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Introduction

In this paper we will present the relationship between the Grassmannian complex
and the scissors congruence groups of algebraic polyhedra. (We restrict ourselves
to the case of weight two.) More specifically,

(a) We define a two-term complex (concentrated in degrees one and two)
T(2): T2(2) ~ Tl(2) where T2 (2) (resp. T1(2)) is the scissors congruence
group of triangles (resp. line segments) in p2 , and 0 is the map which takes the
boundary.

(b) Let G(2) be the Grassmannian complex of weight two. We will con-
struct maps of complexes G(2) ~ T(2). The maps are related to Grassmannian
dilogarithms.

(c) Let A(2) be the two-term complex introduced in [1]. We show that there
is a natural map T(2) - A(2) which is an isomorphism.

The ideas in this paper were motivated by the geometric construction of
(Grassmannian) polylogarithms [7].
We briefly recall a few definitions from [7] in the case of weight two.
Let Pn be projective n-space over C. The ith coordinate hyperplane is defined

by Li = {xi = 0} where (xo : ... : xn) are the homogeneous coordinates. Define
G2 1 to be the set of lines 03BE C P3 which meet any intersection of coordinate
hyperplanes transversally. Also let G2 be the set of points P e ULi. Then one
has a map 8i: G21 ~ G2 (i = 0,..., 3) which sends 03BE to 03BE n Li.

For a smooth complex variety X, denote by S2PX the vector space of multi-
valued holomorphic differential p-forms on X. By definition, a Grassmannian
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dilogarithm is a pair (eo, 03C81) with eo E 03A91G20, 03C81 E 03A90G21 which satisfies the
following conditions:

Here vol2 := dlog(XI/XO) A dlog(X21XO) (the complex volume form).
The Grassmannian dilogarithm may be constructed as follows (cf. the intro-

duction of [7]):
(1) Construct a family of (linear combinations of) "triangles" Mi parametrized

by G2. Also construct a family of "line segments" Mo2 parametrized by G2
(2) The integration along the fiber produces associated differential forms

(3) By Stokes’ formula, one has doi = [~M21| vol2] where âMl is the
"boundary" of Mi . Using geometric relations between 3Mf and M6, one can
prove that (eo, 03C81) satisfies the required conditions.
A "triangle" M in p2 is a triplet of lines (Mo, Ml, M2). A "line segment"

is a triplet Ê = (H; Qo, QI) where H is a line in P2 and Qo, QI E H. If one
has a family of triangles M parametrized by a smooth variety T, and if M is
admissible, one may form the integral of vol2 along the fiber: [M|vol2]; this
is a multi-valued holomorphic function on T. (The admissibility is a certain

genericity condition which implies the convergence of the integral (cf. (1.2)).
Similarly, a family of line segments gives a multi-valued 1-form.

There are three objects involved in this construction: Grassmannians, triangles
and line segments, and differential forms. Each of them has a related complex: the
Grassmannian complex, the complex T(2), or the (truncated) de Rham complex.
The Grassmannian complex of weight two is, by definition, G(2) : QG 2  QG20
(in degrees one and two) where QG21, for example, is the free Q-vector space
on the set G2 , and 8 = 03A3i(-1)i03B4i. The basic idea of the paper is the following.
Define T(2) appropriately, incorporating the relations such as those used in (3).
Then one can relate T(2) and G(2) via a map G(2) - T(2). This map can be
thought of a formal version of the dilogarithm. Note, however, that the differential
forms have been taken out of the picture.

Throughout this paper we take any infinite field k as the ground field. In
the first section, we define the groups T2(2) and T1(2). T2(2) is generated by
admissible triangles, which are subject to several relations (1.3). The most impor-
tant among them are the first and second scissors congruence relations. The first
scissors congruence is an obvious one (by cutting and pasting); the second con-
gruence of triangles has to do with the four triangles which a triplet of planes
(M0,M1,M2) in p3 gives rise to as intersections with the coordinate hyper-
planes. The group T1(2) is generated by generic line segments and the bound-
aries of admissible triangles, which have relations similar to those for triangles
(cf. (1.4)).
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In Section 3 we construct maps of complexes u and f : G(2) - T(2). The
map u is related to the construction of dilogarithm in the introduction of [7].
The map f is a modification of u, and is directly related to the cross ratio of
e G2 1*

In [1] Beilinson, Goncharov, Schechtman, and Varchenko introduced the group
An of pairs of triangles (modulo scissors congruence) in P’, and a related com-
plex A(n) for each n. In the case n = 2 it takes the form: A(2) = [A2 
k*Q ~ k*Q 1 (where k*Q := k* 0z Q). They related the cohomology of this complex
to weight two K-groups:

Here Kind3(k) is the indecomposable part of K3(k), and K2’ m (k) is the Milnor

K-group. In Section 2 we will construct a map of complexes (the symbol map)
Q: T(2) ~ A(2), and prove that it is an isomorphism.

There are advantages of working with T(2) over A(2). The former allows
one to discuss algebraic polyhedra without reference to coordinates. This remark
will be more relevant in the case of weight at least 3, where coordinate-free
viewpoint can be much more amenable. Part of the content of this paper may be
generalized to the case of weight  3. It will be discussed in a future paper.

Although we omit it, it is possible to define the groups T2(2)(V) (resp.
T|(2)(V)) of triangles (resp. line segments) parametrized by V, and exhibit the
relationship between the resulting complex T(2)(V) and the Deligne complex.
(One needs to be careful in defining them, taking into account the foundations
developed in [7, 8].)

This paper naturally resulted from the work with R. MacPherson, whom the
author thanks cordially; the paper [1] motivated us to write up the formal aspects
of our construction. We would like to thank also A. Beilinson, A. Goncharov,
V. Schechtman, and A. Varchenko for helpful conversations.

1. The complex T(2)

We give the definition of the complex T(2) and study its structure. The relations
involved in the definition were motivated by the cancellation lemma for differ-
ential forms [7]. Thus the integration map M H [M|1 vol2] factors through
T(2) (if M is parametrized by a complex variety).

(1.1) Throughout this paper we fix an infinite field k. Let Pn be projective n-
space over k, with homogeneous coordinates (x0:···: xn). There are canonical
inclusions 8i : pn-1 ~ Pn, (xo ··· : xn-1) ~ (x0:··· xi-1 : 0 : xi »
xn-1) (i = 0,..., n); its image is the ith coordinate hyperplane Li = {xi = 0}.
For a subset I C {0, ... , n}, we set LI = ni., Li. Note that there is a canonical
isomorphism LI ~ Pn-m where m = |I|. The collection {LI} is referred to as
the coordinate simplex. We also let ei = Li with 1= f 0, .... i-1,,i+1,..., ni
(ith vertex of the simplex).
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For a permutation T of {0,1, ... , n}, there is induced an automorphism of Pn
sending Li to L,(i); this we denote by the same T.

(1.2) A triangle in P2 is defined to be a triplet of lines M = (Mo, MI, M2). It
is said to be nondegenerate if the lines {Mi} are in a general position, namely
if {Mi} are distinct and Mi n M2 n M3 = 0. For a nondegenerate triangle M
and distinct elements i, j e {0, 1, 2}, let Mij = Mi n Mj, which is a point. A
triangle M is said to be admissible if Mi :0 Lj for any i, j and if there is no
pair {i,j} such that mi n Mj = ek. M is generic if there is no pair {i,j} such
that Mi n Mj e ~Li. Admissible or generic triangles may be degenerate.

Let T’2(2) be the Q-vector space freely generated by all triangles. Define
Tad2(2) to be the subspace of T’2(2) generated by all admissible triangles.
A line segment in P2 is, by definition, a triplet R = (H; Q0, Q1) where H is a

line in p2 and Qo, QI are points on H. We say Ê is nondegenerate if Qo =1= QI;
é is generic if Qo, QI e ULi. Let T’1(2) be the Q-vector space freely generated
by all line segments.

One defines the boundary map 3: T’2(2) - T’1(2) as follows on generators:
if M is a degenerate triangle, OM = 0; if M is nondegenerate,

Define Tid(2) C T( (2) to be the subspace generated by generic line segments
and the image of 0: Tad (2) ~ T’1(2); there is the induced map 0: T2d(2) ~
Tad1(2).
(1.3) Define T2(2) to be the quotient Q-vector space of T2d(2) with respect to
the following relations (0)-(iv).

(0) M = 0 if M is degenerate.
(i) For a permutation a of {0,1,2},

(Ma(o), M03B1(1), Ma(2)) = sgn(03B1)(M0, Ml, M2).
(ii) For a permutation T of f 0, 1, 2}, and the induced automorphism 7 of P2,

((M0),(M1),(M2)) = sgn()(M0, M1, M2).
(iii) (First scissors congruence) For a quadruple of lines (Mo, ... , M3) such

that Mi =1= Lj and mi ~ Mj ~ ek,

(iv) (Second scissors congruence) Let M = (M0, M1, M2) be a triplet of
planes in p3 such that Mi ~ Lj for any i, j, and for each i,
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is an admissible triangle on Lj EÉ P2. Then one has

(1.4) For an analogous construction for lines segments, we consider the rela-
tions (where (H; Qo, Q1), etc. are generic line segments and the triangles are all
admissible):

(0) (H; Qo, Q1) = 0 if it is degenerate.
(i) (H; Q0, Q1) = -(H; Q1, Q0);

For a permutation a of {0,1, 2}, ~(M03B1(0), Ma(l)’ Ma(2)) = sgn(a)â(Mo,
MI, M2).

(ii) For a permutation T of {0,1,2} and the induced automorphism T of P2,
((H);(Q0),(Q1)) =sgn()(H;Q0,Q1);~(M) = sgn()~M.

(iii) (First scissors congruence) (a) For three points Qo, QI, Q2 on a line H,
(H;Q1,Q2)-(H;Q0,Q2)+(H;Q0,Q1)=0.

(b) For Mo,..., M3 as in (1.3)(iii),

(iv) (Second scissors congruence) (a) Let 1-£ be a plane in P3 with 1-£ ~ Ui Li,
and Qo and QI be lines on 1-£ such that for each i,

is a generic line segment on Li . Then one has

(b) For an .Nl as in (1.3)(iv),

We let T1(2) to be the quotient Q-vector space of Tad1(2) with respect to the
relations (0)-(iv). One has the induced boundary map â: T2(2) ~ Tl (2).

The constructions so far are summarized in the following commutative dia-
gram :

Each column is a two-term complex concentrated in degrees one and two.
The complex on the extreme right we will denote by T(2).
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Fig. 1.6.1.

(1.5) For a quadruple of points Po,..., P3 E P1k with {P0, P1, P2} distinct, define
the cross ratio r(Po, Pl ; P2, P3) = À ~ k if a (projective) automorphism of P1
takes (Po, Pl ; P2, P3) to (0, ~; 1, 03BB).

For a point P == (xo : x1) ~ P1k with xoxl 1 ~ 0, define its coordinate

crd(P) = -x1/x0 E k*. If le {0,...,n} with ILI = n -1, and P E LI-{ej},
one has crdLI(P) E k*.

With regard to projective space Pn, one defines the hyperplanes:

(1.6) It is easy to see that the group T2(2) is generated by triangles of the two
types in Figures 1.6.1 and 1.6.2.

Let Da be the triangle in Figure 1.6.3 (where crdl, (P) = a E k* and Mo =
Kol, M2 = C2); if a E k* - {1}, this is a special case of a triangle of the type
in Figure 1.6.2. We call Da the dilogarithmic configuration with invariant a (cf.
[1, (1.2)]). Note that r(P, el ; R, Q) = 1 - a.

(1.7) The group Tl (2) is generated by generic line segments and admissible pairs
of line segments which, by definition, are elements of the form (H; P, Q) -
(H’ ; P, Q’) where P lies on (U Li) - (U ei) and Q, Q’ e U Li, Figure 1.7.1.

Define Êab E Tl (2) (a, b E k*) to be the class of (H;Q0,Q1) in Figure 1.7.2,
where crdl, (H ~ LI) = a, and r(el, H ~ L1; Qo, QI) = b.
PROPOSITION 1.8. (1) The class of the line segment (H; Qo, Q1) in Figure 1.8.1
is equal to Ra,b with a = crdL1 (H n L1), b = r(el, H ~ L1; Qo, Q1).
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Fig. 1.6.2.

Fig. 1.6.3.

(2) The class of a generic line segment on Kij or on C2 is zero.
(3) In the group Tl (2) we have the following identities:

(4) The class of the admissible pair of line segments (C2 ; e01, P) - (K01; eoi, Q),
where P E C2, Q E Kol, is zero.

(5) One has âDa = ~a,1-a.
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Fig. 1.7.1.

Fig. 1.7.2.

Proof. (1) Let R = {ax2 + x3 = 01 C P3, Q0, QI be lines C 1£ such that
Qo n W 1 C L23, 03B4*1(H;Q0,Q1) = (H;Q0,Q1) and 03B4*0(H;Q0,Q1) be the line
segment in Figure 1.7.2. One applies (1.4)(iv)(a).

(2) Let (K01;Q0,Q1) be a generic line segment. One takes 71 = {x0 +
xl + x2 = 0} C P3, Qo, QI be lines c 71 such that Qo ~ Q1 is a point in
L3 and 03B4*0(H;Q1,Q1) = (Kol; Qo, QI), Figure 1.8.2. By (1), 03B4*i(H; Q0,Q1),
i = 0,1, 2, are all equal in Tl (2). Applying the relation (1.4)(iv)(a), one obtains
(K01;Q0,Q1)=0.
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Fig. 1.8.1.

Fig. 1.8.2.

The argument for a line segment on C2 is as follows. Let li = {x0+x1 + x2 =

0} C p3 Q0, Qi be lines C 1£ such that b2 (1£; Qo, QI) are generic for i = 0, 1, 2
and 03B4*3(H; Qo, Q 1 (C2;Q0,Q1). Note 03B4*i(H; Qo, Q 1 = 0 for i = 0,1, 2 since
they are supported on K01. One applies (1.4)(iv)(a).

(3) For the first relation, let H = taxo + xl = 01 c P2, R = H n L2,
and Po, Pl, P2 ~ H such that r(R,e2;P0,P1) = b, r(R,e2;P1,P2 ) = b’, and
r(R, e2; Po, P2) = bb’. Apply (1.4)(iii)(a). 

~ P3; then crdL23 (H ~For the second, take 1£ = taxo + aa’xl + x2 - 0} C P3; then crdL23(1£ n
L23) = a’-1, crdL13 (1£ ~ L13) = a and crdL03(H n L03) = aa’. Take Q0,Q1 1 be
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lines C 1£ so that Qo ~ QI E 1£ ~ L3, r(H n Li3, e3 ; Qo n Li, Q, fl Li) = b
(i = 0, 1, 2). Then apply (1.4)(iv)(a).

(4) By adding generic line segments on C2 and Kol, one is reduced to the
case: P = K12 ~ C2, Q = K12 n KOI . Since (K12; Q, P) = 0, this class equals
~(C2, Kol, K12)- This is seen to be zero by applying (1.4)(iii)(b) to (C2, Kol, Koz,
K12) and using ~(K01,K02,K12) = 0, (2).

(5) Follows from (4) and (1).

2. The complex A(2) and the symbol map Q: T(2) ~ A(2)

(2.1) The group An [1]. We keep the notation from Section 1 except that L is
not exclusively used for coordinate hyperplanes.

An ordered collection of (n+1) hyperplanes in Pn is called an (n+1)-simplex:
L = (Lo, ... , Ln). For I c {0,..., n}, let LI = niEI Li. L is nondegenerate if
{Li} are in general position, namely if for any subset I c {0,..., n}, dim LI =
n-|I|. Let An(n  1 ) be the Q-vector space defined by the following generators
and relations.

Generators: pairs of ordered (n + 1 )-tuples of hyperplanes in Pn,

which are admissible; by definition (L; M) is admissible if the sets t Mil, {LI}
are disjoint.

Relations: (i) If L or M is degenerate, (L; M) = 0.
(ii) For a permutation a of {0, 1,..., n},

(iii) For (n + 2) hyperplanes (Lo, ... Ln+1),

Similarly,
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Fig. 2.2.

The group An is generated by (L; M) which are nondegenerate admissible.
We say (L; M) is generic if for any I, MI ~ Uj Lj.

The group A1 is generated by (Lo, L1; Mo, Ml ), quadruples of distinct points
in P1. One has an isomorphism

where r is the cross-ratio of a quadruple.

(2.2) There is a comultiplication map v: A2 - AI 0 A, as defined in [1]. Let
A(2) be the complex with two terms A2 and AI 0 A1, placed in degrees one
and two respectively, and with the map v as the differential. The map v has
categorical meanings, loc. cit.

The map v is given explicitly on generators (L; M) as follows.

(a) If (L; M) is nondegenerate and no Lij e Mk, Mij e Lk, Figure 2.2.a,
then
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Here L2 n (Lo, Li; Mo, M2), for example, stands for (L2 n Lo, L2 n L1; L2 ~
M0, L2 ~ M2) E Al .

(b) If (L; M) is of the type as in Figure 2.2.b,

(c) If (L; M) is as in Figure 2.2.c,

In particular, if Da = (L0, L1, L2; M0, M1, M2) in Figure 1.6.3, one has

(2.3) We will define a map of complexes

called the symbol map in the following. On the degree 1 level, a: T2 (2) - A2 is
to be the map which sends an admissible triangle M = (Mo, Ml, M2) E T2(2)
to (L0,L1,L2;M0,M1,M2), where (Lo, Li, L2) is the coordinate simplex.

PROPOSITION. The map a: T2(2) ~ A2 is well-defined.

Proof. The relation (1.3)(0) (resp. (i)) is taken under Q to (2.1) (i) (resp. the
second equality in (2.1)(ii)). The relation (1.3)(ii) is taken to

which is a consequence of (2.1)(iv), (ii) as follows:

The relation (1.3)(iii) is taken to the second equality of (2.1)(iii).
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Fig. 2.3.

Let M = (Mo? Mi, M2) be a triplet of planes in p3 as in Definition (1.3)(iv),
and put v = Mo FI Mi ~ M2. Note v =1 ek. Project p3 from v to any plane not
containing v. We have a configuration of lines in the plane, Figure 2.3. Here by
abuse of the notation, we denote by Lij, and ei the images under the projection
of the respective subspaces. Let Mi be the image of Mi. Since

using (2.1)(iii), one shows

(2.4) To define the map 03C3: Tl (2) ~ k*Q ~ k*Q in degree two, we first treat generic
line segments.

(a) If Ê = (H; Qo, QI) is generic and H does not contain any ei, one takes
any point v E H - tQo, Q1} and let

Note that this is well-defined independent of the choice of v. In fact, if we take
another point v’ E H - {Q0, Q1}, the result will differ by
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which equals zero since 03A32i=0(-1)icrdLi(H ~ Lt) = 0 by the lemma below.
Taking v = H n Lo for example, one has

(b) If H :1 ei, then we let

LEMMA. Let e C P2 be a line which meets the coordinate simplex transversally,
and Pi = 03BE ~ Li. Then one has

(2.5) Let Tad1 (2) := T 1 d (2)/ - where - denotes the relation (subspace) generated
by the relations (1.4)(0), (i), (iii).

To any element of Tad1(2) one can associate its support as follows. For a

non-dgenerate "line segment" R = (H; Qo, Q1 ), let 1 R |:= QoQI . An element
nE Tid (2) can be written n = 03A3bi~i, bi e Q, where
(2.5.1) Each b2 ~ 0. Each Êi is a nondegenerate "line segment" and if i ~ i’,
1 Ri 1 n |~i’| is either empty or a point.

Define the support of n by | n 1= U 1 Ri 1; this is well-defined independent of
the expression of n. Note n = 0 in T ad (2) iff ) n 1= 0.
We will use the following alternative description of the group Tad1(2). Consider

the Q-vector space with generic line segments R e T’1(2) and formal symbols
3M, one for each admissible triangle M, as generators, and with the following
relations (denoted ~):

(1.4)(0), (i), (iii) ((üi)(b) should be regarded as a relation between the four
formal symbols âM), and: for a generic triangle M,

CLAIM. The natural map Q(3M, É) / ~~ Tad1(2)/ ~ is an isomorphism.

Proof. The assignment 3M e OM e Tad1(2) induces the map in the state-
ment since ~ is sent to ~. This map is clearly surjective. To show the injectivity,
take an expression

with ar, bj 6 Q such that n - 0 (so | n | = 0).
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Say that an admissible triangle M = (Mo, Ml, M2) has a singular point P if
P E Mj ~ Mk and P e ~Li. We will show the above claim by induction on the
cardinality of the set {P | P is a singular point of some Mr}.

If there is no singular point, using (~) to each Mr, n ~ 03A3 bjêj (~’j is generic),
which is, using (1.4)(0), (i), (iii), ~ 03A3 b"j~"j where the condition (2.5.1 ) is satisfied.
Since | n | = 0, all b’J = 0.

If there is a singular point P, let I = {Ik} be the set of lines Ik such that
there exists an Mr with Ik as one of the edges and P E Ik. Take a generic line
l :3 P, and a generic line J(~ P). One may assume that the triangles (Ik, I, J)
have no singularities other than P.

Then for each Mr with P as a singular point, one has unique Ik, I£ E I such
that

Mr is equivalent, by (1.3)(0), (i), (iii), to (Ik, I, J) - (I~, I, J) + Nr

where Nr is a triangle without P as a singular point. Taking linear combinations
and then taking the boundary, one obtains

Since | n |= Ø, the support of 03A3 ar~Mr is empty in a neighborhood of P, hence
so is the support of the right hand side of the above. This implies all ek = 0.
Thus E ar~Mr + 03A3 bj~j ~ 03A3 a, ON, + E bj~j and the induction prodeeds.

For n e Tad1(2), write n = E ar~Mr + 03A3 bj~j and define

PROPOSITION. For a generic triangle M, the fodlowing identity holds: 03BD(03C3(M))
= 03C3(~M). The formula (*) gives a well-defined map a: Tad1(2) - k* 0 k**

Proof. For the first assertion, one needs to check this only for M in Fig-
ure 2.2.b. One has

Since M2n(Lo, L1; Mo, M1) = M0~(L0, eo; M2, M1) and M2n(L2, Lit Mo, M1)
= Mi n (L2, e2; Mo, M2), this equals v((L; M)).

For the second statement we use the second description of the group: Tad (2) =
Q{~M,~}/ ~. We have just seen that the relation (t) is taken under to
zero. That (1.4)(0), (i), (iii)(a) are sent to zero is obvious. As for (1.4) (iii)(b),
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Fig. 2.6.1.

PROPOSITION 2.6. The map above a: Tid(2) ~ kQ 0 k*Q descends to a map
(also denoted a) Tl(2) ~ k*Q 0 k*. The as give a map of complexes T(2) -
A(2), namely the following diagram is commutative:

Proof. That the relation (1.4)(ii) is taken to zero under the map a is easy to
see (left to the reader). We will show that the relations (iv) are also taken to
zero.

Let (H; Qo, Q1) be as in (1.4)(iv)(a). First we consider the case where li does
not contain any ek. Let c = Qo ~ QI and pr: p3 _ {c} -3 p2 be the projection
with center c. Since 1£ is projected onto a line H and Qi to a point Qi, one
obtains a configuration as in Figure 2.6.1. Here Lij still denotes the image of

Lij under the projection. Put Rij = H ~ Lij, and take a point v E HB{Q0, Q1}.
One has
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Fig. 2.7.

One hence shows 03A33i=003C3(03B4*(H; Qo, Q1)) = 0.
The argument for the case that 1£ contains ek is almost the same except that

one should take v = ek.
Let M be as in (1.4)(iv)(b). One has

PROPOSITION 2.7. The symbol map u: T(2) - A(2) is an isomorphism of
complexes.

Proof. We first claim: If h is an automorphism of p2 such that h(Li) = Li
for each coordinate line Li, then for any admissible triangle M, h(M) = M in
T2 (2).

For the proof of this, note h is of the form (xo : xi : X2) H (xo : a1x1 : a2X2)
where al, a2 e k*. We may assume h: (xo : XI : X2) H (XO : XI : ax2).

Let v = (0 : 0 : 1 : -a) E Loi, Mi = v * Nli, where Mi c L3 EÉ P2. Then
8; M = M for i = 3; = h(M) for i = 2; = 0 for i = 0,1. The claim follows
from (1.3)(iv).

Define the inverse map 03C3’: A2 - T2 (2) by 03C3’((L; M)) = g(M) where g
is an automorphism of p2 such that g(Li) is the i-th coordinate line. This is

well-defined on generators by the claim above. One can show that a’ takes the
relations (2.1 ) to the relations (1.3). The argument for the first relation of (2.1)(iii)
goes as follows (the others are easily verified).

Consider projective space p3 with coordinate hyperplanes Li (renewing nota-
tion). Let (.Mo, M1, M2) be planes in p3 such that v := Mo n M1 ~ M2 is a
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point E Lo - ~jL0j. Let (Mo, M1, M2) := 83M. The projection from v onto L3
gives rise to Figure 2.7. Here Lij also denotes its image. The restriction of the
projection gives

Thus 03C3’((L03,L12,L13;M)) = 8i M. Similarly,

and

Obviously, 03C3’((L30,L31,L32;M)) = M and 8ôM = 0. These imply that the
relation

is carried to E 03B4*iM = 0. In general, a relation (2.1)(iii) is a sum of relations of
this type.

As a consequence of T2(2) ~ A2, note that T2(2) is generated by triangles of
the type Figure 1.6.1 and Da (a ~ 1). Hence T1(2) is generated by ~a,b.

The inverse Q’: k*Q ~ k*Q ~ Tl (2) is given by a 0 b e 2a b. Proposition 1.8(3)
implies that this map is well-defined. One obviously has Q’ o cr = id. To verify
03C3 o 03C3’ = id, we have only to examine the images of line segments ~a,b, which is
obvious.

3. The construction of the maps u, f : G(2) ~ T (2)

In this section we give the constructions of two maps u and f : G(2) ~ T(2).
After recalling the definition of the Grassmannian complex, we describe the

map u, motivated by the construction of figures in [7, Introduction].
We then discuss the cross ratio of 03BE E G2 (which may be thought of a coordi-

nate) and the torus action on G21. The second map f is in terms of the coordinates
and directly related to Rogers’ modification [9] of the classical dilogarithm func-
tion

In either case, the proof of the compatibility of the map and the boundary
maps will follow from facts established in Sections 1 and 2.

(3.1) For p, q  0, we define the set Gq (the generic part of the Grassmannian) tobe the set of codimension p linear subspaces 03BE of Pp+q which are transversal to the
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coordinate simplex; Gq is naturally a variety. The inclusions 8i: Pp+q-1 ~ Pp+q
(cf. (1.1)) induce the maps

and one obtains the (truncated) simplicial variety (without degeneracy maps) :

Let

be the associated complex of Q-vector spaces (the degrees concentrated in [1, p]);
here QGpp-1, for instance, is the Q-vector space with Gpp-1 as the basis set, and
8* = E( -1 )i8;. G(p) is called the Grassmannian complex of weight p.

(3.2) We will construct a map of complexes u: G(2) ~ T(2).
In degree two, the map U2: QG20 ~ T1(2) is to be given as follows. For a

point Q E G20, we let H = eo * Q, Q’ = H ~ K (where K := Ko2) and define

Let us define the map in degree one ul: QG21 ~ T2(2). For a point 03BE E G21,
which is a line in P3, take a plane II ~ 03BE and put

Let Qi = 03B4*i03BE, Hi = eo * Qi, and Q’i == Hi n K, Figure 3.2.
We define

(the ith term is the "quadrangle" ~(Q’iQiRie02)). Note that

CLAIM. The right hand side of (3.2.1) is independent of the choice of IT.

Proof. If one takes another II, (3.2.1) will differ by

This equals zero by the relation (1.3)(iv) since C2 = 03B4*iC3.
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Fig. 3.2.

THEOREM 3.3. The us give a map of complexes G(2) ~ T(2).
Proof. This follows from:

(3.4) There is a natural bijection between the points of G2 1 and the set

are linearly independent.}
where the group GL(2, k) acts diagonally on the quadruples of vectors. The
quadruple (vo, vl , V2, V3) can be regarded as a 2 by 4 matrix which gives a linear
map k 4 ~ k2; the projectivization of the kemel of this map (which is a line in
P3) is to be the point corresponding to (vo, v1,v2,v3).

Under the bijection above, a point 03BE E G21 corresponds to the class of a unique
matrix of the form

where x, y, z, w ~ k* - {1}, xw - yz ~ 0
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Let the cross ratio of 03BE be defined by

For any a E k* - {1}, let Ça E GI be the class of the matrix

One has (03BEa) = a.

(3.5) Tours action.
The group (k*)4 (= G4m(k)) acts on G21 by

here (vo, ... , v3) stands for the corresponding point e G2. Note also:

The following is easy to see:

PROPOSITION 3.6. (1) The cross ratio (03BE) is invariant under the action of
(k*)4.

(2) Each 03BE E G2 1 is conjugate (under the torus action) to Ça where a = (03BE).

(3.7) Define the map f2: QG20 ~ Tl (2) by

if P = (x0: Xl : X2) and ai = - xi/x0. Also define the map fl: QG21 ~ T2(2)
by

THEOREM 3.8. The f ’s give a map of complexes G(2) - T(2).

PROPOSITION. For 03BE E G21, one has
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Proof. One has

A direct calculation using Proposition 1.8 (3) verifies the claim.

Proof of Theorem 3.8. For a point 03BE E G’21, let a = (03BE). One has

by the proposition. On the other hand, by (5) of this proposition
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