
COMPOSITIO MATHEMATICA

BARBARA FANTECHI
Deformation of Hilbert schemes of points on a surface
Compositio Mathematica, tome 98, no 2 (1995), p. 205-217
<http://www.numdam.org/item?id=CM_1995__98_2_205_0>

© Foundation Compositio Mathematica, 1995, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1995__98_2_205_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


205

Deformation of Hilbert Schemes of

Points on a Surface

BARBARA FANTECHI
Dipartimento di Matematica, Università di Trento, 1-38050 Povo (TN), Italy

Received 27 July 1993; accepted in final form 12 July 1994

Abstract. Let S be a smooth projective surface over the complex numbers; let S(r) be its r-fold
symmetric product and S[r] the Hilbert scheme of 0-dimensional subschemes of length r.

In case KS is trivial, the deformation theory of SI’] has been studied by Beauville and Fujiki
in order to construct examples of higher-dimensional symplectic manifolds. In that case S[r] has
deformations which are not Hilbert schemes of points on a surface.
We prove that under suitable hypotheses (e.g. if S is of general type) this cannot happen; every

(small) deformation of S(r) and S[r] is induced naturally by a deformation of S (in particular, all
deformations of S(r) are locally trivial). 
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0. Introduction

For any smooth complex projective variety X and any positive integer r, let x(r)
be the r-fold symmetric product and X[r] the Hilbert scheme parametrizing zero-
dimensional subschemes of X of length r. If Y is a compact complex space, let
Dy be the functor of formal deformations of Y and D’Y its subfunctor of locally
trivial formal deformations.

As X is the quotient of a smooth variety (namely XI) via the action of a finite
group (the symmetric group on r letters), all deformations of xr to which the action
of the symmetric product extends (cfr. [C1], [C2] and the proof of theorem 0.1)
induce locally trivial deformations of X(r). On the other hand any deformation of
X induces a deformation of XI’] by taking the relative Hilbert scheme. Therefore
we have natural maps DX ~ D’x(r) (C DX(r)) and DX ~ DX[r].

If X is a curve, the symmetric product is smooth and coincides with the Hilbert
scheme, so that the two maps above coincide. Kempf [Ke] proved that D x -
DX(r) is an isomorphism if X is nonhyperelliptic; in fact it is an isomorphism if
and only if the genus of X is zero or at least 3 (see [FI]).

If X has higher dimension, the Hilbert scheme is no longer smooth as soon as
r &#x3E; 3; the map DX ~ DX(r) is an isomorphism if (for instance) X is of general
type (see [F2]).

If S is a smooth complex projective surface, s(r) is a normal variety which
admits S[r] as a natural desingularization. Beauville and Fujiki have considered
the case where S has trivial canonical bundle. They proved that if ks is trivial,
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the S[r]’s have a structure of symplectic varieties and that for r  2 they can be
deformed to varieties which are not Hilbert schemes of surfaces any longer.

In this paper we want prove an analogue of Kempf’s theorem for surfaces, using
techniques of deformations of singular varieties.

Let S be a smooth complex projective surface, r  2 an integer. Our main
results are the following:

THEOREM 0.1. If either h° ( S, 03B8S) or h1 (S, OS) vanish, then the natural map
DS ~ D’S(r) is an isomorphism.

THEOREM 0.2. If h0(S, OS(-2KS)) vanishes, then the natural map D’S(r) ~
DS(r) is an isomorphism.

THEOREM 0.3. if h0(S, OS(-KS)) vanishes, then the natural map D’S(r) -
DS([r] is an isomorphism.

In particular if S is a surface of general type, all deformations of s(r) and 5’M
are induced by deformations of S.

As one can see from the proof, the results also hold in case S is non projective
if one replaces the Hilbert scheme with the corresponding Douady space. See also
Remark 4.4 for a brief discussion of the sharpness of the results obtained.

Relations between the singularities of a variety and the deformation theory of
a desingularisation have previously been studied by Fujiki [Fu] in the case of suit-
able partial desingularizations of symplectic V-manifolds. Without the symplectic
hypothesis, there are results by Bums and Wahl [B-W] on the deformations of
surfaces with rational double points and of their minimal resolutions; M.-H. Saito
[Sai] generalized this to the case of varieties having a transversal A 1 singularity
obtained as a double cover.

The paper goes as follows: in Section 1 we set some notation and recall some
standard definitions; in Section 2 we collect some preliminary results on deforma-
tion theory and local cohomology; in Section 3 we give some lemmas on transversal
AI singularities and in Section 4 we put everything together and prove Theorems
0.1-0.3.

1. Définitions and notation

We will always work over the complex numbers. If f : X - Y is a morphism, we
will denote by 03A9X/Y (resp. 03B8X/Y) the relative cotangent (resp. tangent) sheaf.

Let X be any topological space, Z C X locally closed, F a sheaf of abelian
groups on X. By Hz(X, F) (resp. HiZ(X, F)) we devote the cohomology groups
(resp. sheaves) with support on Z. For more details we refer to [Gr]. If F,G are
sheaves on a scheme X, we denote by Exti(F, Q) (resp 03B5xti(F, 9» the Ext groups
(resp. sheaves).
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Let X be a complex space: X will be called a V-manifold if it is normal
and has only quotient singularities. Here we refer the reader to [St]. In particular if
j : U - X is the inclusion of the smooth locus and r : Y - X is a desingularization,
we have Ox = j*03B8U = r*03B8Y.

Let X be a locally Noetherian scheme, F a coherent sheaf on X, Z a closed
subscheme. We define depthZF as in [Gr]. We remark that if X is locally Cohen-
Macaulay (and thus in particular if X is smooth) and Z is irreducible we have
depthZOX =codim (Z C X) (see e.g. [Ka], theorem 136).

If X is a reduced compact complex space we will denote by DX the formal
deformation functor, and by D’X the subfunctor of locally trivial deformations (cfr.
[G-K]).

2. Deformations, singularities and local cohomology

Let X be a reduced compact complex space; it is well known (see for instance
[G-K]) that DX (resp. D’X) has as tangent space Ext1(f2x, OX) (resp. H1(X, 03B8X))
and as obstruction space Ext2(f2x,OX) (resp. H2(X,(JX)). The two functors
obviously coincide for X smooth; in general from the local to global spectral
sequence of Ext we get an exact sequence

where the mappings Hi(X, 03B8X) ~ Exti(03A9X, OX) for i = 1) 2 induce the inclusion
of functors D’X C Dx .

LEMMA 2.1. A sufficient condition for D’ x C Dx to be an isomorphism is

Proof. The hypothesis implies that there is an isomorphism between the tan-
gent spaces and an injection between the obstruction spaces, a standard criterion
for isomorphism. For a sketch of proof see for instance [R1], criteria o.1 and 0.2. D

Let p: Y ~ X be a resolution of singularities, and assume p*(03B8Y) = 8 x. Then
there is a natural mapping of functors D’X ~ Dy (see for instance [B-W] where it
is defined for X a surface with Du Val singularities).

The spectral sequence Hp(X,Rqp*03B8Y) ~ H k (Y, 03B8Y) gives an exact sequence

where the mappings Hi(X, 8 x) ~ Hi(Y, 03B8Y) for i = 1, 2 define this mapping of
functors.
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LEMMA 2.2. A sufficient condition for D’X ~ Dy to be an isomorphism is

Proof. As in Lemma 2.1. ~

We now state some results we will use and extend them slightly as needed.

LEMMA 2.3. (Schlessinger [Schl]). If 9 is any coherent sheafon a variety X and
Y is a subscheme of X such that depthY OX  2, then H0Y(GV) = H1Y(GV) = 0. El

LEMMA 2.4. Let X be any projective variety, and let W be a subscheme of X
such that depthWOX  3. Then

Proof. Embed X in a smooth variety Y, and let i: X ~ Y be the immersion.
Then we have an exact sequence

where N is the normal bundle of X in Y, i.e. the dual of IX/I2X. We break this
into two short exact sequences:

By applying HW to the second one, and as by Lemma 2.3 H0W (N) = H1W(N) = 0,
we get

Now we apply the same functor to the first exact sequence, and we recall that

because i*(03B8Y) is locally free. Therefore

LEMMA 2.5. If X is a V-manifold and W is an analytic subspace of codimension
r then depthWOX  r. Moreover, in this case depthW03B8X  r.
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Proof. The statement is local, so we may assume that X is the quotient of
a smooth manifold Y via a finite group G, acting freely in codimension 1. Let
p: Y - X be the quotient map. We have Ox = pG*OY, and Ox = pf0y by [St];
arguing as in Corollary 1 of [Schl] we prove that OX (resp. 03B8X) is a direct summand
of p*OY (resp. p*0y ). So if W’ = f-1(W), then depthWOX  depthw, Oy, and
the same for 03B8 by [Gr] page 73. However p is finite, so the codimension of W in
X is the same as the codimension of W in Y. 0

LEMMA 2.6. Let p: Y - X a resolution of singularities, E C Y the exceptional
locus, and assume 03B8X = j*03B8V = p*(03B8Y) = 0 x, where j : V - X is the inclusion
of the smooth locus. (This is true in particular if X is a V-manifold). Then we have
a natural inclusion p*(H1E(03B8Y)) ~ R1p*03B8Y.

Proof. Let U = YBE, and i : U ~ Y the inclusion. On Y we have the exact

sequence

Applying p* yields

This gives the required natural map. Now by hypothesis p*03B8Y = p,,i,, Ou = 03B8X; so
the map is injective. D

3. The case of transversal A singularities

In this section X will be a (not necessarily compact) V-manifold with only AI
transversal singularities; that is, the singular locus Z of X is smooth and the couple
(Z, X) is locally analytically isomorphic to (Ck x {0}, Gfi x C) where C is the
cone in C3 of equation xy = z2 and 0 E C is the origin.

The results we collect here are a local restatement of those obtained by Saito
[Sai] in the case where X can be seen as a double cover of a smooth compact
variety branched over the union of two smooth irreducible divisors intersecting
transversally. We will mainly be interested in the case where X is a quotient of a
smooth variety X’ via an involution having as fixed set a smooth codimension 2
subvariety.

LEMMA 3.1. Let X be a Y-manifold whose only singularity is a transversal AI
singularity Z. Then 03B5xt1(03A9X, OX) is a line bundle on Z, and £xtT(f!x, OX) = 0
for r  2.

Proof. The fact that a given sheaf be locally free of a given rank is a local
property, so to prove our claim we may assume that X is indeed a product Z x C.
But then the result follows in a straightforward way from the case where X is a
surface, where it is well known. If
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LEMMA 3.2. Let X be as in Lemma 3.1. If p: Y ~ X is the desingularization
given by blowing up Z, and E is the exceptional divisor, then p*( OE( nE) Q9 8y )
is zero for n  2, and p*( OE( E) Q9 OY) = p*( OE( E) Q9 8E/Z) is a line bundle on
Z.

Proof. There is a natural inclusion

induced by the inclusion 03B8E/Z ~ 03B8Y 0 OE. So it is enough to prove the result
locally; i.e. we can assume that X is a product C x Ck. By [Ha], Corollary III.12.9 it
is enough to prove that h°(Yr , (OE(nE)~03B8Y)|Yx) is zero for n  2 and is equal to
h0(Yx, OE(E)~ 03B8E/Z) = 1 for n = 1. Now Yx is isomorphic to P1, and on Yx we
have exact sequences 0 ~ 03B8E ~ 03B8Y ~ NE/Y ~ 0 and 0 ~ p*03B8Z ~ 03B8E/Z ~ 0.
As NE/Y = OE(E) and its restriction to Yx is O( -2), the restriction of 03B8E/Z
is (9(2) and p*03B8Z restricts on a fiber to a direct sum of copies of the trivial line
bundle, the claimed result is straightforward. D

Arguments similar to those in the proof of next lemma can be found in the case
where X is a surface (resp. in the case where X is a double cover of a smooth
variety branched over a divisor with two smooth irreducible components meeting
transversally) in [B-W] (resp. [Sai]).

LEMMA 3.3. Under the same hypotheses as Lemma 3.2 we have

Proof. From lemma 2.6 we have an inclusion p*H1E(03B8Y) - R1p*(03B8Y). There-
fore if they are locally isomorphic they are isomorphic. But locally the isomor-
phism follows from the two-dimensional case, proven in [B-W]. So p*H1E(03B8Y) =
R1p*(03B8Y).
Now by [Gr], Theorem 2.8 we have

where OnE = OY IIË; we recall that taking the direct image commutes with direct
limits. We have as usual an exact sequence

applying Hom(·, BY) we get that
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and so also their direct images coincide. Tensoring the exact sequence

with 0y and applying p*, from the fact (Lemma 3.2) that p*(OE(nE) ~ 03B8Y)
vanishes for n  2, we get

the claimed result now follows from Lemma 3.2. 0

The following lemma is essentially due to Saito, although he only states it in
the case where X is a double cover.

LEMMA 3.4. Assume X has a transversal Al singularity, and that it is a divisor
in a smooth manifold W. Then £xtl(f!x, OX) is the restriction to Z of the normal
bundle to X in W, i.e. of OX(X).

Proof. We have a locally free resolution of flx given by

We can use it to compute Extl (03A9X, OX); we get an exact sequence

Therefore £ xt 1 ( !1 x , OX) is isomorphic to OZ 0 OX (X ) where Z is the subscheme
of X whose ideal is locally generated by the entries of a dim W x 1 matrix

representing the map 0w j x - OX(X) (in other words, this ideal is the Oth Fitting
ideal sheaf of 03B5xt1(03A9X, OX)).

It’s now enough to verify that Z = Z; this can easily be done by choosing
local (analytic) coordinates (x, y, Z, UI,..., Uk) in W such that X has equation
xy - z2 = 0. The map 0wj x - OX(X) is dual to Ox (-X) - 03A9W/X, and
therefore the matrix representing one of them is the transpose of the matrix rep-
resenting the other; but the latter is given by the vector of partial derivatives of
the equation defining X, hence by (y, x, - 2z, 0, ... , 0). Hence the ideal of Z is
generated locally by (x, y, z ), and therefore Z = Z. o

LEMMA 3.5. (Fujiki). Given a smooth manifold X’ with an involution having a
smooth codimension 2 submanifold Z’ as fixed locus, let X be the quotient of X’
via the involution. In particular X is a complex space having a transversal AI
singularity Z. Then, under the natural identification of Z with Z’, 03B5xt1(03A9X, OX)
as a sheaf on Z coincides with (039B2NZ’|X’)~2.
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Proof. This is part of the proof of Lemma 5.1 in [Fu]. There it is stated for the
dual of this bundle, but it is in fact proven for it (in Fujiki’s case the bundle is
anyway trivial). If

LEMMA 3.6. In the same hypotheses of Lemma 3.5, let p: Y ~ X be the desin-
gularization of X obtained by blowing up Z. Let E be the exceptional locus. Then
R1p*(03B8Y) is supported on Z; as a sheaf on Z it is the line bundle 039B2NZ’|X’.

Proof. We consider the blowup p’: Y’ - X’ of X’ along Z’; Y’ is naturally
a double cover of Y branched over the exceptional divisor E’, and E and E’ are
naturally isomorphic (also compatibly with the maps to Z and Z’). By Lemma
3.3 R1p*(03B8Y) = p*(03B8E/Z ~ OE(E)); via the natural identifications, the latter is
just p’*(03B8E’/Z’ ~ O’E(2E’)). The result is now an easy exercise (see [Ha], exercise
111.8.4). o

REMARK 3.7. Let X be a complex space with a transversal A singularity Z and
let Y the desingularization given by blowing up Z. Then we have Extl (flx, Ox) =
(R1p*03B8Y)~2. This follows from Lemmas 3.5 and 3.6 if X is the quotient of a smooth
variety by an involution. The general case, which we do not need here (including
results about other kinds of transversal rational double points) will be proven in
[F2] .

Saito [Sai] essentially proves this result in the case X is a double cover of
a smooth variety branched over the union of two smooth divisors intersecting
transversally.

4. Déformations of Hilbert schemes of surfaces

We introduce some more notation, and recall some well-known facts. Let S be a
(smooth projective) surface; denote by SI the product of r copies of S, by S(r) the
symmetric product (i.e. the quotient of S’’ by the permutation group on r elements)
and by s[r] the Hilbert scheme parametrizing subschemes of length r of S. s(r)
is smooth exactly on the subset corresponding to r distinct points; the singular
locus S(r)sing is irreducible, and its smooth locus is the set Z where exactly two

points coincide. Let W be S(r)singBZ; S(r)sing (hence also Z) has codimension 2 in S( r)
and W has codimension 2 in S(r)sing. The variety S(r)BW has only transversal AI
singularities along Z.

LEMMA 4.1. With the previous notation, 03B5xt1(03A9S(03C4), OS(r)) restricted to Z is
isomorphic to q*(OS(-2KS)) where q: Z ~ S is the natural map sending the
n-tuple t Pi P, Q1,..., Qr-21 to P.

Proof. We have a natural map S2 X s(r-2) ~ s(r) given by
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We consider its restriction to the points whose image does not lie in W. This map
induces an isomorphism between Z and its inverse image Z’; by taking suitable
neighbourhoods of Z and Z’ we can assume it’s just the quotient of the natural
involution of S2.

Applying Lemma 3.5 gives the claimed result, as it is easy to see that for any
Y the normal bundle to the diagonal Ay in Y x Y is isomorphic to the tangent
bundle. 0

THEOREM 0.2. If h0(S, OS(-2KS)) vanishes, then the natural map D’S(r) ~
DS(r) is an isomorphism.

Proof. Let X = S(r). We want to prove that

vanishes. Let Z and W in X be as before. Let Y = SI and let f : Y ~ S(r)sing be
given by f(P1’...’ Pr-1) = {P1, Pl, P2,..., Pr-1}. It is clear that f is surjective
and that f-1(W) has codimension 2 in Y. Moreover out of f - I (W ) the pullback
of £xtl (03A9X, OX) coincides with p*1(-2KS), where pi is the projection on the first
factor. So take any section of 03B5xt1(03A9X, Ox); this gives a section of p*1(-2KS)
out of f-1(W) which by Hartogs can be extended to all of Y. But then it must
be zero by the hypothesis on S (otherwise restricting it to some closed subset of
the form S x (P2,..., Pr-1) we would get a nonzero section of OS(-2KS), a
contradiction).

So any section of 03B5xt1(03A9X, Ox) must vanish on Z; hence

But now by Lemma 2.4 H0W(03B5xt1 (03A9X, Ox )) = H2W(03B8X) and the latter is zero by
Lemma 2.5, because the codimension of W is 4. 0

PROPOSITION 4.2. If either HO(S, OS) or Hl (S, OS) vanishes, then

Proof. By Künneth formula with these hypotheses we have

Now by [Fu], p. 84, H 1(S(r), 03B8S(r)) is equal to the elements of H 1 (Sr, 03B8Sr) which
are invariant under the action of the permutation group; these are easily seen to be
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THEOREM 0.1. If either h0(S, 03B8S) or h 1 ( S, OS) vanish, then the natural map
Ds - D’S(r) is an isomorphism.

Proof. It is clear that Remark 4.2 implies that there is an isomorphism on tangent
spaces; now from [Fu] p. 84 we can derive that there is injection on obstruction
spaces (H2(S, OS) is in a natural way a direct summand of H2(S(r), 03B8S(r))). So
the usual criterion can be applied. ~

THEOREM 0.3. If h0(S, Os( -1(s)) vanishes, then the natural map D’S(r) ~
DS[r] is an isomorphism.

Proof. Let p: SI’] - S(r) be the natural map. We want to prove that

The technique is very much the same as in the proof of Theorem 0.2, and we use
the same notation.

The sheaf R1p*(03B8S[r]) is supported on S(r)sing and its restriction to Z is a line
bundle. Arguing as before we prove that every section has to vanish on Z (as
there R1p*03B8S[r] = q*(OS(-KS)). We are left to show the vanishing to H0W(S(r),
R1p*(03B8S[r])). By [Gr], Proposition 4.5 we have a spectral sequence

Hence it is enough to show that

both vanish. This follows from Lemma 2.5 and the well-known fact that the codi-
mension of p-1(W) in 6’M is 2. D

COROLLARY 4.3. If S is a surface of general type or a regular surface of Kodaira
dimension one, then formal deformations of S are the same as formal deformations
of S(r) and of S[r].

Proof. This follows immediately from the previous results; in fact in these
hypotheses H0(OS(-KS)) = H°(Os( -2Ils)) = 0, so DS[r] is naturally isomor-
phic to D’S(r) (by Theorem 0.2), and the latter is isomorphic to DS(r) by Theorem
0.3; now if S is of general type H0(S, 03B8S) = 0 and regularity means exactly that
H1(S, Os) = 0, so Theorem 0.1 applies and Ds is naturally isomorphic to D’S(r). D

REMARK 4.4. Theorem 0.1 is clearly sharp, as if its conditions are not fulfilled
then the natural map DS ~ D’S(r) is injective but not surjective on the tangent
spaces.
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As for Theorem 0.3, we have Beauville’s results on the deformations of s[r]
when Ii7s is trivial; for instance if S is a K 3 surface the tangent spaces to this to
functors have respective dimensions 20 and 21. One might still ask oneself whether
the Kuranishi families are set-theoretically the same (e.g. by one or both of them
having a non-reduced structure); however Beauville proves that in this case both
families are smooth, so that we have a proper inclusion (in fact there are general
results about unobstructedness of deformations for varieties with no infinitesimal

automorphisms and trivial dualizing sheaf, see e.g. [R2] and [Kw]).
Theorem 0.2 also fails if KS is trivial. In fact S(r) has canonical singularities,

hence rational; therefore the ’extra’ deformations of S[r] constructed by Beauville
can be blow down to deformations of S(r) by an easy extension of the argument
in Proposition 2.3 of [B-W], yielding non-locally trivial deformations of S(r).
Actually it is easy to see that we obtain in this way all deformations of S(r); the
latter are therefore also unobstructed (this does not follow from any of the known
criteria of unobstructedness for varieties with trivial canonical bundle, as these
criteria always assume smoothness in codimension 2). It would be interesting to
understand whether the deformations of S(r) obtained in this way are smoothings
(this is easy to prove for r = 2).

EXAMPLE 4.5. Let S = p2 and r = 2; then X = S(2) can be identified with the
secant variety of the Veronese surface in P5. This is known to be the symmetric
determinantal cubic hypersurface, and has therefore a family of non-locally trivial
deformations (the cubic hypersurfaces). In particular Theorem 0.2 does not hold
for S = JID2, r = 2.

Using the results of this paper, we can easily describe the Kuranishi family of
X. As X has only transversal AI 1 singularities (or more generally hypersurface
singularities) we have £xti(nx,Ox) = 0 for i  2 (Lemma 3.1); moreover
03B5xt1(03A9X, OX) = OP2(-2KP2), where Ip2 C X is the Veronese surface. Therefore
we have an exact sequence

Via the standard exact sequences

it is easy to see that Hi (X, 0 x) = 0 for i = 1, 2, 3 (use Kodaira vanishing on P5
and diagram chasing). Therefore we get
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Hence the Kuranishi family of X is smooth of dimension 28. This can also be
proven in a different way. First of all one checks (by computing a suitable Kodaira-
Spencer map) that all deformations of X are cubics in P5. Now the family of all
cubics in P5 has dimension 55; on this family we have a natural action of PGL(6),
which has dimension 35. PGL(6) has a 8-dimensional subgroup (isomorphic to
PGL(3) and induced by automorphisms of the Veronese surface) which sends
X to itself, acting faithfully on X. Therefore the Kuranishi family is smooth of
dimension

as expected.
We remark that in this case the family stays versal but not semiuniversal for a

generic small deformation of X ; in fact the Kuranishi family of a generic cubic
hypersurface in P5 has dimension 20. The difference is just given by the difference
of dimension of the automorphism group between the special and the general
fibre.
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