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Abstract. We give an optimal estimate for the (Morse) index i(V) of any nonflat Yang—Mills
connection V over the m-sphere S™ (m > 5) with the standard Riemannian metric as follows:

(V)2 m+1.

Notice the canonical connection on S™ = SO(m + 1)/SO(m) (m > 5) achieves the equality.

1. Introduction

We consider a compact Riemannian manifold M, a principal G-bundle P over M,
and the associated G-vector bundle E over M, where G is a compact Lie group. On
the space C( E) of G-connections of E, we consider the Yang—Mills functional:

1
YM(V) =5 [ IET I,V ec(E),

where RV is the curvature of the connection V and the norm is defined in terms of
the Riemannian metric g on M and a fixed Ad(G)-invariant inner product on the
Lie algebra g of G.

A critical point of Y M is called a Yang—Mills connection. Our interests are
in the second variation of the functional at such a connection and instability of
Yang-Mills connections. A Yang—Mills connection V is said to be weakly stable
if the second variation of Y M at V is non-negative, i.e.,

d2

t=0

for every smooth one-parameter family V?, |t| < ¢, with VO = V. Otherwise,
we say that V is unstable. Furthermore, Bourguignon and Lawson [B.L] gave
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the second variation formula and the notions of (Morse) index i(V) and nullity
n(V) of a Yang-Mills connection V. Roughly speaking, the index is the dimension
of the space of infinitesimal deformations decreasing Y M and the nullity is the
dimension of the space of those preserving Y M (cf. Definition 2.5). Thus instability
of a Yang—Mills connection V means i(V) > 1 (cf. Definition2.6). =

At the Tokyo Symposium on “Minimal Submanifolds and Geodesics” in Septem-
ber of 1977, J. Simons announced the following theorem in his talk:

THEOREM 1.3. For m > 5, any nonflat Yang—Mills connection on any vector
bundle E over the m-sphere S™ with the standard Riemannian metric is un-

stable.

A proof of Theorem 1.3 can be found in the paper of Bourguignon and Lawson
[B.L]. See also [K.O.T]. On the other hand, Laquel [L] showed a table of the indices
and nullities of the canonical connections (which are typical examples of Yang—
Mills connections) of all compact irreducible symmetric spaces and all compact

simple Lie groups. On his table, the index i(Vy) of the canonical connection V
on the m-sphere S™ (m > 5) with the standard Riemannian metric is given by

I(VO) =m+1. (14)

Now our theorem is as follows:

"~ THEOREM 1.5. (cf. Theorem4.1) For any nonflat Yang—Mills connection V on
any vector bundle E over the m-sphere S™ (m > 5) with the standard Riemannian
metric,

i(V)>m+ 1.
It might be of some interest to compare our result with instability results for

harmonic maps.

THEOREM 1.6. (Xin [X]) For m > 3 and for any Riemannian manifold N, there
is no nonconstant weakly stable harmonic maps f: S™ — N.

Our proof of the above main theorem follows the method of El Soufi developed
in the setting of minimal immersions (cf. [E1]) and harmonic maps (cf. [E1], [E2])
on the index i( f) of a harmonic map f: S™ — N:

THEOREM 1.7. (El Soufi [E2]) For m > 3, any Riemannian manifold N and any
nonconstant harmonic map f: 5™ — N,

i(fy>m+1. (1.8)

The estimate (1.8) is also optimal, in fact, the identity map id: S™ — S™
(m > 3) and the Hopf fibering 7: S 3 — 52 achieve the equality (cf. [S], [U]).
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2. Preliminaries
2.1. YANG-MILLS CONNECTIONS

Let (M,g) be a compact Riemannian manifold, P a principal G-bundle over
M, and E the associated G-vector bundle of rank r over M, with projections
n:P — M and 7: E — M, where G is a compact Lie group. Recall for a given
faithful representation p: G — O(r), E is given as

E=Px,R" ={[u,y;ue P,ye R},

where [u, y] is an equivalence class containing (u, y) € P xR", and the equivalence
relation is (u,y) ~ (ub,p(b)"'y),b € G. Each C* section 0 € T'(E) can be
regarded as a C°> map & of P into R" by

&(u) = u"Y(o(z)), u€P, (2.1)

where m(u) = z and each u € P is regarded here as an onto isomorphism
w:R" 3 y — [u,y] € E,, where E; is the fiber of E overz € M.

Via (2.1), the connection form w (cf. [K.N, p.64]) corresponds to a unique
G-connection V on E by

(Vo) = Dé = dé + p(w)d, o€ T(E), 2.2)
where Dé is the covariant exterior differentiation defined by

D&(W) = da(WH ), WeT,P,
and

(VoY (W) =u Y (Vewo), W eT,P. (2.2)

Here ., is the differential of the projection 7: P — M and WH is the horizontal
component of W corresponding to the decomposition

T.P=V,® H,,

where V,, = {W € T, P; 7. (W) = 0} (the vertical space) and H, = {W €
T, P;w(W) = 0} (the horizontal space).

Let C(F) be the space of all C* G-connections on E. The group of all auto-
morphisms of £ inducing the identity map of M is called the gauge group, denoted
by G(F). The gauge group G(E) is identified with the group of all automorphisms
¢ of P satisfying ¢(ua) = ¢(u)a foru € P and a € G. The identification is given
by G(F) > ¢ — ¢, where ¢ := ¢ o u with u € P being considered as a linear
isomorphism u: R” — E,. The group G(E) acts on C(E) by

V¥ = ¢~ (V(p0)),
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foroc € I'(E), ¢ € G(E)and V € C(E). We can regard the space of C'*° sections
of the vector bundle P X oq g, ['(P X a4 8), as the Lie algebra of G(£). The bundle
P xaqg is identified with a subbundle of End(E) via p, denoted by gg. The
identification is given by

P xad8 3 [u, Al wop(A)ou™' € End(E).

Note that C( F’) admits an affine structure, i.e., the difference of two connections
A=V —-Visin Q(gg) and C(E) = {V + A;A € Q!(gg)} for any fixed
V € C(FE). Equivalently, the difference of two connection forms a = w — '
is in QI(P X ad g) and any connection form can be expressed as w + o with
a € QI(P xaq g) for a fixed connection form w.

To each G-connection V on E, the curvature tensor RV € Q%(gg) is by
definition

RY(X,Y)=[Vx,Vy] - Vixy

for C'*° vector fields X and Y on M. It corresponds to a g-valued 2-form 2 on P,
called the curvature form, defined by 2 := dw + w Aw with w being the connection
form of V. It holds that

RV‘P :(P_IORVOQO,

equivalently, Q = ¢*Q with ) being the curvature form of the connection form
Prw.

Let <, > be an Ad(G)-invariant inner product on g, which induces fiber metrics
on F Xa4 g and gg, respectively, denoted by the same symbol <, >.

In general, for a connection V on a vector bundle F over M, let dV: QP(F) —
QPY(F), p > 0 be the corresponding exterior differential operator (cf. [B.L]). A
fiber metric < , > of F' induces an inner product on A?T; M ® F, together with
g, denoted by the same symbol <, >. We denote the associated norm by || ||. The
global inner product ( , ) on Q7(F) is defined by

(¢790):/M< ¢750> Vg

for ¢, € QP(F).Let §V: QP (F) — QP(F), p > 0, be the formal adjoint of the
operator d .
Note that for ¢ € G(F)

IRV Il = [|RV|l;  or equivalently ||| = ||]I.

The tangent space to the orbit of the gauge group at V, considered as a subspace
of Ql(gg) 2 TyC(E),is d¥ (Q%(gg)). Its orthogonal complement to this subspace
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in Q!(gg) is Ker(8V). The subspace Ker(6V) C Q!(gg) is called the space of
infinitesimal deformations of the connection V.
Now let us recall the Yang—Mills functional.

DEFINITION 2.3. The function YM:C(E) — R defined by

1
yME) =5 [Py,

is called the Yang—Mills functional. A critical point V € C(FE) of the Yang-Mills
functional is called a Yang—Mills connection which is equivalent to 6YRY = 0.
The Hodge-deRham Laplacian for vector bundle valued exterior p-forms is by
definition

AY =dY6Y 4+ 6Vd".
Define an endomorphism RV of the space QI(GE) by
m
R (9)(X) = Y _[RY (e, X), p(e))]
J=1

for o € Q'(gg), where {ey,...,en} is any local orthonormal frame field on M
with respect to g. Then the second variation formula is given by:

THEOREM 2.4. (cf. [B.L]) Suppose V = V° is a Yang—Mills connection and
B = £|=0V* € Q!(gg). Then the second variation of the Yang-Mills functional
is given by

d2
a2

YM(VY) = /M(évdVB +%Y(B), B},

t=0

= [ (s7(B). B,

provided §¥ B = 0, where
SY(B) = AVB + %V (B).

The operator SV is elliptic and self-adjoint and the restriction to the space
Ker(6V) C Q!(gg) has eigenvalues \; < A, < -+ — oo, with associated finite
dimensional eigenspaces E),, E),,... . Then we can define the (Morse) index
and the (Morse) nullity as follows (cf. [B.L]).

DEFINITION 2.5. The index of a Yang-Mills connection V is the dimension
i(V) = dim(®x<oE»). The nullity of V is the dimension n(V) = dim(Ep).
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DEFINITION 2.6. A Yang-Mills connection V is said to be weakly stable if
i(V) = 0, i.e., the second variation > 0. Otherwise, V is said to be unstable.

2.2. CONFORMAL TRANSFORMATIONS
Let S™ = {z € R™;||z|| = 1} be the unit sphere and for any a € R™+!, define a
C vector field a on S™ by

a(y) = a—(a,y)y, y€ I, 2.7

where (, ) is the standard inner product on R™*! and ||z||? = (z,2),z € R™*!,
Let v; = v#,t € R, be a flow of g, i.e., each v; is a C* diffeomorphism of 5™
onto itself satisfying

Ys 0t = Ys+¢» St €R, and (2.8)
d — m

—|  n(z)=a(z),z e S™. 2.9)
dt t=0

It is wellknown (cf. [E1], [O]) that each ~v; is a conformal transformation of
S™,ie.
Vi 9 = oug (2.10)

where g is the standard Riemannian metric on S™ with constant curvature 1, and
oy is a C'™ positive function on S™ which is given (cf. [E.1]) by

ay(z) = ||a|[*(sinht (z,a) + ||a|| cosht) ™2, z € S™. (2.11)

Let D be the Levi-Civita connection of (S™,g) and D that of (S™,v7g).
Then

dy(DxY) = Day,xd:Y, (2.12)

for all C'*° vector fields X and Y on S™. It is known (cf. [E1]) that

DxY — DxY = lay'{g(X,gradey)Y + g(Y, grada;) X
—9(X,Y)grad o} (2.13)

for C* vector fields X and Y on §™, where grad o is the gradient vector field of
o with respect to g which is given (cf. [E1]) by

2

Tal (0)*?sinht a. (2.14)

grado; = —
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3. Deformations of connections

In what follows, we always assume the base Riemannian manifold (M, g) is the
unit sphere (5™, g) with the standard Riemannian metric g of constant curvature 1
and preserve the situations in Section 2.

We fix a G-connection V on E with a connection form w. For 0% a € R™t!,
let v; be a flow of @ on S™. We can define a one-parameter family ¥;, ¢ € R of
bundle maps of F lifting v, as the flow of the horizontal lift @* of the vector field a
to E. That is, for each w € E with 7(w) = z, the curve ¢ — 7;(w) is a horizontal
lift of the curve ¢t — ~;(z). We also define a one-parameter family ¢;, t € R, of
bundle maps of P so that each u € P with 7(u) = z, a curve t — ¢4(u) is the
parallel transport of u with respect to w along the curve ¢ — v;(z). Then it holds
that

QOt('LL) = ;)'/t ou, uE€E P, (3.1)

where each v € P is regarded as an onto linear isomorphism z:R" — E, and
4 o u is its composition with ¥;: £, — E,,t(z .
For each C section o € I'( E), define a new C'*® section ¥; - 0 € I'(E) by

(3¢ - 0)(x) = (o (y7 (2))), =z €S™ (32)
It is known (cf. [K.N, p- 114]) that

d .
m o -0 = —Vjo. (3.3)

Moreover, the C* map of P into R" corresponding to the section ¥; - o € T'(E)
as in (2.1) is given by

(3:-0) =G oL, (3.4)
that is, (3; - o)~ (u) = &(¢; !(v)), u € P.

DEFINITION 3.5. For a GG-connection V of E with a connection form w, define
a one-parameter family of connections V?, ¢ € R by

Vio =% (Vipx(§¢-0)), o€TI(E) (3.6)

for a vector field X on S™.

LEMMA 3.7. (i) V! is a G-connection with the connection form p}w.
(ii) Its infinitesimal deformation satisfies that

d

a t _ z\pY
3|, v = @R (3.8)
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That is, for a vector field X on S™,

4 V4o = RY(d,X)o, o€T(E).
dt |,—o

(ili) The curvature form Q¥:¥ is equal to @i, and for C* vector fields X
andY on S™,

RY'(X,Y)o = 5" R¥(d7:X,dvY)(5: - 0), o €L(E). (3.9)

Proof. For (i), in fact, it is easy to see V' is a connection on E. For instance,
for f € C°(S™), 0 € I'(E) and a C™ vector field X on 5™,

V%(fo) = % (Vayx(Fi - (f9)))

= 37 Adn(X)(fori VA o + f o 'Vayx (5 - o)}
(XHo+ 77" (Vayx(Fi - 0))
= (Xf)o+ fVio

since dv;(X)(fo ;') = X f o, !, and the other conditions to be a connection
are verified in a similar way. On the other hand, since ¢; 0 Ry, = R} o ¢4, where for
b€ G,Ry: P> ur ub e P,p;wsatisfies two conditions to be aconnection form,
in fact. To see that V' is a G-connection, we only have to see the connection form
of V* coincides with ¢}w. To see this, let V* be the G-connection corresponding
to piw. By (2.2), for o € T'(E),

(Via)™ = dé + p(piw)é. (3.10)
Since, for a vector field W on P,

d5(W) = (d(5 0 7 ')(dpW)) 0
= (d(§:0 o) (dpW)) 0 ¢

and (g;w)(W) = w(dpW) o ¢y,

da(W) + p((¢iw)(W))s = {d(7: - o)(dp:W)
+p(w(dp:W)) (e - o)} 0 @
= (Vd'y:(o)('?t c0)) (W)o ¢,
= (37" Vay(o)(Ft - 0)) (W) = (Vie) (W),

by (2.2'). Thus we get Vi = Vi, ie., (i).
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(ii) For a vector field X on S™ and o € T'(E),

d| o d| . )
azhovxf’ = o, Vayx (3t - 0)
d -1 d .
B at=07t .VX0+VX(dt t=07t‘a)
d
+ atl_, Viypxo.

By (3.3)and %h:od'th = —[@, X], the right hand side coincides with RV (@, X )a.
The assertion (iii) follows from definitions of RV', V¢ and the curvature
form. O

LEMMA 3.11. Ifi(a)RY = 0, then
piw=w, teR
Proof. By Lemma3.7 (ii) and (2.2), for o € I'(E),

d
((@RVe)” = —| (V')
di t=0
= = {do +p(giw)o)
t=0
=p <i w*w> o
dt t=0 ¢ '
Thus if i(@)RVo = 0 for any o € I'(E), then a‘%h:oﬁw = 0 because of the
faithfulness of p. This implies p;w = w,t € R. ]

LEMMA 3.12. (cf. [B.L, p.215]). If V is a Yang—Mills connection, then B :=
i(@)RY, a € R™*1, belongs to the subspace Ker(6" ) of Q' (gE).

Proof. This lemma is an immediate consequence of Lemma 7.3 in [B.L, p. 215]
since 6V RY = 0 and a is a vector field of gradient type in the sense of [B.L]. O

4. Main theorem

We shall prove:

THEOREM 4.1. Let (S™,g)(m > 5) be the m-sphere with the standard Rieman-
nian metric g of constant curvature 1. Let E be any G-vector bundle over S™ with
G a compact Lie group and V any nonflat Yang—Mills connection on E. Then

i(V)>m+1.
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LetOxa € R™*! be arbitrarily fixed. Let V¢, t € R, be the one-parameter
family of G-connections in Definition 3.5. We shall show the following two propo-
sitions in the following sections.

PROPOSITION 4.2. Put
1 ¢
1) =yM) = 5 [ IR

Then we obtain

@) £ =Tt sinnt [ alli@n| P,

(ll) f”(O) ” ” ||i(d)RV||2vg.

PROPOSITION 4.3. Ifi(@a)RY = 0 for some 0% a € R™*!, then V is flat.

Proof of Theorem4.1. By these two propositions, we obtain immediately
Theorem4.1. In fact, assume that V is a nonflat Yang-Mills connection on E
and m > 4. Then by Lemma 3.12 and Proposition4.3, V := {i(a)R" € Q!(gg);
a € R™1} is an (m + 1)-dimensional subspace of Ker(¢§"), and by Propo-
sitions 4.2, the second variation of Y M at V is negative definite on V. Thus,
i(V)>2m+ 1. ]

5. Proof of Proposition 4.2

We only have to show (i) since (ii) follows immediately from (i).
Let Bt = %lmovtﬁ. By (3.8), we have

Bt = i(@)RY' = RV (a,9). (.1)
We first show
§V' RV (X) = Z{RV (De,e; — De,e;, X)
7=1

+RY' (e, De, X — D¢, X)}, (5.2)
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where {e;}7, is a local orthonormal frame field on (5™, g), and D and D are
the Levi—Civita connections of (5™, ¢) and (S™,v;g), respectively. In fact, for
o € T(E),

(VR )(X)o = — SV B )(es, X)o
1=1

- Z{v;(RV‘(e,-, X)o) = RV (D.,e;, X)o
=1

~RY'(¢j, D, X )0 — R¥ (¢, X )V, o}
m

=337 Ve, (RY (dyeej, dv: X )2 - 0)
Jj=1

~RY(dy(De,e5), 41X )i 0
— RV (dyiej,dvi(De, X))t - 0
_Rv(d'ytej, d")’tX)Vd'ytej Yt - 0'}

because of the definition of V! R"" and (3.9). Here Vine, (RY (dviej, d1: X )Hi-0)
coincides with

(Vane, RY )(dyiej, dve X )Fe - 0 + RY (Danye, dvies, a1 X )it - 0
+RY(dviej, Davee, d1:X )71 - 0 + RY (dys€j, d7: X )Varye, 71 - 0. (5.3)

Since €}(1:2) := ay(2)~V*(dvi€;) vz, j = 1,...,m,is alocal orthonormal frame

field with respect to g and the Levi—Civita connection D of 47g = g satisfies
(2.12), (5.3) coincides with

ai(Ver RV (€}, d1tX )7t 0 + RY (dye(De,e;), dX)ie - 0
+RY (dvyzej, d'yt(f)e]X))’yt -0 + RY (dve;j, 474X )Vye, At + 0.

Notice that
S (Ve RY)(€}, d7X)Fe -0 =0
j=1
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since §YRY = 0 (V is a Yang-Mills connection). Therefore we get

V'RV X)o = =D 47" - {RV(dy(De,€;), d1eX )3t - 0
i=1 - .

—RY(dv(De,€;),dv1 X )7 0
+Rv(d7tej, d’yt(De]X))’yt .o
—RY (dviej, dy(De, X))t - 0}
= — i{th(De]ej — De,ej,X)o
j=1
+RY'(ej, De, X — D¢, X)o},

which implies (5.2).
By (2.13), we have for any C*° vector field X on 5™,

f)e]X — De, X = %at'l{g(ej,gradat)X + g(X, grad o, )e;

—g(e;, X) grada;}, (5.4)
Z(De]ej - De,ej) = l2- m)a; ! grad a;. 5.5)
J=1
Therefore, substituting (5.4) and (5.5) into (5.2),
§V' RV ) X))o = —1(2-m)a; 'RV (grad oy, X )o
2 t g
1 & ¢
—EZa[IRV (ej,9(e;,grad as) X
J=1

+9(X,gradoy)ej — g(ej, X )graday)o
= —{1(2-m)a; 'R (grad oy, X )
+1a7 'RV (grad a, X )o
_%at—let(X, gradoy)o'}
= -1a- m)a; 'RV (grad ay, X )o.

Substituting (2.14) into this, we obtain
t 4 - t
6V RY)(X)o = mnlayz sinht RV (@, X)o,

that is,

4—m 12

§V'RY = Tal sinht i(a)RY" .
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Therefore together with (5.1), we finally obtain

o) = [ (R, BY,

_4-m sinht/ l/2||z(a)RV [|2v,.
|lall sm o
6. Proof of Proposition 4.3.
Let V be a G-connection on E with a connection form w. Assume that
i(@)RY =
for some 0 % @ € R™*!. Then by Lemma3.11,
pjw=w, teR, 6.1)

where ¢;,t € Ris a one-parameter family of C'* bundle maps of P corresponding
to a € R™*! defined by: for each u € P with 7(u) = =, the curve t — @;(u)
is the parallel transport of V along the curve t — v(z) and v is a flow on 5™
of a.

Then we have

LEMMA 6.2. (i) We have

Hy () = ¢uHu, u€ P, 6.3)

we(u)

where H, = {X € T, P;w(X) = 0} is the horizontal subspace of T, P and ¢4
is the differential of ¢ at u. (6.3) means that @, sends a horizontal curve s — u(s)
in P to another horizontal one s — ¢4(u(s)) in P.
(ii) Let w € P\r~!( - fa)- Then oo = limy—.oo p1(u) exists and lies in
(- Tell ) C P, and the correspondence u — U, is smooth.

Proof. The assertion (i) is an immediate consequence of (6.1). We prove (ii).
For each z € S™\{ — i}, limemoo 14(2) = 2y, and the curve ¢ — yy(z) isa
smooth curve with finite length. Thus we get a smooth curve s — ¢(s) connecting
z and ﬁﬂ’ reparametrizing by the arc length s = s(t). Then for any u € P with
m(u) = z, @(u) is the parallel transport of u also along c(s) with s = s(t). The
assertion (ii) is now straightforward. O

Fix any point ug € 7~ (”a”) By Lemma6.2, for each u € P\n--‘( ﬁ),
there exists a unique b(u) € G such that

tl_xgl() wi(u) = uob(u). 6.4)
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Therefore we can define a smooth mapping ® of P\r~!( — ﬂ%ﬂ) into the product
bundle (S™\{ - 1a}) X G by

O(u) = (m(u),b(u)). 6.5)
Clearly ¢ has a smooth inverse and satisfies
D(ub) = ®(u)p, beG

forall u € P\7r“‘( - ﬂ%”) Thus ® gives an isomorphism between the principal
G-bundles P\r~'( — &) and (S™\{ - 12}) x G-
Moreover, we have

LEMMA 6.6. The differential ®, of ® atu € P\r~!( - ]ﬁ) is given by
Q*(X) = (W*X, Ab(u))a X eT,P,
where A is a unique element of g such that the vertical component of X, X",
equals A3,
Proof. For a smooth function f on 5™ X G, we shall calculate
Bu(X)f = ®u(XT)f 4+ 0u(XV)f = X (fo @)+ XV(fo @)

As for &, XV,

3, XVf = XV(fod)= A%(fo®)
d
2| rr(uexp(s)), buexp(sA)))
s=0
d
S| s (), b exp(s))
S 1s=0
= (07 Ab(u))f
since b(uc) = b(u)c for ¢ € G by (6.4) and the definition of ;. Thus we get
B, XY = (0, Ay(y))-
As for ®, X H, take any horizontal curve I 3 s — u(s) € P with u(0) = v and
U (0) = X, where I is an open interval containing 0. By Lemma6.2 (i), for each
t, the curve s — ¢;(u(s)) is horizontal, i.e.
w((prou)*(s)) =0
forall s € I. By Lemma6.2 (ii), letting ¢ — oo, we get

w(li ()) = 0
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forall s € I. That is, the curve s — uq () is also a horizontal curve. But
T(too(8)) = ﬂ_

Therefore ux (), s € I, is asingle point. Thus b(u(s)) = b(u) forall s € I. Hence
we get

d
Hyr _
e.X1f = —

d

f(®(u(s)))

s=0

| f(r(u(s)),b(u(s)))

ds s=0
= (m.X,0)f.

We obtain Lemma 6.6. O

DuetoLemma6.6,forall X = X7+ XV where X? ¢ H,and XV = A* € V,
with A € g, we get

(@~ W) (M X, Ap(u) = w(B71 (X, Ap(u))
w(X)
e A_-

This means that ®~1"w coincides with the canonical flat connection form on the
product bundle ($™\{ — W:—”}) X G (cf. [K.N, p.92]). Therefore the connection

form w corresponding to V gives a flat connection on the G-bundle P\r~! (- ”%”)

(cf. [K.N, p. 92]). Since P\r~1( — W‘l—”) is an open and dense subset of P and
the curvature form ¢ is continuous, w is a flat connection on P. We obtain
Proposition4.3. a

REMARK 6.7. In the case m = 4, for any Yang—Mills connection V of any
G-vector bundle over S™, the nullity is estimated as

n(V)zm+1=5,

by a similar argument.
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