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1. Introduction

Let R be a commutative noetherian ring, and let I Ç R be an ideal of R. Over the last
fifteen years, there has been considerable effort in the study of the Rees algebra of
I, R[It] = ~n0In, and the associated graded ring of I, G(I) = ~n0In/In+1.
The associated Proj of these two graded rings are respectively the blowup of I and
the normal cone of I. One of the main questions addressed has been when these
algebras are Cohen-Macaulay (which we will abbreviate CM). If they are, there is
a wealth of information about how I sits in R. See the introduction of [HH2] for
a discussion of this topic, and our bibliography for many related papers. Recently,
due to work of Sancho de Salas [SS] and Joseph Lipman [L], there is even more
reason to study the Cohen-Macaulayness of these algebras. For instance, when R
is CM with a canonical module, Sancho de Salas proves that G (In ) is CM for large
n iff X = Proj(R[It]) is CM and satisfies a Grauert-Riemenschneider vanishing
property, namely that Rif*(03C9X) = 0 for i &#x3E; 1, where 03C9X is the dualizing sheaf of
X. Lipman proves that provided R is essentially of finite type over the complex
numbers and X is nonsingular, then R has rational singularities iff R[lnt] is CM
for large n.
A subsidiary question is the relationship between the CM property of R[It]

and the CM property of G(I). In [Hul], it was shown that if R is CM, then R[It]
CM implies G(I) CM. The converse need not hold. (Indeed, putting together the
results of Sancho de Salas and Lipman, one obtains, at least for rings essentially
of finite type over the complex numbers, that if the converse holds for every ideal
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then the ring has a rational singularity. On the other hand, while this paper was
being written, Lipman has shown that if R is pseudo-rational then for every ideal I
of R, G(I) CM implies that R[It] is CM [L].) The first theorem giving necessary
and sufficient conditions for the converse to hold in case I is m-primary was due
to Goto and Shimoda [GS] in 1979. They use the concept of a reduction number.
A reduction of I is an ideal J C I for which there exists an integer n such that
JIn = In+1. The least integer n with this property is called the reduction number
of I with respect to J and we will denote it by ri(I). The reduction number of I
is defined by

where J is said to be a minimal reduction of I if it is not properly contained in any
other reduction of I. The theorem of Goto and Shimoda states:

THEOREM 1.1. Let (R, m) be a d-dimensional CM local ring with infinite residue
field and let I be an m-primary ideal of R. Then R[It] is CM iff G(I) is CM and
r(I)  d - 1.

This theorem was recently improved by Goto and Huckaba [GH], and related
results have been given in [HM]. Trung and Ikeda gave a fairly definitive answer
using the a-invariant of the graded ring: they proved in [TI] that if G(I) is CM,
then R[It] is CM iff the a-invariant of G(I) is negative (see also [V] and [GN]).
Other authors have recently studied similar questions for the Gorenstein property,
cf. [GNi], [HHR], [HRS], [I] for example. In this paper we will give a full gener-
alization of the theorem of Goto and Shimoda. See Theorem 5.1. While we were

writing this paper, we leamed that independently Bemie Johnston and Dan Katz
found this result (cf. [JK]) and Aron Simis, Bemd Ulrich, and Wolmer Vasconcelos
found closely related results ([SUV]). A recent paper by Tang ([Ta]) contains some
related results. We also will give necessary and sufficient conditions for the Goren-
stein property to hold for the Rees and graded algebras in Theorem 5.8. Moreover
our method of proof yields considerable information concerning the regularity of
the Rees algebra and what we call the local reduction numbers of an ideal.

The exact statements of Theorems 5.1 and 5.8 are:

THEOREM 5.1. Let (R, m) be a CM ring and I an ideal of R with ht(I)  1.

Then R[It] is CM if and only if the following conditions are satisfied:
(i) G(I) is Cohen-Macaulay.
(ii) r(I~)  ht(p) - 1 for eveqy prime p D I with é(Ip) = ht(p).
THEOREM 5.8. Let R be a Cohen-Macaulay ring and I an ideal of R with
ht(1) ) 2. Then R[It] is Gorenstein if and only if the following conditions are
satisfied:
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(iii) r(I~)  ht(p) - 2 for every prime ideal p D Iwith£(Ip) == ht(~)  £(1).
Observe that applying (5.1) in both directions one obtains that if G(I) is CM,

then R[It] is CM iff Rp[Ipt] is CM for every prime p such that £(Ip) = ht(p). This
is a very useful criterion.

If (R, m) is a local ring with infinite residue field R/m, every minimal reduction
of I is minimally generated by

elements, and ~(I) is called the analytic spread of I. It is well-known that

The analytic deviation of I is defined by

The relation type of I, N(I), is defined to be the maximal degree of a minimal
homogeneous generator of the ideal ker R[T1,..., Tn] ~ R[It], where I is n-
generated and Tj ~ ijt.
We introduce the notion of local reduction numbers of a graded algebra S over

a local ring. By means of this notion we give upper bounds for the regularity
of minimal reductions and the reduction number of the ideal S+ generated by the
elements of positive degree of S (cf. Theorem 3.2). These upper bounds can be used
to estimate the a-invariant and the Castelnuovo-Mumford regularity of Cohen-
Macaulay graded algebras and associated graded rings of ideals. As we mentioned
above, this work allows us to derive general criteria for the Cohen-Macaulay and
Gorenstein property of Rees algebras of ideals having arbitrary analytic deviation.
We are also able to prove similar theorems relating the Serre property Sk of R[It] to
the Serre property Sk-1 of G(I) (see Theorem 6.8). We give numerous corollaries
of our results when additional hypotheses on the ideal I are given. We also derive
a bound on the relation type of an ideal I when both R[It] and R are CM rings.
The precise statement is as follows:

COROLLARY 6.7. Let (R, m) be a CM ring with infinite residue field. If I C R
is an ideal of analytic spread £ and R[It] is CM then

The number rj(I) is the jth local reduction number (see the definition following
Lemma 4.2).

As in the paper [AH], the bounds on reduction numbers of ideals have a great
deal to do with theorems of Briançon-Skoda type (see [LT], [LS], and [AH]). The
simplest version of the Briançon-Skoda theorem states:
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THEOREM 1.2. Let (R, m) be a d-dimensional regular local ring. For every
ideal I and every reduction J of I, Id C J.

There are by now many versions giving more information. A basic problem in
improving this result lies in understanding the coefficients in the theorem. By this
we mean the following: let R be a regular local ring, and let I be an m-primary
ideal. If R has an infinite residue field, then I has a reduction J generated by d
elements x1,..., x d . Given an element ue I d, we may write

The "best" choice of the coefficients ai is what we seek. Of course, the ai are

only defined up to trivial syzygies of the regular sequence x1,..., xd. The best one
could hope for would be to say there is a choice of the ai in 1d-l; this is exactly
the case when the reduction number of I is at most d - 1, and this relates in tum
to the Cohen-Macaulay property of the Rees algebra. In Theorem 7.6 we give a
new Briançon-Skoda type theorem, valid for regular local rings containing a field,
which gives very precise information about a choice of the coefficients ai. The
proof of Theorem 7.6 uses reduction to characteristic p, and in characteristic p
uses ideas coming from the theory of tight closure. This material is of independent
interest, and does not use the results in the rest of this paper. We refer the reader
to Theorem 7.6 for the exact statement, which is somewhat technical. Although
this section may be read independently from the rest of the paper, in Section 8 we
apply our new Briançon-Skoda theorem to give bounds on the reduction number
of an ideal I in an equicharacteristic regular local ring when G(1) satisfies Serre’s
property Sz, where é = ~(I). These results strengthen Theorem 5.1 when the
graded ring G(I) is not necessarily CM.
We now give a short summary of what is in each section. Section 2 contains

basic definitions and material which we will need in the proofs of the main theorems
in Section 5. In Section 2 we study standard graded algebras and develop graded
versions of various local ideas such as analytic spread, reduction numbers, etc.
Of particular note and importance in the proofs is the concept of a filter-regular
sequence due to Trung. Section 3 contains the main theorems relating the local
reduction numbers of a graded ring to its regularity and a-invariants. This section
contains the heart of the proofs of the main results. In Section 4 we translate the
local data coming from a local ring Rand ideal I to the graded data of G(I)
and R[It]. Section 5 gives the proofs of the main results connecting the Rees
and graded algebras, and gives many corollaries of these results. Section 6 gives
information conceming the Serre properties of the Rees and graded rings, bounds
on the Castelnuovo-Mumford regularity of the Rees algebra, and bounds on the
relation type of I in terms of the local reduction numbers when R and R[It] are CM.
Section 7 gives our new Briançon-Skoda theorem, and Section 8 gives applications
of it.
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2. Filter-regular séquences and minimal réductions of a graded algebra

In this section we collect some basic results on filter-regular sequences and minimal
reductions of graded algebras which we shall need later in our study of the Cohen-
Macaulay property of the associated graded ring and the Rees algebra.

By a graded algebra we always mean a graded algebra S = ~n0Sn over a local
ring So with infinite residue field such that S = S0[S1] (standard graded algebra).
We denote by PI the maximal graded ideal of S and by S+ = ~n&#x3E;0Sn the ideal
generated by all homogeneous elements of positive degree of S. As usual, for any
graded module Lover S, and any integer n, Ln denotes the n-graded part of L.
A system of homogeneous elements zl , ..., zr of S is called a filter-regular

sequence on S (with respect to S+) if zi e P for any prime P E Ass(S/(z1,...,
zi-1)), p 1. S+, i = 1,..., r . This notion originated from the theory of generalized
Cohen-Macaulay rings [CST] where filter-regular sequences are defined for local
rings with respect to the maximal ideal. We refer the reader to [CST] and [T2] for
basic properties of filter-regular sequences.

Given any ideal Z of ,5’ we will put

For any primary decomposition of Z,U(Z) is the intersection of the primary
components of Z whose associated primes do not contain S+. A sequence zl , ... , zr
of homogeneous elements in S is a filter-regular sequence on S if and only if

LEMMA 2.1. Let z1, ..., zr be a filter-regular sequence on S. Then

(i) U((z1,...zr-1)) : zr = U((z1,...,zr-1)).
(ii) ht(P)  r for every associated prime P of U(zi , ... , z,).

Proof. Since every associated prime P of U«zl,..., zr-1)) does not contain
S+, we have that zr ~ P by the definition of filter-regular sequences. From
this (i) follows. For (ii) we first note that since P ~ S+, zi e Q for any prime
Q E Ass(S/z1,...,zi-1)), Q C P, i = 1,..., r. Therefore, z1,...,zr is a regular
sequence of Sp. It follows that dim(SP)  r. Since ht(P) = dim(,SP), this gives
the conclusion. 0

COROLLARY 2.2. Let zl , ... , zd E S+ be a filter-regular sequence on S with
respect to S+, d = dim S. Then S+ = J( Zt, ... , zd).

Proof. Set Z - (zI,...,zd). By Lemma 2.1 (ii) we have U(Z) = S. Hence
( S + ) neZ for n sufficiently large. Since Z C S+, the conclusion is imme-
diate. 0

LEMMA 2.3. Let S be a Cohen-Macaulay graded algebra. Then any filter-regular
sequence zi, ..., Zs on S with length s = ht(S+) is a regular sequence.
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Proof. We will prove by induction that z1,...,zi is a regular sequence for
i = 0, ... , s. For i = 0 there is nothing to prove. For i &#x3E; 0, we may assume that

z1, ... , zi-1 is a regular sequence of S. Let P E Ass(S/(z1,..., zi-1». Since S
is Cohen-Macaulay, ht(P) = i - 1. Since ht(S+) = s &#x3E; i - 1, P ~ S+. By the
definition of filter-regular sequences, zi e P. Hence zi, ... , zi is also a regular
sequence on S. ~

A filter-regular sequence zl , ... , zr of S can also be characterized by its regu-
larity. Following [Tl] and [AH] we say that a sequence z1, ... , z, of homogeneous
elements of S is [t1,..., tr]-regular if

for n  ti, i = 1,..., r. The value of ti is also allowed to be -oo and +00.

According to [Tl, Lemma 2.1] z1,..., Zr is filter-regular if and only if there exist
integers ti  +00 such that Zl,..., Zr is [t1,..., tr]-regular.
Now we will establish some properties of minimal reductions of the ideal S+.

LEMMA 2.4. An ideal Z generated by 1-forms is a reduction of S+ if and only if
v/3’+- = VZ. In this case,

The proof is left to the reader. ~

As in the local case [NR] one can show that a minimal reduction of S+ is
minimally generated by

elements, where m denotes the maximal ideal of So. We call ~(S+) the analytic
spread of S+. By [Tl, Lemma 3.1 ] every minimal reduction of S+ can be minimally
generated by a filter-regular sequence of S. Hence we can introduce the following
definitions.

DEFINITION 2.5. Let Z be a minimal reduction of S+. We call the least number
t such that there exists a minimal generating set z1,...,z~ of Z which is [t, ... , t] -
regular (resp. [t + 1,..., t + £] -regular) the regularity (resp. the sliding regularity)
of Z. This number will be denoted by a(Z) (resp. s(Z)).

The numbers s(Z), a(Z) and£(S+) play a crucial role in the estimation of the a-
invariant and the Castelnuovo-Mumford regularity of S. Recall that the a-invariant
of S [GW] is defined by
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where d : = dim S and HdM(S) denotes the dth local cohomology module of S with
respect to the maximal graded ideal M. The Castelnuovo-Mumford regularity of
S [Mu] is defined by

where H1+ (S) denotes the ith local cohomology module of S with respect to
S+. 
A special case of [T3, Theorem 2.2] and [T3, Corollary 2.3] is

THEOREM 2.6. Let S be a Cohen-Macaulay graded algebra and let Z be a
mihimal reduction of S+. Then a(S)  s(Z) if and only if r Z(S+)  ~(S+) + s(Z).
In addition, for any b &#x3E; s(Z), a(S) = b if and only if r(S+) = f(S+) + b.

PROPOSITION 2.7. Let S be a Cohen-Macaulay graded algebra. Let Z be a
minimal reduction of S+. Then

Proof. If a(S)  s(Z) then rz(S+) - ~(S+)  s(Z) by Theorem 2.6 so
both sides are equal to s(Z). Suppose a(5) &#x3E; s(Z). Then by Theorem 2.6,
rZ(S+) - £(5+) == a(S) and the equality again holds. D

REMARK 2.8. One can divide the above relation into two parts:

COROLLARY 2.9. Let S be a Cohen-Macaulay graded algebra. Let Z be a
minimal reduction of S+. If Y is any minimal reduction of S+ such that r(S+) =
ry (S+) then

Proof. By applying Proposition 2.7 with both Z and Y we have rZ(S+) 
max{s(Z), a(S)} + ~(S+)  max{s(Z), s(Y), ry(S+) - ~(S+)} + ~(S+) since
a(S)  max{s(Y), ry(S+) - ~(S+)}. D

PROPOSITION 2.10. [Tl, Corollary 3.3]. Let S be a graded algebra and Z a
minimal reduction of S+. Then

REMARK 2.11. Mumford [Mu] showed that reg(S) gives upper bounds for the
degrees of the generators and of all higher order syzygies of the defining ideal of
S in a polynomial ring over So. In particular, the maximum degree of the elements
of a homogeneous minimal basis of the defining ideal of S is bounded above by
reg(S) + 1 (see also [EG], [0]).
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3. Regularity and local réduction numbers of a graded algebra

Let S = ~n0Sn be a (standard) graded algebra over a local ring So with infinite
residue field. As we have seen in Propositions 2.7 and 2.10 the regularities and
the reduction numbers of minimal reductions of S+ provide information on the
a-invariant and the Castelnuovo-Mumford regularity of S. In this section we will
estimate these invariants in terms of simpler invariants of S.

Given a prime ideal p of So we will denote by Sp the localization of S at the
multiplicatively closed set S0Bp.Sp = ~n0(Sn)p is a graded algebra over the local
ring (So) p. If P = pS + S+ where p E Spec So then dim6p = dim Sp = ht P.
Set ,s = ht(S+), î = ~(S+). We introduce the following invariants:

which we call the ith local reduction number of S. (Note that we allow i to take
negative values.)

REMARK 3.1.

(1) For i = s,...,~ we have the following relation between ri-1(S) and
ri(S):

THEOREM 3.2. Let S be a Cohen-Macaulay graded algebra. Set î - é( S+ ) and
let Z = (zl, ..., Zf) be a minimal reduction of S. Then

(i) z1,..., Zf is [r0(S) + 1,..., r~-1(S) + 1 ] -regular for any filter-regular se-
quence zl, ... , Zf of S which generates Z.

(ii) rZ(S+)  rf( S).
We will prove Theorem 3.2 by proving:

For each i such that 0  i  ~, fix a primary decomposition of the ideal (z1, ... , zj )
and let Ui be the intersection of the primary components which contain S+ and
have height at most i . Also, let Vi = U((z1, ..., zi» -

For the proof of Theorem 3.2 we need the following lemmas.

LEMMA 3.3. Let U C L be two graded ideals of S. For an integer n  0, Un = Ln
if and only if [ Ue 1 n - [Lp]n for every prime p of So which is the contraction o, f an
associated prime of U.
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Proof. (~) is trivial. To see (~) we have to show that Ln C Un. For this it
suffices to show that Ln C Qn for every primary component Q of U. Let p be the
contraction in So of the associated prime of Q. Then [Ln]p = [Lp]n = [Up]n g
[Qn]p. From this is follows that Ln C Qn. ~

LEMMA 3.4. Let S be a CM graded algebra with s = ht(S+) and ~ = ~(S). Let
Z = (zl, ... , ZR) be a minimal reduction of S+. Fix i such that s  i  1. Assume
that the sequence zl, ... , ZR satisfies (Cj) for 0  j  i. Let P 2 S+ be a prime
ideal of S with htP &#x3E; i. Let p be the contraction of P to S0. Then

Proof. We show the result by induction. Let rj = Tj(S) for 0  j  î. Notice
that P = pS + S+. The case i = s follows from the fact that S/(Zl,..., zs) is a
Cohen-Macaulay ring. For, since SI(zl,..., zs)p is also a Cohen-Macaulay ring
with dimension ht(P) - s

for k  ht(P) - s.
If j  s + 1, we consider the exact sequence

Localized at p this induces the following exact sequence of local cohomology
modules

By the inductive hypothesis we have

for n  rj-2 + 2, k  ht(P) - j + 1 (this holds even if j = 1 and s = 0). Further,
(Cj-1) is satisfied. Hence

for n  rj - + 1 and m arbitrary by Lemma 3.7 below. By Remark 3.1, rj-2 + 2 
rj-1 + 1, so we can deduce that
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for n  rj - 1 + 1, k  ht( P) - j + 1. On the other hand, the exact sequence

yields the following exact sequence of local cohomology modules

Hence we can conclude that

ht(P) - j.

LEMMA 3.5. Let S, Z and i be as in Lemma 3.4. Let d = dim S. Assume that

(Cj) holds for 0  j  i. Then (zl, ... , zi)n = [ui n Vi]n for n  ri-1(S) + 2.
Proof. Let r- - rj(S) for 0  j  l. For every prime ideal P 2 S+ of

1) let U(P), resp. Uo(P), denote the intersection of the primary components of
(zi, ... , zi) (from our fixed primary decomposition) whose associated primes are
contained, resp. properly contained, in P (U(P) = S, resp. Uo(P) = S, if there
are no such primes). Let p be the contraction of P in So. Then

This can be seen easily after localizing at p, so that p = m and P = noe e S+. Note
that then U(P) = (zl, ... , zi) so

If ht(P) &#x3E; i, Lemma 3.4 applied with k = 0 implies that [U( P)p]n = [Uo( P)p]n
for n  rç-1 + 2. Therefore [U(P)q]n = [U0(P)q]n for any prime ideal q C p and
n  ri-1 + 2. By Lemma 3.3, this means that

for n  ri- 1 + 2.
For every integer j  i, let Wj be the intersection of the (fixed) primary

components of (z1,...,zi) whose associated primes contain S+ and have height
 j ( Wi = Ui ) . It is easily seen that (zl, ... , Zi) = Wd n Vi and
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According to
Therefore we can conclude that

Proof of Theorem 3.2. We will use induction on d = dim(S). If d = 0
then Z = 0 and s = ~ = 0 so we need only to show (Co). This holds since
ro(S) = r(S+) in this case.

Assume now that d &#x3E; 0. We will prove by induction that (Ci) holds whenever
i  d. If i  s then this is clear. Assume that i  s and assume by induction that
(C.i) holds for 0  j  i.

By Lemma 3.5 we know th at ( zl , ... , zi ) n = [Ui n Vi]n for n  ri(S) + 1 since
ri(S) + 1  ri-1(S) + 2. Hence we must show that [Ui ~ Vi]n : Zi+l = [ui ~ Vi]n
for n  ri(S) + 1. By Lemma 2.1(i), Vi : zi+1 = vi. We claim that [Ui]n = Sn for
n  ri(S) + 1. Let P E Ass(S/Ui) and let p be the contraction of P to So. Since
P D S+, p is not the maximal ideal of So. Let k = min{i, ~((Sp)+)}. Applying
our induction hypothesis to Sp we know that i(z1,..,zi)p((Sp)+)  rk(Sp)  ri(S).
The last inequality follows from Remark 3.1 (3). This shows that [(Ui)p]n = [Sp]n
for n  ri(S) + 1, so [Ui]n = Sn for n  ri(S) + 1 by Lemma 3.3. Hence for

which shows (Ci) if i  Ê. Note that knowing (Cj) holds for j  ~ implies that
s(Z)  rl-1(S)-~ + 1, and then Corollary 2.9 gives that

hence (G’Q) holds. ~

We obtain from Theorem 3.2 the following estimates for the regularities and
the reduction number of minimal reductions of S+ in terms of the local reduction
numbers.

COROLLARY 3.6. Let S be a Cohen-Macaulay graded algebra. Let Z be an
arbitrary minimal reduction of S+. Set £ == ~(S+). Then

Proof. (i) and (ii) follow from Theorem 3.2(i) and Remark 3.1 (2). For (iii) we
have r((Sp)+)  r(S+) for every prime ideal p of S0 with ~((Sp)+) = ht(p) + s = î
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because the image of a minimal reduction of S+ in Sp is also a minimal reduction
of (Sp)+. By the definition of ri(S) this implies

On the other hand, we have rZ(S+)  r~(S) by Theorem 3.2 (ii). Since r~-1(S) 
re(S), we get max{r~-1(S) + 1, rZ(S+)}  r~(S). D

LEMMA 3.7. Let S be an N-graded Noetherian ring and I C R a homoge-
neous ideal of S. If M is a graded S-module such that Mn = 0 for all n  j then
[HkI(M)]n = 0 for all n  j and for all k.

Proof. Let f 1, ... , ft be homogeneous generators of I. Then HkI(M) is a quo-
tient of a submodule of the direct sum of the Z-graded modules Mfi1 ...fik, where
1  i1  ...  ik  t. Since deg fi  0, these modules vanish in degree j and
higher. D

4. Local réduction numbers of an ideal

Throughout this section let (R, m) be a local Noetherian ring with infinite residue
field. We will apply the results of Section 3 to the associated graded ring G(I) :=
~n0In/In+1 of an ideal I in R. For this we need to make some observations on
the relationship between certain invariants of G(I)+ and I.

LEMMA 4.1. The following relations hold for any ideal I in R:

(ii) rZ(G(I)+) = rj(I) whenever Z is generated by the initial forms of the
elements of J in G(I).

Proof. Set S = G(I). For (i) let m denote the maximal ideal m/I of the local
ring R/I = So. It is clear that Sn/mSn = In/mIn for all n  0. Therefore

For (ii) we note that rZ(S+) is the least integer n for which Zn+1 = Sn+1. This is
equivalent to J In + In+2 = In+1 or, by Nakayama’s Lemma, JIn = I’+1 so that
rz(S+) = rJ(I). Finally (iii) follows from (ii) because every minimal reduction
Z of S+ is generated by the initial forms of the elements of a minimal reduction J
of I and conversely. D

Let L(I) denote the set of all prime ideals p D I of R with ~(I~) = ht(~). This
set is relatively small by the following lemma.
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LEMMA 4.2. L(I) is a finite set and ht(~)  ~(I) for every ~ E L(I).
Proof. L(I) is finite because L(I) is contained in the set A*(I) := Un1Ass(R/

(In)), where (In) denotes the integral closure of ln [Mc, Proposition 4.1] and
A*(I) is a finite set. For the second statement we note that every minimal reduc-
tion of an ideal is minimally generated by a number of elements which is equal to
the analytic spread. Therefore, since the image of every minimal reduction of I in
R~ is a reduction of I~, ~(I)  £(lp) = ht(p). 0

Put s = ht(I) and £ == £(1). We introduce the following invariants:

which we call the ith local reduction number of I. Note that

LEMMA 4.3. Assume that G(I) is equidimensional and catenary (for instance,
this happens if R is universally catenary and equidimensional). Then

Proof. Set S = G(I). For every prime ideal p D I of R we denote by p
its image in RI l = So. This gives a one-to-one correspondence between prime
ideals of R which contain I and prime ideals of So. Since 5p = G(I~), we have
~(I~) = ~((Sp)+) and r(I~) = r((Sp)+) by Lemma 4.1. If S is equidimensional
and catenary, then ht(p) = ht(p) + s, hence

By the definitions of the local reduction numbers of S and I, this implies ri( S) ==

THEOREM 4.4.. Assume that G(I) is a Cohen-Macaulay ring. Set É = £(1)
and let J be an arbitrary minimal reduction of I. Then

Proof. Set S = G(I) and let Z be the minimal reduction of S+ generated by
the initial forms of the elements of J in S. By Corollary 3.6(iii) and using Lemma
4.1 and Lemma 4.3 we have
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which proves (i). For (ii) we have

by Proposition 2.7. By Corollary 3.6 (i), s(Z) + ~  r~-1(S) + 1. Hence

Using Lemma 4.1 and Lemma 4.3 we can interpret this relation as

which together with (i) proves (ii). ~

COROLLARY 4.5. Assume that G(I) is a Cohen-Macaulay ring. Set £ == £(I).
If there exists a minimal reduction J of I such that r (Ip ) - ht(p)  rJ(I) - ~ for
every prime ideal p D I with ~(I~) = ht(p)  £, then

Proof. The assumption on J means that rJ(I) &#x3E; r~-1(I) + 1. By Theorem 4.4
we get

which implies

DEFINITION 4.6. Let c be an integer. We say that I has sliding reduction number
c if ri(I) = c + i - ht(I), for i = ht(I),..., £(I) - 1.

REMARK 4.7. Set £ == £(I) and s = ht(I). If ~ = s, i.e. I is an equimultiple ideal,
then I can have any sliding reduction number. If ~ &#x3E; s, i.e. ad(I) &#x3E; 0, then I has

sliding reduction number c if and only if

Recall that the ri(I)’s are strictly increasing. Having sliding reduction number
means that the first Ê - 1 increase by exactly one, the least possible. For example,
I has sliding reduction number 0 if Ip is a complete intersection for every prime
ideal p D I with ht(p) = î(i) - 1.

The following result shows that if I has sliding reduction number, then the a-
invariant of G(I) can be computed by means of the (global) reduction numbers.
THEOREM 4.8. Assume that G(I) is a Cohen-Macaulay ring and I has sliding
reduction number c. Then for any minimal reduction J of I
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Proof. Set S --- G(I), s = ht(I), and t = ~(I). We have ri(I) = c + i -
s, i = s,..., ~ - 1. If rJ(I) - f &#x3E; c - s, then rJ(I) &#x3E; r~-1(I) + 1, which is
equivalent to having r(Ip) - ht(p)  rJ(I) - ~ for every prime p D I with
Î(I6,) - ht(p)  f. Hence a(S) = ri(I) - Ê by Corollary 4.5. If rJ(I) - ~  c-s,
then rJ(I)  r~-1(I)+1. By Theorem 4.4 we have r~-1(I)+1 = r~(I)  a(S)+~,
hence

On the other hand, by [T3, Lemma 2.4] we know that

Let p be the contraction of such a prime P in So. Then P = p 0 S+ because
P D S+. Since ht(P) = s = ht(S+), we have ht(p) = 0. It is easily seen that
~((S+)P) = ~((Sp)+) = s and r( (S+)p) = r( (Sp)+). Therefore

Therefore a(S)  rs(S) - s. By Lemma 4.3, rs(S) = rs(I) so that a(S) 
rs(I) - s = c - s. Hence a(S) = c - s. 0

REMARK 4.9. Suppose that I has sliding reduction number c. The formula
for a(G(I)) in Theorem 4.7 can be reformulated as follows:

This formula has been proved for ad(I) = 1 [T3, Corollary 3.2] (cf. [GH, Propo-
sition 2.4] for the case I is generically a complete intersection) and for ad(I) = 2
and 7p is a complete intersection for every prime p 2 1 with ht(~) = ht(I) + 1
[GN1, Theorem 1.3], [T3, Corollary 4.2].

Theorem 4.7 has the following interesting consequence on the invariance of the
reduction numbers of minimal reductions.

COROLLARY 4.10. Assume that G(I ) is a Cohen-Macaulay ring. If I has sliding
reduction number less than or equal to r(I) - ad( 1), then

for any minimal reduction J of I.
Proof. If c  r(I) - ad(I) = r(I) - £(1) + ht(I) then max{c - ht(I), rJ(I) -

~(I)} = r J (1) - ~(I), giving the desired equality. Il
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When G(I) is CM we can bound the Castelnuovo-Mumford regularity index
of G(I) in terms of the local reduction numbers.

PROPOSITION 4.11. Assume thatG(I) is a Cohen-Macaulay ring. Set ~ = ~(I)
and let J be an arbitrary minimal reduction of I. Then

Proof. Set S = G(I) and let Z be the minimal reduction of S+ generated by the
initial forms of the elements of J in S. By Proposition 2.10 and Corollary 3.6(ii)
we have

Using Lemma 4.1 and Lemma 4.3 this can be interpreted as reg(S) 
max{r~-1(I), rJ(I)}, which together with Theorem 4.4(i) implies the conclu-
sion. 0

5. Cohen-Macaulay and Gorenstein properties of Rees algebras

Throughout this section let (R, m) be a local Noetherian ring with infinite residue
field. We will derive criteria for the Cohen-Macaulay and Gorenstein properties of
the Rees algebra R[It] := ~n0Intn of an ideal I in R by means of the Cohen-
Macaulay and Gorenstein properties of the associated graded ring G(I) and the
reduction numbers of I.

THEOREM 5.1. Let (R, m) be a CM ring and I an ideal of R with ht(I) ) 1.

Then R[It] is CM if and only if the following conditions are satisfied:
(i) G(I) is Cohen-Macaulay.
(ii) r(I~)  ht(p) - 1 for every prime p D I with ~(I~) = ht(p).

Proof. (~) Set S = G(I). By [Hul, Proposition 1.1], [TI, Theorem 7.1] we
have (i) and a(S)  0. Note that R~[I~t] is CM for every prime ideal p 2 I. Using
induction on d = dim(R) we may assume that

To prove (ii) we need only to consider the case ~(I~) = ht(p) = d. Then p = m
and Ip = I. By the inductive assumption, rd-1(I)  d - 2 (including the base
case d = s). Choose J C I a minimal reduction such that rJ(I) = r(I). Using
Theorem 4.4 we get max {r~-1(I)+1, r(I)} = max{r~-1(I)+1, a(S)+~}.Since
P = d we have

This is at most d - 1 since a(S)  0 and rd-1(I)  d - 2.
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(~) Set f == ~(I). By (ii) we have r~(I)  ~ - 1 and by Theorem 4.4,
a(S) + É z r £( 1). Thus, a(S)  r~(I) - ~  0 which together with (i) implies that
R[It] is Cohen-Macaulay [TI, Theorem 7.1]. D

COROLLARY 5.2. Let (R, m) be a Cohen-Macaulay ring and I an ideal of
R with ht(I)  1. Assume that Ip is a complete intersection for every prime
p D I with ht(p) = Ê(I). Then R[It] is Cohen-Macaulay if and only if G(I) is
Cohen-Macaulay.

Proof. Let p D I be a prime ideal of R with ht(p) = ~(I~)  t(I).
By the assumption, I~ is a complete intersection, hence ~(I~) = ht(I) so that
ht(p) = ht(I). Since r(Ip) = 0, condition (ii) of Theorem 5.1 is satisfied, and the
conclusion follows. D

Recall that P(n) = {r| there exists s ~ P such that sr E Pn}.
COROLLARY 5.3. Let R be a Cohen-Macaulay ring and P a prime ideal of R
with ht(P)  1 such that RP is regular. Assume that P(n) = Pn for n  1. Then
R[Pt] is Cohen-Macaulay if and only if G(P) is Cohen-Macaulay.

Proof. It is known [CN] that the assumption p(n) = P’ for n  1 implies
~(P~)  ht(p) for every prime ideal p D P of R. Hence we need to check condi-
tion (ii) of Theorem 5.1 only for p = P. Since Rp is regular, PRP is a complete
intersection, hence the conclusion follows. D

Corollary 5.3 is proved for R Gorenstein in [Va3, Theorem 5.7.7].
Recently Lipman [L] has proved the following result (We refer to [LT] for a

discussion of and definition of pseudo-rational rings. However note that by [LT],
regular rings are pseudo-rational):
THEOREM 5.4. Let (R, m) be a pseccdo-rational local ring. Let I be any ideal of
R. Then G’(I) is CM if and only if R[It] is CM.

Combining this result with Theorem 5.1 gives us

PROPOSITION 5.5. Let (R, m) be a CM local ring and I an ideal of R. Assume
that Rp is pseudo-rational whenever ~(IP) = dim Rp. Then G(I) is CM if and
only if R[It] is CM.

Proof. [Hu, Proposition l.l] shows that G(I) is CM if R[It] is CM. Assume
that G(I) is CM. By Theorem 5.1 we need only show that r(IP)  ht(P) - 1
whenever £(Ip) == ht(P). By our assumption, Rp is regular at such primes P, so
by Theorem 5.4, RP[IPt] is CM, therefore Theorem 5.1 applied to RP[IPt] gives
the desired conclusion. D

In fact, Lipman uses his methods to prove (5.5) also, but we noticed it indepen-
dently and the proof points out the efficacy of (5.1).
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A slightly different version of Theorem 5.1 is the following criterion for the
Cohen-Macaulay property of R[It] which involves the reduction number of I.
This criterion generalizes results in the cases ad(I) = 0 [GS], [GHO] ; ad(I) = 1
[HuHul], [GH], [Vi], [T3]; ad(I) = 2 [GN1], [T3].
THEOREM 5.6. Let R be a Cohen-Macaulay ring and I an ideal of R with
ht(I)  1. Then R[It] is Cohen-Macaulay if and only if the following conditions
are satisfied:

(i) G(I) is Cohen-Macaulay.
(ii) r (I,,) ht(p) - 1 for every prime p D I with ~(I~) = ht(p)  £(I).

(iii) rJ(I)  ~(I) - 1 for some (equivalently, every) minimal reduction J of I.
Proof. (~) Set £ == Ê(I). By Theorem 5.1 we already have (i), (ii), and

r~(I)  Ê - 1. By Theorem 4.4 (i) the latter relation implies rJ(I)  ~ - 1, hence
(iii) holds.
(~) By Theorem 5.1 we need only to show that r(I~)  ~ - 1 for every prime
~ D I with £( 1 p) = ht(p) = î. But this follows from (iii) because J p is a minimal
reduction of Ip so that r(I~)  ri(I). 0

COROLLARY 5.7. Let R be a Cohen-Macaulay ring and I an ideal of R with
ht(I)  1. Assume that Ip is a complete intersection for every prime ~ I
with ht(p)  Ê(I). Then R[It] is Cohen-Macaulay if and only if the following
conditions are satisfied:

(i) G(I) is Cohen-Macaulay.
(ii) rJ(I)  ~(I) - 1 for some (equivalently, every) minimal reduction J of I.

Proof. Condition (ii) of Theorem 5.6 is satisfied by the assumption on I, since
r(Ip) = 0 for all p P I such that ht(p)  î. 0

THEOREM 5.8. Let R be a Cohen-Macaulay ring and I an ideal of R with
ht(I)  2. Then R[It] is Gorenstein if and only if the following conditions are
satisfied:

(i) G(I) is Gorenstein.
(ii) r(Ip) ht(p) - 2 for every prime ideal p 2 1 with ht(~/I) = 0.
(iii) r(I~)  ht(p) - 2 for every prime ideal p P I with f(Ip) = ht(~)  £(I).

Proof. (~) Set S = G(I). By [1, Theorem 3.1] and [TI, Theorem 7.1] we have
(i) and a(S) == -2. Note that R[Ipt] is Gorenstein for every prime ideal p D I. To
see (ii), let p be a minimal prime of I. After localizing we may assume that I is
m-primary, so £ = d = dim S. Since rd- 1(I) = -1 we can apply Theorem 4.4(i)
to get rd(I) = max{-1 + 1, r(I)} so r(I) = rd(I). Then by Theorem 4.4(ii)

This gives (ii).
We now prove (iii) by induction on d = dim S. If d = s then (ii) gives us the

result. Assume now that the inductive hypothesis holds for dimension smaller than
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d. If ~(I)  d then (iii) holds by induction. Thus we may assume that f( 1) = d. For
p c m, the induction hypothesis shows that (iii) holds and also that ri(I) = i - 2
for s  i  ~. Hence I has sliding reduction number s - 2. By Theorem 4.8

From this it follows that r(I)  d - 2, which proves (iii).
(~) By (ii) and (iii) we have ri (I) = i - 2 for i = s,..., ,R. Hence I has sliding
reduction number s - 2 and r(I)  re(I) = Q - 2 by Theorem 4.4(i). Using
Theorem 4.8 we get

which together with (i) implies by [1, Theorem 3.1] and [TI, Theorem 7.1] that

R[It] is Gorenstein. CI

REMARK 5.9. Suppose R[It] is Gorenstein. If I is generically a complete inter-
section, that is, l p is a complete intersection for every prime ideal p D I with
dim R/~ = dim R/I, then r(1p) = 0 and ht(~/I) = 0 for such a prime ~. Hence
condition (ii) of Theorem 5.8 implies that ht(p) = 2 so that ht(I) = 2 (cf. [1,
Corollary 4.5]).

COROLLARY 5.10. Let R be a Cohen-Macaulay ring and I an ideal of R with
ht(I)  2. Assume that l p is a complete intersection for every prime p D I
with ht(~) = f(1). Then R[It] is Gorenstein if and only if ht(I) = 2, R/I is
equidimensional, and G(I) is Gorenstein.

Proof. (=» If P is minimal over I then ht(P)  f(I). Hence Ip is a complete
intersection and Theorem 5.8(ii) shows that ht(P) = 2. Thus R/I is equidimen-
sional and ht(I) = 2.
(~) The only primes for which f(1p) = ht(P)  f(I) are the minimal primes
of I. Since then Ip is a complete intersection, conditions (ii) and (iii) are satisfied. ~

COROLLARY 5.11. Let R be a Cohen-Macaulay ring and P a prime ideal
of R with ht(P)  2 such that Rp is regular. Assume that P(’) = P’ for n  1.
Then R[Pt] is Gorenstein if and only if ht(P) = 2 and G(P) is Gorenstein.

Proof. The hypothesis that pn = P(’) for n  1 implies that f(1p)  ht(p) for
every p D P. Since PRp is a complete intersection of dimension ht P, we have
R[Pt] Gorenstein if and only if ht(P) = 2. 0

The Gorenstein prope11y of R[It] can be also expressed by means of the reduc-
tion number of I. The following criterion generalizes results in the cases ad(I) = 0
[1] ; ad(I) = 1 [GH], [T3]; and ad(I) = 2 [GN2], [T3]. See also [HHR].
THEOREM 5.12. Let R be a Cohen-Macaulay ring and I an ideal of R with
ht(I)  2. Then R[It] is Gorenstein if and only if the following conditions are
satisfied:
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(i) G(I) is Gorenstein.
(ii) r(Ip) = ht(p) - 2 for every prime ideal 8J 2 I with ht(~/I) = 0.
(iii) r(I~)  ht(p) - 2 for every prime ideal ~ ~ I with ~(I~) = ht(~)  £(1).
(iv) rJ(I)  £(1) - 2 for some (equivalently, every) minimal reduction J of I.

Proof. (~) Set ~ = Î(I). By Theorem 5.8 we already have (i), (ii), (iii) and
r~(I) = ~ - 2. By Theorem 4.4(i), rJ(I)  r~(I)  ~ - 2 for any reduction J C I,
giving (iv).
(~) By Theorem 5.8 we need only to show that r(I~)  ~ - 2 for every prime
p D I with ~(I~) = ht(~) = Î. But this follows from (iv) because if J C I is a
minimal reduction then J~ is a minimal reduction of I~ so that r(I~)  rJ(I). ~

REMARK 5.13. We may replace condition (iii) of Theorem 5.12 by the con-
dition that I has sliding reduction number ht(I) - 2.

COROLLARY 5.14. Let R be a Cohen-Macaulay ring and I an ideal of R with
ht(1) ) 2. Assume that I~ is a complete intersection for every prime p D I with
ht(p/1) = 0 and for all ~ ~ I such that ht(p)  Ê(I). Then R[It] is Gorenstein
if and only ifht(1) = 2, R/I is equidimensional and the following conditions are
satisfied:

(i) G(I) is Gorenstein.
(ii) rJ(I)  ~ - 2 for some (equivalently, every) minimal reduction J of I.

6. Castelnuovo-Mumford regularity and Serre properties
of Rees algebras

Throughout this section let (R, m) be a Noetherian local ring with infinite residue
field. We will study the Castelnuovo-Mumford regularity and the Serre properties
of the Rees algebra R[It] of an ideal I in R.

LEMMA 6.1. Let I be a proper ideal of R with ht(I)  1. Then ~(R[It]+) = £(1)
and ri(R[It]) = i - 1 for i = 1,..., £(1).

Proof. Set T = R[It]. The first statement follows from the fact that Tn/mTn -
In/mIn, n  0. Recall that if ht(I)  1 then dim T = dim R + 1 and ht(T+) = 1
(see [Ma]). For the second statement we note that ht(T+) = 1. If p D I is a prime
ideal of R, then ~((T~)+) = ~(I~)  ht(p). If ~ ~ I, then Tp = R~[t], hence
~((T~)+) = 1 and r((T~)+) = 0. Therefore, by the definition of ri(T) we get

PROPOSITION 6.2. Let I be a proper ideal of R with ht(I)  1. Assume that

R[It] is a Cohen-Macaulay ring. Then
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Proof. We have by Proposition 2.10 and Corollary 3.6, that reg(R[It]) 
T£(R[1t]) and by Lemma 6.1, r~(R[It]) = £(I) - 1. ~

Recall that the relation type N(I) of R [It] is the maximal degree of the elements
of a homogeneous minimal basis of the defining ideal of R[It] represented as a
quotient ring of a polynomial ring over R.

COROLLARY 6.3. Let I be an ideal of R with ht(I)  1. Assume that R[It] is a
Cohen-Macaulay ring. Then

Proof. See Remark 2.11. ~

We show now that when R is assumed to be CM as well (in which case G(I)
will be CM) then N(I) can be bounded in terms of the local reduction numbers
of l.

LEMMA 6.4. Let (R, m) be a CM ring and let I be an ideal ofheight s and analytic
spread ~. Let J = (al, ... , a~) be a minimal reduction of I. If G(I) is CM and
a*1, ..., al is an [0, ..., 0, ns+1, ..., n~]-regular sequence where ns+1  ···  n~
then, for all 1  k  R and all n  nk + 2 we have

Proof. Let Jk = (a1,..., ak). If k  s then al, ... , ak and ai, ... , a k are
regular sequences so Jk n i,- Jk¡n-l for all n. So assume that k &#x3E; s and that
the claim is true for k - 1.

Let n  nk + 2 and let x E Jkjn-2 n i,. Say x = a1i1 + ..- + akik where
ij E In-2 . If ik e In-1 then we are done by induction. If not then

since n - 2  nk. Thus ik E Jk-1In-3 + In-1. Hence x = a1i’1 + ... ak-1i’k-1 +
aky E Jk-lln-2 + akIn-1. Then a1i’1 + ··· ak-1i’k-1 ikin-2njn C jk_ljn-1
since n  nk  nk-1. Hence x E jkjn-1. ~

PROPOSITION 6.5. Let (R, m) be a CM ring and I an ideal of height s and
analytic spread R. Let J = (a1,..., ai) be a minimal reduction of I. Suppose
that R[It] is CM. If a*,. ai is [0,...,0, ns+1,..., nê]-regular in G(I), where
ns+1  ···  n~, then a1t,..., a~t is [0, 1,...,1, ns+1,..., n~]-regular in R[It]
(there are s - 1 1 ’s).

Proo, f : Let Jk - (a1,..., ak). Since a 1 is R-regular we have that a 1 t is R[It]-
regular. Now suppose that 1  k  s, n  1 and xtn E [(a1t,...,ak-1t) :
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akt]n. Then x E i, ~ Jk : ak - i, ~ Jk = Jkln-l so xtn E Jkln-Itn ==
(Jkt)In-ltn-1 == (Jkt)n.

Assume now that k &#x3E; s. Let n ) nk and suppose (xtn)(akt) E (a1t,...,
ak-1t)n+,. Then xak E Jk-Iln. Interpreting this in G(I) gives x* E [(a*1,...,
a*k-1) : a*k]n = (a*1,...,a*k-1)n. Hence x ~ Jk-1In-1 + In+1, say x = alil +
+ ak-lik-1 + y where i j E In-1 and y E In+1. Then aky E Jk-Iln n In+2 C
Jk-1In+1 by Lemma 6.4 since n  nk- 1. By the same argument as for x we obtain
y E Jk_lIn + In+2. Continuing this way we get x E ~mn(Jk-1In-1 + Im) -
Jk-1In-1, so xtn E (aIt,... , 1 ak-1t)n. ~

COROLLARY 6.6. With R, I, J and 1  ns+1  ···  ni as in Proposi-
tion 6.5 we have reg(R[It])  max{ns+1 - 1,..., ni - 1, ri (1) 1. In particular
reg(R[It])  max{r~-1(I), r(I)I. 

Proof. By Proposition 2.10 we have reg(R[It])  maxta(Jt) - 1, rJt(It)}.
But r ji (It) = rJ(I) and a(Jt)  max{1, ns+1,..., n~} by Proposition 6.5. This
gives the desired bound.

Now, since G(I) is CM we have nj  rj-1(I) + 1 for 1  j  ~ by Theorem
3.2. Hence reg(R[It])  max{r~-1(I), r(I)j by applying Proposition 6.5 with J
a minimal reduction such that r(I) = ?"j(7). 0

COROLLARY 6.7. Let R and R [It] be CM rings. Then N(I)  max{r~-1(I) +
1, r(I) + 1}  r~(I) + 1.

Proof. This follows from Remark 2.11 and Corollary 3.6 (iii). ~

The bound for N(I) given in Corollary 6.7 is proved in the case ad(I) = 0 or
ad(I) = 1 and I is generically a complete intersection [HuHu1], [GH].
Now we will use Theorem 5.1 to compare the Serre condition (Sk) in the

associated graded ring and the Rees algebra. Recall that the Serre condition (Sk)
on a Noetherian ring T is defined by the condition that

depth(TP)  min{ht(P), k}

holds for every prime ideal P of T. We are here inspired by a result of Noh and
Vasconcelos [NV, Theorem 2.2].

THEOREM 6.8. Let R be a Noetherian ring satisfying (Sk+l) and let I be an
ideal of R with ht(I)  1. Then R[It] satisfies (Sk+l) if and only if the following
conditions are satisfied:

(i) G(I) satisfies (Sk).
(ii) r(I~)  ht(p) - 1 for eveçy prime p D I with é(Ip) = ht(~)  k.

Proof. (=» Set S = G(I). As in the proof of [NV, Theorem 2.2], to show
(i) we only need to prove that Sp is Cohen-Macaulay for every prime P D S+
of S with ht(P)  k. Note that S = R[It]/IR[It] and let Q be the inverse
image of P in R[It]. Then Q 2 R[It]+ and ht(Q)  k + 1. Hence R[It]Q is a
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Cohen-Macaulay ring by the condition (Sk+l) of R[It]. Let p = Q fl R. Then
R[It]Q is the localization of R~[I~t] at its (unique) maximal graded ideal. Hence
R~[I~t] is Cohen-Macaulay [HR, MR]. Notethatht(~)  ht(Q)  k+1. Then Rp
is Cohen-Macaulay since R satisfies (Sk). Hence G(Ip) is Cohen-Macaulay by
[Hu, Proposition 1.1]. Since Sp is a localization of G(Ip), Sp is Cohen-Macaulay
too.

To prove (ii) let p D I be a prime ideal of R with ~(I~) = ht(~)  k and
Q = (~, It). Then ht(Q)  ht(p) + 1  k + 1. Similarly as above we can show
that R~[I~t] is Cohen-Macaulay. Since R~ is Cohen-Macaulay, we can apply
Theorem 5.1 to deduce that r(Ip) fi ht(p) - 1.
(~) Let Q be an arbitrary prime ideal of R[It] and p = Q f1 R. Then ht (p) ht(Q).
Note that R[It]Q is a localization of R~[I~t]. If ~ ~ I, then R~[I~t] = Rp[t].
Since R~ has (Sk+1), so has R~[t]. Hence

depth R[It]Q  min{ht(Q), k + 1}.

Now let p D I. If ht(~)  k, then Rp is a Cohen-Macaulay ring. Since
dim G(Ip) = ht( p) fi k, by (i) we have that G (1 p) is a Cohen-Macaulay ring. So
we can apply Theorem 5.1 to deduce from (ii) that R~[I~t] and hence R[It]Q is
a Cohen-Macaulay ring. If ht(~)  k + 1, we proceed as in the proof for (G) of
[NV, Theorem 2.2] to show that depth R[It]Q  min{ht(Q), k + 1}. D

REMARK 6.9.

(1) To prove (~) we only need condition (Sk) on R.
(2) It is assumed in [NV, Theorem 2.2] that ht(I)  k + 1. In this case condition

(ii) of Theorem 6.8 is automatically satisfied.

THEOREM 6.10. Let (R, m) be a regular local ring. Let I be an ideal of R of
analytic spread Ê. If G(I) satisfies (SR) then R[It] satisfies (S~+1).

Proof. By Theorem 6.8 we need to show that r(IP)  ht(P) - 1 for every
prime P D I such that ~(IP) = ht(P)  Î. This follows from Theorems 5.1 and
5.4. n

7. Briançon-Skoda theorem with coefficients for regular rings
containing a field

The purpose of this section is to give an improved version of the Briançon-Skoda
theorem in [AH, Sect. 3]. The point of the improvement is to obtain more accurate
information about coefficients for ideals of higher analytic deviation. Since the
proof uses tight closure methods we will obtain the results only for regular local
rings containing a field. The case of mixed characteristic is still open. The results
from this section will be applied in Section 8 in order to bound reduction numbers
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for ideals of small analytic deviation when G(I) satisfies Serre’s condition (S~),
where R = î(I).

First we shall establish that given any ideal I in any local ring (R, m) with
infinite residue field, we may pick generators of I such that the first i are a reduction
of Ip for any prime P D I of height i. The idea behind this comes from Lemma
2.3 of [AN] where good generating sets of I are chosen subject to the condition
that 03BC(IP)  ht P up to a certain height. Since we are choosing reductions we are
using the "hypothesis" that ~(IP)  ht P for primes P up to a certain height. But
by the nature of analytic spread this is always satisfied.

DEFINITION 7.1. Let (R, m) be any local ring and let I C R be an ideal and let
J be a minimal reduction of I. Then the generating set al, ... , an of J is a basic
generating set for J if for all primes P D I such that i = ht P  ~(I) we have that
(a1,...,ai ) p is a reduction of Ip.
We use the term "basic" to suggest the parallels with basic element theory.
The following lemma allows us to make the Briançon-Skoda Theorem state-

ments. "

LEMMA 7.2. Let (R, m) be a local ring with infinite residue field. Let I C R
be any ideal and let ~ = ~(I). For every minimal reduction J of I, there exists a
minimal generating set ai, ..., a~ such that

(1) if P is a prime ideal containing I and ht P = i  R then (a1, ... , ai)P is a
reduction of Ip, and

(2) ht((a1,...,ai)In : 1’+ + I)  i + 1 for all n » 0.

Proof. Let G = G(I). Note that (a1,..., ai) is a reduction of I if and only if
(a*1,..., al) is a reduction of G+. Fix a minimal reduction J of I. Choose a1, ... , a~
a minimal generating set of J such that a*1,..., al is a filter regular sequence with
respect to G+ (see [T2]). Let P D I be a prime of height i  t. Then ai , ... , al
is still filter regular in GP with respect to ( G p )+ . Since dim GP = ht P = i, we
may apply Corollary 2.2 and Lemma 2.4 to see that (ai, ..., a*i)P is a reduction of
(GP)+. Hence (a1,..., ai ) P is a reduction of Ip.

To see (2) we note that if ht P  i + 1 then ( a 1, ... , ai) p is a reduction of IP
so P cannot contam Un((a1,...,ai)In) : In+1 +7. D

REMARK 7.3. There is an alternative approach to the proof of Lemma 7.2 which
follows along the lines of the proof of [AN, Lemma 2.3]. Given an ideal I and
Il C I we can define

for all i. So if J C I is a minimal reduction we pick a minimal generating set
al,..., a~ inductively such that letting J, = (a1,..., ar) for r  ~ and letting
Lri = Li (J,, I) we have
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In order to state our Briançon-Skoda theorem we will need some terminology
indicating the removal of primary components whose height is too large. In other
words, we need a refinement of the notion of Iul given in [AH, Definition 3.1].

DEFINITION 7.4. Fix an ideal K of a ring R. Let I be an ideal and let t &#x3E; ht K be
an integer. Let I~t,K~ = S-1 I R ~ R where S = R - UtP E Ass(R/K) | ht(P) 
tl. Often, if the ideal K is understood we will write simply I(’). The ideal I~t,K~
is the intersection of the primary components of I whose radicals are contained in
an associated prime of K of height less than t.

REMARK 7.5. If R is a regular ring of characteristic p and A is an ideal of R then
(A~j,K~)[q] = (A[q])~j,K~.

Proof. We note that for any ideals I and J, (I fl J)[q] == Irq] ~ J[q] and if I is P-
primary then I[q] is also P-primary, since the Frobenius endomorphism is flat. Let
A = W1~··· n Wn n VI n ... n V m be a primary decomposition where Wi is con-
tained in an associated prime of K of height less than j, and the Vi are the other com-

ponents. Then A~j~ = W1 ~···~ Wn and A [q] = W[q]1 ~···~W[q]n n vlq] n ... n V[q]m,
so (A[q])~j~ = wiq] n ... n Wlql - (A~j~)[q]. ~

THEOREM 7.6. Let (R, m) be a regular local ring containing a field. Let I
be any ideal of R of height g and analytic spread l. Let J = (a1,..., al) be
a minimal reduction generated by a basic generating set. For each i  g let

Ji = (al, ... , ai). Then for every w  0

Proof. We give the proof in characteristic p &#x3E; 0 and then the result follows in

equicharacteristic 0 by standard methods of reduction to characteristic p. See [AH]
for a thorough treatment of a similar reduction.

For g  ?;  ~ let Ai+1 = ~n(JiJni+1 : Jn+1i+1). Note that by Lemma 7.2 (1) we
have ht At+ 1 + I  i + 1. Let ni be the value where the union stabilizes. Then for
any prime P of height i + 1 containing I we have r(Ji)P((Ji+1)P)  ni. For each
q = pe let Ai+1,q = (JiqiJnii+1 : Jiq+nii+1). Note that for all q, Ai = yi Ai,q. Now
choose fg,..., f~-1 such that fi ~ Jnii+1 for each g  i  ~.

Let d ~ 0 be an element such that dI t C Jt for all t (e.g. d E Ir J(I) will work
since J is a reduction of I). Now let x be a nonzero element of I~+w. Then letting
c = xk for k large enough we have cdxq e dI(f+w)q C J(~+w)q. Then by Lemma
7.8 below
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We wish to show that

It then follows that x is in the tight closure of the desired ideal and since all ideals
in a regular ring are tightly closed we are done.
We first note that A f Jiq C J[q]iJ(i-1)qi. In particular, Ag+1,qfgJgqg+1 C

J[q]g. Now, since htAg+1,q + I  g + 1, the ideal Ag+1,q is not in any associated
prime of (J[q]g)~g+1~. Hence fgJgqg+1 c (J[q]g)~g+1~. Suppose inductively that

for some i with g  i - 1  ~ - 1. Then

(the second inclusion comes from multiplying (*) by J[q]i). Now, since ht( Ai+ l,q +
I)  i + 1 we get that 

In particular and Remark 7.5 gives the desired
result.

REMARK 7.7. This result is stronger than [AH, Theorem 3.3], especially in
the case where the ideal I has minimal components of different heights.
LEMMA 7.8. [AH, Lemma 3.4]. Let R be any commutative ring and A =

(u1,...,un) 9 R. Then for all w , k j 0 we have

8. Réduction numbers of ideals in regular rings

We can now apply the results of Sections 6 and 7 to ideals of small analytic deviation
in regular rings containing a field to get bounds on reduction numbers. The main
results of this section are Theorems 8.4 and 8.5, in which we prove that, under
certain conditions on I, r(I)  ~(I) if G(I ) satisfies Serre’s condition (S~(I)). We
will use repeatedly the result of [VV] that if g = ht I and al,..., ag E I - 12 are a
regular sequence then a i , ..., a*g is G(I)-regular if and only if (a1,..., ag) ~ In =
(a1, ... , ag)In-1 for all n.
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For the rest of this section, if I is an ideal and J = ( a 1, ... , ai) is a minimal
reduction generated by a basic generating set then we will let Ji = (a1,..., ai )
and Ki = (Ji ··· (Jg)~g+1,I~···)~i+1,I~ for g  i  ~ - 1. For any ideal K C R
we use Mino(Ii7) to denote the set of minimal primes of K which have maximal
dimension.

We will need notation to handle the image of an element u ~ R in G(I) when
we do not know precisely the degree of u.

DEFINITION 8.1. Let I ~ R and u ~ R. If u E Ij then we denote by u*(j) the
element u + Ij+1 considered to be in the jth graded piece of G(I). Note that when
u ~ h - Ij+l we have u*(j) u* and when u e Ij+l then u*(j) = 0.

PROPOSITION 8.2. Let (R, m) be a CM ring with infinite residue field and let
I C R with é = £(1) and g = ht I &#x3E; 0. If I has sliding reduction number zero,
G(I) is CM, and I~ C Jh-9 for some minimal reduction J then R[It] is CM.

Proof. Since I has sliding reduction number zero we need only show that
r(I)  é, in order to apply Theorem 5.6. Let a1,...,a~ be a basic generating
set of the reduction J and let Ji = ( a 1, ... , ai ) for 1  i  1. Because I has

sliding reduction number zero, we know by Corollary 3.6(i) that ai,... , ai is

[-g,..., 0, 1,2,..., £ - g]-regular.
If I~ ~ JII- then choose  ~ -1 maximal such that I~ C J Ik and t minimal

such that Il C Jtlk + Ik+1. Note that k  î - g. Let f = a1 ul + - - - + at ut + W E
h where u- ~ Ik and w E Ik+1. Then u*(k)t E [(a*1,...,a*t-1) : a*t]k =

(a*1,...,a*t-1)k. Hence ut E Jt-1Ik-1 + Ik+1. Thus f E ik + Ik+l, con-
tradicting our choice of k and t. Thus I~ C J If-l so rJ(I)  ~ - 1. D

LEMMA 8.3. Let (R, m) be a regular local ring containing a field and hav-
ing infinite residue field. Let I C R be an ideal of analytic spread î such that G(I )
satisfies (S~). Let J be a minimal reduction. Then Il C J(I fl K~-1). More gen-
erally, let a1, ..., a~ be a basic generating set for J. If f = ai 1u1 + ··· an Un E 12
with ui e Km with m  n - 1 then Ui E 1- n Km.

Proof. Since J is generated by a basic generating set we have ni such that
ht(JiIni : Ini+1) + I &#x3E; i for g  i  Ê. Choose

Now choose zç+ i ’ inductively for i  n so that

Under these conditions the ideal (ai, ... , a*g, a*g+1 + x*g+1,..., aj + x*j) has depth
j on G(I) for j  ~ since G(I) satisfies (S~). Thus the Koszul complex on
al , * ... , aj * + x*j is acyclic.
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Let f be as above. Then a*1u*(0)1 + ··· + a*nu*(0)n = 0 in G(I). Note that
x*iu*(0)i = 0 for g + 1  i  n. If the coefficients are not all in I then let

i = max{t | u*(0)t ~ 01. Then

and since G(I) satisfies (S~) wehave u7(O) E (ai,..., a*, a* + x*g+1,..., al- i +
x*i-1). Evaluating this sum in degree zero gives Ui E (xg+1,...,xi) + l. But
the same analysis with xng+1,..., xi in place of xg+1,..., xi shows that ui E
~n((xng+1,...,xni)+I. 0

THEOREM 8.4. Let (R, m) be a regular local ring containing a field and having
infinite residue field. Let I ç R be an ideal with ad(I ) = 1. If G(I ) satisfies (Sg+1)
then rJ(I)  g for all minimal reductions J C I.

Proof. Let J = (a1,..., ag+1) be a minimal reduction of I generated by a
basic generating set. If P D I and ht P  g + 1 then P is minimal over I. Hence

r(Ip)  g since G(Ip) is CM.
Choose k  0 such that ht(JgIk : Ik+1) + I &#x3E; 9 and let

Let f E Ig+1. Suppose inductively that for some n  g, f = a1 v1 + ... +
ag+1vg+1 e J In where v2 E In and xvg+1 e Jg ~ In = JgIn-1. For n = 1

this holds by Lemma 8.3. Then (a*g+1 + a*)v*(n)g+1 E (a*1,...a*g), so v*(n)g+1 E

(al, ... , a*g)n. Say vg+1 = alrl + .. + agrg + w with w e In+1 and ri e In-1.
Then xw e Jg n In+1 1 = JgIn. Also

so the inductive hypotheses are preserved. Hence Ig+1 = JIg and ri(I)  g. D

THEOREM 8.5. Let (R, rra) be a regular local ring containing a field and having
infinite residue field. Let I C R be an ideal of height g and ad( 1) = 2. Suppose
that r(IP)  1 for every P E Min’(I). If G(I) satisfies (5g+2) then r J( 1) :( g + 1
for every minimal reduction J C I.

Proof. By Theorem 8.4 we have r(Ip)  f(Ip) for P 2 I and ht(P/I)  2.
Let J = (al,..., ag+2) be a minimal reduction of I generated by a basic

generating set and choose k » 0 such that ht(Jg+1Ik : Ik+1) + I &#x3E; 9 + 1. Let
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Let f e Jg+2 and say f = a1u1 + ··· + ag+2ug+2 where 2ci E Kg+1 ~ I. Then

x*2u*(1)g+2 = a*1t*(0)1 + ··· + a*g+1t*(0)g+1 where ti ~ J~g+1~g. Then since x*1u*(1)i =
x*1t*(0)i = 0 we hâve that (u*(1)1 - t*(0)1,..., *(1) t*(0)g+1,u*(1)g+2) is a sum of Koszul
relations on thé regular séquence ai,... , a*g, a*g+1 + x*1, a;+2 + xi. Write this
vector as a sum of Koszul relations and let (y*(0)0 + y*(1)1 + ···) be the coefficient
of ( o, ... , 0, -(a*g+2 + x*2), a*g+1 + x*1). We obtain the following information:

From (1) and (2) we get , which combined with (3) gives

with w e I2. Note that

. Then, since ; 

We may conclude that

Now, J
Since

Suppose now that and

Note that with

is a sum of Koszul

As before write this as a sum

of Koszul relations and let be the coefficients of

Then

From (1) and (2) we have which combined with (3)

Then since

Hence, 
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Inductively, we
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