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Let f: en --+ C be a polynomial function. It is well known (see e.g. [Ph2])
that there exists a finite set A c C such that f:CnBf-1(0394) ~ CBA is a
locally trivial C~-fibration. We call the smallest such set the bifurcation set
of f and denote by Bf. Besides the critical values of f, Bf may contain some
other numbers - the values of so called "critical points at infinity". This may
happen since f is not proper and we cannot apply Ehresmann’s Fibration
Theorem.

There are two approaches to study B f. First, one may consider the family
f: X ~ C of the projective closures of the fibres of f, that is f-1(t) are the
closures in Pn of f-1(t) (see Section 1.1 for the details). Now 1 is proper but
the generic fibre of f may have singularities. So instead of Ehresmann’s Fibration
Theorem one may apply the theory of Whitney stratification and trivialize f using
Thom-Mather Isotopy Lemma. For this approach see for instance [Ph2], [Hà-Lê]
and [Dil, Ch. 1 Sect. 4]. The second approach is to work entirely in the affine space
Cn and trivialize f using explicitly constructed trivializing vector field. This vector
field is defined using the gradient of f so this approach requires some assumptions
on the asymptotic behaviour of grad f(x) as ~x~ ~ oo. For this approach see
Section 1.2 and [Brl-2], [F], [Né] and [Né-Z].

The purpose of this paper is to study B f under the assumption that f has only
isolated singularities at infinity, that is the projective closure of a generic fibre of
f has only isolated singularities. In this case we give complete descriptions of
B f in the spirit of the first and the second approach. Moreover, in this case, each
"critical point at infinity" changes the affine fibre by "substracting" from a generic
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fibre a number of handles of index n. In particular, if to is a regular value of f
then f is trivial over a neighbourhood of to if and only if the Euler characteristic
of f-1(t0) is the same as the one of a generic fibre. This generalizes the Hà-Lê
Theorem [Hà-Lê]. Our results are stated in Theorem 1.4 which is then proven in
Section 3.

A word about the method of proof. We may study the singularities of f-1 (t) as a
finite number of families of isolated singularities. By [Hà-Lê], [Dil, Ch. 1 Sect. 4]
these families are y-constant if and only if the Euler characteristic of the fibres
f-1(t) does not change (here we restrict ourselves to regular fibres of f only). So
the main difficulty is to show that the p-constancy implies topological triviality.
In general, this is not known. In this paper we develop a method which allow us
to show it in our case. The presentation of such a method (Section 3.1) is another
purpose of this paper. The method is based on a study of the Thom condition aF
and the conormal space which we present in Section 2.

1. Main results

1.1. FAMILY OF PROJECTIVE CLOSURES OF FIBRES OF f

Let f : Cn - C be a polynomial function. To study the fibres of f we consider their
projective closures. We follow a classical construction (see e.g. [Dil, Ch. 1 Sect. 4],
[Br2]).

Let d = deg f and let f = fo + fl + ··· + fd be the decomposition of f into
homogeneous components, fd 0 0. Consider the homogenization of f

and the hypersurface in Pn x C defined by

Let jHco == {x0 = 0} C Pn be the hyperplane at infinity and let X~ = X n (H~ x
C). The cone at infinity Coo of the fibres Xt = f-1(t) of f does not depend on t
and is given by Coo = tx E H~ | fd( x) = 01. Hence Xm = Coo x C. Let

be the map induced by the projection P’ x C onto the second factor. The fibres of
f, which we denote by Xt, are the projective closures of Xt’s. The singular part of
X is precisely A x C, where
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The singular part of X~ = X n H~ can be bigger and equals precisely B x C,
where

DEFINITION 1.1. We say that f has isolated singularities at infinity if A is a finite
set.

1.2. AFFINE TRIVIALIZATIONS

By grad f we denote the vector grad f = (~f/~x1,...,~f/~xn), so the chain
rule may be expressed by the inner product 8 f/8v = (v, grad f ). Let to be a
regular value of f. There are several conditions restricting the asymptotic growth
of grad f (x) as ~x~ ~ oo, f(x) ---7 to, so that they imply the topological triviality
of f over a small neighbourhood of to in C. For instance Fedoryuk’s condition [F]
(see also [Brl], [Br2]) says

If one looks for a weaker condition then it is natural to take Malgrange’s condition
(quoted in [Ph1])

There are also other interesting conditions given in [Né], [Né-Z]. Let us intro-
duce the following condition, which is intermediate between the Fedoryuk’s and
Malgrange’s ones,

We shall show below that, if f has only isolated singularities at infinity, then (1. 1)
is equivalent to the IL-constant condition and also to the topological triviality. First,
(1.1) implies topological triviality by the following standard argument (see e.g.
[Né-Z]) which works without any assumption on the singularities of f at infinity.
LEMMA 1.2. Let to be a regular value of f such that (1.1) holds for ~x~ -
oo, f(x) ~ to. Then there is a neighbourhood U of to in C such that f is
topologically trivial over U. Moreover, one may find a trivialization which fixes all
the points at infinity.

Proof. We construct a vector field w by taking first the projection of grad f onto
spheres and then renormalizing the projected vector. That is we define
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If (1.1) holds then w(x) ~ 0 provided 11 x 11 is sufficiently large and f(x) is
sufficiently close to to. Indeed, it suffices to check it on real analytic curves. Let

be such a curve parametrized by s E [0, e). Since 11 x (s) 11 ~ ~, s ~ 0 we have
a  0. We expand also

Condition (1.1) or even weaker condition (m) imply a + 03B2  0. Since f (x(s)) is
bounded, f (x(s)) is an analytic function of s at 0. So is (d/ds)f(x(s)). But

and Hence

which implies not only v(x(s» 7é 0 but also

grad, 

Therefore w(x) 0 0, ~x, w(x)) = 0, ~f /~w = 1. Thus, integrating w we get
the desired trivialization of f outside a big ball BR = {~x~  R}. Inside BR we
may trivialize f integrating grad f / 11 grad f~2, since, by the assumptions, grad f is
nonzero. Glueing these two vector fields we obtain a global trivialization.

Note that (1.2) and (1.1) also give

which implies the last statement of the lemma.

REMARK 1.3. The proof of Lemma 1.2 also shows that (m) implies topological
triviality. Then, instead of (1.3) we get

Therefore, in this case, it is not clear whether our trivialization extends to infinity
i.e. gives a topological trivialization of f. Nevertheless, this is the case if f has
only isolated singularities at infinity. Indeed, we show in this paper that in our case
the topological triviality of f implies (1.1).
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1.3. MAIN RESULT

The main result of this paper is the following theorem.

THEOREM 1.4. Let f : Cn ~ C be a polynomial function with isolated singulari-
ties A = {a1, ... , ap} at infinity. Let to be a regular value of f. Then the following
conditions are equivalent

(i) f is C°° trivial over a neighbourhood of to, i.e. ta tf B f;
(ii) the condition (1.1) holds for x such that ~x~ is big and f (x) is close to to;

(iii) the families of isolated singularities (Xt, ai x t) are li-constantfor t close to
to;

(iv) The Euler characteristic X(Xt) of the fibres of f is consant for t close to to.

Moreover, if a regular value to is a bifurcation point of f, that is to E B f, then
a generic fibre Xt of f may be obtained from Xt,,, up to homotopy, by adding a
finite number of n-handles.

(i) ~ (iv) trivially, (ii) ~ (i) by Lemma 1.1. We shall show (iii) ~ (ii) in
Section 3.1. (iii) ~ (iv) is proven in [Dil, Ch. 1 (4.6)]. We show the last
statement of the theorem in Section 3.2. Our argument gives also an alternative
proof of (iii) ~ (iv).

2. Polar varieties and aF stratifications

Throughout this section we work in a more general analytic setup. Consider first
the following classical situation. Let F(t, x0,...,xn) be an analytic function
which for each fixed t has an isolated singularity at the origin. Then we may
consider F as a family of isolated singularities along a line S = f xo = ··· =
xn = 0}. By a theorem of Lê and Saito [L-S] this family is y-constant if and
only if the Thom condition aF is satisfied along S. In this section we gener-
alize this characterization of aF condition to singularities of any codimension.
The condition replacing the y-constant condition is the emptiness of a relative
polar variety. In the case of isolated singularities this variety is a polar curve
F = {(x, t) 18F/8t f:. 0, 8F/8xo == ... = ~F/~xn} and it is easy to see that r
is empty if and only if the family is 03BC-constant. We start with a quick reminder of
conormal spaces.

Let X be an analytic subset of an open U C Cn+1 and let Reg X, 03A3X denote
the sets of regular and singular points of X respectively. By the (projectivized)
conormal space of X we mean an analytic set



374

together with projections

Similarly, let F(xo, ... , xn) be a holomorphic function in U and let EF = tX E
U 1 grad F( x) == 0} be the set of critical points of F. For x e 03A3F we denote by
TxF the relative tangent space to F that is TxF = TxF-l(F(x)). Then by the
(projectivized) relative conormal space to F we mean

together with the induced projections

In this case Tr: CF ~ U coincides with the Jacobian blowing-up of F.
Let S = t Si l be an analytic stratification of X C U. Let p E SI C S2. Then

Whitney’s a-condition for (S2, Sl) at p is equivalent to

where customarily by (C)p we denote the fibre of C over p.
Similarly, if X = F-1 (0) we say that the Thom condition aF holds along S at

p ~ S if

A stratification of X satisfying aF condition is customarily called "good" ("bonne"
in French).

Fix a stratum So of S. The failure of aF condition at p E So can be detected
with help of relative polar varieties at p. The following proposition is well-known.
Since we could not have found the exact statement in literature, we present it with
a proof.
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PROPOSITION 2.1. Let X be the zero set of a holomorphic function F defined in
open U C Cn+1 and such that the set of singular points EF = Ex of F is nowhere
dense in X. Let S be a stratification of Ex and let So be a stratum of S such
that:

(a) for all S in S such that So C S the pair (S, So) satisfies a-condition of
Whitney;

(b) condition aF is satisfied along all strata of S but maybe So.
Then, for pESo, the following conditions are equivalent:
(i) aF holds at p E 80;
(ii) dim(CF)p  n - dim SO;
(iii) For some local coordinate system xo, xi, xn at p such that 80 =

is empty near p.
(iv) The relative polar variety Ps+1(F) is empty near p for any such system

of coordinates.

Proof. Clearly (iv) ~ (iii), and (i) ~ (iv) is trivial (see Remark 2.2 (a) below).
Also the implication (i) ~ (ii) is easy. Indeed, by aF we get (CF)P C (Cso)p so
dim(CF)p  dim(CS)p0 = n - dim So.
We shall prove (iii) ~ (i) and (ii) ~ (i). Fix a coordinate system xo, x1,..., xn

at p such that So = {x0 = xi = ··· = xs = 01.
First note that by the assumption (b) for any stratum S ~ So and any

q ~ S (CF)q C (CS)q. Therefore

Hence by (a)

Moreover, let Y be the set of those points of So at which aF along So fails. Then
Y is analytic and nowhere dense in So and by the same argument as above

(ii) ~ (i). Since TF : CF ~ U is a blowing-up its exceptional divisor 03C4-1F(03A3F)
is of pure dimension n. If dim(CF)p % n - dim So at p then dim 03C4-1F(Y) 
n - dim So + dim Y  n. Hence TF 1 (Y) is nowhere dense in TF 1 (EF) and
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(iii) ~ (i). Assume, by contradiction, that (iii) holds at p e Y. Then, since (iii) is an
"open" condition, (iii) holds in a neighbourhood of p. Thus, to get a contradiction,
it suffices to show (iii) ~ (i) at a generic point of Y.

Therefore, we may assume that Y is nonsingular and aF holds for Y as a new
stratum. Then in particular

Let L C Pn be the projective linear subspace defined by {xs+1 =... = x n =
01 and let  ~ n be its dual, dim L = n - s - 1. Since L n (Cso)p = 0, by
(2.1)

The polar variety Ps+1 (F) equals (as a set) 7F (f), where

Therefore, if by (iii) r is empty, then 03B3-1F() C 7Î’(EF). Hence, by (2.3),
03B3-1F() C 03C4-1F(Y) or equivalently

Since Y C So and L is transverse to So we have dim(Cy n 03B3-1F()) = dim CY -
codim L = n - s - 1 and hence by (2.2) and (2.3)

On the other hand, if nonempty, dim 03B3-1F()  ( n + 1) - codim L = n - s. So we
see, calculating the dimensions of both sides, that (2.4) is impossible. This ends
the proof.

REMARK 2.2.

(a) Let x0, x1,..., Xn be a local coordinate system at p such that So = {x0 =
XI 1 = ... = x S = 0}. Then aF at p is equivalent to

as UB03A3F ~ x ~ p, and (iii) of Proposition 2.1 is equivalent to saying that
there is no sequence of points x ~ p such that
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and

So Proposition 2.1 says that (2.5), (2.6) as well as the following intermediate
condition are equivalent:

(b) The subscript s + 1 in Ps+1(F) means that the expected codimension of
Ps+1(F) is s + 1. But if the system of coordinates is not generic, as in our
case, it may happen that codim P,+ 1 ~ s. If the assumptions of Proposition 2.1
are satisfied then at a generic point of Y (in the notation of the proof of
Proposition 2.1) codim Ps+1(F) = s + 1 - dim Y. In particular, for a one
parameter family of isolated singularities r = Pn (F) is always a curve (if
non-empty).

(c) For a hypersurface X of a smooth variety M the condition aF along S E X
does not depend on the choice of a local equation X = lx E MI F(x) = 0}.
Here we understand X as a subvariety of M and F has to generate the ideal
of X. We use this observation in the next section to study aF stratification
of X = F-1(0) C Pn X C, where F(x0, x1,...,xn, t) is a polynomial
homogeneous in (xo, XI ... , xn).

3. The proofs

3.1. aF -STRATIFICATION OF X

Let f be a polynomial function as in Section 1. We assume that f has only isolated
singularities at infinity. Then (XBA x C, A x C) is a stratification of X. Let to
be a regular value of f and assume that (iii) of Theorem 1.4 holds. By a theorem
of Lê and Saito [L-S] this is equivalent to saying that our stratification satisfies the
Thom condition aF, where, recall, F(x, t) = (x) - txd0 = 0 is the equation of
defining X (this makes sense by Remark 2.2 (c)).

If we suppose, as in [Dil, Ch. 1 Sect. 4], [Hà-Lê], that the pair (XBA x
C, A x C) satisfies Whitney’s Conditions a and b, then the Thom-Mather Isotopy
Lemma gives a trivialization with required properties (see [Dil, Ch. 1] for the
details). Note that in our case, that is in the case of family of isolated singularities,
Whitney’s conditions are equivalent to y*-constant condition. But it is known
([B-S]) that in general 03BC*-constant is a condition much stronger than y-constant.
Also, whether, in general, fi-constant implies topological triviality is not known. To
overcome these difficulties, we use some particular properties of our stratification
and Proposition 2.1. Note that even if our stratification can be considered as a
family of isolated singularities, we shall use the results of Section 2 for more
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general singularities. This is due to the fact that in our construction we will have
to ’enlarge’ the singularities of X.

Fix po e A x {t0}. We may assume, and we always do in the sequel, that
po = (0 : 0 : ··· : 0 : 1), to), so that xo, x1, ... , xn-1, t form a system of
coordinates near po. Then, aF along 101 x C means

as (x, t) approaches (0, to).
LEMMA 3.1. Let p = (p’, t) E X~ be close to po. If either p e A X C or if
p E A x C and aF holds along tp’l x C at p, then for every positive integer N

as B x C ~ (x, t) approaches p.
Proof. We leave the case p ~ A x C to the reader and consider only the more

difficult case p e A x C.
Consider the singularities of X~ that is B x C. If A is finite then B is of

dimension at most 1. Choose a stratification of B such that A is a union of strata.

Taking products with C we get a stratification S of B x C which clearly is Whitney
a regular and aF holds along each stratum contained in (BBA) x C. Indeed, a
regularity follows trivially from dim B  1, and aF is always satisfied along strata
contained in the regular part of X. We may also require that our stratification
satisfies the following extra property:

(ex) For F restricted to H 00 x C, that is for fd (x, t) = fd(x), the Thom condition
afd holds along each stratum of S.

Fix a positive integer N &#x3E; 1 and consider a function

Then,

Therefore, B x C is the set of singular points of FN. We claim that for the
function FN the Thom condition aFN holds along each stratum of S. We show it
by descending induction on the dimension of strata. Therefore, we may assume
that the assumptions (a) and (b) of Proposition 2.1 are satisfied and it is enough to
show the emptiness of the polar variety associated to each stratum. Note that since
B C H 00 we make take yo = xo = 0 as one of the equations of our stratum So.
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So, if So c (BBA) x C the polar variety is contained in the zero set of 8FN/8yo.
But

and fd-1 does not vanish on BB A. Thus, the polar variety has to be contained in
tyo = 01 which is not possible by the extra condition (ex).
Now consider a stratum So C A x C that is So = {p’} x C. Then again by (ex)

the polar variety TN, in fact in this case the polar curve, cannot be contained in
lyo = 0}. But

so, by (3.2), 0393N does not depend on N and, since we have assumed aF, is empty.
This shows the Thom condition for aFN along the strata.

Now, by (3.2), aFN along {p’} x C at p means exactly (3.1). The proof of lemma
is complete.

By the curve selection lemma, (3.1) for all N implies

Indeed, if (3.3) fails, then

along an analytic curve, which contradicts (3.1) for N sufficiently big.
On X = {F = 01 we get even stronger properties.

LEMMA 3.2. Let p = (p’, t’) E X~ be close to po. If either p e A x C or if
p E A X C and aF holds along tp’l X C at p, then for XB(B x C) :3 (x, t) - p

Proof. Again, by the curve selection lemma, it suffices to show (3.4) on each
real analytic curve. Let (x(s), t(s)) be such curve, s E [0, é:), (x(s), t(s)) e
XB(B x C) for s ~ 0. Then
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which gives

This together with (3.3) gives (3.4). By (3.1) and (3.4)

Therefore the following function

extends continuously to X~ by setting ~(p) = 0 for p e X~. Since this extension
is clearly semi-algebraic, by Lojasiewicz’s Inequality [Lo, Sect. 18], there is a
positive integer N such that ~(x, t)  |x0|1/N. This shows (3.5) and ends the
proof of lemma.

REMARK 3.3. Note that (3.5) can be understood as a "Verdier-like" condition. In
fact, we may take N an integer. Then for FN from the proof of Lemma 3.1 we
get

which implies the condition w of Verdier [V] (in the complex analytic geometry w
is equivalent to Whitney’s a and b conditions).

One may follow this idea and show the topological triviality along A x C using
(3.5). Instead we choose a shorter argument.

PROPOSITION 3.4. Let a polynomial function f have only isolated singularities at
infinity which form 03BC-constant families over a neighbourhood of a regular value to
of f. Then the condition (1. 1) holds for ~x~ ~ oc and f (x, t) ~ to. In particular,
f : X --+ C is trivial over a neighbourhood of to.

Proof. This is just translation of (3.5) to the old affine coordinates. We divide
both sides of (3.5) by xd0 and replace Xo --+ x-1n and for i = 1,..., n - 1

Thus (3.5) gives
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This implies (1.1). (The reader may check that in fact (3.5) is equivalent to (1.1).)
The proof of proposition is complete.

3.2. FAILURE OF 03BC-CONSTANT CONDITION

If A is finite and t is a regular value of f then, by [Di2] or [Pa], the Euler
characteristic of Xt = f-1(t) is given by

where Vdsmooth is a nonsingular hypersurface in Pn of degree d.
Therefore, if to is another regular value then

So if aF, or equivalently y-constant condition, fails at some points of A x {t0},
then the Euler characteristic of fibre changes at to. Indeed, the change of the Milnor
number at po

where r is a polar curve and ( . )p,, denotes the intersection index at po. In local
coordinates at po

To prove the last statement of Theorem 1.4 we consider on Cn the following
function

Since p is semi-algebraic, for each regular value t of f, the set of critical values
of cpt = ~|Xt is finite. Hence, we may assume that outside a ball big enough
B(0, Rt) = {~x~  Rt~}, ~t is regular (this also follows from the curve selection
lemma). Nevertheless, the radius Rt may depend on t, that is there could exist a
sequence of points such that

Assume that such sequence tends to p’ e C 00’ p = ( p’, t’ ) is close to po. Then, in
the local coordinates at Po,
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Note that

The critical points of cpt are exactly those for which grad cpt and grad FIXt =
(~F/~x0,...~F/~xn-1) are parallel. By (3.7) this cannot happen if (3.4) holds
at p. Therefore the only possible limits of points satisfying (3.6) are such p e A x
C at which aF fails. Near such point, say again po = ((0 : ··· : 0 : 1), to), we
replace p by

(which corresponds to |xn|2 in the affine piece Cn). Note that 0 satisfies also (3.7).
Therefore, if (3.4) holds near p, then we may "move" p to 03C8 without producing
new critical points. Since the points where aF and so (3.4) fails are isolated we
may use this construction to the boundary of a small neighbourhood Up0 of po.

Thus, near ~Up0 we "move" ~ to 1b and all the critical points (near H 00) of this
new function are those of e and they lie on the (absolute) polar curve

Carrying out this procedure at each point of A x {t0} at which aF fails we construct
a smooth functin 0 such that

(1) There is R such that 01Xto has all its critical points in B(0, R).
(2) For t ~ to but close to to all the critical points of Ç3t = |Xt lie on the

associated polar curves (3.8).

Hence, the following spaces are homotopically equivalent for t close to to

Now the critical points of Ç3t near the infinity are the critical points 1b = Ixol-2
which are the critical points of Xo lx t. Each critical point of Xo lx is isolated and by
[M] it can by morsified (in complex sense) with a number of critical Morse points
equal to the local Milnor number of xolxt at this point. Therefore each such point
contributes to the homotopy type of Xt by adding a number of n-handles. The total
contribution of po e A x f tol equals the intersection index

To complete the proof it suffices to show
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LEMMA 3.5.

Proof. Let

Then Y == Y’ x C, where Y’ is a curve, and rab = Y n tF = 01, r =
Y ~ {~F/~x0 = 0}. We assume for simplicity that Y’ is irreducible and let x (s)
be a parametrization of Y’. Then, up to a factor which depends only on Y’

where t ~ to and ordoa(s) denotes the order of vanishing of a(s) at 0. Analogously,
up to the same factor,

Note that for any t near to (including to) along the curve (x(s), t)

which gives ordoF(x(s), t) = ord0 ~F/~x0(x(s), t) + ordoxo(s), and since
ordoxo(s) does not depend on t, (3.9) and (3.10) give the result.
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