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The purpose of this paper is to establish and apply a general principle
(Theorem 1.1, Section 1) which serves to relate Hodge theory and defor-
mation theory. This principle, which we state in a somewhat technical
abstract-nonsense framework, takes on two dual forms which say roughly,
respectively, that:

(0.1) for a functorial homomorphism

from a Hodge-type group to an infinitesimal deformation group,

im( 1") consists of unobstructed deformations;
(0.2) for a functorial homomorphism

from an obstruction group to a Hodge-type group, "actual"

obstructions lie in ker( n).

A familiar example of (0.1) is the case of deformations of manifolds with
trivial canonical bundle, treated from a similar viewpoint in [Rl] ; a

familiar example of (0.2) is Bloch’s semi-regularity map [B], treated from
a similar viewpoint in [R3]. Our principle may be viewed as an amalga-
mation and abstraction of parts of [R1] and [R3].
We will apply the above principle to deformations of maps of complex

manifolds. After recalling and developing in Section 2 some general
formalism concerning such deformations, we develop, in Sections 3 and 4,
two instances of a map 03C0 as in (0.2) in the respective cases of generic
immersions and fibre spaces. It may be noted that even in the case of an

*Supported in part by NSF. DMS 9202050.
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embedding our map 03C0 does not reduce to Bloch’s semi-regularity map but
rather has the latter as a component (cf. Remark 3.2.1); in particular our
map has smaller kernel than Bloch’s, leading to a better consequence of
(0.2) (cf. Remark 3.4.1).
Some applications given in Sections 3 and 4 are to the question of

stability, i.e. of identifying, given a generic immersion f : Y - X or a fibre
space f: X - x the locus of deformations of X to which f extends. We will
show, in particular, that under favorable conditions the latter locus may be
identified Hodge-theoretically (Corollaries 3.2, 4.2); in the case of an

embedding f this may be considered as a special case of an infinitesimal
form of the Generalized Hodge Conjecture. A particularly nice case is that
of q-Lagrangian submanifolds of a q-symplectic manifold, in which we give
a result (Corollary 3.4) generalizing work of Voisin [V].

In the final Section 5 we systematically apply the foregoing to the
problem of moving curves on a manifold, a problem made popular in
recent years by Mori theory. We will give a variety of conditions under
which a curve is forced to move. As a final application, we describe the
structure of manifolds X such that Qi is spanned off a finite set: namely we
prove (Theorem 5.3) that either X is fibred by tori or the canonical bundle
Kx is ample. This is in complete analogy with the known case of 1-forms
(Ueno’s conjecture, cf. [R4]). It is interesting to note that the proof involves
applications of both (0.1) and (0.2) (at two different points).
We begin in Section 1 by setting up an abstract categorical framework

for deformation theory, one which seems best suited for stating (let alone
proving) our general principle; it is shown in Section 2 that deformations
of maps of manifolds fit into this framework, which is a variant of the usual
one (cf. [S]); perhaps the main novelty here over [S] is the systematic use
of "canonical elements" to describe infinitesimal deformations, in general-
ization of the method of [Rl] and [R2]. For a different application of the
results of Section 1, see [R6].

Convention. In this paper ’Kahler manifold’ should be understood in the

cohomological sense, i.e. a manifold whose Hodge-de Rham spectral
sequence degenerates at E 1.

1. Abstract nonsense

Let A be the category of Artin local k-algebras with residue field k.

In order to use geometric language, we may, by the assignment
R - S = Spec(R), identify the opposite category dOP with a category of
(1-point) schemes over k. We may also, from time to time, refer to an
element R ~ A as (R, M) or (R, M, I) where M is the maximal ideal and
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I = Ann(M) ci R. To category such as A we may associate 2 other

categories: W-.,Yom whose objects are morphisms of A and whose

morphism are commutative squares in A; and A-Mod, whose objects are
pairs (R, A) where R ~ A, and A is an R-module; and whose morphisms are
defined by

Now consider a category AIW, i.e. a small category together with a
contravariant functor 03A6:B - .91; we will sometimes write an object X of 11
as X/R or X/S indicating that R = O(X) or S = Spec(03A6(X)). We will
assume that 11 has an unique object X °/k. Define another category éé as
the fibre product

We will say that the category 14/.91 is base-changing if it comes equipped
with a functor À - e-Yeom such that the following diagram commutes

where q’(X2 ~ X 1) = X1 and 03A6’ is the evident functor induced by 03A6; more

concretely, what this means is that any X1/S1 and S2 ~ SI may be
functorially completed to a "base change" diagram

In this case we will use the notation X 2/S2 = X 1  S1 S2, X21R, = X 1 XR1 R2,
Si = Spec(Ri).
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Note that to a base-changing category B/A we may associate a (covariant)
functor

and we will say that A is a realization of F. In what follows we will assume

that F admits a hull in the sense of Schlessinger [S], in which case we will say
that A is hullable. Let à = {(X/R, R’):X/R~B, R = R’/FR’ = R’/F’}.
Now given B/A as above, by an admissible B-module, we mean a functor

L: à -+ A-Mod compatible with 03A6, together with the data, for all (R, M, I) E d
and (X/R, R’) ~ , of a functorial exact diagram

where the top row is the obvious thing and g is the map induced by
base-change, plus a group L(X’) with functorial isomorphisms, for all

(R, M, I = M) ~ A, L(X0/k, R) = L(X0) (D M. L is said to be right (resp. left)-
exact if g is always surjective (resp. f is always injective). By a ô-pair of
A-modules we mean a pair (LI, L2) of admissible A-modules together with the
data, for all (R, M, I)~A and X/R~B, of a functorial exact sequence

L1(XO) (D 1 ~ L1(X, R’) ~ L1(X x (R/1), R) ~ L2(X0) O 1 ~ L2(X, R’)

~ L2(X x (R/1), R).

By a linearization of PÃ / .91 we mean a ô-pair (L’, L2) of admissible A-modules
together with the data, for all (R, M, I) ~ A, J = Ann(M/I) c R and
X/(R/1) ~ B, of a canonical element

with the property that X comes via base-change from some X/R iff a lies in
the image of the canonical map

’Vote that given a linearized base-changing category B/A, an admissible
module L’ c LI gives rise to a subcategory é8’ c: A defined "inductively" by
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the conditions that X0/K~B’ and that given X/R ~ B such that X x R (R/1) G é3’,
X/R ~ B’ iff the canonical element

Next, by an exact triple of the linearized base-changing categories over si
we mean a triple (Bi, Li , L2i) of such, together with functors

an extension of (L11, L12) as ô-pair to PÃ2, still denoted (L11, L21), and an exact
sequence of PÃ2-modules

where (L13, L23) are viewed as e2-modules in the obvious way, such that the
respective canonical a-elements are compatible.

Now we can finally state our result:

THEOREM 1.1. Let (Bi, Ll, L?), i = 1, 2, 3 be an exact triple of linearized
base-changing .91 -categories, realizing respectively the functors Fi: A ~ Yets.
Let Z,, i = 1, 2, 3, be a formal scheme which is a hull for Fi and Z1 ~ Z2 ~ Z3
the induced maps. Also put lji = dimk(Lji(X0i)) where X0i/k~Bi is the unique
object.

(i) Suppose K is a right-exact B3-module with a natural transformation

and put Q = rkk(03C4: K(X03) ~ L13(X03)). Then there is a smooth a-dimensional

formal subscheme Zo c Z3 corresponding to im(r), such that Zo:= 03B2-12(Z03) has
embedding dimension  6 + l11 and is defined by at most 11 equations.

(ii) Suppose K is a left-exact A2-module with a natural transformation

and put p = rkk(03C0: L21(X01) ~ K(X01)). Suppose Z03 c Z3 is a formal subscheme
corresponding to a subfunctor of
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Then the natural map Z’ = 03B2-12(Z03) ~ Z’factors

where B is smooth of dimension if and i is an embedding onto a formal subscheme
defined by at most 11 - p equations.

Proof. Cases (i) and (ii) are essentially dual to each other; moreover the
proof of case (ii) is almost word-for-word the same as that of Theorem 1 in

[R3], which is its special case concerning deformations of embeddings and
Bloch’s semi-regularity map (cf. §2, 3). For completeness’ sake, we will sketch
the proof of case (i), which in turn is similar to that of Theorem 1 in [R1].
Take (R, M, I) ~ A, J = Ann(M/1), and suppose we have

such that X3 belongs to the subcategory Ao 3 c B3 corresponding to Z’, 3 i.e.

such that the canonical element

lies in the image of

Then the right-exactness of K yields immediately that a3 lifts to an element

03B13 ~ im(K(X3, R) ~ L13(X3, R)), hence X3 lifts to some X3/R ~ B03. This shows
that Z03 is smooth, and to complete the proof it remains to investigate the
obstruction to lifting X2 to some X2/R ~ B2 which maps to X3, or what is the
same, the obstruction to lifting the canonical element

to an element (1.2 E Li(X 2’ R) which maps to a3. Now from the commutative
diagram
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it is clear that the latter obstruction lies in I Q L21(X02). D

2. Generalities on déformations of maps

In [R5], we described a general formalism for studying deformations of maps.
Our purpose here is to revisit and elaborate on this in the relatively benign
case of maps of manifolds, fitting it, in particular, into the abstract framework
of Section 1. We begin with some topology. Let

be a continuous map of topological spaces. As in [R5], we associate to f a
Grothendieck topology 03C4(f) whose open sets are the pairs (U, V) such that
U c X and V c Y are open and f(U) c V, and whose notion of covering is
the obvious one. Note that we have a commutative diagram of continuous
maps of Grothendieck topologies

where i, j, n are defined, respectively, by

For sheaves E on X and F on Y, we define sheaves

F# = sheafification of 1
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Note that we have

and that there is a canonical diagram of sheaves on i(f):

where f# is injective provided f is open. Put

A small remark which will be useful later is

LEMMA 2.1. Suppose f is open and f* f-1F  F. Then we have

Proof. Consider the exact sheaf sequence on 03C4(f)

Applying 03C0* to (2.2), using the basic diagram (2.1) and our hypothesis on
F, we conclude easily that

Hence the Leray spectral sequence for QF and 7c yield the Lemma.

Suppose now that our f : X ~ Y is a map of complex manifolds. We may
then define on T(f ) a sheaf Tf of ’f-related pairs of germs of vector fields’ by

Note the exact sequence

and its cohomology sequence

where
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Now denote by Af (resp. é0x, é0y) the category of deformations of f
(resp. X, Y). Based on the results of [R7], we extend Tl , T? to functors on
Ax making up a a-pair, in the following way, assuming H0(0398X) = 0. Let
J · (TX) = lim Jm(TX) be the Jacobi complex associated to the Lie algebra
TX and R univ = lim Runivm the ring of the universal formal deformation. Given
(X1/R, R’) ~ X, there is a Kodaira-Spencer homomorphism R univ - R
which endows MR, and hence T(R’ ) = Mi, with an Runiv - module struc-
ture, which obviously factors through Runivm, m = exponent(R). Define

The canonical element is just the Kodaira-Spencer map TR - HO(J . (TX)).
Similarly for TiY and Tif.

PROPOSITION 2.2. For any compact complex manifold X (resp. map f: X - Y
of such), the category BX/A (resp. Bf/A) forms a linearized base-changing
category, with associated ô-pair (T1X, T2) (resp. (T1f, T2f».
Proof. This is a classical save possibly for the part involving the canonical
element a. As for the latter, the case of manifolds X is discussed in detail in
[R7], while that of map f is similar (and is mentioned in [R2]).

EXAMPLE 2.2. A special case of Theorem 1.1 is when A2 = e3 = Bf,
311 = .91 (the "trivial" .91 -category). In case (i), assuming further that r is an
isomorphism, the conclusion is that Def( f ) is smooth; in other words, when-
ever T1f is right-exact (i.e., in the terminology of [Rl], f satisfies the T’-Iifting
property) then f is unobstructed. This is precisely Theorem 1 of [Rl].

3. Generic immersions

We now consider a generic immersion (i.e. generically unramified map)
f : Ym ~ X". Let N denote the normal sheaf of f, defined by the exact
sequence on Y

Combining (3.1) with (2.3), we obtain the following exact sequence on 03C4(f):

and its cohomology sequence
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Denote by efix the category of deformations of f with fixed target X, and
note as before that H0(N), H’(N) extend to a ô-pair on Bf/X and ex, and
that the following is clear.

PROPOSITION 3.1

(i) eflx forms a linearized base-changing category with associated a-pair
(HO(N), H1(N)).

(ii) Aflx - Bf ~ BX forms an exact triple.

Our purpose now is to define a Bf-module K together with a natural
transformation

so that Theorem 1.1(ii), becomes applicable. We work in the derived

categories of the topologies in question, identifying N via (3.1) with the
(quasi-isomorphism class of) the complex having Ty in degree -1, f -’Tx
in degree 0, and otherwise zeros. Let Ci be the complex on 03C4(f) given by

Consider the tensor-product complex N+ ~ Cj, given by

and note the natural "contraction" map

whence a map on cohomology

Transposing, we obtain maps

which we may assemble together as
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Note that the spectral sequence of hypercohomology of Cj yields exact

sequences

where Hi,i(f ): Hj.i(X) - Hj,i(Y) is the pullback map. In particular, standard
Hodge theory (cf. [D]) implies for X Kâhler that

extends to a left (as well as right)-exact Bf-module. Moreover, note the
commutative diagram

This implies the following. Let

be the natural map induced by cup-product, and Tl’o c Tl the subgroup of
elements leaving E9 ker(Hj,i(f)) invariant (via ~). Then T1,0X extends to a
functor on BX which gives rise to a subcategory B0X c BX which consists
precisely of the deformations preserving ker(H ·,· (f)) as sub-Hodge structure,
and similarly a formal subscheme

which may be thought of as a type of "infinitesimal Noether-Lefschetz locus".
The following, then, is clear from the above discussion:

COROLLARY 3.2. With the above notations, Theorem 1.1, (ii) is applicable to
the exact triple Bf/X ~ Af - Ax, the subcategory B0X c BX and the map
1-1: H1(N) ~ K, provided X is Kâhler. In particular, the hull Def(f/X) of f has
embedding dimension hO(N) and is defined by at most hl(N)-p equations,
p := rkc(n). The latter conclusion holds even if X is not Kâhler.

Proof. It remains to justify the last sentence. The point here is that the Kahler
hypothesis on X is used only in controlling the Hodge theory of deformations
of X, and these do not come into play in considering Def(f/X).
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REMARK 3.2.1. Note that Cm+ 1 = QX+1. Identifying Hm-1(03A9m+1X)* =
Hp+1(03A9p-1X), p = n - m, it is easy to see that for f an embedding, 03C0m-1,m+1
coincides with the Kodaira-Spencer-Bloch semi-regularity map. Thus Corol-
lary 3.2 constitutes both a refinement and a generalization of Theorem 1 of

[R3].

In section 5, we will apply Corollary 3.2 systematically to curves. For now
we give 2 other applications. First to an infinitesimal form of the generalized
Hodge conjecture: this would say that in the above situation we should have

In this regard, Corollary 3.2 yields the following.

COROLLARY 3.3. In the situation of Corollary 3.2, suppose that

and X is Kâhler. Then the infinitesimal generalized Hodge conjecture (3.3) holds.

Next, let us say that a manifold X" is q-symplectic if it admits a holomorphic
q-form w such that the induced contraction map 1 eu: TX ~ 03A9q-1X is a bundle

injection; in this case an immersion f: Ym ~ X is said to be q-lagrangian if the

pullback of eu on Y vanishes and m + m - n (if q = 2 these become the

usual notions of complex symplectic manifold and lagrangian submanifold).
Note that for such Y, eu induces an isomorphism N -:+. 03A9q-1Y, and in particular
the map no, is injective, hence so is n. Hence Corollary 3.2 yields

COROLLARY 3.4. Let X be a q-symplectic complex manifold and f: Y ~ X a
q-lagrangian immersion. Then Def(f/X) is smooth. If moreover X is Kâhler then
the infinitesimal generalized Hodge conjecture (3.3) holds.

REMARK 3.4.1. For q = 2 this was proven by Voisin [V], who also points
out that Bloch’s semi-regularity map, i.e. 03C0m-1,m+1, need not be injective in this
case, whence the advantage of using n.

4. Fibre spaces

We now consider the case where our map f: Xn ~ Ym of compact complex
manifolds is a fibre space, i.e. f is proper, flat and f* (9x = (9y. Combining
the exact sequence (2.3) with (2.2) for F = Ty, we obtain the exact sheaf
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sequence on 03C4(f)

whose cohomology sequence reads, in view of Lemma 2.1,

Denote by BXBf the category of deformations of f with fixed source X. Note
that in this case BXBf ~ A, i.e. there are no nontrivial deformations of f fixing
X, so that the natural map Bf ~ BX is in fact an embedding, hence

Def(f)  Def(X). As before, the pair of groups (0, H0(R1 f*OX Q TY)) extends
to a ô-pair on BXBf and Bf, and we have the following

PROPOSITION 4.1. BXBf~ Bf ~ BX forms an exact triple.

We proceed again to define a map

Define a sheaf Ci on 03C4(f) by the exact sequence

Note the commutative diagram

where the left vertical arrow is contraction and the right vertical arrow is

deduced in an obvious way from the pairing (03A9Y)+ Q (f*TY)+ ~ (OX)+ and the
map (03A9j-1Y)+ ~ (03A9j-1X)+.
The right vertical arrow of (4.1) then yields a pairing on cohomology

whence a map
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and we may assemble these into

As before, we have an exact sequence

where H·,·(f) is the pullback map, showing in particular that K yields a
left-exact module on Bf. And as before (3.3), 03BCij is compatible with the natural
composite map

and we may consider the subgroup T1,0X c T’ leaving invariant Et) im(Hj,i(f)),
and the associated subcategory B0X ce BX and subscheme Def(X)O c Def(X),
which evidently contains Def(f). In analogy with Corollary 3.2, we have

COROLLARY 4.2. With the above notation, Theorem 1.1(ii), is applicable to
the exact triple BXBf ~ Bf ~ BX, the subcategory B0X c 31 x and the map
03A3: H0(R1f*OX Q Ty) - K. In particular, as subscheme of Def(X)0, Def(f) is

defined by at most hO(R 1f*(!J x Q Ty) - rk03A3 equations and if Y- is injective then

Def(f) = Def(X)0.

REMARK 4.3. It is not hard to check that the target of 6m,m is just
Hm-1,m+ 1(X) and that the composite map

represents the obstruction to the cohomology class [F] of a fibre of f
remaining of type (m, m) under deformation of X; in particular, whenever 6m,m
is itself injective, the "Noether-Lefschetz" type sublocus Def(X)00 c Def(X)
where [F] has type (m, m) already coincides with Def(f).

5. Moving curves

We now consider applications of the preceding results, in particular Corollary
3.2, to the problem of moving curves on complex manifolds. Let f : Y ~ X be
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a nonconstant map from a connected projective nonsingular curve of genus g
to a complex n-manifold (we call this a curve of genus g on X) and let H be
any component of Def(f/X) through {f}. Then Corollary 3.2 coupled with
Riemann-Roch yields the basic estimate

where Y.KX:= deg(f *Kx) and Pi = rk(03C00i). Note that in the present circum-
stances H’(N) is dual to H°(N* 0 Qy) and the maps n01’ 03C002 are respectively
dual to the natural maps

the last map coming from the exact sequence

We seek some conditions which imply that 03C11 or P2 is positive. To this end,
note the following elementary observations:

(i) if ri ~ker(H1,0(f)) is nonzero at some point of f(Y), and 0 ~03B6 ~ H0(03A9Y),
then t03C001(~ (8) () * 0;

(ii) if coc-H l(Ç12 x) is nondegenerate at some point of f(Y), then t03C002(03C9) ~ 0,
hence 03C12 &#x3E; 0;

(iii) if 03A92X is spanned at some point of f(Y), then H0(03A92X) generically spans
N* (D Qy, hence 03C12  n - 1;

(iv) in general, 03C12  rk(f*) - h°(A2N*); moreover if n = 3 then A2N* is a
line bundle on Y of degree at most v = Y. KX - (2g - 2), so its h° may
be estimated.

For example, combining (ii) with (5.1) yields the following result, which
was already noted in [R3] in the case of smooth curves.

COROLLARY 5.1. Let X be a symplectic n-fold. Then any rational (resp.
elliptic) curve in X moves in a family of dimension at least n - 2 (resp. 1).

EXAMPLE 5.2. A rational curve on a symplectic 4-fold X must fill up
either a divisor or a rational surface. Consideration of the case

X = Jeilb2(S), S a K3 surface, shows that both possibilities can occur:
indeed take Y of the form s + Z where Z c S is a rational curve and s e S;
if s ~ Z then Y fills up S + Z, while if SE Z then Y fills up H ilb2(Z) ~ P2.
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As another application, we consider the structure of manifolds carrying
many 2-forms. To put matters in perspective, we recall first the well-known
case of 1-forms: if X is a Kähler manifold such that n’ x is spanned, then
the Albanese mapping

is an immersion, and it is well-known ([U], Thm. 10.9, p. 120) that either
X is fibred by tori, or else it is of general type, in which case it is known
that the canonical bundle Kx is ample [R4].

THEOREM 5.3. Let X be a Kähler manifold of dimension n  3 such that
Qi is spanned outside a finite set. Then either X is fibred by tori or its

canonical bundle K is ample.

Proof Note first that (n - 1)K = det(03A92X) has finite base locus and it

follows by some classical work of Zariski [Z] (kindly pointed out to me by
M. Reid) that mK is free for large m, so that we have a stable pluricanonical
morphism

We begin with the case n = 3. Suppose first that X has Kodaira

dimension x = 0. As 2K is effective, 2K must be trivial, so that we can write

where L is a fixed-point-free involution and K = O. As

T = 03A92 ~ Ki 1 = 03A92 is spanned outside a finite set, it follows from Claim
5.3.0 below that X must be a torus; moreover as H0(03A92X) = H0(03A92)03C4 is (at
least) 3-dimensional, L must be a pure translation, so that X itself is a
complex torus.

CLAIM 5.3.0. Let X be a non-uniruled compact Kahler manifold with
generically spanned tangent bundle. Then X is a complex torus.

Proof. Let Aut°(X) dénote the identity component of the holomorphic
automorphism group of X and Alb(X) its Albanese torus. There is a

natural map

By results of Fukiji [F] and Lichnérowicz [L], keroc is a reductive linear
algebraic group. As X is not unifuled, ker a must be trivial, i.e. a is injective.
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As Lie(Aut°(X)) = H°(Tx) generically spans Tx, it follows that there is a
subgroup of the translation group on Alb(X) acting on X with Zariski
open orbit, hence X itself is a torus (and so X = Alb(X)).
Suppose next that x = 1, and let S be a generic fibre of (p. Then K(S) = 0

by litaka’s fibration theorem ([U] Thm. 5.10, p. 58) and moreover the
2-forms on X yield a nonzero 2-form on S, so that S must be an abelian or
K3 surface. In the former case there is nothing to prove; in the latter case
S must contain a rational curve Y, and by (5.1) and observation (iii) above
Y must move on X in a 2-parameter family, which is obviously impossible.

If x = 2 then 9 is an elliptic fibration, so again there is nothing to prove.
It remains to prove that if x = 3 then K is ample. If not then, as mK is free,
there is a curve Y - X with Y. K = 0. As above, Y must move in a
2-dimensional family and fill up a surface E such that g(E) is a point, and
in particular K (D OE is torsion. Let

g :  ~ E

be the normalization, and É° c E the smooth part. Then we have an
inclusion

But as OE(E) must be negative, we have

hence by normality

so that H0(03C90) = H0(03A920) = 0, contradicting the existence of many 2-forms
on X and completing the proof in case n = 3.

Suppose now n  4. If 0  x(X)  n, we may apply induction to a

generic fibre of the stable pluricanonical morphism of X. Suppose
03BA(X) = 0. As above, we may assume K is trivial, and consider a de Rham
decomposition of X. As 03A92X is generically spanned, clearly X cannot have
an irreducible symplectic factor of dimension 4 nor an SU(n a 3)
factor, and we may argue as above to see X has no K3 factor either. Thus
X is a torus and we are done. Hence we may assume X is of general type,
and it will suffice to derive a contradiction from the existence of a curve

f : Y - X with K . Y = 0 (actually, the argument we give for this works for
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n = 3 as well, but is less elementary than the above). Put E = f*Tx,
F = A2E* = f*03A92X. We claim first that F is trivial. This follows from

LEMMA 5.4. Let F be a generically spanned vector bundle of degree 0 on
a curve. Then F is trivial.

Proof. By hypothesis, every quotient bundle of F must have nonnegative
degree, and this implies that F cannot have a nonzero section vanishing
somewhere, so that h°(F) = rk(F) and we have an exact sequence

Comparing degrees, we see that (torsion) = 0. D

1 claim next that our bundle E must be semi-stable: indeed if Eo c E
were a (locally split) subbundle of positive degree, then either Eo or E/Eo
must have rank 2, hence either deg(A2Eo) &#x3E; 0 or deg(A2(E/Eo))  0.
Since these are respectively a subbundle and a quotient bundle of the trivial
bundle A2E, we have a contradiction.

Using the theorem of Narasimhan and Seshadri [NS], our semi-stable
bundle E is S-equivalent to a bundle which arises from a unitary represen-
tation

By assumption, the composite homomorphism

is trivial, and as ker(039B2) = {± 1} it follows that im(03C1) ~ { ± 11. By composing
f with a 2 : 1 covering of Y, we may assume p is trivial. This means that E
possesses a filtration

LEMMA 5.5. Let E be a vector bundle on a curve such that A2E is trivial and

E/E’ is trivial for some proper subbundle E’ c E. Then E is trivial.

Proof. We may assume rkE’ = rkE - 1. Note that E’ = E’ Q (EIE’) is a quo-
tient of A2E, hence E’ is trivial by Lemma 5.4. Now take an arbitrary rank-1
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trivial subbundle M g E’. Then from the exact sequence

and Lemma 5.4 again, it follows that A2(E/M) is trivial, hence so is M Q (E/
M) = E/M hence E/M ~ E/E’ splits. This implies that the extension element
[E] E H1«E/E’)* (D E’) = H1(E’) goes to zero in H1((E/E’)* Q (E’/
M)) = H1(E’/M). M being arbitrary it follows that [E] = 0 so E is trivial. D

Now a section of the trivial bundle E = f*TX yields a first order deformation
f of f, and by a similar argument as above we see that *TX is trivial as well
etc. (use the fact that a deformation of a trivial bundle E inducing a trivial
deformation on A2E and det(E) is trivial). Therefore by applying Theorem
1.1(i) to Def(f/X) we see that f has unobstructed deformations whose images
fill up X, which is a contradiction. Il
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