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Abstract. We give an optimal estimate for the (Morse) index i(0) of any nonflat Yang-Mills
connection V over the m-sphere sm (m  5) with the standard Riemannian metric as follows:

i(~)  m + 1.

Notice the canonical connection on S’n = SO(m + 1)/SO(m) (m  5) achieves the equality.
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1. Introduction

We consider a compact Riemannian manifold M, a principal G-bundle P over M,
and the associated G-vector bundle E over M, where G is a compact Lie group. On
the space C ( E ) of G-connections of E, we consider the Yang-Mills functional:

where Rv is the curvature of the connection ~ and the norm is defined in terms of
the Riemannian metric g on M and a fixed Ad(G)-invariant inner product on the
Lie algebra g of G.
A critical point of y.M is called a Yang-Mills connection. Our interests are

in the second variation of the functional at such a connection and instability of
Yang-Mills connections. A Yang-Mills connection is said to be weakly stable
if the second variation of y M at V is non-negative, i.e.,

for every smooth one-parameter family Vt, Itl  E, with ~0 = V. Otherwise,
we say that V is unstable. Furthermore, Bourguignon and Lawson [B.L] gave
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the second variation formula and the notions of (Morse) index i(0) and nullity
n(~) of a Yang-Mills connection B7. Roughly speaking, the index is the dimension
of the space of infinitesimal deformations decreasing y M and the nullity is the
dimension of the space of those preserving YM (cf. Definition 2.5). Thus instability
of a Yang-Mills connection i7 means i(~)  1 (cf. Definition 2.6). 

’ 

At the Tokyo Symposium on "Minimal Submanifolds and Geodesics" in Septem-
ber of 1977, J. Simons announced the following theorem in his talk:

THEOREM 1.3. For m j 5, any nonflat Yang-Mills connection on any vector
bundle E over the m-sphere sm with the standard Riemannian metric is un-
stable.

A proof of Theorem 1.3 can be found in the paper of Bourguignon and Lawson
[B.L]. See also [K.O.T]. On the other hand, Laquel [L] showed a table of the indices
and nullities of the canonical connections (which are typical examples of Yang-
Mills connections) of all compact irreducible symmetric spaces and all compact
simple Lie groups. On his table, the index i(~0) of the canonical connection Do
on the m-sphere Sm (m  5) with the standard Riemannian metric is given by

Now our theorem is as follows:

THEOREM 1.5. (cf. Theorem 4.1) For any nonflat Yang-Mills connection ~ on
any vector bundle E over the m-sphere sm (m  5) with the standard Riemannian
metric,

It might be of some interest to compare our result with instability results for
harmonic maps.

THEOREM 1.6. (Xin [X]) For m  3 and for any Riemannian manifold N, there
is no nonconstant weakly stable harmonic maps f : Sm - N.

Our proof of the above main theorem follows the method of El Soufi developed
in the setting of minimal immersions (cf. [E1]) and harmonic maps (cf. [E1], [E2])
on the index i( f ) of a harmonic map f : S’ ---+ N:

THEOREM 1.7. (El Soufi [E2]) For m  3, any Riemannian manifold N and any
nonconstant harmonic map f : Sm ~ N,

The estimate (1.8) is also optimal, in fact, the identity map id: Sm ~ S"2
(m  3) and the Hopf fibering x : S3 ~ S2 achieve the equality (cf. [S], [U]).
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2. Preliminaries -

2.1. YANG-MILLS CONNECTIONS

Let (M,g) be a compact Riemannian manifold, P a principal G-bundle over
M, and E the associated G-vector bundle of rank r over M, with projections
03C0: P ~ M and 7r: E ~ M, where G is a compact Lie group. Recall for a given
faithful representation p: G - O(r), E is given as

where [u, y] is an equivalence class containing (u, y) E P x RT, and the equivalence
relation is (u, y) - (ub, p(b)-ly), b E G. Each CI section Q E I(E) can be
regarded as a CI map â of P into W by

where 03C0(u) = x and each u E P is regarded here as an onto isomorphism
u : RT :3 y - [u, y] E Ex, where Ex is the fiber of E over x E M.

Via (2.1), the connection form w (cf. [K.N, p. 64]) corresponds to a unique
G-connection V on E by

where D is the covariant exterior differentiation defined by

and

Here x* is the differential of the projection 7r: P - M and WH is the horizontal
component of W corresponding to the decomposition

where Vu = 1 W E T,, P; 03C0*(W) = 0} (the vertical space) and Hu = {W E
TuP; 03C9(W) = 0} (the horizontal space).

Let C(E) be the space of all CI G-connections on E. The group of all auto-
morphisms of E inducing the identity map of M is called the gauge group, denoted
by Ç( E). The gauge group G(E) is identified with the group of all automorphisms
cp of P satisfying ~(ua) = ~(u)a for u E P and a E G. The identification is given
by G(E) ~ ~ ~ Ç3, where cp := ~ o u with u E P being considered as a linear
isomorphism u: RT ~ Ex. The group G(E) acts on C(E) by
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for Q E 0393(E), ~ E g(E) and i7 E C(E). We can regard the space of C°° sections
of the vector bundle P Xpd g, r(P xAd g), as the Lie algebra of 9 (E). The bundle
P Xpd g is identified with a subbundle of End(E) via p, denoted by gE. The
identification is given by

Note that G(E) admits an affine structure, i.e., the difference of two connections
A = B7 - ~’ is in 03A91(gE) and C(E) = {~ + A ; A E 03A91(gE)} for any fixed
B7 E C(E). Equivalently, the difference of two connection forms a = w - ce’
is in 03A91(P xAd g) and any connection form can be expressed as w + a with
a E 03A91(P xAd g) for a fixed connection form w.

To each G-connection i7 on E, the curvature tensor R7 E Q2 (OE) is by
definition

for C°° vector fields X and Y on M. It corresponds to a g-valued 2-form n on P,
called the curvature form, defined by n : = dw + 03C9 A 03C9 with w being the connection
form of V. It holds that

equivalently, Q = *03A9 with Q being the curvature form of the connection form
*03C9.

Let  , &#x3E; be an Ad(G)-invariant inner product on g, which induces fiber metrics
on r X Ad g and gE, respectively, denoted by the same symbol  , &#x3E;.

In general, for a connection i7 on a vector bundle F over M, let d~: 03A9p(F) ~
03A9p+1(F), p  0 be the corresponding exterior differential operator (cf. [B.L]). A
fiber metric  , &#x3E; of F induces an inner product on APT; M 0 Fr together with
g, denoted by the same symbol  , &#x3E;. We denote the associated norm bey 1111. The
global inner product ( , ) on QP((F) is defined by

for 03C8, ~ E S2p(F). Let 6°: 03A9p+1(F) ~ Stp(F), p  0, be the formal adjoint of the
operator dv.

Note that for ~ ~ G(E)

The tangent space to the orbit of the gauge group at B7, considered as a subspace
of 03A91(gE) ~ TB7C(E), is d~(03A90(gE)). Its orthogonal complement to this subspace



181

in 03A91(gE) is Ker(b7). The subspace Ker(6V) C 03A91(gE) is called the space of
infinitesimal deformations of the connection B7.
Now let us recall the Yang-Mills functional.

DEFINITION 2.3. The function yM: C ( E ) ~ R defined by

is called the Yang-Mills functional. A critical point ~ E G(E) of the Yang-Mills
functional is called a Yang-Mills connection which is equivalent to bvrv = 0.
The Hodge-deRham Laplacian for vector bundle valued exterior p-forms is by
definition

Define an endomorphism 9t v of the space 03A91(gE) by

for ~ EnI (9E ), where {e1, ..., em} is any local orthonormal frame field on M
with respect to g. Then the second variation formula is given by:

THEOREM 2.4. (cf. [B.L]) Suppose 17 = ~0 is a Yang-Mills connection and
B = /tlt=o Vt E 03A91(gE). Then the second variation of the Yang-Mills functional
is given by

provided 03B4~B = 0, where

The operator S~ is elliptic and self-adjoint and the restriction to the space
Ker(6V) C nI(9E) has eigenvalues Ai  03BB2  ··· - oo, with associated finite
dimensional eigenspaces Ea,, E03BB2,... . Then we can define the (Morse) index
and the (Morse) nullity as follows (cf. [B.L]).

DEFINITION 2.5. The index of a Yang-Mills connection V is the dimension
i(V)= dim(~03BB0E03BB). The nullity of V is the dimension n(V) = dim(Eo).
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DEFINITION 2.6. A Yang-Mills connection V is said to be weakly stable if
i(V) = 0, i.e., the second variation  0. Otherwise, V is said to be unstable.

2.2. CONFORMAL TRANSFORMATIONS

Let sm = {x E Rm; ~x~ = 1} be the unit sphere and for any a E Rm+1, define a
C~ vector field â on sm by

where ( , ) is the standard inner product on Rm+1 and IIxll2 = x, x&#x3E;, x E Rm+1.
Let It = 03B3at, t ~ R, be a flow of a, i.e., each It is a C°° diffeomorphism of SI
onto itself satisfying

It is wellknown (cf. [El], [0]) that each It is a conformal transformation of

Sm, Le.

where g is the standard Riemannian metric on Sm with constant curvature 1, and
at is a Coo positive function on S"2 which is given (cf. [E.1]) by

Let D be the Levi-Civita connection of (Sm, g) and D that of (sm,,:g).
Then

for all C~ vector fields X and Y on 5’"B It is known (cf. [El]) that

for C°° vector fields X and Y on Sm, where grad at is the gradient vector field of
at with respect to g which is given (cf. [El]) by
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3. Déformations of connections

In what follows, we always assume the base Riemannian manifold (M, g) is the
unit sphere (Sm, g) with the standard Riemannian metric 9 of constant curvature 1
and preserve the situations in Section 2.
We fix a G-connection i7 on E with a connection form 03C9. For 0% a e Rm+1,

let yt be a flow of a on Sm . We can define a one-parameter family t, t E R of
bundle maps of E lifting yt as the flow of the horizontal lift a* of the vector field à
to E. That is, for each w E E with 03C0(w) = x, the curve t ~ t(w) is a horizontal
lift of the curve t ~ 03B3t(x). We also define a one-parameter family ~t, t ~ R, of
bundle maps of P so that each u ~ P with r(u) = x, a curve t ~ ~t(u) is the
parallel transport of u with respect to w along the curve t ~ 03B3t(x). Then it holds
that

where each u E P is regarded as an onto linear isomorphism u : RT ~ Ex and
yt o u is its composition with t: Ex ~ E’Yt(x).

For each CI section a E 0393(E), define a new C°° section it . U E 0393(E) by

It is known (cf. [K.N, p. 114]) that

Moreover, the CI map of P into RT corresponding to the section t·03C3 E 0393(E)
as in (2.1 ) is given by

DEFINITION 3.5. For a G-connection i7 of E with a connection form w, define
a one-parameter family of connections ~t, t ~ R by

for a vector field X on Sm.

LEMMA 3.7. (i) ~t is a G-connection with the connection form ~*t03C9.
(ii) Its infinitesimal deformation satisfies that
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That is, for a vector field X on S’n,

(iii) The curvature form 03A9~*t03C9 is equal to t and for CI vector fields X
and Y on sm,

Proof. For (i), in fact, it is easy to see ~t is a connection on E. For instance,
for f E C~(Sm), (J E 0393(E) and a C~ vector field X on Sm,

since d03B3t(X)(f o 03B3-1t) = X f 0 -it and the other conditions to be a connection
are verified in a similar way. On the other hand, since ~t o Rb = Rb o pt, where for
b e G, Rb: P ~ u ~ u·b e P,~*t03C9 satisfies two conditions to be a connection form,
in fact. To see that ~t is a G-connection, we only have to see the connection form
of ~t coincides with ~*t03C9. To see this, let ~t be the G-connection corresponding
to pgoe. By (2.2), for a E 0393(E),

Since, for a vector field W on P,

and
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(ii) For a vector field X on Sm and a E r(E),

By (3.3) and 1t It=od,tX = - [a, X], the right hand side coincides with R~(a, X)03C3.
The assertion (iii) follows from definitions of R~t, ~t and the curvature

form. 0

LEMMA 3.1 l. IF i(a)R~ = 0, then

Thus if i(a)R~03C3 = 0 for any 03C3 e 0393(E), then d dt|t=0~*t03C9 = 0 because of the
faithfulness of p. This implies ~*t03C9 = 03C9, t ~ R. D

LEMMA 3.12. (cf. [B.L, p. 215]). If ~ is a Yang-Mills connection, then B :=
i(a)R~, a e Rm+1, belongs to the subspace Ker(03B4~) ofnl(gE).

Proof. This lemma is an immediate consequence of Lemma 7.3 in [B.L, p. 215]
since 6V’ RV’ = 0 and a is a vector field of gradient type in the sense of [B.L]. 0

4. Main theorem

We shall prove:

THEOREM 4.1. Let (Sm, g)(m  5) be the m-sphere with the standard Rieman-
nian metric 9 of constant curvature l. Let E be any G-vector bundle over sm with
G a compact Lie group and ~ any nonflat Yang-Mills connection on E. Then
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Let 0 ~ a e Rm+1 be arbitrarily fixed. Let ~t, t ~ R, be the one-parameter
family of G-connections in Definition 3.5. We shall show the following two propo-
sitions in the following sections.

PROPOSITION 4.2. Put

Then we obtain

PROPOSITION 4.3. If i(â)Rv = 0 for some 0 ~ a E Rm+1, then ~ is flat.
Proof of Theorem 4.1. By these two propositions, we obtain immediately

Theorem 4.1. In fact, assume that V is a nonflat Yang-Mills connection on E
and m &#x3E; 4. Then by Lemma3.l2 and Proposition 4.3, V = {i(a)R~ E 03A91(gE);
a E Rm+1} is an (m + 1)-dimensional subspace of Ker( 6V), and by Propo-
sitions4.2, the second variation of y M at B7 is negative definite on V. Thus,
i(~)  m+1. ~

5. Proof of Proposition 4.2

We only have to show (i) since (ii) follows immediately from (i).
Let Bt = d ds|s=0~t+s. By (3.8), we have

We first show
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where {ej}mj=1 is a local orthonormal frame field on (Sm,g), and D and D are
the Levi-Civita connections of (Sm, g) and (Sm, 03B3*tg), respectively. In fact, for
(J e 0393(E),

because of the definition of

coincides with

Since e’j(03B3tx) := 03B1t(x)-1/2(d03B3tej)03B3tx, j = 1,..., m, is a local orthonormal frame
field with respect to g and the Levi-Civita connection  of 03B3*tg = atg satisfies
(2.12), (5.3) coincides with

Notice that
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since is a Yang-Mills connection). Therefore we get
m

which implies (5.2).
By (2.13), we have for any C°° vector field X on S’n,

3=1

Therefore, substituting (5.4) and (5.5) into (5.2),

Substituting (2.14) into this, we obtain

that is,
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Therefore together with (5.1 ), we finally obtain

6. Proof of Proposition 4.3.

Let V be a G-connection on E with a connection form w. Assume that

for some 0 ~ a E Rm+1. Then by Lemma3.11,

where ~t, t ~ R is a one-parameter family of C°° bundle maps of P corresponding
to a e Rm+1 defined by: for each u e P with 03C0(u) = x, the curve t ~ ’Pt ( u)
is the parallel transport of V along the curve t ~ 03B3t(x) and -it is a flow on sm
of â.

Then we have

LEMMA 6.2. (i) We have

where Hu = (X E TuP; 03C9(X) = 0} is the horizontal subspace of TuP and ’Pt*
is the differential of (p at u. (6.3) means that ’Pt sends a horizontal curve s ~ u(s)
in P to another horizontal one s ~ ~t(u(s)) in P.

(ii) Let u E PB03C0-1 ( - a ~a~). Then u~ = limt~~ cpt(u) exists and lies in
7r ( - a ~a~) C P, and the correspondence u ~ u~ is smooth.

Proof. The assertion (i) is an immediate consequence of (6.1). We prove (ii).
For each x E SmB{- a ~a~}, limt~~ 03B3t(x) = a ~a~, and the curve t ~ 03B3t(x) is a
smooth curve with finite length. Thus we get a smooth curve s ~ c(s) connecting
x and yâll, reparametrizing by the arc length s = s(t). Then for any u E P with
7r(u) = x, ’Pt ( u) is the parallel transport of u also along c(s) with s = s(t). The
assertion (ii) is now straightforward. ~

Fix any point uo ~ 03C0-1(a ~a~). By Lemma6.2, for each u E PB03C0-1 ( - Il:11)’
there exists a unique b(u) E G such that
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Therefore we can define a smooth mapping $ of PB03C0-1 ( - a ~a~) into the product
bundle (SmB{-a ~a~})  G by

Clearly -* has a smooth inverse and satisfies

for all u E PB03C0-1 ( - rfan). Thus 4b gives an isomorphism between the princ
G-bundles PB03C0-1 ( - a ~a~) and (S- B 1 - a 1) x G.

Moreover, we have 

LEMMA 6.6. The differential 03A6* of 03A6 at u E PB03C0-1 ( - a ~a~) is given by

where A is a unique element of g such that the vertical component of X, XV,
equals A*u.

Proof. For a smooth function f on S"2 x G, we shall calculate

since b(uc) = b(u)c for c E G by (6.4) and the definition of cpt. Thus we get
03A6*XV = (0, Ab(u»-

As for 03A6*XH, take any horizontal curve 1 3 s ~ u(s) E P with u( 0) = u and
u (0) = X H, where I is an open interval containing 0. By Lemma 6.2 (i), for each
t, the curve s ~ ~t(u(s)) is horizontal, i.e.

for all s e I. By Lemma 6.2 (ii), letting t ~ oo, we get
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for all s E I. That is, the curve s - u~(s) is also a horizontal curve. But

Therefore u~(s), s E I, is a single point. Thus b(u(s)) = b(u) for all s E I. Hence
we get

We obtain Lemma 6.6. o

Due to Lemma 6.6, for all X = XH+XV where XH E Hu and XV = A*u E Vu
with A e g, we get

This means that 03A6-1*03C9 coincides with the canonical flat connection form on the
product bundle (SmB{- a 1) X G (cf. [K.N, p. 92]). Therefore the connection
form w corresponding to V gives a flat connection on the G-bundle PB03C0-1 ( -a ~a~)
(cf. [K.N, p. 92]). Since PBir-1 ( - a ~a~) is an open and dense subset of P and

the curvature form QW is continuous, w is a flat connection on P. We obtain

Proposition 4.3. 0

REMARK 6.7. In the case m = 4, for any Yang-Mills connection V of any
G-vector bundle over Sm, the nullity is estimated as

n(~)  m + 1 = 5,

by a similar argument.
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