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1. Introduction

A Schrôdinger operator is a differential operator whose symbol is the Laplace’s
operator. A quantum integral of a Schrôdinger operator is a differential operator
that commutes with it.
A Schrôdinger operator in m variables is called integrable if it has m alge-

braically independent quantum integrals in involution (i.e. commuting with each
other). This notion is the quantum analogue of the notion of Liouville integrability
of a classical Hamiltonian system.
A Schrôdinger operator in m variables is called algebraically integrable if it

is integrable but the algebra of its quantum integrals cannot be generated by m
operators. In the one-variable case, algebraically integrable operators correspond
to finite-gap potentials [Kr].

One of the most interesting examples of an integrable Schrôdinger operator is
the Calogero-Sutherland operator [C], [S], [OP]. This is the Hamiltonian of the
quantum many-body problem with rational, trigonometric, or elliptic interaction
potential. The Calogero-Sutherland operator depends on a parameter which is
called the coupling constant.

It has been observed [CV 1 ], [CV2], [VSC] that the Calogero-Sutherland oper-
ators become algebraically integrable when the coupling constant takes a discrete
set of special values. This is proved for the rational and trigonometric case but still
remains a conjecture in the elliptic case for two or more variables.

These results can be generalized to Calogero-Sutherland operators associated
with root systems, which were defined in [OP].

In this paper we study integrability and algebraic integrability properties of cer-
tain matrix Schrôdinger operators. More specifically, we associate such an operator
(with rational, trigonometric, or elliptic coefficients) to every simple Lie algebra
g and every representation U of this algebra with a nonzero but finite dimen-
sional zero weight subspace. (The Calogero-Sutherland operator is a special case
of this construction). Such an operator is always integrable [E]. Our main result
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is that it is also algebraically integrable in the rational and trigonometric case if
the representation U is highest weight. This generalizes the corresponding result
for Calogero-Sutherland operators ([CV1]). We also conjecture that this is true for
the elliptic case as well, which is a generalization of the corresponding conjecture
from [CV2].

The proof of the main result is based on the method of 0-function - a joint
eigenfunction of quantum integrals of the Schrôdinger operator. This method was
developed in [CV1]. The proof of existence and uniqueness of the 0-function is
based on an explicit construction of this function which uses representation theory
of the Lie algebra g. To be more precise, the 1b-function is realized (up to a factor)
as a weighted trace of an intertwining operator between a Verma module over g and
the tensor product of this module with U. Such realization goes back to [E], [EK1 ],
where it is found that joint eigenfunctions of quantum integrals of a Calogero-
Sutherland operator can be realized as traces. Using the theory of Shapovalov form
for g ([Sh], [KK]), we prove that the trace function satisfies the axioms for the
7P-function analogous to those formulated in [CV1], and is determined uniquely by
them, and then establish algebraic integrability using the method of [CV1].

The paper is organized as follows. In Section 2 we make the necessary defini-
tions, motivate them, and formulate the main result. In Section 3 we give infor-
mation about Verma modules, Shapovalov form, and intertwining operators. In
Section 4 we define the 7P-function as a normalized trace, and prove two properties
of this function. In Section 5 we prove that these two properties uniquely determine
the 7P-function. In Section 6 we prove algebraic integrability using the 1b-function.
In the Appendix we describe how to get Weyl group invariant quantum integrals
from central elements (Casimirs) of U (g).

2. Main définitions and results

Let V be a finite-dimensional complex vector space.

DEFINITION 2.1. A matrix differential operator is a differential operator whose
coefficients are End V-valued functions. A matrix Schrôdinger operator is a differ-
ential operator of the form

where A is the Laplacian in cm, and A is a meromorphic function in Cm with
values in End V.

DEFINITION 2.2. A matrix Schrôdinger operator L is called integrable if there
exist pairwise commutative matrix differential operators L1 = L, L2,..., Lm such
that the symbols of Li have the form pi(~ ~x1,..., Il )Id, where pi are algebraically
independent polynomials (p1 (y) = y2). The operators L 1, ... , Lm are called the
quantum integrals for L.
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Let R ~ h* = Cm be the root system of a simple Lie algebra g of rank m, and
let A+ be the set of positive roots of R.

DEFINITION 2.3. The Calogero-Sutherland (CS) operator for R is the operator

where the scalar constant Ca may depend only on the length of the root a, and u
is one of the following potential functions: (i) u(x) = 2/x2 (rational potential),
(ii) u(x) = 2/ sinh2 x (trigonometric potential), or (iii) u(x) = 2~(x|03C91, 03C92)
(elliptic potential), where ~(x|03C91, 03C92) is the Weierstrass elliptic function with
periods wl , w2, and K is a constant (Cases (i) and (ii) and degenerations of case
(iii)).

Such operators were introduced by Calogero [C] and Sutherland [S] for the root
system Am and by Olshanetsky and Perelomov [OP] in general.
THEOREM 2.1. The operator L given by (2-2) is integrable. Furthermore, one can
choose the integrals tLi, i = 1,..., ml in such a way that their symbols would
generate the algebra of Weyl group invariant polynomials on h.

For R = Am (and in some other special cases) this theorem was proved in
[OP]. Cases (i) and (ii) for general root systems were settled by Heckman and
Opdam [HO, Hl, O1, O2]. Case (iii) for Bm, Cm and D?.,2 is settled in [Osh]. The
general proof for Case (iii) (and hence Cases (i) and (ii)) was given recently by
I. Cherednik [Ch].

If m = 1 then any Schrôdinger operator is integrable by the definition. In two
or more variables integrability is a very rare property. This is illustrated by the
following result.

THEOREM 2.2. [OOS, OS]. Let m  2. Let L be an integrable Schrôdinger
operator defined by (2-1) with V = C. Assume that the quantum integrals Li, 1 
i z m, are invariant under the symmetric group Sm+l acting irreducibly in en,
and their symbols generate the ring of Sm+1-symmetric polynomials on en (the
operator Li is of order i + 1). Then L coincides with (2-2) for the root system Am
for some values of the parameters.

Theorem 2.1 can be generalized to the matrix case, as follows.
Let g be a complex simple Lie algebra, h C g be a Cartan subalgebra, R c j*

be the root system of g, 0+ be the set of positive roots. ea, fa E 9 be the root
elements corresponding to the positive root a. Let U be a representation of g such
that the space V = U [0] of zero weight vectors in U is finite-dimensional. Define
the matrix Schrôdinger operator
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where u is of type (i), (ii), or (iii) from Definition 2.3. Such operators are considered
in [E], [EK1].

THEOREM 2.3. The operator (2-3) is integrable. The symbols of its quantum
integrals are generators of the algebra of Weyl group invariant polynomials
on fj .

This result is proved in [E] for the special case g = slm+1, but the method used
for the proof works for any Lie algebra. This method uses representation theory of
the Lie algebra g in the trigonometric case, and representation theory of the affine
Lie algebra g in the elliptic case. The quantum integrals of Hg,U,u are constructed
from central elements of the universal enveloping algebra. We discuss this method
in the Appendix.

As a particular case, Theorem 2.3 includes Theorem 2.1 for the root system
Am. Indeed, let us take g = slm+1 and a special representation of g : U03BC =
(zl ... zm+1)03BCC[z1 z2,...zm zm+1, zm+1 z1], 03BC ~ C, with the action of g by linear trans-
formations of variables (this representation has no highest weight). All weight
subspaces in U03BC are one-dimensional; in particular, V = U03BC[0] = C. It is easy
to compute that f03B1e03B1|U[0] = ti(M + 1). Therefore, if y is chosen in such a way
that Ca = li(M + 1), then operator (2-3) transforms into (2-2) for the root system
Am.

Krichever [Kr] introduced the notion of an algebraically integrable Schrôdinger
operator (see also [CV1]). Here we generalize this definition to the matrix case.

Let L be an integrable matrix Schrôdinger operator, let L 1 = L,..., Lm be its
quantum integrals, and let the symbols of Li be pi(~/~x1,..., ~/~xm)Id, where
pi are algebraically independent polynomials.
DEFINITION 2.4. L is called algebraically integrable if there exists a matrix
differential operator Lo commuting with L1, ..., Lm with symbol p0(~/~x1, ...,
~/~xm)Id, such that for generic E1, ..., Em E C the polynomial po takes distinct
values at the roots of the system of equations pi (y i,..., ym ) = Ei , 1  i  m.

For V = C this definition coincides with the one in [Kr], [CV1]. In the matrix
case and m = 1 the property of algebraic integrability of differential operators was
studied in [G].

It turns out that a Calogero-Sutherland operator is algebraically integrable for a
discrete spectrum of values of the constants Ca .

THEOREM 2.4. [VSC]. If Ca = 1 203BC03B1(03BC03B1 + 1)03B1, a) for all roots a E 0+, where
y,, is an integer depending only on the length of a, then the operator (2-2) is
algebraically integrable for the rational and trigonometric potential.
CONJECTURE 2.5. [CV2]. Theorem 2.4 is true for the elliptic potential.

Conjecture 2.5 is proved only for the case of the root system Ai. In this case,
operator (2-2) is the Lamé operator L = â2 - Cp, and algebraic integrability
of this operator is equivalent to the finite gap property, which takes place for
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C = 11(y + 1), 03BC ~ Z [Kr]. In this case, there is a quantum integral Lo of order
203BC+1.
Now let us consider the case of the root system Am. Looking at the interpretation

of the Calogero-Sutherland operator via the representation UI, we see why the
integer values of y should be special: they are exactly those values for which the
representation U03BC has a finite dimensional submodule or quotient module which is
isomorphic to a symmetric power of Cm+1 (or (Cm+1)*). Since the zero weight
vector is contained in this finite-dimensional module, we can use it instead of U03BC.
Thus we observe that algebraic integrability occurs at those values of y where U J.£
can be replaced by a highest weight module. This motivates the following general
theorem which is the main result of this paper.

THEOREM 2.6. If U is a highest weight g-module then H g,U,u is algebraically
integrable for the rational and trigonometric potential.

In Sections 3-6 we prove this theorem for the trigonometric case. The rational
case can be obtained in the limit, so we don’t discuss it.

Note that Theorem 2.4 for the root system Am is a special case of Theo-
rem 2.6.

Finally, we would like to formulate a natural conjecture concerning the elliptic
case.

CONJECTURE 2.7. Theorem 2.6 is true for the elliptic potential.

This conjecture contains Conjecture 2.5 for the root system Am. We believe
that it could be proved by applying the methods of this paper to the elliptic case
and using the techniques of representation theory of affine Lie algebras and theory
of vertex operators introduced in [E], [EK1].

3. Verma modules, Shapovalov form, intertwining operators

Let g be a simple complex Lie algebra with triangular decomposition g = n_~h~
n+. Fix an element À ~ h*. Denote by MA the Verma module over g with highest
weight a, i.e. the module with one generator v03BB and relations

We have the decomposition M03BB = ~03BC03BBM03BB[03BC] of M03BB into the direct sum of
finite dimensional weight subspaces M03BB[03BC]. Denote also M*03BB = ~03BC03BBM03BB[03BC]* the
restricted dual module to Ma with the action of g defined by duality. For generic
À, M*03BB is a lowest weight module with the lowest weight vector v*-03BB of weight
-À.
We have a vector space decomposition U(g) = U( n_) 0 U(h) ~ U(n+). Define

the Harish-Chandra homomorphism ~: U(g)[0] - U(h) by ~|U(h) = Id, and
~(g) = Oifg E U(g)[0] can be represented as g = gleforsomegl E U(g), e E n+.
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This in tum gives rise to a contravariant bilinear U(h)-valued from F on U(n_)
defined by

when gl, 92 belong to the same weight subspace of U(n_), and 0(gi , g2) = 0
otherwise. Here w is the Cartan antiautomorphism of g defined by

It is easy to see that this form is symmetric.
As U(h) can be identified with the space of all polynomials on h*, we can

introduce a symmetric contravariant C-valued form F on MA defined by

Let Q+ = 03A303B1~0394+Z+e03B1.
Let U be any g-module with highest weight it E Q+. The completed tensor

product M03BBU = HomC(M*03BB, U) has a natural g-module structure. We say that
an element v ~ u has order q if v E M03BB[03BB - q]. Clearly, only elements of order
1J E Q+ may occur. We say that v  1J if v ~ q andq - v E Q+.

Let u E U. Let 03A6u03BB : MA - M03BBU be an intertwining operator such that
vA - u03BB ~ u + {higher order terms}.

It is clear from the intertwining property of 03A6u03BB that u has to be a zero weight
vector.

PROPOSITION 3.1. If MÀ is irreducible then 03A6u03BB exists and is unique for any
u E U [0] .

Proof. Because Ma is freely generated by vA over U(n_ ), we only need to
prove that the module MÀ0U contains a unique singular vector of the form va 0
u + thigher order termsl. This is the same as to construct a map 0398 : M*03BB ~ U
such that 0398(v*-03BB) = u and 0 is a n+-intertwiner. But M*03BB is a free U(n+)-module
generated by v*-03BB, so 0 can be uniquely extended from v*-03BB to the whole M*03BB. 0

It is known that Ma is irreducible for generic À. For special À’s MA may be
reducible, and it happens when the contravariant bilinear form on Ma is degenerate.
Shapovalov [Sh] obtained an explicit formula for the determinant of this form:

where F03BC = (FJl)i,j, i, j = 1, 2,..., dim M03BB[03BB - y] is the matrix of the restriction
of the form to M03BB[03BB - y], K (y) - the Kostant partition function, and the nonzero
constant depends on the choice of basis in M03BB[03BC].
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Let

The conditions for reducibility of Ma can then be rewritten as

Now we fix weight li and let n. = max{n ~ N| U[-n03B1] ~ 0}, where U[03B2] is the
subspace of vectors of weight 0 in U. Denote

We need the following
LEMMA 3.2. Matrix elements (F-103BC)i,j of the inverse matrix F-103BC 1 can be written
in the form

for some suitable polynomials P/j (A)
Proof. Shapovalov formula implies that matrix elements are rational functions

in À with only possible poles in hyperplanes defined by ~03B1n(03BB) = 0. Our goal is to
show that only simple poles may occur.

Fix a E 0394+, n  n03B103BC. Take 03BB such that ~03B2m(03BB) = 0 iff m = n, 03B2 = a. Then
Ma is reducible and contains a unique maximal submodule of M.1, generated by a
singular vector v03BB-n03B1.

Fix z E h* such that (a, z) ~ 0 for any a E 0+, and let t be an independent
variable. Using the U(h)-valued bilinear form F we can introduce a new C[t]-
valued bilinear form F’ and Ma defined by

Clearly, specialization t ~ 0 gives the usual Shapovalov form.
Denote N = dim M03BB[03BB - 03BC] = K(p), M = dim M103BB[03BB - Jl] = K(03BC - na).

Choose a basis vk in Ma [À - y] so that f vil, i = 1, 2, ... , M, would form a basis
for M,1 [A - y]. Then the matrix elements (Ft03BC)i,j will be divisible by t if i  M or
j  M:



98

where fi,j are some polynomials in a, t. It is clear now that the determinant of any
(N - 1)  (N - 1) submatrix of Ft03BC is divisible by tM-1. Shapovalov formula
implies that det Ft03BC is divisible by exactly Mth power of t, which means that when
we compute the matrix elements of (Ft03BC)-1, only simple poles will be allowed when
t = 0, or, equivalently, (F-103BC 1 ) j,j, will have at most simple poles on the hyperplanes
~03B1n(03BB) = 0. Repeating this argument for all 03BC, n, a we prove the lemma. a

We can apply this result to get more information about the intertwining operator
03A6u03BB. In the proof of Proposition we defined 03A6u03BBv03BB as a map 03A8 : M*03BB ~ U. We would
like to obtain a more explicit formula for,*’ vA as an element of MÀ0U.

For any basis vk = g03BCkv03BB, 9" E U (n_) of MÀ[À - y] we have the basis of
M [-03BB + y] given by vZ == (03C9g03BCk)v*-03BB, where w is the Cartan involution. It is clear
that v*i, vk&#x3E; = F(vi, vk).

Introduce another basis wk which is dual to v*k in the usual sense, Le. (vi, wj&#x3E; =
8ij. These two bases vk and Wk are related via the F03BC matrix:

It is clear that in this notation

COROLLARY 3.3. Suppose we have an intertwiner 03A6u03BB : M03BB ~ MÀ0U, where
U is a highest weight g-module with the highest weight 8 E Q+.

(1) There are no order 03BC terms in the expression for 03A6u03BBv03BB, unless f-l  0.

(2) If y  8 then the order 03BC part of 03A6u03BBv03BB can be written as
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where

for some polynomials Pt( À).
(3) A sufficient condition of existence of 03A6u03BB can be written as ~03B8(03BB) ~ 0.
(4) For any basis gk of U(n_) we can choose polynomials S03BCkl(03BB) so that

For a rational function R, represented as a ratio of two polynomials R = P Q we
set deg R = deg P - deg Q .

Note that all coefficients (F-103BC)kl are of negative degree in A. Later we will
work with A in the hyperplanes (a, A) = const., so we introduce notation

so that 03BB~ is a (dim h - 1 )-dimensional vector and (a, 03BB~&#x3E; = o.
We will use the following

PROPOSITION 3.4. When restricted to the hyperplane (a, A) = C, matrix ele-
ments (F-103BC)kl are rational functions in 03BB~ of nonpositive degree, and only con-
stants may occur as terms of degree 0.

Proof. We choose a special basis in U(n-)[p]. For any sequence w of positive
roots 03B21  03B22  ···  03B2r, where  denotes now the lexicographical order, such
that 03A303B2i = fi, set Xw = f03B21 ... far. Set deg Xw = Card({k 1 flk 54 03B1}).

The set of Xw’s is a basis in U(n_)[03BC]. We also have

Indeed, we can only raise the degree by commuting some ep and f03B2 for (3 ~ a,
which results in the term 03B2, À) + const., which is linear in al. Note also that
commuting with ea or fa will not increase the total number of terms e03B2 and f03B2 for
all (3 ~ a. Therefore, the maximal degree cannot be greater than half the original
number of terms e03B2 and f03B2, (3 ~ a. This proves formula (3-7).

The determinant of the form in the hyperplane (À, a) = C is equal to
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where the constant depends on C. Then

is the degree of the determinant as polynomial in 03BB~. By the same argument as
in [Sh], from (3-7) it follows that the 03BB~-degree of any minor of the Shapovalov
matrix cannot exceed N. Moreover, commuting with ea or f03B1 does not change
the set of 03B2 mod a, and therefore any term of degree exactly N has highest term
proportional to that of the determinant, which proves the Proposition. ~

4. Matrix Trace, 03C8-function and its properties

Fix a highest weight g-module U with highest weight 0 and finite dimensional zero
weight space U [0]. Consider a new operator

From Corollary 3.3 it follows that

This expression allows us to define 4)’ even for À where 03A6u03BB itself was not defined.
It is clear that u03BB is an intertwining operator for all a, and it has the property

Let 03C8(03BB, x) be a End(U[0])-valued function on h*  h defined by

PROPOSITION 4.1. The 03A8-function defined above has the following properties:

where (03BB, x) is a End(U[0])-valued polynomial in À with the highest term
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where we put for brevity na = no.

for some 03B1n(03BB) E End(U[0]), which is rational in A of nonpositive degree,
and only constant operators may appear in it as degree zero terms. (That
is, the highest term of the numerator coincides with the highest term of the
denominator up to a constant factor).

Proof. The first part is clear from the formula

and the fact that ail the Tr|M03BB[03BB-03B2](u03BB) are some combinations of Srl’s, and there-
fore polynomials in À. Their highest terms are obviously ail equal to 03A003B1~0394+03B1,03BB&#x3E;n03B1,
so the highest term of P(03BB, x) is equal to

We now prove the second property of the 03A8-function. Let 03B1, 03BB+03C1&#x3E;-n 203B1, a) =
0 for some a E A+, 1  n  na, but 03B2, À + 03C1&#x3E; - m 203B2, (3) ~ 0 unless
03B2 = 03B1, m=n.

From Corollary 3.3 it follows that u03BBv03BB has no order v terms unless v  na.
In particular, there are no order zero terms. On the other hand, u03BBv03BB has to be a
singular vector. Therefore we must have

where v03BB-n03B1 is the unique singular vector generating the submodule M103BB ~
MA-na . This implies that u03BB is a triangular operator: u03BBM03BB C M103BB ~ U, so

Let u03BBv03BB-n03B1 = VÀ-na 0 w + thigher order terms}. Using the fact that M103BB ~
M03BB-n03B1 we see that
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Set p = n03B1.

It is an easy calculation to show that

Introduce a linear operator

We can rewrite (4-7) as

To complète the proof we only need to show that 03B1n(03BB) satisfies the required
condition. It is clear that B03B1n (À) is rational in À and is not singular in the hyperplane
(a, À + p) - n 203B1, a) = 0. As we can rewrite

the rest follows from the Proposition 3.4. 0

Now we can introduce our main object of study. Set 03BA = 03A303B1~0394 + na. Put

The properties of Bl1-function can now be rewritten in the following form:

COROLLARY 4.2.

(1) e-function can be represented as

where P(A, x) is a polynomial in A of the form
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where B03B1s(03BB) = 03B1s(03BB 2 - p) is a rational End(U[0])-valued function of A and
can be represented as

for some constant b’ E End(U[0]).
REMARK. Consider the case g = sl(n), U = SknCn. In this case na = k for
all a, and it is easy to show that B03B1s(03BB) is not identically zero for any a, s  k.
Indeed, if a is a simple root then it is easy to get from (4-8) that B03B1s(03BB) = 1. If
a = ri al (i  j) then choose À in such a way that 03B1l, 03BB - 2s 03A303BB-1m=i 03B1m&#x3E; =
2s, l = i,..., j. Then (4-11) implies: 03C8(03BB,x) = 03C8(03BB - 2sa, x), i.e. B03B1s(03BB) = 1

for this particular À. This means, Ba is not identically 0. In fact, a more careful
analysis shows that it is identically 1, i.e. can be removed from (4-11). This result
agrees with [CV1].

The fact that Bâ is not identically zero implies that in this case the polynomial
~03B8(03BB) is exactly the common denominator of the components of the operator 03A6u03BB.
Indeed, if some function f = (a, À + 03C1&#x3E; - s, 1  s z k, does not occur in such
common denominator, then by (4-5) we would have Ba = 0 on the hyperplane
f = 0, which is impossible.

5. Uniqueness of the 03C8-function

In this section we prove the uniqueness property of the function 03C8(03BB, x), satisfying
(4-10) and (4-11).

PROPOSITION 5.1. Suppose we have an End(U[0])-valued function

where Q(À, x) is a polynomial in À, satisfying (4-11). Then the highest term of
Q(03BB, x) is divisible by

Proof. Consider the highest term of Q(03BB, x). We need to show that it is divisible
by (a, 03BB&#x3E;n03B1 for any a E 0+.

Fix an a E 0+. We can uniquely represent Q(03BB, x) as

where Qkl(03BB~, x) are homogeneous End(U[0])-valued polynomials in 03BB~ of

degree 1.
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The highest term of Q(03BB, x ) will be some combination of the terms of

03BBKl03B1QKll(03BB, x). We claim that it is enough to show that KL  na. Indeed, it

will follow then that the highest term will have degree at least L + na, and there-
fore ail terms of the form 03BBKl03B1QKll(03BB, x ) contributing to the highest term must
have Kl  L + na - 1  na, which proves the statement.

By our assumption 03C8(03BB, x ) satisfies (4-11), so we can write

where ( lower degree terms} are understood with respect to À 1...
We can consider homogeneous parts of (5-2) of degree L in À 1... Formally, given

a function f( À 1.. ), we consider

This gives us

fors = 1,..., J( L.
The rest is based on the following.

LEMMA 5.2. Consider a homogeneous system of N linear equations on K vector
variables Ak(z) E CM, which are meromorphic in some additional parameter
z:

s = 1,...,N, Cs E MatM(C).
If K  N then this system has only trivial solution Ak(z) = 0.
Proof of lemma. We can think of this system as a system of linear equations on

KM variables (Ak)m and rewrite (5-4) in the block-matrix form
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Suppose K  N. Then the determinant of the submatrix, consisting of first Il
blocks (or, equivalently, first KM equations) is an entire Matm(C)-valued function
of z with the asymptotics as z - + o0

which is equal to

where the nonzero constant

is the Vandermonde determinant.

Therefore, this determinant is a nonzero entire function, which implies that for
generic z it is not zero, so the system has only trivial solution. The meromorphic
functions Ak(z) are equal to zero for generic z, and therefore must be identically
equal to zero.

The lemma is proved. 0

We now apply Lemma 5.2 to the system given by (5-3), for N = na, Il =
l(L + 1, M = dim U[0] and setting C, = (-1)k(b03B1s)t, z = xa - 2(a, x), where
A’ is the transposed matrix A.
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Consider the rows of the matrix, corresponding to 03C8(03BB~, x), and transpose
them so that they become columns. By (5-3) all these columns satisfy the system
of equations (5-4), and as 0-function is not identically equal to zero, it implies that
the system (5-4) has a nontrivial solution. By Lemma 5.2, we have KL + 1 &#x3E; na,

or, equivalently, KL  na.
The proposition is proved. ~

COROLLARY 5.3. Any End(U[0])-valued function

satisfying (4-11), can be represented as

for some End(U[0])-valued polynomial q(A) -
Proof. The proof is similar to the proof of the Lemma in Section 1 of [CV1].

We use induction on the degree of Q(03BB, x ).
If deg Q(03BB, x)  deg P( À, x), where

then by proposition we have Q(03BB, z ) m 0, so we can take q(03BB) ~ 0.
Suppose we have proved the statement for all polynomials of degree less than

the degree of Q(03BB, x). By Proposition we can find a End(U [0]) -valued polynomial
q1(03BB) such that

Consider the function

Obviously, it satisfies (4-11). Moreover, it can be iepresented as

where polynomial (03BB, x) has degree smaller than that of Q(03BB, x ).
By induction hypothesis we can introduce a End(U [0]) -valued polynomial q2(03BB)

such that

The polynomial q(a) = q1(03BB) + q2(03BB) satisfies the required property. D
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COROLLARY 5.4. The function 03C8(03BB, x), satisfying both (4-10) and (4-11), exists
and is unique.

Proof. It is a direct consequence of (4-10) and Corollary 5.3. ~

6. Existence of differential operators

The properties of the 1b-function obtained in Chapters 4, 5 are very close to the
axioms in [CV1]. The function satisfying these axioms was used to construct a ring
of differential operators that contained dim j algebraically independent operators,
corresponding to the generators of the ring of W-invariant polynomials, but was
bigger than the ring generated by those operators.

Here we apply these ideas to construct a similar ring of matrix differential oper-
ators and thus prove Theorem 2.6.

THEOREM 6.1. For any End(U[0])-valued polynomial Q( À) satisfying the prop-
erty

whenever (a, À) = 0, there exists a differential operator DQ with coefficients in
End(U[0]), such that

The correspondence Q(03BB) ~ DQ is a homomorphism of rings. In particular, all
DQ commute with each other.

Proof. We use induction on the degree of Q(03BB). If deg Q(A) = 0, then Q(A) =
const., so the operator DQ will be just the operator of multiplication by this
constant.

Suppose we have proved the theorem for all polynomials of degree less than
that of Q(03BB). Let the highest term of Q ( a ) be equal to

where (n) is a multiindex, a(n) E End(U[0]). Consider the operator DQ defined
by

It has the property that
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and it also satisfies (6-1). Consider the difference

It satisfies (4-11) and therefore can be represented as

for some End(U [0]) -valued polynomial Q(03BB) such that deg (03BB)  deg Q(03BB). By
induction hypothesis we can introduce an operator DQ such that

and the operator

has the required property, which completes the proof of the induction step.
The assertion that the constructed correspondence is a homomorphism of rings

follows from the fact that the operator DQ1Q2 - DQl DQ2 annihilates the 03C8-function
for any a, and therefore has to be identically zero. ~

Among the polynomials Q(03BB), satisfying (6-1 ), are all the generators of the ring
of W-invariant polynomials pl (03BB),..., pr(03BB). It is known that they are algebraical-
ly independent, and the ring generated by corresponding differential operators is a
ring of polynomials in generators Dp1,..., D pr .

There are also other polynomials, satisfying (6-1), which are not W-invariant.
They give rise to differential operators which are not W-invariant and therefore do
not belong to the ring generated by Dp1, i ... Dpr.

In particular, all polynomials contained in the ideal generated by

satisfy the (6-1).

PROPOSITION 6.2. The differential operator corresponding to the invariantpoly-
nomial pl (A) = (A, A), is equal to

This fact can be proved by a direct computation. Another proof of it using the
relationship between the center of U(g) and commuting differential operators is
sketched in the Appendix (see also [E]).
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The operator (6-3) coincides with the generalized Calogero-Sutherland operator
(2-3) for the trigonometric case. We have shown that this operator is algebraically
integrable. Theorem 2.6 is proved.

Appendix

In conclusion we briefly describe how to construct quantum integrals of Hg,U,u with
trigonometric potential from central elements of U(g). This construction works for
arbitrary module U, not necessarily highest weight.

PROPOSITION Al. [E] Let X E U(g) be an element of degree 0, i.e. [h, X] =
0, h E h. Then there exists a unique matrix differential operator D(X) with
End(U[O])-valued coefficients such that for any A E h* and any intertwining
operator 4): MA - M03BB~U

The proof of this theorem and a recursive construction of D(X) is given in
[E]. We illustrate the idea of this construction by computing D(EF) for g =
sI2 (E, F, H are standard generators of g). The main trick is to carry E around the
trace, using the intertwining property of 03A6 and the cyclic property of the trace:

(where a is the positive root of g) which implies

Further, we have
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which implies

Combining (A2) and (A4), we find

Thus

In general, it is not true that D(XIX2) equals either V(XI)V(X2) or

D(X2)D(XI). However:

PROPOSITION A2. [E]. If Xl belongs to the center of U(g), then for any X2 one
has D(X2)D(XI) = V(XIX2).

This proposition follows from the fact that if 03A6 is an intertwining operator then
03A6X1 is also an intertwining operator.

COROLLARY. If Xl, X2 are both in the center of U(g), then D(XI) and D(X2)
commute with each other.

Let D(X) be the differential operator obtained from D(X) by conjugation by the
function TrIM-p(eX), i.e. defined by D(X)03BE(x) = Tr|M-03C1(ex)D(X)(03BE(x) Tr|M-03C1(ex)).
The following statement is checked by a direct computation:

PROPOSITION A3. [E]. Let B be an orthonormal basis of g, and CI = EaEBa2
be the Casimir element. Then

PROPOSITION A4. Let Cl, ... , Cm be algebraically independent generators of
the center of U(g). Let Li = D(Ci). Then 1, ... , m are algebraically indepen-
dent quantum integrals of the Schrôdinger operator 1 given by (A7). The symbols
of L 1 generate the algebra of Weyl group invariant polynomials on h. The function
T (A, x) is a joint eigenfunction for 1, ... , Lm with eigenvalues ~(Ci)(03BB), where
~ is the Harish-Chandra homomorphism defined in Section 3.

Observe that operator (A7) transforms into tH g,U,u + const when one makes a
change of variables x ~ 2x. Therefore, we have
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PROPOSITION A5. Let Li be the operators obtained from li by replacing x with
2x. Then L 1 = 1 4 Hg,U,u + const, and L1,..., Lm are algebraically independent
quantum integrals of Hg,U,u for trigonometric u. The function 03C8(03BB, x) is a joint
eigenfunction of L1,..., Lm.

This implies Theorem 2.3 in the trigonometric case.
Finally, we observe that if C is a central element of U(g) then by Proposi-

tions A4, A5 one has D ( C ) = Dp, where Dp is defined in Section 6, and p is the
Weyl group invariant polynomial given by p(03BB) = ~(C)(2(03BB + p) ) . This proves
Proposition 6.2.
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