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Abstract. The quasiclassical asymptotics of the Knizhnik-Zamolodchikov equation with values in the
tensor product of sl2 representations are considered. The first term of asymptotics is an eigenvector of
a system of commuting operators. We show that the norm of this vector with respect to the Shapovalov
form is equal to the determinant of the matrix of second derivatives of a suitable function. This formula
is an analog of the Gaudin and Korepin formulae for the norm of the Bethe vectors. We show that the
eigenvectors form a basis under certain conditions.

Introduction

Consider the Lie algebra sl2 with standard generators e, f, h such that [e, f] =
h, [h, e] = 2e, [h, f] = -2 f . Let Ln be the (n + 1 )-dimensional irreducible sl2
module. The module is generated by its singular element vn such that evn = 0 and
hvn = nvn. The elements vn, f vn,..., fnvn form a basis of Ln. The Shapovalov
form on Ln is the bilinear form Bn such that

The tensor product of irreducible representations is direct sum of irreducible repre-
sentations : Ln 0 L’n = Lm -n e L’n-n+2 ~ ··· e Lm+n for m  n, and a singular
vector of Lm+n-2k has the form

Let B == Bn 0 Bm be the Shapovalov form on the tensor product.
* The author was supported by NSF Grant DMS-9203929.
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Consider the rational function

Let t0 = (t1, ... , tk) be a critical point of (b such that ti ~ tj for i f= j.
THEOREM.

The formula is an analog of the Gaudin and Korepin formulae for the norm of
the Bethe vectors in the theory of quantum integrable models [Ga, K]. We prove
the formula and its generalizations.

The main results of this work are Theorem (1.2.1), Corollary (2.4.6), and The-
orem (2.5.1 ).

This work is inspired by [RV] in which connections between the quasiclassical
asymptotics of solutions of the Knizhnik-Zamolodchikov equation and the Bethe
ansatz vectors for the Gaudin model are explained.

The author thanks R. Askey, I. Cherednik, N. Reshetikhin, and V. Tarasov for
stimulating and very useful discussions.

1. Critical points

(1.1) Conjecture

Let fj: Ck ~ C, j = 1,..., N, be pairwise different polynomials of degree 1. For
every i denote by Hi the hyperplane in Ck defined by fj = 0. Let C = {Hj}Nj=1
be the configuration of the hyperplanes,

the complément to the union of hyperplanes. Let A = {03BBj}Nj=1 be a collection of
complex numbers. Consider a function

03A6039B is a multivalued holomorphic function on T. A point t e T is critical for 03A6039B if
its first derivatives vanish at t. First derivatives vanish at t for all branches of 4l A
simultaneously, since the ratio of every two branches is constant.

Assume that the configuration has a vertex.
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CONJECTURE. For generic 039B all critical points of 03A6039B are nondegenerate and the
number of critical points is equal to the absolute value of the Euler characteristic
of T.

The conjecture is proved below for the case in which all polynomials {fj} have
real coefficients.

REMARKS.

(a) An edge of a configuration is a nonempty intersection of some of its
hyperplanes. A vertex is a zero dimensional edge.

(b) Generic A means that there exists an algebraic subset C eN such that
the conjecture is true if 039B ~ CN - E.

(c) The defining equations for critical points of 03A6039B have the form:

(d) According to [OS], the Euler characteristic ~(T) is defined combinatorially
in terms of the lattice of edges of the configuration:

where the sum is over all edges of C, M(E) is the value of the Mobius function of
C at E.

(e) There are theorems on Newton polygons in which one considers a polyno-
mial system of equations depending on parameters. Under certain conditions on the
system, the number of solutions of the system for generic values of parameters is
defined combinatorially in terms of Newton polygons of equations, see [BKK]. It
would be interesting to find a connection between those theorems and the statement
of the conjecture.

(f) A multidimensional hypergeometric integral is an integral of the form

where R: T ~ C is a rational function and 1 C T is a suitable cycle. If the polyno-
mials {fj} depend on additional parameters, such an integral becomes a function
of additional parameters called a multidimensional hypergeometric function, see
[A, G, V]. Multidimensional hypergeometric functions satisfy remarkable differen-
tial equations. For example, the Knizhnik-Zamolodchikov equation in conformal
field theory is solved in hypergeometric functions [SV]. In the application to the KZ
equation the exponents {03BBj} have the form t Ai = 03B1j/03BA} where is a parameter
of the equation. Studying asymptotics of solutions of the KZ equation as 03BA tends
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to 0 leads to studying critical points of the function 03A6039B. This problem motivated
the conjecture.

(g) If the configuration has no vertices, then there exist linear coordinates
u1,..., uk in Ck such that all polynomials {fj} do not depend on ul, ... , uT for
some r and the configuration, cut by C in ul = ... = ur = 0, has a vertex.

(1.2) Real Configuration

Assume that all polynomials {fj} have real coefficients:

and all numbers {amj} are real.
Let TR = T n Rk. Let TR = U a Da be the decomposition into the union of

connected components. Each component is a convex polytope.
By [BBR], the number of bounded components is given by the formula

(1.2.1) THEOREM. Let all numbers {03BBj} be positive. Then the union of all critical
points of 03A6039B is contained in the union of all bounded components of TE. Each
bounded component contains exactly one critical point. All critical points are
non-degenerate.

The theorem implies the conjecture for the case in which all polynomials {fj}
are real.

Proof. First we formulate a trivial but useful lemma.
Let t be the complex coordinate on C, and r, 0 the polar coordinates on

C, t = r exp(io). Let v = aO/,Or + b~/~~ be a tangent vector at a point t = tO
in C - 0. Denote by Lv In t the derivative of In t along v.

(1.2.2) LEMMA. If a &#x3E; 0, then Re(Lv ln t) &#x3E; 0.

The theorem is implied by the following three lemmas.

(1.2.3) LEMMA. Let D be an unbounded component of TR. Then there are no
critical points in D.

Proof. Let p E D. By [BBR] there exists a vector v E R k such that the ray
p(s) = p + sv, s E R0, has no intersection with the union of hyperplanes of C.
By Lemma (1.2.2) we have

Hence p is not critical.

(1.2.5) LEMMA. Let p ~ T - Rk. Then p is not critical.
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Proof. Let p = w + iv where w, v E e. The ray p(s) = p + isv, s E R0,
has no intersection with the union of hyperplanes of C. By Lemma (1.2.2) we have
inequality (1.2.4). Hence p is not critical.

(1.2.6) LEMMA. Let D be a bounded component of TR. Then D contains exactly
one critical point, and this critical point is non-degenerate.

Proof. We have an equality in D:

where S = E Aj In 1 fj 1. Hence 03A6039B and S have the same critical points in D. We
have S(p) ~ -~ as p ~ c9D. So S has a critical point in D. The critical point is
unique since S is convex. The critical point is non-degenerate because the matrix
of second derivatives of S is positive definite.

(1.3) Example

Let

where a, (3, q are complex parameters. We describe critical points of 03A6.
The critical set of 4$ is invariant with respect to the group of permutations of

coordinates. By Theorem (1.2.1) the number of critical points is not greater than
!.

Let 03BB1 = tl + ··· + tk, A2 = 03A3titj,...,03BBk = t1 · ··· · tk be the
standard symmetric functions. Let pi 1 = (1 - tl) + ... + (1 - tk), p2 =

(1.3.1) THEOREM. If (tl, ... , tk) is a critical point of 03A6, then

for all l.
Proof. The defining equations for critical points are
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Multiplying the ith equation by ti/t1 · ··· · tk and taking the sum of the equations
we get

Similarly, for every p = 0,..., k - 1, we get

This system of equations implies

for p = 0, ... , k - 1. Here Ao = 1.

(1.3.4) LEMMA. System (1.3.3) is equivalent to the system:

for p = 0,..., k - 1.
Lemma (1.3.4) is proved by induction on p. Lemma (1.3.4) proves Theo-

rem (1.3.1).

REMARK. After this work was written Prof. R. Askey informed me that Theo-
rem (1.3.1) could be deduced from T.J. Stieltjes’ Theorem [Sz, Th. 6.7.1] proved
more than hundred years ago: if (t 1, ... , tk) is a critical point of 03A6, then t 1 , ... , t k
are zeros of the Jacobi polynomial p(a,b) (2t-1), where a = al ,-1, b = 03B2/03B3-1.
This Stieltjes’ Theorem was rediscovered many times, in particular, by I. Schur,
C.L. Siegel, F. Calogero, ...

Set

for p = 0,...,k.
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(1.3.5) LEMMA. If (t?,..., t2) is a critical point of the function 03A6(t; a, 03B2, 1’),
then

The vector Ak = (Ak,0,..., A0,k) has the following interpretation.
Consider the Lie algebra s12 with the standard generators e, f, h. For a e C let

Va be an S12 module with highest weight a, that is, the module V03B1 is generated by
a vector Va such that evcy = 0 and hVa = ava . For 03B1, 03B2 ~ C consider the vector

of the tensor product Va 0 V03B2. We have hFk = (a + 03B2 - 2k)Fk.
COROLLARY OF LEMMA (1.3.5). The vector Fk(a, fi) is a singular vector:
eFk = 0.

Explanations of this fact see in [RV] and in Section 2.
The Shapovalov form on Va is the unique symmetric bilinear form Ba defined

by the conditions:

for all x, y ~ V03B1. Consider the bilinear form B = Ba 0 B03B2 on Va 0 V03B2.

(1.3.6) LEMMA. We have

The proof easily follows from the formula

and the formula can be proved by induction.
Denote the number B(F(a, 03B2), F(a, (3)) by b(a, (3; k).
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(1.4) Asymptotics of Selberg Integral
The Selberg formula

where A - tt e Rk | 0  t 1  ...  tk  1} (see [A, As, M, S]), has beautiful
applications, in particular, in conformal field theory [DF].

Assume that a = alr,, 03B2 = b/03BA, 03B3 = c/03BA where a, b, c, 03BA are positive numbers
and 03BA tends to zero. We compute asymptotics of both sides of formula (1.4.1).

The method of steepest descent gives the following asymptotics for the left hand
side of (1.4.1):

where

t0 is the critical point of S in A

The symmetric functions of coordinates t01, ..., t0k are given by formula (1.3.2) in
which a, 03B2, 03B3 must be replaced by a, b, c, respectively.



393

Asymptotics of the right hand side of (1.4.1) can be computed by the Stirling
formula. Comparing both asymptotics we get the following formulae:

Formula (1.4.3) is an example of the series of rather surprising formulae in
which the determinant of a bilinear form is the product of very simple factors
[V1-3, L, LS, SV, BV]. The list of such examples includes formula (1.4.1), the
Legandre equation, the Vandermonde determinant, and many others.

1 was informed by Prof. R. Askey that Formula (1.4.2) is due to Stieltjes,
Hilbert, Schur, see [Sz, Th. 6.71 ], the formula gives the discriminant of the Jacobi
polynomial.

Comparing formula (1.4.3) and Lemma (1.3.6) we get

(1.4.4) THEOREM. Let F( ae, 0) E V03B1 0 V03B2 be the vector defined in Section (1.3),
B the Shapovalov form on Ya 0 Vp. Then

This theorem implies the theorem formulated in the introduction.

2. Families of bases of singular vectors

(2.1) KZ Equation
Consider the Lie algebra g = sl2 with the generators e, f, h. Let h be the Cartan
subalgebra of g generated by h, let a ~ h* be the simple root, ( , ) the bilinear form
on h* such that (03B1, a) = 2.

Denote by S2 the element h (D h / 2 + e ~ f + f ~ e ~ g ~ g corresponding to
the Killing form.

Let V1,..., Vn be g modules, V = V1 ~ ··· ~ Vn. For i  j let 03A9i,j be the
linear operator on V acting as Q on Vi 0 Vi and as the identity operator on other
factors.

The Kni.zhnik-Zamolodchikov equation (KZ) on an V-valued function 03A8(z1,...,
zn ) is the system of equations

where 03BA is a parameter of the equation and
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For 039B1, ... , 039Bn ~ h* let VI, ... , Vn be highest weight g modules with highest
weights AI, ... , An and highest weight vectors v1,..., vn, respectively.

For a nonnegative integer let

be the weight space and

the subspace of singular vectors of weight k.
The KZ equation preserves the subspace of singular vectors.
Let Bi be the Shapovalov form on Vi. Denote by B the bilinear form B1 ~ ··· ~

Bn on V. If V1, ... , Vn are irreducible, then B is nondegenerate. It is easy to see
that the operators Hl , ... , Hn are symmetric:

for all i and all x, y e V.

(2.2) Intégral Representations
There is an integral representation for solutions of the KZ equation with values in
Sing(V)k [SV].

Set

A monomial of weight k is an element of (V)k of the form

here

For a monomial fI, define a differential k-form in t and z:

The sum is over the set S(k, i1,..., in ) of maps u from {1,...,k} to {1,..., n},
such that for all m the cardinality of cr -1 (m) is im.
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Let C = C(z1,..., zn ) be the configuration of hyperplanes

in Ck. Let T(z1,..., zn) be the complement to the union of hyperplanes of C in
Ck.

Assume that z1, ..., zn are pairwise different real numbers. Let D(z1,..., zn)
be a bounded component of T(z1, ..., zn) ~ Rk continuously depending on z.

(2.2.1) THEOREM [SV]. The function

takes values in Sing(V)k and satisfies the KZ equation.
REMARK. If the integrals diverge, then their value must be taken in the sense of
analytic continuation with respect to parameters A i , ... , An’ 03BA. If ZI, - - - , Zn are

not real, then D(z) must be replaced by a k-cycle in T(z) with coefficients in a
suitable local system, see [SV, V5].

(2.3) Basis of Solutions

For i = 1,..., n, let Y be the Verma module with highest weight Ai. This means
that Vi is an infinite dimensional module generated by a vector vi such that hvi =
(Ai, a) vi and evi = 0.

Consider the set of solutions {03A8D} where D ranges over all bounded com-
ponents of T - Rk. According to [SV], ITDI generate all solutions of the KZ
equation with values in Sing(V)k for generic 039B1, ..., An’ 03BA. Below we will give
a formula for a suitable determinant which will make the above statement more

explicit.
Assume that z,  Z2  ...  zn . We say that a bounded component D(z) E

T(z) - R kis admissible if it lies in the cone Zl  tl  t2  ...  tk. Admissible

components have the form

where
A monomial

called admissible.
The number of admissible components is equal to the number of admissible

monomials. Denote this number by N.
Set
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Consider the determinant det(D(z) 03A6·~(fI)) where D(z) ranges overall admissible
components and fI ranges over all admissible monomials. We will give a formula
for this determinant.

For any admissible domain D and for any function g of the form

fix a branch of g over D. This choice determines a branch of 4l and, hence, a branch
of the determinant.

For any such g and for any admissible D, let t be a point of the closure of
D which is the most remote point from the hyperplane of singularities of g. The
number g(t) will be called the extreme value of g on D and will be denoted by
c(D, g).

For every g and D, the number c(D, g) is equal to (zl - zm)-(039Bl,03B1)/03BA, or
(Zl _ zm)-(039Bm,03B1)/03BA, or (Zl - zm)2/03BA, for suitable 1 and m.

For any admissible monomial fI, set

(2.3.2) THEOREM [V3]. We have

where pi = (n+k-i-3 k-i-1), the first product is over all admissible domains and
over all functions described in (2.3.1), the second product is over all admissible
monomials.

The sign ::1: in the formula depends on the choice of the orientation of domains,
see [V1, V2].

It is easy to see that

dim Sing(V)k = N
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(2.3.4) COROLLARY. Assume that 039B1,...,039Bn, 03BA are such that (039B1, a) ~ 0,
1,..., k - 1, and the right-hand side of (2.3.3) is well-defined and not equal to
zero. Then {03A8D} form a basis of solutions of the KZ equation with values in
Sing(V)k, where D ranges over admissible components.

(2.4) Quasiclassical Asymptotics
Assume that 039B1, ... , An are such that -(039B1, a), 1(An, a) are positive. Assume
that K is positive and tends to zero. We will compute asymptotics of the basis {03A8D},
see Corollary (2.3.4).

For an admissible domain D(z), let tD(z) be the unique critical point of (b in
D(z), see Theorem (1.2.1 ). The point tD(z) depends on z, 039B1,..., 039Bn and does
not depend on 03BA.

By the method of steepest descent we have an asymptotic expansion

where S = 03BA In &#x26;

the sum is over all monomials in (V)k.
(2.4.2) THEOREM [RV]. The vector F(tD(z), z) lies in Sing(V)k. For any l =
1, ... , n, the vector F(tD(z), z) is an eigenvector of the operator Hl(z) with
eigenvalue ~S ~zl(tD(z), z). Moreover

where B is the Shapovalov form defined in Section (2.1 ), and const. does not depend
on z.

REMARK. Theorem (1.4.4) states that const. = 1 if n = 2.

(2.4.3) THEOREM. We have the following two formulae.
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Here the first product is over admissible domains, the second product and pi
are explained in Theorem (2.3.2).

Here the rows (columns) of the determinant are numerated by admissible domains
(admissible monomials). The first (second) product is over admissible domains
(admissible monomials), and

To prove the theorem it is enough to write an asymptotic expansion for the
rhs of (2.3.3) by the Stirling formula, for the lhs by formula (2.4.1), and then to
compare the corresponding terms.

(2.4.6) COROLLARY. Vectors {F(tD(z), z)} form a basis in Sing(V)k if
-(111, a), ... , -(An, a) are positive and zl, ... , zn are real pairwise different
numbers.

REMARKS.

1. There are integral formulae for solutions of the KZ equation associated with
an arbitrary Kac-Moody algebra [SV]. Theorem (2.4.2) holds in this more general
context [RV]. A conjectural analog of Theorem (2.3.3) is formulated in [VI]. It
is plausible that the conjectural determinant formula in [V1] would imply that the
eigenvectors given by the first terms of asymptotic expansions of solutions of the
KZ equation for a Kac-Moody algebra generate a basis of the corresponding space
of singular vectors.

2. It is plausible that there are analogs of formulae of Theorem (2.4.3) for an
arbitrary configuration of hyperplanes, and these analogs are corollaries of the
conjectural determinant formula in [Vl].

(2.5) Norms of Eigenvectors

(2.5.1 ) THEOREM. Under assumptions of Theorem (2.4.3) we have

COROLLARY. For arbitrary 039B1, ..., An and for arbitrary nondegenerate critical
point t = t (z) of the function 03A6(t, z), we have
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Proof of the Theorem. Let Wi, i = 1, 2, be S12 modules. Let wi E Wi be
a singular vector of weight mi E C, that is, ewi = 0 and hw2 = mi wi . For a
nonnegative integer 1, the vector

is a singular vector in Wl 0 W2 of weight ml + m2 - 21.
Let V1,..., Yn be sl2 modules with highest vectors v1, ... , vn and highest

weights 039B1,..., An, respectively. Set mi = (039Bi, a). For any sequence of non-
negative integers I = (i2,..., in), i2 + ··· + in = k, set

The vector vI is a singular vector in V = V10...0 Vn of weight m1 +...+mn -2k.

(2.5.3) LEMMA. Let B = B1 ~ ··· (D Bn be the Shapovalov form on V. Then

where b(cx, 03B2; i) is defined in Section (1.3).
The lemma easily follows from Lemma (1.3.6).
For any l = 2,..., n, set

(2.5.4) LEMMA [RV]. For every l and I - (Í2’...’ in), the iterated vector VI is
an eigenvector of Gl with eigenvalue

Under assumptions of Theorem (2.4.3) assume that zj = sj, j = 1,..., n, and
s tends to +00.
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be the admissible domain corresponding to this sequence. Let tl(z) be the critical
point of 03A6 in DI(z). For any 1 = 2,..., n, introduce a function

where al = mi + ... + ml-1 - 2(z2 + ... + il-1 ). Let tl be a critical point of ,Sl.
(2.5.6) LEMMA. We have

where d(I) is some integer, see [RV].

where c(I) is some integer.
3. For any l = 2,..., n, the operator Hl(z) = 03A3j~l03A9j,l/(zj - zi) has the

following asymptotics:

Proof. Make a change of variables :
Then we have

for some number A. This formula and the explicit formula for F(t, z) imply the
lemma.

By Theorem (1.4.4) and Lemma (2.5.3) we have

Now Theorem (2.4.3) implies equality 2d(I) = c(I) and Theorem (2.5.1).
REMARK. Using part 3 of Lemma (2.5.6) and Lemma (2.5.4) we can com-
pute asymptotics of eigenvalues of the operators Hl(Z),..., Hn(z) on vectors
{F(tD(z), z)} for Zl  Z2  ···  zn. This computation shows that the eigen-
values separate the vectors. This means that the vectors are pairwise orthogonal
with respect to the Shapovalov form [RV].
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