(pj/k)0 C Lo and let TI,Ti: L1~A be the restrictions of T,T’. To finish the
verification use formula (6.5) twice more. D

7. Traces on dual modules

As before, k is a fixed perfect field. Suppose A is a local BCA. Then DualA : M ~
DualAM is a functor on the category of finite type ST A-modules. Given a
finite type ST A-module M and an element x e M, let ox: A-M be the
function a H ax. As in [16] Lemma 4.1, and by our Lemma 6.3(b), sending
~ E DuaIAM to the homomorphism x ~ DualA(03C1x)(~) gives an isomorphism
DualAM~HomA(M, K (,4».

Any BCA A over k decomposes into local factors: A = I1mEMaxA Am, as ST
k-algebras. Any morphism in BCA(k) decomposes accordingly.

DEFINITION 7.1. Let A be a BCA over k. Define

Given any ST A-module M, define

with the (weak) Hom topology.

With this définition DualA is an additive functor STMod(A)°~STMod(A). In
view of the previous discussion and Proposition 1.8(2), there is no contact of
définitions when A is local and M is a ST A-module of finite type.

PROPOSITION 7.2 (Covariance of dual modules). Let v: A~Â be an inten-
sification homomorphism between two BCAs. Given a ST A-module M, set

M := A 0A M. Then there is a unique homomorphism in STMOd(A),

with the following properties:
(i) If 0: M~N is a homomorphism in STMod(A), then

In other words, qv: DualA -t Dual Â (A 0 A -) is a natural transformation of
functors.

(ii) If M is a ST A-module of finite type then the induced homomorphism

is an isomorphism.
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(iii) Let 03C3: K-A be a morphism in BCA(k). Suppose K is a field, A is local,
and there is an intensification homomorphism u: K-K s.t. Â ~ A~(039B)K K.
Then for any ST A-module of finite type M,

(iv) If w: Â~ is another intensification homomorphism, then qwov = qw 0 qv.
These properties characterize qMv.

Proof We may assume A is local. Let us first check uniqueness. If M is
a finite type ST A-module, this follows from condition (iii). If M has the fine
topology then M ~ lima-t Ma with each Ma a finite type module. By Lem-
ma 1.3(4) we get DualAM ~ lim~03B1DualAM03B1, and we may use condition (i).
Finally any ST A-module M is a quotient of a module M which has the fine
topology, and DualAM y DualAM.

To define qMv for M of finite type amounts, essentially, to repeating the steps
of the proof of Theorem 6.14, using Lemma 6.9 at every step. For a general ST
A-module M, let qMv be the canonical continuous homomorphism

induced by

DEFINITION 7.3. Let K, A E BCA(k), with K a field, and let 03C3: K~A be a

morphism. Define

to be the function sending

to ¿m 03A8Am03C3(~m)(1) E 03C9(K). Here m runs through the maximal ideals of A.

The residue map ResA/K is K-linear. It is also continuous: this follows from
the adjunction formula, Lemma 1.4 (cf. Remark 6.2). Because of the transitivity
of residues, if there is a factorization 03C3: K 1 L  A, then ReSA/K =
ResL/K o ResA/L.

Here is the second main result of this article.

THEOREM 7.4 (Traces). Let f: A~B be a morphism in BCA(k). There is a
unique continuous A-linear homomorphism

having the following properties:
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(i) (Transitivity) Given another morphism g: B~C, one has

(ii) (Base Change) Suppose u: 4--+Â is an intensification homomorphism. Let
Ê := B~(039B)A Â, v: B~ and l Â~ be the algebras and homomorphisms
gotten by intensification base change (cf. Theorem 3.8). Then

where qu, qv are the homomorphisms of Proposition 7.2.
(iii) If A is a field, then TrB/A = ResB/A: K(B)~K(A) = w(A).
(iv) The map

induced by TrB/A is bijective.
Proof. We may assume both A, B are local, with maximal ideals m., n. Given

any morphism a: K-+A with K a field, define TrB/A;CT: K(B)~K(A) by

where Dual03C3(f)(~) = ~ o f for 0 E Dualfo03C3B.
The claim is that TrB/A;03C3 is independent of 0". Let T : L = A/m--+A be any

coefficient field. It suffices to prove that TrB/A;03C3 = TrB/A;r. To do so we choose
an intensification homomorphism K-K s.t. k~ is a morphism of BCAs, and
set Â := A~(039B)K ,  := B ~(039B)K  and  := L~(039B)K . Let : L~Â be the
unique extension of T. Note that by Proposition 3.5, Â ~ A ~(039B)L L. According
to Proposition 7.2(iii),

and similarly for T. Since p: k~Â is a morphism, we get (using Theorem 6.14(i))

But QÂIA is injective, so the claim is proved. Our arguments also imply properties
(i), (ii) and (iii).

Let us now prove that TrB/A is continuous. First assume that res.dimf  1.
Then K(B), being a cofinite type ST B-module, actually has the fine A-module
topology. (cf. [24] Definitions 3.3 or 3.2.1(b.ii)). Since TrB/A: K(B)~K(A) is
A-linear, it is continuous. Now assume res.dimf = n &#x3E; 1. Consider the prime
ideal p := Ker(A~03BAn-1(B)). We can assume that p ~ m, by replacing (if
necessary) A with A[[t]], and sending t to a parameter of On(B). Thus A/p is
a DVR and C := lim+-i(A/pi)p is a BCA. The morphism A~B factors into
morphisms A~C~B, both of res.dim  n. By induction TrB/C and TrC/A are
continuous, and TrB/A = TRBIC 0 Trc/A.

Finally to prove (iv), take a coefficient field Q: K~A. Then
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is bijective. On the other hand, one easily sees that

is injective, so K(B)  HomcontA(B, K(A)). D

Remark 7.5. Suppose A, B are BCAS, f : A-B is a continuous k-algebra
homomorphism, and M is a torsion type ST A-module. For instance, A, B could
be any complete local k-algebras which are residually finitely generated over k,
f could be any local homomorphism, and M any 0-dimensional A-module. If
M has finite length, define

Otherwise M = lima-+ Ma where each Ma has finite length, and we set f#M :=
lim03B1~ f#M03B1. This gives a functor f#: STModtors(A)~STModtors(B). Note that
f#K(A) = K(B). If f is a morphism in BCA(k), the trace map Tr f: K(B)~K(A)
defines a trace map Tr f: f#M~M for any M. The collection of data (STModtors
(A), f#) is a realization (and generalization) of Lipman’s pseudofunctor on 0-
dimensional modules; cf. [6].

8. Duals of continuous differential operators

In this section we consider a continuous differential operator D: M~N, and
construct a dual operator DualA(D): DualAN~DualAM. The idea is to use the
right D(K)-module structure of w(K), for a TLF K.

Let A be a local BCA with maximal ideal m, and let 03C3: K -t A be a pseudo
coefficient field. Given two finite type ST A-modules M, N, choose m-filtered
K-bases r = (x0, x1,...) and y = (y0, y1,...) for M and N, respectively (cf.
Definition 6.5). Suppose D: M~N is a continuous DO over A relative to k.
For i, j  0 let Dij: K-K be the functions such that, for À e K,

Then, just like in Lemma 6.6, Dij E D(K).

DEFINITION 8.1. Let Dual03C3(D): DualaN-Dualam be the function taking
0 e DualaN to

There is no reference in the notation "Dual03C3(D)" to the bases x, y. This is not
an oversight - as we shall see, this function is independent of the bases. First,
another definition:
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DEFINITION 8.2. Let M be a ST A-module (not necessarily of finite type).
Define the residue pairing to be

where Res A/ K is as in Définition 7.3.

Remark 8.3. Suppose K is discrete (i.e. dimK = 0) and M is a finite type
or a cofinite type ST A-module. Then the topology on M is K-linear (cf. [24]
Proposition 3.2.5). As a topological vector space over K, M is strongly reflexive,
in the sense of [14] §13.3. One can show that the strong HomK topology on
DualAM ~ HomcontK(M,03C9(K)) coincides with the fine A-module topology on
it. Hence ~-, -~MA/K is a perfect pairing also from the point of view of [14].
LEMMA 8.4.

(a) Suppose ordK(D) = 0, i.e. D is K-linear. Then Dual03C3(D)(~) = ~ o D for
all ~ E DualuN.

(b) Suppose k~K is a morphism in BCA(k). Then for all ~ e DualaN,
ResK/k o Dual03C3(D)(~) = Res K / k 0 cp o D.

In other words, Dual03C3(D) is adjoint to D with respect to the the residue
pairings ~-, -~MA/k and (-, -)
Proof. One has Dij = 03BCij E K c D(K), where D(xi) = 03A3j 03C3(03BCij)yj. Now

simply plug this into the définition of Dualo(D).

(b) Say ~(yj) = 03B1j e 03C9(K). Given x = 03A3i03C3(03BBi)xi ~ M, with À, e K, we
have by the définition of the DOs Dij:

so

On the other hand, by the definition of Dual03C3(D),

Now use Theorem 5.5.
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LEMMA 8.5.

(a) Dual03C3(D): Dual03C3N~Dual03C3M is a continuous DO over A, relative to k, of
order  ordA(D). It is independent of the m-filtered K-bases x, y.

(b) Let m c A be the maximal ideal. Suppose a’: K-A is another pseudo
coefficient field, s.t. a’ == u (modm). Then

Dual03C3’(D) = 03A8M03C3,03C3’ o Dual03C3(D) o 03A8N03C3’,03C3.
(c) Suppose T: L~A is another pseudo coefficient field, ahd f : K~L is a

(finite) morphism in BCA(k), s.t. a = T o f. Then for each 0 Dual,N,
Dual(1 ( D ) (Tr f o cp) = Trf o Dual(D)(~).

Proof. The proof resembles that of Proposition 6.12. Choose an intensification
homomorphism u : K~K such that k~ is a morphism. Let A := A ~(039B)K 
and v : A~Â. Replacing A with each of the localizations Am, m E MaxA,
allows us to assume that k-K is itself a morphism in BCA(k). By Lemma 8.4
(b) we see that Dual03C3(D) is the adjoint of D w.r.t. the residue pairings ~-, -~MA/k
and N so in particular it is independent of the m-filtered K-bases x, y.
It also follows that for any a E A,

[Dual03C3(D), a] = -Dual03C3([D, a]): Dual03C3M~Dual03C3N,

bounding the order of the operator Duala(D). Here "[-, -]" denotes the com-
mutator. Parts (b) and (c) of the present lemma are similarly proved, using Lem-
ma 6.9.

As for the continuity of Duala(D), it can be deduced from the fact that it
is a linear combination of the continuous operators Dij appearing in its defini-
tion. D

The ST A-module K(A) is separated. Therefore for any ST A-module M,
the canonical surjection M -» Msep induces an isomorphism DualAMseP 
DuaIAM. Here is the third main result of the paper:

THEOREM 8.6 (Duals of continuous DOs). Let A be a BCA over k. Let M and
N be ST A-modules with the fine topologies, and let D: M~N be a continuous
DO over A relative to k. Then there is a unique function

DualA(D): DuaIAN---tDuaIAM,

satisfying the conditions below:
(i) DualA(D): DuaIAN---tDuaIAM is a continuous DO over A relative to k, of

order  ordA(D).
(ii) (Transitivity) if E: N-P is another such operator, then DuaIA(E o D) =

DualA(D) o DualA(E).
(iii) (Linearity) if D is A-linear, then DuaIA(D) is the homomorphism 0 F-+ cpoD,

for 0 E DualAN = HomcontA(N, K(A)).



94

(iv) (Base change) let v: A~Â be an intensification homomorphism, and let
D: (Â~A M)sep~(Â~A N)sep be the unique extension of D. Then

DualÂ() o qNv = qMv o DualA(D),
where qMv, qNv are the homomorphisms of Proposition 7.2.

(v) Assume a: K~A is a morphism in BCA(k) s.t. D is K -linear. Then DualA(D)
is the adjoint to D w.r.t. the residue pairings (-, -~MA/K and (-, -~NA/K.

(vi) Suppose A is local and M, N are finite type ST A-modules. Given a pseudo
coefficient field a: K~A, one has

o DualA (D) = Dual03C3(D) o 03A8N03C3.
Here 03A8M03C3, 03A8N03C3 are the isomorphisms of Theorem 6.14, and Dual03C3(D) is the
function defined in Definition 8.1.

Remark 8.7. Trivially, the category Mod(A) of A-modules and A-linear homo-
morphisms, and the category STModfine(A) of ST A-modules with fine topolo-
gies and continuous A-linear homomorphisms, are equivalent (under the functor
untop: STMod(A)~Mod(A) which forgets the topology). However, if we take
the same classes of objects, but enlarge the set of morphisms between two objects
to be DOs and continuous DOs, respectively, these new categories are no longer
equivalent. This is so at least when chark = 0 and res.dimA  1. Our results are
valid only for continuous DOs.

Proof of Theorem 8.6. Let M, N be finite type ST A-modules. Using Lemma
8.5, and proceeding just like in the proofs of Theorems 6.14 and 7.4, we arrive
at a function DualA(D) which satisfies conditions (i)-(iv), (vi). As for condition
(v), after a base change K~K we reduce to the case when k~A is a morphism.
Now we can use Lemma 8.4(b).
Now let M, N be ST A-modules with fine topologies. After possibly applying

(-)sep to these modules, we may assume they are separated. Choose an isomor-
phism M ~ lim03B1~ Ma, with the Ma modules of finite type. Let Na be the
A-module A. D(M03B1) C N, endowed with the fine topology. Say d = ordA(D).
Because Pd,sepA/k(M03B1) is a finite type ST A-module (by Proposition 4.8), Na is of
finite type, and Da := D|M03B1: M03B1~N03B1 is continuous. Let 03C8: lim03B1~ N03B1~N
be the inclusion, and set

Since the functor DualA sends lim , to lim~ (cf. Lemma 1.3(4)), this extended
definiton of DualA(D) satisfies all the conditions of the theorem. D

Occasionally we shall abbreviate DuaIAM to MV, and DualA(D) to Dv.
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COROLLARY 8.8.

(a) Let M, N be each either finite type or cofinite type ST A-modules, and let
D e DiffcontA/k(M, N). Then under the canonical isomorphisms M  MVV
and N  NVV, one has D H D vv .

(b) With M, N as in (a), the map DiffcontA/k(M, N)~DiffcontA/k(MV, NV), D H DV,
is an anti-isomorphism of filtered A-A-bimodules. In particular, D(A; K(A))
~ D(A)° as filtered k-algebras.
Proof (a) Using base change we can assume that k~A is a morphism in

BCA(k). Then both D and DVV are adjoints to DV w.r.t. the residue pairings
~-, -~MA/k and ~-, -~NA/k.
(b) Immediate from part (a). _ D

Here are a couple of examples to illustrate the scope of our results:

EXAMPLE 8.9. Suppose A is a noetherian, local, residually finitely generated
k-algebra. Let I be an injective hull of the residue field A/m. Then I is (non-
canonically) a right D(A)-module, and moreover DiffA/k(I,I) ~ D(Â)°, where
Â is the m-adic completion. This is because Â is a BCA, there exists an isomor-
phism of A-modules I ~ K(Â), and any DO I~I is automatically continuous
for the m-adic topology.

EXAMPLE 8.10. Let A be a BCA. Suppose M’ is a bounded complex with
each Mq a finite type ST A-module, and D: Mq~Mq+1 a continuous DO (for
instance, M’ = 03A9·,sepA/k). Then DualAM is also a complex (of cofinite type mod-
ules), and a standard spectral sequence argument shows that the homomorphism
of complexes

M~DualADualAM

(in the abelian category of untopologized k-modules) is a quasi-isomorphism.

QUESTION 8.11. In the example above, suppose the complex M. is acyclic.
Is the same true of the dual complex DualAM? A slight variation is: suppose
rankkHqM  00 for all q. Is the same true for DualAM?

COROLLARY 8.12. Let f : A-B be a morphism in BCA(k), let M (resp.
N) be a ST A-module (resp. B-module) with the fine topology, and let D E
DiffcontA/k(M, N). Then there is a DO

DuaIB/A(D) = Dualf(D): DualBN~DualAM.
The asignment D ~ Dual f (D) satisfies the obvious generalizations of conditions
(i)-(v) of Theorem 8.6. For instance (iii): if D is A-linear, then Dualf(D)(~) =
TrB/A o ~ o D.
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Proof. We may assume that M is a finite type ST A-module, and that N is

se arated. So D factors into M  Pn,sepA/k lVl  N, withseparated. So D factors into M  Pn,sepA/k(M) )  N, with

~ ~ HomcontA(Pn,sepA/k(M),N)
and n  ordA(D). Let cpv: DualBN~DualAPn,sepA/k(M) be the homomorphism
03C8 ~ TrB/A o 03C8 o ~, for 03C8 e DualBN = HomcontB(N,K(B)). Define Dual f (D) :=
DualA(dnM) o ~V. The transitivity and uniqueness properties follow from base
change and the uniqueness of adjoints. D

EXAMPLE 8.13. If f : A~B is a morphism of BCAs, the trace map TrB/A :
K(B)~K(A) and the continuous DGA homomorphism 03A9·,sepA/k~03A9·,sepB/k induce a
map TrB/A : DualB03A9·,sepB/k~DualA03A9·,sepA/k, which by the corollary is a homomor-
phism of complexes. This fact is important for the construction of the De Rham
- residue double complex in [25].
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