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Abstract. The variation of the root number on fibers of elliptic surfaces over the rationals with base thé
projective line is studied. It is proved that for a large class of such surfaces the sets of rational t’s such that
the fiber over t is an elliptic curve with root number 1 and -1 respectively are both dense in the set of real
numbers. This result provides some evidence for a recent conjecture of B. Mazur. A similar result and some
applications are also discussed.

Introduction

This paper deals with elliptic surfaces over Q. We are interested in how the root number
of their fibers varies. (Here the root number is defined as product of local factors, as in
[9]). If E is an elliptic surface over Q with base P1, denote by Et the fiber over t. If
t ~ Q is such that Et is an elliptic curve, denote by W(t) the root number of Et. Let

T± = ft E Q: Et is an elliptic curve and W(t) = ±1}.
We study the sets T+ and T - . The motivation for studying these sets comes in part from
a recent conjecture of B. Mazur ([8], Conjecture 4, Section 6). He conjectured that one
of the following occurs:
(1) rank(Et Q ) &#x3E; 0 for only finitely many t E Q, or
(2) rank(Et(Q)) &#x3E; 0 for a set of rational t’s which is dense in R.

Now, let R = It E Q: Et is an elliptic curve with positive rank}. The conjectural func-
tional equation of L(Et, s) and the Birch-Swinnerton-Dyer Conjecture imply that

W(t) == (-1 )rank(Et(Q». (*)
Thus if we grant (*), then T - is contained in R. In particular, if T - is dense in R, then
so is R.

If,E is an elliptic surface over Q with base P1, then we can think of E as an elliptic
curve over Q(t). Let j(t) E Q(t) be the j-invariant of such a curve and let c4(t) and
c6(t) E Q(t) be its covariants, determined respectively up to a fourth and a sixth power
in Q(t)X. If j ~ 0,1728, then j(t), c4(t) (mod (Q(t)X)4) and c6(t) (mod (Q(t)X)6)
determine E as an elliptic curve over Q(t), up to Q(t)-isomorphisms. In his recent paper
([9], Theorems 1 and 2), Rohrlich studies elliptic surfaces with constant j-invariant and
the elliptic surface with j-invariant j(t) - t and covariants c4(t) = t3 / (t - 1728) and
c6(t) = -t4/(t - 1728). In this paper more general cases of elliptic surfaces with non-
constant j-invariant are studied. The main result is

THEOREM 1. Let E be an elliptic surface over Q with base P1 and non-constant j-
invariant j (t) E Q(t). Let c4(t) and C6(t) E Q(t) be the covariants of S, defined
respectively up to a fourth and a sixth power in Q(t)X.
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Assume the following:
(1) The irreducible factors over Z of the numerators and denominators of j (t) and

j (t) - 1728 have degrees less than or equal to 6.
(2) If x E P1 (C) is a pole of j(t), then ordxc4 ~ ordxc6 (mod 2).

Then T+ and T - are both dense in R.

There are three main ingredients in the proof of this theorem. The first is the computa-
tion of local root numbers using Rohrlich’s formulas ([9]). The second is the application
of square-free sieve techniques, obtained by modifying some results of Hooley ([5]),
Gouvêa-Mazur ([3]), Greaves ([4]), and Rohrlich ([9]). The third and crucial ingredient
is the construction of a number WP,P ~ {± 11 for each finite set of primes P containing
2 and 3 and for each P = (xo, x1) E Z2 (see Notation 2.8). The root number W(x1/x0)
can be expressed in terms of Wp,p provided that the value at P of a certain binary form
F (see Notation 2.5) is not divisible by the square of any prime not in P. It is shown that
there is a Po E Z2 and two finite sets of primes P+ and P- - with P+ and P- differing
only by a single prime po - such that Wp+ ,Po = 1 and Wp- ,Po = -1 (see Corollary 2.1).
The key point is to exploit the existence of fibers of the elliptic surface which have split
multiplicative reduction at po. This is the only step in the proof of Theorem 1 where

having multiplicative reduction at some prime turns out to be an advantage, rather than
an occurrence to be avoided.

We can also prove a weaker statement under a slightly different set of hypotheses
(precisely, strenghtening hypothesis (1) and weakening hypothesis (2)).

THEOREM 2. Let E be an elliptic surface over Q with base P1 and non-constant j-
invariant j(t) E Q(t). Let c4(t) and C6(t) E Q(t) be the covariants of S, defined
respectively up to a fourth and sixth power in Q(t) .

Assume the following:
(1) The irreducible factors over Z of the numerators and denominators of j (t) and

j(t) - 1728 have degrees less than or equal to 3.
(2) There is at most one x E P1(C) such that x is a pole of j (t) and ordxc4 ~ ordxc6

(mod 2).
Then T+ and T - are both infinite.

The constraints given in hypotheses (1) and (2) of these two theorems come from some
important number-theoretic obstructions. Precisely, the constraints in (1) are square-free
sieve constraints, in the sense that the relevant square-free sieves have been proved only
for polynomials whose irreducible factors over Z have "small" degrees. The constraint
in (2) is connected to the problem of controlling the parity of the cardinality of the set
of primes dividing an integer n when n varies in a certain set.

As an application of Theorem 1, one can look at the elliptic surface given by

This has j-invariant j(t) = 2633t/(t - 1) and covariants c4(t) = 2632t(t - 1)2 and
C6(t) = -2933t(t - 1)3. Thus it satisfies the hypotheses of Theorem 1, so T+ and T-
are dense in R. Moreover one can see that its group of rational sections has rank one

(using [2], Equation 5, p. 28. See also [11], (10.2), (10.4)). This appears to be the first
example of elliptic surface with the following properties:
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(1) 03B5 has non constant j-invariant.
(2) E has positive Mordell-Weil rank over Q(t).
(3) For a dense set of t E Q, W(t) = 1.
Using Silverman’s Specialization Theorem ([13], Chapter 3, Theorem 11.4) and granting
(*), we can replace (3) by
(3’) For a dense set of t E Q, the group of rational points of the fiber over t has rank

greater than or equal to 2 (hence greater than the Mordell-Weil rank of the elliptic
surface S).

This paper is organized as follows. Section 1 contains the proofs of some slight gen-
eralizations of results of Hooley ([5]), Gouvêa-Mazur ([3]), Greaves ([4]), and Rohrlich
([9]) on square-free sieves. Sections 2 and 3 are devoted to the proofs of Theorem 1 and
2 respectively. In Section 4 some applications of Theorem 1 are discussed.

1. Square-free sieves

In this section we are going to generalize some results on square-free sieves by Hooley
([5]), Gouvêa-Mazur ([3]), Greaves ([4]), and Rohrlich ([9]). In [3], Gouvêa and Mazur
- using also some results of Hooley ([5], Chapter 4) - obtain asymptotic estimates for
the number of pairs of integers (a, b) - satisfying certain congruences and lying in a
given interval - which give square-free values for a binary form F(x0, x1) ~ Z[x0, xI]
whose irreducible factors over Z have degree less than or equal to 3. In [4], Greaves
generalizes the results of Gouvêa and Mazur to forms whose irreducible factors over Z
have degree less than or equal to 6. In [9], Rohrlich redoes the Gouvêa-Mazur result in
the easiest case, namely the case in which all irreducible factors over Z have degree 1,
but he allows the integers plugged in for xo and x 1 to vary over independent intervals.
The purpose of the following proposition is to obtain Greaves’s result (i.e. the degrees of
the irreducible factors over Z can be as big as 6), allowing the integers plugged in for xo
and x 1 to vary over independent intervals as in Rohrlich. In addition we are interested
in values which are not exactly square-free, but "almost" square-free, in the sense that
they are not divisible by the square of any prime outside of a finite set.

PROPOSITION 1.1. Let F(XO,XI) E Z[x0, xI] be a binary form with no non-constant
square factor and all of whose irreducible factors over Z have degree less than or equal
to 6. Let M be a positive integer, let (ao, bo) E Z2, and let P be a finite set of primes.
Denote by NP(x, y) the number of pairs (a, b) E Z2 such that 0  a  x, 0  b  y,
(a, b) - (ao, bo) (mod M), and such that p2  F(a, b) for all p e P. Then, for x, y ~ 00
with x « y « x, we have

where

with Ap defined as in [3] Section 9.
Note. We will discuss below (see Remark 1.1) conditions under which A’P i- 0.
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Proof. The proof of this proposition follows line by line the argument in Section 5 of
[9], with of course the necessary adaptations (which are in some cases straightforward,
in others rely on results of [4]). Let ç == * log x and let Nfp (x, y) be the number of pairs
(a, b) E Z2 such that 0  a  x, 0  b  y, (a, b) ~ (ao, bo) (mod M), and such that
p2  F(a, b) for all p with p  03B6 and p ~ P. Clearly Nfp(x, y)  AP(x, y). So it suffices
to prove that, for x, y ~ ~ with x « y « x,

and

For m E N&#x3E;0, let Nm(x, y) be the number of pairs (a, b) E Z2 such that 0  a  x,
0  b  y, (a, b) ~ (ao, bo) (mod M), and F(a, b) ~ 0 (mod m), as in [9] Section 5.
By the inclusion-exclusion principle we have

where Ê runs over 1 and the square-free integers whose prime divisors are less than or
equal to 03B6 and do not belong to P. Now, using (5.4) in [9], we can argue in a similar
fashion to the proof of Lemma 8 in [3], keeping in mind that in our case the prime
divisors of Ê do not belong to P. This leads to (1.2).

Let F(xo, Xl) = 03A0ti=1 fi(xo, x1) where, for all i, fi(xo, x1) is an irreducible form in
Z[x0, x1] of degree vi  6. Let

where Eo(x, y) is the number of pairs (a, b) E Z2 such that 0  a  x, 0  b  y,
and such that there exists a prime p &#x3E; 03B6 with p | a and p | 1 b. For all i ~ {1,2,...,t}
such that fi(x0,x1) ; x0,x1, Ei(x, y) is the number of pairs (a, b) E Z2 such that
0  a  x, 0  b  y, and such that there exists a prime p &#x3E; e with p ~ ab and
p2Ifi(a,b). For i ~{1,2,...,t} such that fi(x0, x1) = xo or x1, Ei (x, y) is the number
of pairs (a, b) E Z2 such that 0  a  x, 0  b  y, and such that there exists a prime
p &#x3E; 03B6 with p2|fi(a, b). By an argument analogous to those in the proofs of Proposition
2 in [3] and Theorem 1 in [4], one sees that

for x (and hence y) big enough. To be precise, both Gouvêa and Mazur and Greaves
exclude the possibility that either xo or xi is a factor of F(xo, x1). But an analogous
argument works even in this case. Now, for i = 0 and for i ~ {1, 2,..., t} such that
fi(x0, x1) = xo or xi,

arguing as in [9] end of Section 5. Moreover, for all i ~{1,2,...,t} such that fi(x0, x1) ~
x0, x1, we have
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and

To prove this observe that, by hypothesis, y  cx for some c &#x3E; 1. Now - as in [4] -
denote by Ei(x) the number of pairs (a, b) E Z2 such that 0  a  x, 0  b  x, and
such that there exists a prime p &#x3E; 03B6 with p ~ ab and p2|fi(a., b). Then clearly

But (see [4]) we have that

and

(1.5) and (1.6) then follow from (1.7)-(1.9). So

and this concludes the proof. 0

Remark 1.1. From Proposition 5 in [3] we have
(1) AP = 0 if and only if Ap = 0 for some p e P.
(2) If p2 divides all the coefficients of F(xo, x1), then Ap = 0.
(3) If p does not divide some coefficient of F(xo, x1), p ~ M, and p &#x3E; deg(F), then

Ap ~ o.

In [5] Chapter 4, Hooley studies square-free values of polynomials in Z[x] whose
irreducible factors over Z have degree less than or equal to 3. The purpose of the

following proposition is to obtain Hooley’s result for "almost" square-free values, in
the sense explained above. Moreover we want to plug, in integers satisfying certain
congruence conditions. In what follows, given F(t) E Z[t], no E Z, and M E N&#x3E;o,
we denote by Al , p the quantity A1,p = 1 - r1(p2)/p2, where for each integer m  1

we define ri (m) = g.c.d.(m, M) pl (m). Here pl (1) = 1 and pl (m) equals the number
of solutions - noncongruent (mod m) - of F(n) -= 0 (mod m) in integers n such that
n = no (mod M), if m ~ N, m &#x3E; 1.

PROPOSITION 1.2. Let F(t) E Z[t] be a polynomial with no non-trivial square factors
and all whose irreducible factors over Z have degree less than or equal to 3. Let M be a
positive integer, no be an integer, and P be a finite set of primes. Denote by NP (x) the
number of integers n such that 0  n  x, n - no (mod M), and such that p2 ~ F(n)
for all p ~ P. Then, for z - oo, we have

where
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Note. We will discuss below (see Remark 1.2) conditions under which Af =1= 0.

Proof. The proof of this proposition is a slight variation of the arguments in [5]
Section 4 (the only difference being that we are imposing some congruence conditions and
we are discarding a finite set of primes P) and is quite similar to that of Proposition 1.1,
so it is left to the reader.

Remark 1.2. Reasoning as in Proposition 5 of [3], we have
(1) Af = 0 if and only if Al,p = 0 for some p e P.
(2) If p2 divides all coefficient of F(t), then Al,p = 0.
(3) If p does not divide some coefficient of F(t), p ~ M, and p &#x3E; deg F, then

AI,p =1= o.

2. Density of T+

In this section we will prove Theorem 1 stated in the Introduction. Given any elliptic
surface 03B5 defined over Q with base P1, let’s denote by 03B5 also its associated elliptic
curve over Q(t) which is unique up to Q(t)-isomorphisms. If the j-invariant of E is
different from 0 and 1728, then E is determined (up to Q(t)-isomorphisms) by its j-
invariant j(t) E Q(t) and by the quantity [-c4(t)/c6(t)] E Q(t)X j(Q(t)X)2, where we
write [*] for the class of * in Q(t)  /(Q(t) )2. Now, let j (t) E Q(t) B f 0, 17281 and let
d(t) E Z[t] B {0}. Consider the elliptic curve over Q(t) with equation

This curve has j-invariant j (t), and covariants

and

so

Moreover, it has discriminant

If E is any elliptic curve over Q(t) with j-invariant j(t) ~ 0, 1728, and covariants
c4(t) and c6(t), then E is isomorphic over Q(t) to the curve given by Equation (2.1)
for j(t) equal to the j-invariant of E and d(t) E [-c6(t)/j(t)c4(t)]. We are interested
in studying the variation of the root number on fibers of elliptic surfaces with non-
constant j-invariant. So in what follows we will assume that 03B5 is given by (2.1), where
j(t) E Q(t) B Q and d(t) e Z[t] B {0}.

Let’s start by setting up some notations which we will use to restate and prove
Theorem 1 of the Introduction.
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Notation 2.1. For each t E P1, we denote by Et the fiber of E over t. If t E Q and
Et is an elliptic curve, we write W(t) for the root number of Et and, for each prime p,
we write Wp (t) for the local root number of Et at p. We have

Notation 2.2. For any cp(t) E Q(t), we denote by ~0 and ~1 forms in Z[x0, x1] -
having the same degree and no common factors - such that

Convention 2.1. For each pair of associate irreducible elements {~, -~} of Z[x0, xi],
fix a choice of one or the other element, so that we can speak of "the" irreducible factors
of a non-zero element of Z[x0, x1]. We make the convention that for the pair {x0, - x0}
we choose xo .

With notation as in Notation 2.2, look at the forms jo(xo, x1), jl (xo, x1), and jl (xo, Xl)
- 1728 jo(xo, Xl) associated to the j-invariant of 03B5. Let’s denote by 0 the union of the
set of irreducible factors over Z with positive degree of these three forms and the set
{x0}. Let Jo, J1, and J1728 denote the collections of those forms in 0 which are factors
of j0(x0, x1), j1(x0, x1), and j1(x0, x1) - 1728 jo(xo, x1) respectively. :10, J1, and J1728
are pairwise disjoint, since jo(xo, x1) and jl (xo, x1) are relatively prime over Z. Let’s
denote by c(xo, x1) the primitive form obtained by taking the product of all irreducible
factors over Z of dl (xo, x1) of positive degree which do not belong to F. Finally, note
that do (xo, xi == xgegd. Theorem 1 of the Introduction can be restated as follows:

THEOREM 2.1. Let j(t) E Q(t) B Q, d(t) E Z[t] B {0}, and let S be given by Equa-
tion (2.1). With notations as above, assume the following:

(1) Each f E F has degree less than or equal to 6.
(2) If x E P1((C) is a pole of j, then ord,,j 0 ordxd (mod 2).

Then T+ and T - are both dense in R.

In order to prove this theorem we need to set up more notation and to prove some

preliminary lemmas.

Notation 2.3. If q E Z[t] (or q ~ Z[x0, x1]) is irreducible of positive degree and
r E Q (t) (or r E Q (xo, x1)), we denote the multiplicity of q in r by ordqr.

Notation 2.4. Let 0394(x0, x1) E Q(xo, x1) be obtained by homogenizing the discrimi-
nant 0394(t) of S, given by formula (2.4). So
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Let’s write 0(xo, xl ) as

where A, B E Z B {0},

and, for

with Fi = ( f ~ FBJ0: g.c.d.{ordf0394, 12) = 12/il. Note that F B Jo = 03A0i Fi, where
II denotes disjoint union. Finally, let

Notation 2.5. Let

where cx E {0, 11 is chosen so that xi appears in F(xo, x1) with multiplicity 1. F(xo, Xl)
is a primitive form, since it is a product of primitive forms. Moreover, it has no multiple
factors over C.

Notation 2.6. If P is a finite set of primes and z E Z, we write z = zpzfp where
zP = 03A0p~P pordpz . So zfp is the "non-P-part" of z.

Notation 2.7. We use the standard notation for the Kronecker symbols, i.e. if z E Z
and g.c.d.(z, 6) = 1, we set

LEMMA 2.1. With notations as above, there exists a finite set of primes Pl, containing
2 and 3, such that the following holds. Let P be a finite set of primes containing P1, let
03B3 E {±1} and let (a, b) E N&#x3E;0 x N be such that j (-yb/a) is defined, j(03B3b/a) ~ 0, 1728,
and d(03B3b/a) ~ 0. Let P = (a, -yb). Assume
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(1) For each p e P, p2 ~ F(P).
(2) If x E P1 (C) is a pole of j, then ord,,j 0 ordxd (mod 2).

Then

where, for each f E C,

Proof. Since c(xo, xl ) and e(xo, Xl) := TI/E.1=" f(x0, xl ) are relatively prime over Q,
there exist forms m(x0, x1), n(z0, x1) ~ Z[x0, x1] such that

for some 10 E N&#x3E;0 and some L E N. Let

where co is the coefficient of the term not containing thé variable xo in e(xo, x1) (recall
that xo ~ c(xo, x1) by definition of c(xo, x1) and the fact that xo E F) and let P be a
finite set of primes containing Pl.

First of all let’s observe that if p rt P and p | f(P) for some f ~ F, then p ~ c(P).
To prove this, we distinguish two cases: (i) p ~ a and (ii) P | a.

(i) If p t a, then p | f(P) and p | c(P) would imply p | lo, which is impossible since
p ~ P1.

(ii) If p a, then p t b by hypothesis (1) because XOXI | F(xo,xl) , and p t co since
pi Pl. Now, xo ~ c(x0, x1). Since p divides a but not b or co, it follows that p
does not divide c(P).

Now, let p ~ P. By (1) and by the previous observation, we have that p can divide
at most one element in the set {c(P)} U {f(P): f E F}. So, since F’ = J0 Il (03A0i Fi),
exactly one of the following occurs:
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Since jo(xo, xl ) is an integer constant times a product of powers of elements of J0, we
have that in case (VIII) E’"’(J2. has potential multiplicative reduction at p, while in all the
other cases E03B3b a has potential good reduction at p. By formula (2.5), we have that

Moreover, by formula (2.3), we have

Then, using (2.7) and (2.8), and the fact that - by hypothesis (1) - if p divides f (P) for
some f ~ F, then it does so with multiplicity 1, we get the following:

(I) If p ~ c(P) [TIfEF f (P) , then E03B3 b a has good reduction at p and Wp(03B3b/a) = 1.
(II) If p | 1 c(P), then E03B3 b a has potential good reduction at p and ordp0394(03B3b/a) =

6 ordpc(P). Thus 

by [9] Proposition 2(v).

(III)-(VII) If i ~ {1,2,3,4,6} and p | (P) for some f E Fi, then Ey t has potential
good reduction at p and g.c.d.(ordp0394(03B3b/a), 12) = g.c.d.(ordf A, 12) = 12/i, so

by [9] Proposition 2(v).

(VIII) If p | f(P) for some f E J0, then E03B3 b a has potential multiplicative reduction at
p and 

The right-hand side is odd by hypothesis (1). Thus E03B3 b a has additive réduction at
p and Wp(03B3b/a) = (-1 p), by [9] Proposition 3(ii).
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From the considerations above we have that

where

so

Hence

Moreover, for all f E F B F1, we have

where

Hence, for all f E F B F1, we have

Plugging (2.10) and (2.11) in (2.9) we get
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From this (2.6) follows in view of the fact that

(see [9] formula (1.3)). ~

LEMMA 2.2. Let, E 11 and (ao, bo) E N&#x3E;0 x N be such that j(03B3b0/a0) is defined,
j(03B3b0/a0) ~ 0, 1728, and d(03B3b0/a0) ~ 0. Let p be a prime. Then, if Np E N is big
enough, for each (a, b) E N&#x3E;0 N with (a, b) - (ao, bo) (modpNp), we have Wp(03B3b/a) =
Wp(03B3b0/a0).

Note. For Np big enough we have that if (a, b) E N&#x3E;0 x N is such that (a, b) - (ao, bo)
(modpNp), then j(03B3b/a) is defined, j(03B3b/a) ~ 0, 1728, and d(03B3bla) ~ 0. So it makes
sense to talk about Wp(03B3b/a).

Proof. See Appendix.

The following is just a result about polynomials.

LEMMA 2.3. Let r(x) and s(x) E Z[x] with r(x) non-constant. Let R = Res(r, s) be
the resultant of r and s and let Or be the discriminant of r. Assume R, 0394r ~ 0. Then, if
Po is any finite set of primes, there exists a prime po e Po and a positive integer no such
that P5 |r(n0) and po2r(no)s(no) == 1 (modpo). In particular, p2 Il r (no) and po ~ s(no).

Proof. Since r(x) is non-constant, there are infinitely many primes p such that the
equation r(x) ~ 0 (mod p) has a solution. Choose such a prime po with po e Po, po ~ R,
and ordpoD"r = 0. Let no,o be a positive integer such that r(no,o) == 0 (modpo). Since
ordp00394r = 0, by Hensel’s Lemma, we can lift no,o to a root no of r(x) in Zp. Write
no = n0,0 + n0,1p0 + n0,2p20 + .... Let no = n0,0 + n0,1p0 + n0,2p20, so r (n0) ~ 0 (modp30).
Note that r’(n0) ~ 0 (modpo), since ordp00394r = 0, and s(n0) ~ s(n0,0) ~ 0 (modpo),
since po ~ R so r and s have no common roots (mod po). Let

and let no = no + mp2. Then we have

and

where an E Z for all n and an = 0 for n sufficiently large. Thus

by the choice of m, and we are done.
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Notation 2.8. Let P be a finite set of primes containing 2 and 3. Let 03B3 ~ {±1} and
(a, b) E N&#x3E;o x N be such that j (qbla) is defined, j(03B3b/a) ~ 0, 1728, and d(03B3b/a) ~ 0.
Let P = (a, -yb) . We denote by WP,P the quantity

So, if j, d, P, and P satisfy the hypotheses of Lemma 2.1, we have

COROLLARY 2.1. With notation as above, assume that j is non-constant and that

hypothesis (2) of Lemma 2.1 is satisfied. Let, ~ {± 11 and let P0 be a finite set of
primes containing 2 and 3. Then there exist a prime po e Po and a pair (ao, bo) E N2&#x3E;0
with j(-ybolao) defined, j(03B3b0/a0) ~ 0,1728, and d(03B3b0/a0) ~ 0, such that WPo,Po =
- WP0~{p0}, P0, where Po = (ao, -ybo).

Note. With the notation as in the Introduction, we choose one of the sets P+ and
P - to be Po and the other Po U {p0}.

Proof. Since j is non-constant, J0 is non-empty. Fix any f ~ J0. Then 1(xo, x1) has
positive degree, so either f(1, 03B3x) has positive degree or otherwise 1(x,,) = x.

Case A.1(1,¡x) has positive degree.
Apply Lemma 2.3 to Po and to the polynomials r(x) = f(1, 03B3x) and s(x) = D(1, -yx)
f(1, 03B3x)-ordfD, where we take

sothat D(x0, x1) and -c4 c6 (x1 x0) differ by the square of some element of Q(x0,x1) .Note
that R = Res(r, s ) ~ 0 since r and s are relatively prime polynomials, and f1r i- 0 since
r is irreducible over Q. Let po and no be as in Lemma 2.3 and take ao = 1 and bo = no.
After replacing bo by bo + npô for some n 6 N, we can assume that j(03B3b0/a0) is defined,
j(03B3b0/a0) ~ 0,1728, and d(03B3b0/a0) ~ 0. Since po t s(bo) = s(no) by construction, and
since, for each f ~ B{f}, f(1, 03B3x) divides s(x), we have

thus
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Moreover, since p20~f(P0) by construction, we have

so

(of course (3 f = 1). Thus

To finish the proof it is enough to show that Wp0(03B3b0/a0) = -1. By the choice of
(ao, bo), we have that ordp0j(03B3b/a) = -2 ordljo  0 and ord,,,D(Po) = 2 ordfD
is even. So Eb0 has multiplicative reduction at po. Moreover, since hypothesis (2) of

0
Lemma 2.1 is satisfied, we have that ord f D ordtio + ordfd1 1 is odd, so

(D(P0))’{p0} = (square)pü2r(no)s(no) == (square) . 1 (modpo).

Thus E03B3b0 a0 has split multiplicative reduction at po and Wp0(03B3b0/a0) = -1, by [9]

Proposition 3(iii).

Case B. f (x, 03B3) = x.
Proceed in a fashion similar to what was done in case A, applying Lemma 2.3 to Po
and to the polynomials r(x) = f(x, 03B3) = x and s(x) = D(x, 03B3)f(x, 03B3)-ordfD, where
D(xo, x1) is defined as in case A, and taking po as in Lemma 2.3, and ao - no and
b0 = 1. ~

We can finally proceed to the proof of Theorem 2.1.

Proof of Theorem 2.1. Fix E ~ {±1}. Fix t E R with j(t) defined, j(t) ~ 0,1728,
and d(t) ~ 0. In particular, 03A0f~f(1,t) ~ 0, where  is as in Notations 2.4. Let

q = sign(t), r = Îf = |t| &#x3E; 0, E’ = E - sign (03A0f~ f(1, t)). Let
P0 ’Pl U {p prime: p  deg F(xo, x1)}

where Pl is as in Lemma 2.1. Apply Corollary 2.1 to these choices for q and P0 and let
Po, (ao, bo), and Po - (ao,¡bo) be as in Corollary 2.1. Let

Thus WP,P0 = E’ .
For each p E P, choose Np big enough so that Lemma 2.2 holds. Also take Np bigger

than 2 + maxtordpf (Po): f E }. Let M = TIpEPpNp and apply Proposition 1.1 to
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F(xo, -yxi), M, (ao, bo), and P. For (a, b) E N2, write P = (a, -yb). Then with notation
as in Proposition 1.1, for x, y - oo with x « y « x, we have

If p ~ P, then p does not divide some coefficient of F (since F is primitive), p ~ M,
and p &#x3E; deg F. Thus AP ~ 0 by Remark 1.1.

Let n be a large positive integer. Set xn - n, yn = rn, and 0394n = n/ logl/7 n and
proceed as in [9] Section 6. We get that NP(xn + An, Yn + An) - NP(xn + An, yn ) -
Np(xn, Yn + An) + NP(xn, yn) - APn2/ log2/7 n + O(n2/ logl/3 n). So, for n » 0,
there exists (an, bn) E N2 such that xn  an  xn + 0394n, yn  bn  yn + Al,
(an, bn) ~ (ao, bo) (mod M), and p2 ~ F(Pn) for all p ~ P, where Pn - (an, ,bn).
Note that limn~~ bn/an = r = iii, so limn~~ 03B3bn/an = t. Thus, for n » 0, an
and bn are positive integers such that j(03B3bn/an) is defined, j(03B3bn/an) ~ 0,1728, and
d(03B3bn/an) ~ 0. Moreover, j, d, P, and Pn satisfy hypotheses (1) and (2) of Lemma 2.1,
so W(03B3bn/an) is given by formula (2.6) with Pn in place of P. Now, for each p E P,
we have (an, bn) - (ao, bo) (mod pNp ), so Wp(03B3bn/an) = Wp(03B3b0/a0) by Lemma 2.2.
Moreover, by the choice- of the Np’s, we have that for each f E G

and

Thus, for each f E G,

Finally, since limn~~ 03B3bn/an = t, for n » 0 we have

So, using (2.6), we get for n » 0

Hence for all E ~ {±1} and for all t E R B (finite set) we have that there exists a sequence
{03B3bn/an}n 9 Q converging to land such that W(03B3bn/an) = E. This concludes the

proof. 0
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3. More on T±

In this section we will prove Theorem 2 stated in the Introduction. Let’s start with a

couple of observations which will allow us to reduce the statement of this theorem to a
simpler one. Throughout this section we follow the notation introduced in Section 2.

Let 03B5 be given by Equation (2.1) and assume that it satisfies the hypotheses of
Theorem 2 of the Introduction. Recall that condition (2) of this theorem, namely:

there is at most one x E pl (C) such that x is a pole of j (t)
and ordxc4 == ordxc6 (mod 2)

is equivalent to:
there is at most one x E pl (C) such that x is a pole of j (t) and ordxj == ordxd (mod 2).

Observation 3.1. If to E pl (C) is a pole of j with ordtoj == ordtod (mod 2), then
to E pl (Q). This is trivial if to = oo. If to is in C and is a pole of j then, since
j(t) E Q(t) and d(t) E Z[t], to is algebraic and, for all 03C3 E Gal(Q/Q), a(to) is also a
pole of j with ordu(to)j = ordtoj and ord,(to)d = ordtod. So we must have to E Q.

Observation 3.2. If to is as in Observation 3.1, after a change of parameter of the
form t’ - 03BC1t+03BC0 03BD1t+03BD0 with J-Lo, MI, vo, VI E Z and J-LI Vo - 03BC003BD1 = ± 1, we may assume that
to = 00 (so that xo E J0).

In view of these observations, in order to prove Theorem 2 of the Introduction it is

enough to prove the following:

THEOREM 3.1. With notation as in Section 2, assume that xo E JO. Moreover, assume
the following:

(1) Each f E F has degree less than or equal to 3.
(2) If x E C is a pole of j, then ordxj ~ ordxd (mod 2).

Then T+ and T - are both infinite.

In order to prove this theorem, we need some preliminary lemmas.

LEMMA 3.1. With notation as in Section 2, assume that xo E J0. There exists a finite
set of primes Pl, containing 2 and 3, such that the following holds. Let P be a finite set
of primes containing Pl, let, E f ± 11 and let (a, b) E N&#x3E;0 x N be such that j (03B3b/a) is
defined, j(03B3b/a) ~ 0,1728, and d(,bja) =1= 0. Let P = (a, 03B3b). Assume

(1) For each p e P, p2 ~ F(P).
(2) If x E C is a pole of j, then ordxj 0 ordxd (mod 2).

Then 
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where L and 03B2f are as in Lemma 2 .1, ’ = B{x0}, and

for Px0,x1 equal to the set of primes p such that p|(x0)’P and ( - c4 c6 (x1 x0))’{p} is a square
(mod p).

Proof. The proof is essentially the same as that of Lemma 2.1. The only difference
is that here we allow the possibility of multiplicative reduction at those primes dividing
a (hypothesis (2) here is weaker than hypothesis (2) of Lemma 2.1, because x is in C,
not in P1(C)). So everything is as in the proof of Lemma 2.1, except for the case p ~ P
and p 1 f(P) for f(x0, x1) = x0 ~ J0, i.e. the case p|a. In this case E03B3b a has potential
multiplicative reduction at p, and 

Thus - by [9] Proposition 3(ii) and (iii) -

where D denotes a square (modp). So

and we are done. 0

Notation 3.1. Let P be a finite set of primes containing 2 and 3. Let r e 1 ± 11 and
(a, b) E N&#x3E;o x N be such that j(rb/a) is defined, j(03B3b/a) ~ 0, 1728, and d(rbja) =F 0.
Let P = (a, -yb) . We denote by WP,P the quantity

So, if j, d, P, and P satisfy the hypotheses of Lemma 3.1, we have
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LEMMA 3.2. With notation as in Section 2, assume xo E Jo. Let Po be a finite set of
primes containing 2 and 3. Then, for each -y, E’ c- 1 ± 1}, there exist a finite set of primes
P containing Po and a pair (ao, bo) E N2 0 such that

(i) ao = I1PEP pNp, for some positive integers Np.
(ii) g.c.d. (bo, p) = 1 for all p E P.
(iii) j(03B3b0/a0) is defined, j(03B3b0/a0) ~ 0,1728, and d(03B3b0/a0) ~ 0.
(iv) WP,Po = E’, for Po = (ao, ’Ybo).
Proof. Let do, j0,0, jl,o, and jl728,0 be the leading coefficients of d(t), jo(1, x),

j, (1, x), and jl(1,x) -1728jo(1,x) respectively, so C := do j0,0 · j1,0 · j1728,0 =1= o.

Consider the polynomial

Since 2013ord~j &#x3E; 0 by hypothesis, and 2013ord~d  0 because d is a polynomial, we have
that g(x) is non-constant. Thus the set of primes p such that the equation g(x) = 0 has
a solution modulo p is infinite. Let p0 ~ Po U {p prime: p 1 CI and mo E N be such
that

and let

Then we have

Moreover, we have g.c.d.(b0, p) = 1 for all p E Po by construction, and po ~ bo since
p0 ~ C.

For each p E P0, fix Np even with Np &#x3E; 2 + ordpC. Take 61 = Po, Q2 = QI ~{p0},
Np0 = 2, and as = 03A0p~Qs pNp for s = 1, 2. Up to changing Np, we can assume that
(as, bo) satisfies (iii) for s = 1, 2. Let PS - (as, -ybo), for s = 1, 2. We will prove that
WQ1, P1 = - WQ2,P2 . So for all E’ E {± 1}, either QI and (al , bo) or Q2 and (a2, bo) will
do the job.

Since (ai )£ = (a2)’ = 1, we have that w(P1) = w(P2).
Now, Q1 C Q2 and for all p ~ Q1 we have, for s = 1, 2,

hence E03B3 b0 as has potential multiplicative réduction at p. Moreover,
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and

By [9] Proposition 3(ii) and (iii), it follows that

For Q2 and (a2, bo), look at Wpo(,bo/a2). Since Np,, = 2, we have

and

is even. So E03B3b0 has multiplicative reduction at po. Furthermore, by the choice of bo1 2
and po, we have

where D denotes a non-zero square. So E03B3b0 a2 has split multiplicative reduction at po
and

by [9] Proposition 3(iii). Thus

Now, by the choice of Np, we have that for all p e 61 1

Moreover,

So, by the choice of N2 and N3, we get

This concludes the proof.

Let’s now proceed to the proof of Theorem 3.J1.
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Proof of Theorem 3.1. Fix E ~ {± 11. We want to show that there are infinitely many
t E Q with W(t) = E. Let Po be as in the proof of Theorem 2.1. Assume that, for
x»0,

Apply Lemma 3.2 to 1 = 1 and E’ = ~ · q and let P, (ao, bo) and Po be as this lemma, so
that WP,P0 = E’. For each p E P let Np be as in the proof of Lemma 3.2. Now, apply
Proposition 1.2 to F(x) = F(ao, x), M = ao = 03A0p~PpNp, no = bo, and P. Note that
F(x) has no non-constant square factors and all of its irreducible factors over Z have
degree less than or equal to 3. Then, with notation as in Proposition 1.2, for x ~ oo we
have

If p e P, then p does not divide some coefficient of F(x), p f M, and p &#x3E; deg F
(because p e Po). Thus Af =1= 0 by Remark 1.2.

Now, let xo &#x3E; 0 be such that:

(i) for n &#x3E; xo, sign (03A0f~L’ f(a0, n) = ~, and
(ii) for x &#x3E; xo, NP(x) = AP1 x + 0(xl log1/2 x).
For x &#x3E; xo we then have

Thus, if x » 0, there exists nx E N with x  nx  2x, nx == bo (mod M), and
p2 ~ F(nx) for all p ~ P. Note that limx~~ nx = oo, so there exist infinitely many
n E N, with n &#x3E; xo, n - bo (mod M), and p2 ~ F(n) for all p e P. For each such n, let
an = ao, bn = n, and Pn =- (an, bn). Each such Pn satisfies the hypotheses of Lemma
3.1, so W(03B3bn/an) is given by formula (3.1) with Pn in place of P.

For each p E P, n = bo (mod pNp), thus - by the choice of Np - we get

ordpj(03B3bn/an) = ordp j (qbo lao)  0,

and

so

by [9] Proposition 3(ii) and (iii).
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Since (an)’P = (ao);’ = 1, we have that

Finally we have that, for all f E L’,

Moreover, by the choice of N2 and N3,

Thus, using formula (3.1) and Lemma 3.2, for each such n we get

This concludes the proof. D

4. Applications

In this section we are going to apply Theorem 1 stated in the Introduction to give some
examples illustrating the relationship between the rank of the group of rational sections
of an elliptic surface over Q with base P1 and the rank of the groups of rational points
of its smooth fibers.

Both Cassels and Schinzel ([1]) and Rohrlich ([9], Section 9) - granting (*) of the
Introduction - provideà examples in this spirit. Cassels and Schinzel considered the
elliptic surface E given by

and showed that the group of rational sections of E has rank 0, while each elliptic
curve arising as a fiber of E over some t ~ Q has positive Mordell-Weil rank. Rohrlich
provided a class of examples of elliptic surfaces with the same property. In addition, he
also provided a class of examples of elliptic surfaces whose group of rational sections
has rank 0 and whose smooth fibers over rational points of the base have Mordell-Weil
rank greater than or equal to 2 for a dense set of t E Q. Both the example of Cassels and
Shinzel and those of Rohrlich have the property that the elliptic surfaces in question have
constant j-invariant. Still granting (*) of the Introduction, we will provide examples of
the same sort but where the elliptic surfaces in question have non-constant j-invariant.

First of all let’s recall the following lemma of Rohrlich ([9], lemma in Section 9).

LEMMA. Let E be an elliptic curve over Q(t). Assume that E is not isomorphic to a
constant elliptic curve. Then, for all but finitely many square-free integers m, the rank
of 03B5m(Q(t)) is 0, where 03B5m is the quadratic twist of E by m.

As an immediate corollary of this lemma and of Theorem 1 of the Introduction, we
get that if E satisfies the hypotheses of this theorem (so, in particular, E is an elliptic
curve over Q(t) with non-constant j-invariant, hence it is not isomorphic to a constant
elliptic curve) then, for all but finitely many square-free integers m, the Mordell-Weil
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rank of 03B5m is 0. But - granting (*) of the Introduction - the fact that Tm is dense in
R implies that the rank of Er(Q) is positive for a dense set of t ~ Q such that Et
is an elliptic curve (here Em denotes the fiber of 03B5m over t and Tm denotes the set of
rational t’s such that Et is an elliptic curve with root number -1).

Let’s now look at a perhaps more interesting example. Consider the elliptic surface
E given by

A basis for the (torsion free) group of sections of É over C is given by

(see [2], Equation 5, p. 28). The group of rational sections of E is 0, so let’s consider
the quadratic twist E - of E by - 1. This is given by

E- is isomorphic to E as an elliptic curve over (C(t), so a basis for 03B5-((C(t)) is given
by

The rank of E- (Q(t» (i.e. the rank of the group of rational sections of £-) is 1. In fact

£-(Q(t)) == (Pi), the cyclic group generated by Pl. Since £-(C(t)) == £-(Q(t)) ==
£- (Q( /2, i)(t)), 03B5-(Q(t)) consists of those points P E 03B5-(C(t)) fixed by the action
of Gal(Q(2, i)/Q) on £-. Now, Gal(Q(2, i)/Q) = ~03C3-1,03C32~ where 03C3-1(i) = -i,
03C3-1(2) = B/2, U2(i) = i, and 03C32(2) = -B/2. Thus a point P E £-(C(t)) is
in E-(Q(t» if and only if 03C3-1(P) = P and U2(P) = P. From this it follows that

P E E-(Q(t» ~ P E (Pi). So £-(Q(t)) == (Pl). Now, Silverman’s Specialization
Theorem ([13], Chapter 3. Theorem 11.4) implies that for all but finitely many t E Q,
rank(E-t(Q))  1, where we denote by Et the fiber of E - over t.

Let’s show that E- satisfies the hypotheses of Theorem 1 of the Introduction. A
Weierstrass equation for £- is

So, the j-invariant of E- is

and its covariants are

and

The only pole of j(t) is 1, and we have ordic4 = 2 and ord1c6 = 3. So E- satisfies
the hypotheses of Theorem 1 of the Introduction. Therefore T+anaT- are both dense
inR.
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Summarizing, E- has the following properties:
(1) it has non-constant j-invariant,
(2) its group of rational sections has rank 1 (hence for all but finitely many t E Q,

rank(E-t(Q))  1),
(3) T+ is dense in R.

Granting (* ) of the Introduction, we then get that for a dense set of t E Q, rank(Et (Q)) 
2, which is strictly greater than the Mordell-Weil rank of 03B5-.

Appendix

This appendix is devoted to the proof of Lemma 2.2. In order to prove this lemma, we
distinguish two cases:
(1) E03B3 b0 has potential multiplicative reduction at p,"1 ao

(2) E03B3 b0 has potential good reduction at p."1 
ao

Notation. As usual in what follows we set Po = (ao, -ybo) and P = (a, 03B3b).

Case (1).

Proof of Lemma 2.2 in case (1 ). Take any Np E N with

Then, if (a, b) E N&#x3E;o x N is such that j (-yb/a) is defined, j(03B3b/a) ~ 0,1728, d(03B3b/a) ~ 0,
and (a, b) m (ao, bo) (mod pNp), we have:

and

Thus E03B3 b a has also potential multiplicative reduction at p and Wp (-y b a) = Wp (03B3 L.
by [9] Proposition 3(ii) and (Hi). 0

Case (2). If p ~ 2, 3, one could prove Lemma 2.2 with an argument analogous to that
used in case (1). In what follows however, we are going to give a proof which holds for
any prime p of potential good reduction, including p = 2, 3. We need two sublemmas.

SUBLEMMA 1. Let K be a non-archimedean local field. Let q(x) E K[x] be a monic
polynomial of degree n, and let L be the splitting field of q(x) over K. If r(x) E K[x]
is another monic polynomial of degree n with coefficients sufficiently close to those of
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q(x), then the splitting field M of r(x) over K contains L. Moreover, if q(x) has no
multiple roots, then L = M.

This is just a version of Krasner’s Lemma. The statement and the proof are as in [6]
p. 43-44, except that here we do not assume that q(x) is irreducible. The assumption in
the second part of the statement that q(x) has no multiple roots is enough to conclude
that L = M.

SUBLEMMA 2. Let E be an elliptic curve over Q with Weierstrass coefficients al , ..., a6.
Let p be a prime, and assume that E has potential good reduction at p. Let L be the
minimal extension of Qp, unr over which E acquires good reduction. If E’ is another

elliptic curve over Q with Weierstrass coefficients ai , ..., a’6 sufficiently close to those of
E with respect to the p-adic norm, then E’ has potential good reduction at p and L’ = L,
where L’ is the minimal extension of Qp, unr over which E’ acquires good reduction.

Proof. If the a’i’s are sufficiently close to the ai’s, we can put the equations of E and
E’ in the forms

and

with A, B, A, B’ ~ Q n Zp and JA - A’Ip and B - B’lp small. Let j(E) and j(E’)
denote the j-invariants of E and E’ respectively. For (A’, B’) close enough to (A, B),
we have ordpj(E’) = ordp j (E) if j(E) ~ 0, and ordpj(E’) &#x3E; 0 if j (E) = 0. So E’ has
potential good reduction at p.

Now, (see [10], p. 498, Corollary 3), L = Qp, unr(E[m]) and L’ = Qp, unr(E’[m]),
where we can take m = 3 if p = 2, and m = 4 if p &#x3E; 2. First of all let’s show that, if
(A’, B’) is close to (A, B), then Li = L’1, where Li and L’ are obtained by adjoining to
Qp, unr the x-coordinates of the non-trivial m-division points of E and E’ respectively.

(I) For p = 2, we have that L is the splitting field of
q(x) = x4 + 2Ax2 + 4Bx - A2/3

over Qp, unr, and L is the splitting field of
r(x) = x4 + 2A’x2 + 4B’x - (A’)2/3

over Qp, unr. We have that q(x) has no multiple roots, because q’(x) - 4(x3 +
Ax + B), and any root of q’(x) corresponds to a 2-division point of E. Thus, by
Sublemma 1, Li = L’1.

(11) For p &#x3E; 2, recall that if Q = (xo, yo) is a point of exact order 4 on E, then 2Q is
a non-zero 2-division point of E, so 2Q = (a, 0), with a a root of x3 + Ax + B.
Moreover, xo - a + 03B2 and yo2 = (32(3a + 203B2), where 03B22 = 3a2 + A (see [7], p.
218). Let Mi be the splitting field of

ql(x) = x3 +Ax+B
over Qp, unr. Then L is the splitting field of

q2(x) = 03A0(x2 - q)
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over Ml , where q runs over the set

Note that neither ql (x) nor q2 (x) has multiple roots (the latter since 3a2 + A =1= 0,
because a is a simple root for ql (x) and 3x2 + A = q’1 (x)). Similarly, let Ml be
the splitting field of

over Qp, unr. Then L’ is the splitting field of

over M’, where q’ runs over the set

By Sublemma 1, we have that if (A’, B’) is close to (A, B), then Ml - M’ and
Li = Ll*

Now, L is the splitting field of

over L1, where 03B6 runs over the set of elements of the form x30 + Axo + B where xo is
the x-coordinate of some m-division point of E which is not a 2-torsion point. Similarly
L’ is the splitting field of

over L1, where 03B6’ runs over the set of elements of the form (x’0)3 + Axô + B where xô
is the x-coordinate of some m-division point of E’ which is not a 2-torsion point. By
Sublemma 1, we are done. D

We can now finish the proof of Lemma 2.2.

Proof of Lemma 2.2 in case (2). Take E = E03B3 b0 03B10 and E’ = E03B3b a. Then, for Np big
enough, E’ is "close" to E with respect to the p-adic norm. Below, we follow the notation
of [9]. It is enough to show that the representations (TE,p and 03C3E’,p are equivalent for
E’ "close" to E with respect to the p-adic norm.

By Sublemma 2, we have that both E and E’ have good reduction over L =
Qp, unr(E[m]). Both o-E,p and 03C3E’,p can be viewed as faithful representations of W(L/Qp).
Since 03C3E,p and OrE’,p are semisimple, to check that they are equivalent, it is enough to
check that they have the same character. So, let g E W(L/Qp) ~ A x ~03A6~, where
A = Gal(L/Qp, unr) and 03A6 is an inverse Frobenius element. If g E A, let EL and E’L be
the reductions of E and E’ over L. If E’ is sufficiently "close" to E, then EL = E’L. The
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fact that 03C3E,p(g) and O"E’,p(g) have the same trace then follows from the commutativity
of the diagram

where f is any prime different from p (see [10], Section 2). If g E 03A6n039B for some integer
n &#x3E; 0, then g is an inverse Frobenius element of W (L/F), where F is the unramified
extension of Qp of degree n. So we may assume that g = 03A6. Let K be the subfield of

L fixed by ~03A6~. Then both E and E’ have good reduction over K. Moreover, if EK
and Ex are the reductions of E and E’ over K, then EK - EK if E’ is sufficiently
"close" to E. From this and from the results in [10], Section 2, it follows that aE,p(&#x26;)
and 03C3E’,p(03A6) have the same characteristic polynomial, so in particular they have the
same trace. If g E 03A6n039B for some integer n  0, the fact that 03C3E,p(g) and O"E’ ,p(g) have
the same trace follows from the case n &#x3E; 0 discussed above and from the fact that for

any invertible 2 x 2 matrix X, we have tr(X-1) = tr(X)/det(X). This concludes the
proof. D
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