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Abstract. We show that the Alexander-Lefschetz duality can be thought of as a homotopy equivalence
between a space of integral cycles and a space of maps into integral cycles on a sphere.
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Let M be an orientable manifold of dimension n. For every k  0 and every
compact polyhedron A C M - 9M there is the Alexander-Lefschetz duality
isomorphism

that specializes to the Poincaré duality isomorphism

when aM is empty and A = M [7].
In 1956 Dold and Thom proved that for every k  0 and every polyhedron X

where AG(X) is a free abelian topological group generated by the points of
X [1]. A few years later Almgren generalized this result proving that for every
k ) r ) 0

where ZT (X ) is the group of integral r-dimensional cycles on X [2].
Let r(Sn) = Zr(Sn) for r &#x3E; 0 and let 0(Sn) be the connected component

of 0 in Z0(Sn) (that is the space of 0-cycles of degree 0 on sn). Almgren’s
isomorphism implies that the space r(Sn) is a K(Z, n - r). This observation
together with the classical result

gives for every k  r  0 an isomorphism
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It is easy to see that if A c M is a deformation retract of an open set U C M,
then for every k  r  0

Combining the Almgren Theorem with the above isomorphisms we get that
for every k  r  0

Thus it is natural to expect that ZT(A) and Map((M, M - U), (Zr(Sn), 0))
are homotopy equivalent. The aim of this note is to construct a homotopy equiv-
alence

that induces the Alexander-Lefschetz duality isomorphism (1).
Actually, we will prove the following result.

THEOREM A. If M is a smooth orientable manifold of dimension n, then for
every r  0 and every polyhedron A C M - ~M there is a neighborhood U of
A in M and a map

so that for every k  r  0 the homomorphism

induced by -1) is the Alexander-Lefschetz duality isomorphism

In Appendix we included a proof of the classical isomorphism

where Hn(X;Z) stands for the nth singular cohomology group of X and AGo(X)
is the connected component of 0 in AG(X). The proof is based on the Dold-
Thom Theorem and some basic results of simplicial homotopy theory and is
essentially different from the classical proof, that uses obstruction theory and
identifies 7roMap(X, AGo(sn)) with the nth cellular cohomology group of X.

The paper has two sections, which is a reflection of the fact that in the
case of zero dimensional cycles there are two constructions of the map 03A6 from
Theorem A. One, allows the extension of Theorem A to the case where M is
a topological manifold but has no obvious generalization for higher dimensional
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cycles. Another, is done in the context of smooth manifolds and easily generalizes
to higher dimensional cycles. The rough idea of the proof of Theorem A is to lift
Zr (M) to sections of a r(Sn)-bundle associated with the tangent bundle of M.
The orientability of M is shown to be equivalent to the triviality of this bundle.
Thereby, identifying sections of this bundle with the maps from M to Zr (Sn).

1 am grateful to Blaine Lawson for suggesting to me the extension of the
smooth case construction to the topological case and many very useful com-
ments.

1. Zéro dimensional cycles on a topological manifold

In this section we shall describe a homotopy equivalence map

for M being a topological manifold. Actually, we shall replace the space Zo(X)
of 0-dimensional integral cycles (with the flat norm topology) by the free abelian
group AG(X) generated by the points of X with the compactly generated topol-
ogy on it [1]. Zo(X) and AG(X) have the same set of elements but different
topologies. However, they are homotopy equivalent.

THEOREM B. If M is a topological orientable manifold of dimension n, then
for every polyhedron A C M - OM there is a neighborhood U of A in M and
a map

so that for every k  0 the homomorphism induced by -1)

is the Alexander-Lefschetz duality isomorphism

Proof. Let M be a closed orientable topological manifold. First we will con-
struct a map

It will have the property that for every A C M the restriction of 03A6 to AG(A)
induces a map

for some neighborhood U of A in M.
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Let W be a neighborhood of the diagonal of M x M so the the diagram

represents the tangent microbundle TM of M where A : M - W is the diagonal
map and 1rl is the projection on the first factor. The Thom space TM of TM
is the quotient M x M/(M x M - W). We will denote the quotient map from
M x M onto TM by 7r.

An orientation of M induces a Thom class U E Hn(03C4M;Z) [4]. Since

the class U can be represented by a map u : TM - AGO (Sn) that extends to

With every cycle c = 03A3nixi E AG(M) we can associate a family of
cycles

For any c E AG(M) we define 03A6(c) as the composition of the continuous
maps

It is easy to see that for every subspace A of M and every cycle c E AG(A)
the map 03A6(c) is constant zero on a complement of some neighborhood U of A
in M (U depends on W). Thus the restriction of 03A6 to AG(A) induces a map

If M is a manifold, A is a polyhedron contained in M, and U is a small
neighborhood of A in M, then U is homotopy equivalent to A and

Thus under the above assumptions -* induces for every k à 0 a homomor-
phism

It is easy to see that if A is a point, 03A6* is an isomorphism. Hence, it is also an
isomorphism for A being any simplex of a triangulation of M. In order to prove
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that 03A6* is an isomorphism for any polyhedron A C M - OM one uses induction
on the number of the top dimensional simplices of A together with the Mayer-
Vietoris argument (note that 03A6* is compatible with Mayer-Vietoris sequences).
For details see for example the proof of the Alexander-Lefschetz duality in [7].
In order to see that 03A6* coincides with the classical Alexander-Lefschetz duality
map note that they coincide for A being a simplex and then use a Mayer-Vietoris
argument and the induction on the number of simplices of A.

2. Integral cycles on smooth manifolds

In this section we present a proof of Theorem A. For simplicity we start from
the zero dimensional case.

First, note that Map(M, Z0(Sn)) can be thought of as a space of sections of
the trivial fiber bundle M x 2o(S’) over M. It tums out that such a bundle is
induced by the tangent bundle of M when M is orientable.

Let M be a smooth (not necessary orientable) manifold of dimension n and
let PM be the principal O(n)-bundle associated with the tangent bundle TM
of M. The delooped determinant fibration of M is

where the action of O(n) on 0(Sn) is induced from the one-point compactifi-
cation of the linear action of O(n) on Rn. The name Bn det(TM) is justified by
the fact that the fibration

where U(03A9n(0(Sn))) consists of the components of S2n(Zo(Sn)) that cor-

respond to {±1} under the homotopy equivalence z - 03A9n(Z0(Sn)) is the

Petterson-Stong determinant fibration [6]. The fibration is fiberwise homotopy
equivalent to the determinant principal (Z/2Z)-bundle of M. If M is an orientable
manifold, then the determinant line bundle of M is trivial and Bn det(TM) is
homotopically trivial. Actually, we prove the following result.

LEMMA. A smooth manifold M is orientable if and only if there is a continuous
map

that is a homotopy equivalence on fibers.
Proof. Suppose, that M is a smooth orientable manifold. The Thom space

TM of the tangent bundle of M can be identified with the quotient

where M O(n) oo denotes the infinity section of PM O(n) Sn.
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Since M is orientable, the tangent bundle of M has a Thom class that is

represented in

by a continuous map

The composition of u with the quotient map

gives the map

that can be extended in a natural way to the map

whose restriction to every fiber 0(TxM) of Bn det(TM) coincides with

0(t I£M). Since t is induced by the Thom class, the restriction of t to every
fiber TxM of PM O(n) Sn is a map tx : Sn ~ 0(Sn) representing a generator
of 03C0n(0(Sn)). Hence, the induced map

is a homotopy equivalence*.
Suppose, now that there is a map

that is a homotopy equivalence on fibers. Than

is a fiber-wise homotopy trivialization of

Hence, the determinant bundle of M

is trivial as well. Therefore, M is an orientable manifold.

* This follows from the isomorphisms
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Now, we are going to construct a continuous map

where r(M, Bn det(TM)) is the group of continuous sections of Bn det(TM).
Choose a Riemannian metric g on M and e &#x3E; 0 so that e is less than the

injectivity radius of M. The geodesic E-disc centered at x E M will be denoted
by Dx(03B5).

For every x E M the surjective map

extends to the continuous map

that coincides with tx on Dz (e) and sends the complement of this disc to the
point at infinity o0 of Tx M. Let

be defined by the formula

Since Z0(TxM) is a topological group and Fx depends in a continuous way on
x the same is true for ’Px. Thus we get a continuous map

Note that T induces the map

The composition of cp with T* gives a map

Note that for any polyhedron A c M - OM the restriction of -1) to Zo(A)
induces a map

where Ué(A) is the e-neighborhood of A in M. It is easy to see that for 6’

sufficiently small U03B5(A) is a deformational retract of A and for every k  0
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Using the same arguments as in the topological case one proves that 03A6 is a
homotopy equivalence.

In order to generalize the construction of -1) = T* o ~ to higher dimensional
cycles we replace cp by the map

where for k &#x3E; 0

and replace T by a map

defined as follows.
The trivialization map

induces the map

Since both 03A9k0(Sn) and Zk(Sn) are K(Z, n-k)s, they are homotopy equivalent
and any homotopy equivalence map

induces the following fiberwise homotopy equivalence of fibrations

We define 03C4k as the composition hk o 03A9k03C4 o Hk.

Appendix

The aim of this appendix is to prove the isomorphism

where Hn(X;Z) stands for the n-th singular cohomology group of X.
The following proof is based on the Dold-Thom theorem and the equivalence

of the homotopy categories [Top], [0394(Sets)], [A(Gr)], D(K+) of topological
spaces, simplicial sets, simplicial groups, and chain complexes bounded from
below respectively [5, 3]. For C being one of the above categories Homc(X, Y)
stands for the set of morphisms of C between the objects X, Y of C. Thus
Map = HomTop.
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Let us start by recalling some basic definitions.
Let (A*, d*) be a chain complex

The shifted complex (A*[p], d*[p]) is defined as follows

Any two chain complexes (A*, dA), (B*, dB) induce a cochain complex (Hom*
(A*, B*), 03B4*) so that

and the coboundary operator

is defined by the formula

Two chain maps f*, g*: A* ~ B* are homotopic if there is a chain map

so that

Homotopy is an equivalence relation and the group of homotopy classes of
chain maps from A* to B* is denoted by 1ToHomK+ (A*, B*). A straightforward
consequence of the above definitions is the following isomorphism

To every simplicial abelian group G = (G*, â*, s*) one can assign a chain
complex C* (G) so that Cn (G) = Gn and dn : Cn(G) - Cn-1(G) is given by
the formula

The classical result of Dold and Kan says that C* : 0394(Gr) ~ K+ induces an
equivalence of the appropriate homotopy categories
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Let AGS(X) be the free abelian simplicial group of the singular complex S(X)
of X. The chain complex C* (AGS(X)) is nothing but the singular chain complex
of X. In the sequel we will denote it by C*sing(X).

Let Z* denote a chain (simplicial) complex so that

and all boundary (face and degeneracy) operators being the zero maps. It is easy
to see that the cochain complex

is isomorphic to the singular cochain complex Csing(X) of X. From the isomor-
phism (2) it follows that

Since the chain complexes Z*[n] and C*(AG0S(Sn)) are quasi-isomorphic

03C00HomK+ (Csing*(X),Z*[n]) ~ 03C00HomK+ (Csing*(X), C*(AG0S(Sn))).
From the fact that C*: [A(Gr)] ~ D(K+) is an equivalence of categories

it follows that

Every map AGS(X) ~ AGoS(S") is determined by its restriction to S(X).
Thus

From the Dold-Thom isomorphism AGos(sn) is homotopy equivalent to
S(AG0(Sn)). Hence

Since for every simplicial set T and a topological space X

we have
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Finally, because for every X the spaces X and |S(X)| are homotopy equiv-
alent, we get the required isomorphism

References

1. Dold, A. and Thom, R.: Quasifaserungen und unendliche symmetrische produkte, Ann. Math.
67(2) (1956), 230-281.

2. Almgren Jr., F. J.: Homotopy groups of the integral cycle groups, Topology 1 (1962), 257-299.
3. Gabriel, P. and Zisman, M.: Calculus of Fractions and Homotopy Theory, Springer-Verlag,

Berlin, 1967.
4. Hsiang, W. C. and Wall, C. T. C.: Orientability of manifolds for generalised homology theories,

Trans. Amer. Math. Soc. 118 (1965), 352-359.
5. May, J. P.: Simplicial Objects in Algebraic Topology, Univ. of Chicago Press, Chicago, IL, 1982.
6. Petterson, R. R. and Stong, R. E.: Orientability of bundles, Duke Math. J. 39 (1972), 619-622.
7. Switzer, R. M.: Algebraic Topology - Homology and Homotopy, Springer-Verlag, Berlin, 1975.


