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Abstract. In this paper we show, over Q, with classical conjectures like Birch and Swinnerton-Dyer,
the equivalence for modular elliptic curves between the following two conjectures:

relating the order 1 ID of the Tate-Shafarevich group, the conductor N and the discriminant D of an
elliptic curve.
We also show for function fields that (1) stands because (2) has been proved earlier by one of us.

1. Introduction

In this paper we study bounds for the order of the Tate-Shafarevich group III for
elliptic curves over a global field k. In the tradition of A. Weil’s, Basic number
theory [23], we treat both the case where k is a number field, of finite dimension
over Q, and the case where is a function field of one variable over a finite field.
The primary objective is to relate bounds for III and bounds for the discriminant
of the elliptic curve (in both cases in terms of the conductor). Our principal results
are given in Theorems 1, 2, 3, and 15.

Let E be an elliptic curve over a fixed number field k of discriminant D and
conductor N -; oo. Let III denote the Tate-Shafarevich group of E. We conjecture
that a bound for the cardinality of III of type

|III| = O(N1/2+~) (1.1)
* 
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(for some fixed E &#x3E; 0) is equivalent to a bound for the discriminant of type

for some other fixede’ &#x3E; 0. In (1.1) and (1.2), the constant in the big O-symbol
depends at most on k, E, ande’, while in (1.1) it also depends on the Mordell-Weil
rank of E over k. The latter bound was conjectured by the second author [17]
and is known to imply the ABC-conjecture. The conjectured equivalence of the
two bounds points out the inherent difficulty in proving the ABC-conjecture by
this approach since III has only very recently been proved finite by Rubin [14]
for certain CM-curves over Q, and more generally by Kolyvagin for certain mod-
ular elliptic curves defined over Q (see [8, 6]). It has recently been announced
by Andrew Wiles that all semi-stable elliptic curves defined over Q are modu-
lar [24, 20].

In this paper we show that

for modular elliptic curves (of fixed rank defined over Q) satisfying the Birch-
Swinnerton-Dyer conjecture. We also show that

for modular elliptic curves defined over Q. The Birch-Swinnerton-Dyer conjec-
ture is not needed in this direction since we may pass to the case of rank zero

(where the Birch-Swinnerton-Dyer conjectured is proved by Kolyvagin (see [6]))
by quadratic base change.
Now (1.2) is known for function fields over finite fields (see [17]), while the

finiteness of III is still open in the case of function fields. We, therefore, thought
it worthwhile to see if our methods applied to this case. We prove that (1.1) holds
for elliptic curves E defined over function fields provided the Tate-Shafarevich
group for the function field is finite. It is known [12] that the finiteness of III
in the case of function fields is equivalent to the fact that the ~-primary part of
III (all elements of III annihilated by any power of ~) is finite for any prime ~.
This is in fact equivalent to Tate’s conjecture for H2etale (X;Z~). When combined
with our results this implies that III is finite if and only if

(where Illi denotes the £-torsion in III) for any prime £ greater than the upper
bound for III obtained in Section 4. This provides an effective algorithm for
determining if III is finite in the case of function fields. As is well known, such
an algorithm is not presently available for elliptic curves over number fields. It
is interesting to remark, however, that even in the case of an elliptic curve over
Q of conductor N - oo, if
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for some prime Ê » N1/2+~ then either (1.1) is false or the Birch-Swinnerton-
Dyer conjecture is false or the Shimura-Taniyama-Weil conjecture is false (high-
ly unlikely [24]). This is a consequence of the results of Section 4.

2. Dictionary

Consider an elliptic curve E: y2 = 4x3 - ax - b given in Weierstrass normal
form. Assume E is defined over a global field K which is either an algebraic
number field or a function field of one variable defined over a finite field of

q = pm elements for some prime number p. Set f(x,y) = y2 - 4x3 - ax - b,
with a, b E OK where OK denotes the ring of integers of K. Then OK[x,y]/f
has Krull dimension two, so that E may be viewed as a surface over Spec(OK).
The following dictionary defines the invariants of E in the case of a number
field or function field. For clarity, the definitions may only be approximately
correct in some cases. For example, when needed, we assume E has semi-stable
reduction.

We explain certain cohomological notation attached to projective morphisms
of algebraic varieties at the beginning of Section 4.

3. Modular Elliptic Curves over Q

We now consider a modular elliptic curve E defined over Q of conductor N.
Let LE(s) denote the L-function of E which satisfies the functional equation
see [1]
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If LE(s) has a zero of order r  0 at s = 1, then the Birch-Swinnerton-Dyer
conjecture predicts that for s near 1

where r is the rank of the Mordell-Weil group of E/Q, QE is either the real peri-
od or twice the real period of E (depending on whether or not E(R) is connected),
|IIIE| is the order of the Tate-Shafarevich group of E/Q, vol(E(Q)) is the vol-
ume of the Mordell-Weil group for the Néron-Tate bilinear pairing, |E(Q)tors|
is the order of the torsion subgroup of E/Q, and cE = 03A0p cp where Cp = 1

unless E has bad reduction at E in which case Cp is the order E(Qp)/Eo(Qp).
Here E0(Qp) is the set of points reducing to non-singular points of E(Z/pZ)
(see [15]).

THEOREM 1. Let E be a modular elliptic curve over Q which satisfies the
Birch-Swinnerton-Dyer conjecture (3.1). Then the bound (1.2) implies (1.1) with
e = c’~’+c" for certain ficed constants c’, c"  0. If we assume Lang’s conjecture
[10] then we we may take c" = 0.

Proof. The function

is holomorphic and satisfies a functional equation for the transformation s ~
1 - s induced from the functional equation (3.1). It is absolutely bounded when
Re(s) &#x3E; 3/2 + e and bounded by N1/2+~ when Re(s) = 1/2, by the functional
equation. The usual convexity argument as in the Phragmén-Lindelôf theorem
(see [21]) implies that

LrE(1) = O(Nc1+~),
with ci = 1/4 and E &#x3E; 0 is fixed. The assumption of the Riemann hypothesis for
LE(s), however, would yield the much better constant ci = 0. It follows from

(3.2) that

Now cE  1 and |E(Q)tor|-2  1/256, by Mazur’s result [11]. Assuming (1.2),
we also have a lower bound for the volume (see [7])

for some constant c2 &#x3E; 0. If (P, Q) denotes the bilinear symmetric form associ-
ated with the Néron-Tate height, then the volume of E(Q) may be expressed as
a determinant of the height pairing
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where {P1,...,Pr} is any basis of E(Q)/E(Q)tor. The lower bound (3.4) is
a consequence of the lower bound for |det(Pi, Pj)| which was conjectured by
Lang [10] and proved by Hindry and Silverman [7] under the assumption of (1.2).
The full strength of Lang’s conjectures [10] imply that c2 = c-

Furthermore, the assumption of (1.2) implies (see [5]) that

for some other constant c3 &#x3E; 0. We expect c3 &#x3E; 1/2. Putting these bounds into
(3.3) yields

which proves the theorem. This type of argument can be found in Lang [10] who
was the first to conjecture upper bounds for

in analogy with the bounds given in the Brauer-Siegel theorem for the class
number times the regulator of a number field.

We now go in the other direction and show that (1.1) implies (1.2) for modular
elliptic curves over Q.

THEOREM 2. Assume the bound (1.1) holds for modular elliptic curves defined
over U with E &#x3E; 0. Then (1.2) also holds with 6’ = 12(e + 1) . Moreover, if we
assume the Riemann hypothesis for Rankin-Selberg zeta functions associated to
modular forms of weight 3/2 then we may takee’= 13E.

Proof. Let E be a modular elliptic curve defined over Q of conductor N and
discriminant D. Let Ç21, n2 denote the periods of E. We may assume (without
loss of generality) that S21 is real and Q2 is pure imaginary. If

is the Ramanujan cusp form of weight 12 for the full modular group which
satisfies the transformation formula

then we have

where {j, k} = {1,2} or t2, 11 and C &#x3E; 0 is a constant.
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Clearly, we can choose (j,k) appropriately so that |03A9j 03A9k | &#x3E; 1. In this case

0394 ((-1)j03A9k 03A9j) is absolutely bounded from above by a fixed constant c4 &#x3E; 0 and

it immediately follows that

To prove the theorem it is enough to show that the bound (1.1)

(which is assumed to hold for all modular elliptic curves defined over Q) implies
that

To demonstrate this last assertion, we consider quadratic twists (mod q) of our
elliptic curve E. If E is defined by a Weierstrass equation

then the twisted elliptic curve Ex is defined to be

which is also an elliptic curve defined over Q. Let LE(s, X) be the L-function
associated to Ex. Then the nth coefficient of LE(s, X) is just the nth coefficient of
LE(s) multiplied by x(n). We would like to choose quadratic Dirichlet characters
x where Ex has Mordell-Weil rank 0 and X satisfies X ( -1) = (-1)j. In this
case

where III~ is the Shafarevich-Tate group of Ex and c. « v’Q depends at most
on q.

Applying the Rankin-Selberg method as in [9, 5] one obtains

for some constant C5 &#x3E; 0. It follows that for some twist X with q  N2, we must
have LE(1, X) » 1. The nonvanishing of the L-function at s = 1 implies that
the Mordell-Weil rank of E~ must be zero. Therefore, the assumption (1.1) for
all elliptic curves defined over Q implies that
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which implies that 03A9E &#x3E;&#x3E; c~N- 1/2-’. This establishes the first part of the theo-
rem. If one assumes the Riemann hypothesis for the Rankin-Selberg zeta function
associated to the weight 3/2 modular form associated to E by the Shintani-
Shimura lift, then the asymptotics will hold in a much shorter range

In this case, there will exist a character X of conductor q  NE where LE(1, X)
» 1. Inequality (3.5) again holds, but this time c.  NE. The theorem follows.

4. The Function Field Case

The vocabulary and notation of Grothendieck’s algebraic geometry is used when
needed in the treatment of the function field case. We thought that it would
be worthwhile for the reader (more oriented towards number theory) to recall
some basic notation. If f : X - Y is a morphism of schemes (or algebraic
varieties) and F is a sheaf on X, one can consider, for every U open in Y,
the groups HD (f - (U), F). The sheaf associated to this presheaf is denoted
f*F (direct image). In the same mode, the sheaf associated to the presheaf
U - Hi(f-1(U), F) is denoted Rif*(F). Here Rif* is the ith derived functor
of f*.

For example, if f is a proper map and F is a coherent sheaf on X, it is

a classical theorem that the Rif*F are coherent. Moreover, if f : X ~ C is
a projective morphism from a smooth surface X to a smooth complete curve
C (over a field k) and if f is flat and the generic fiber of f is geometrically
connected then f*OX and R1f*OX commute with base change. In particular,

for every point P in C with residual field k(P) (This number is independent of
P and is equal to the genus of the generic fiber).

In this section, X will denote a smooth geometrically connected projective
surface over a finite field 1Fq with q = pn elements (p a prime). We suppose,
moreover, that X is an elliptic pencil, i.e., that there exists a projective, smooth,
geometrically connected curve C over Fq with a projective morphism f : X ~
C whose generic fiber is a smooth elliptic curve. By the results of Weil and
Deligne [3] one knows that the zeta function of X has the form:

where Pi (X, t) is a polynomial with integer coefficients whose reciprocal roots
have absolute value qi/2.
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Let K denote the function field of C. By [19], Theorem 3.1, the Brauer
group of X is equal to the Tate-Shafarevich group III(XK) and the Artin-Tate
analogue of the Birch-Swinnerton-Dyer conjecture for function fields takes the
form:

for s - 1 where r(X) = r is the rank of the Néron-Severi group of X and
(1) The volume of NS(X) is computed by the intersection matrix, i.e., if

D1,..., D03C1 denotes a basis of NS(X)/torsion then

(2) a(X) = X (X, Ox) - 1 + the dimension of the Picard variety of X.
Many cases of this conjecture have been proved (see Milne [12]). An impor-

tant line bundle associated to f : X ~ C is

where e is the zero section. One knows that f*03C9 = 03C9X/G, the relative dualizing
sheaf of X over C, and that the discriminant divis or (A) corresponds to a section
of 03C9~12. We have

where S is the set of points of C with singular fiber, and nP is an integer. In
the case that f: X ~ C is semi-stable (i.e. with multiplicative reduction only)
then np is the number of components of the fiber of P. The following theorem
is proved in [16] or [17].

THEOREM 3. Let f: X ~ C be a nonconstant family of elliptic curves (i.e.
j-map is nonconstant) of conductor of degree m. With the notation introduced
above, we have

where pe is the inseparability degree of the j-map: C ~ P1 associated to f.

In characteristic zero, the j map is always separable, so its derivative (the
Kodaira-Spencer map of f) is also non-zero. In characteristic p &#x3E; 0 (which
is our current situation), the nonvanishing of the Kodaira-Spencer map is after
seperable base change equivalent to saying that f: X - C is not a pull back
by the Frobenius morphism of C.

The theorem is detailed in [17] only for a semi-stable family. The fact that it
is valid even in the non semi-stable case is in [13]. It follows from staring at the
table of différent bad reductions in Tate [18] and doing easy computations. This
works perfectly in char ~ 2 or 3. For char 2 and char 3, a bigger effort is made
in [13].
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LEMMA 4. Let X be as above. If the family is not constant then the dimension
of Pic(X) is g.

Proof. Since Pic(X) contains Pic(C) its dimension must be at least g. On
the other hand, the tangent space to Pic(X) is Hl (X, Ox) so the dimension of
Pic(X) is less than dim(H1(f*O*)) + dim(HO(RI f*(Jx )). But f*(Jx = Oc,
so we will have proven the lemma if we know that H0(R1f*OX) = 0. By
duality, we have RI f*()x = 03C9~-1. Since 03C9~12 has a section it follows that

H0(C, 03C9~-1) = 0 except when ca = Oc This last case does not occur if the
family is not constant as there is no nonconstant family with good reduction
everywhere over a complete curve.

LEMMA 5. With X as above we have X(X,(Jx) = deg(w).
Proof. We have

COROLLARY 6. If f : X - C is a nonconstant fibration then we have a (X)
deg(03C9) - 1 + 9  (pe + 1)(g - 1) + m 2pe.
We now want to find a lower bound for det(Di - Dj) for a basis of the Néron-
Severi group. For this we need to prove in any characteristic the following
statement which was proved by Hindry and Silverman [7] only for function
fields in characteristic zero.

THEOREM 7. Let XK be an elliptic curve over a function field of one variable
over a field in any characteristic. Let h denote the Néron-Tate height on XK.
Then for every point P E XK(K) which is not a torsion point:

and

In fact, the beautiful proof of Hindry-Silverman carries through in characteristic
p &#x3E; 0 once one has a good expression in local terms for the Néron-Tate height.
We give such a formula in Proposition 11 below. To compute the volume of
NS(X) we must decompose it into an orthogonal sum:

where V = vertical divisors. (One should remember that if D is a divisor such
that DK is of degree m &#x3E; 0, then DK - (m - 1)0 must be linearly equivalent
to a point P by the Riemann-Roch theorem.)
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The intersection matrix on XK(K) is by our choice ((Xi’ Xj)) where (xi) is
a base of XK(K)/torsion, and (,) is the Néron-Tate pairing.

On Z · Eo + V one may analyze the intersection matrix as follows: For every
v E S, the components of f-1(v) not meeting Eo are nv - 1 in number, where
nv = valuation of A at v (X is semi-stable). It follows that if F is one full fiber,
its intersection matrix can be computed as

where Av is the intersection matrix of the set of components of f-1(v) not
meeting 0. In geometric notation, one has

An easy computation gives det(Av) = (-1)nn.

DEFINITION. Let f: X -i C be a projective morphism from a regular surface
X to a regular curve C with generic fiber a smooth connected curve. A divisor
D on X is said to be of degree absolutely zero if for every divisor V contained
in the fibers of C one has (V - D) = 0.

Recall the following classical lemma.

LEMMA 8. If V is a divisor contained in the fibers of f then (V - V)  0, and
if (V. V) = 0, then V is a sum of full fibers.

COROLLARY 9. If D1 and D2 are divisors on X of degree absolutely zero, and
if Dl and D2 coincide at the generic fiber of f then Dl = D2 + V where V is
a sum of full fibers.

Proof. The divisor D1 - D2 is contained in fibers because it is zero on the
generic fiber. It is of degree absolutely zero so ((D1 - D2) . (D1 - D2)) = 0
which proves the corollary by the previous lemma.

Suppose that X L C is an elliptic fibration, i.e. the generic fiber XK is a smooth
connected elliptic curve with origin denoted O. (Recall that K is the function
field of C.) We let Ep denote the section of F corresponding to a rational point
P E X(K). (Ep is a divisor on X, the restriction of F to EP ~ C is an
isomorphism, and generically EP is P.)
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DEFINITION. Let X ~ C be an elliptic fibration and let P be a rational point
of the generic fiber XK. We let cP p denote a Q-divisor with support in the fibers
of f such that (Ep - Eo + ~P) is of degree absolutely zero.

LEMMA 10. For every rational point P of XK a Q-divisor ~P exists. It is

unique up to the addition of full fibers (So _ 02 is well defined). Moreover, if K’
is a finite extension of K and P’ is a rational point of XK(K’) then there exists
a constant A, independent of P’, K’ (depending only on f : X ~ C), such that

We will establish this lemma for every point v of C with a nonsmooth fiber, and
find a Op , v with support in the fiber f-1(-v). Then cp p is equal to 03A3~P,v; this
sum is finite and cp2p = 03A3~2P v because (~P,v·~P,v’) = 0 if v ~ v’.

Let Fi be the irreducible components of f -1 (v). (f-1(v) = 03A3miFi, with
mi E N). We solve the equations

for all j. Suppose Ep . Fil 1 = 1 (hence mi1 = 1) and Ep . Fj = 0 for all j ~ i1.
Also, define io to be the index such that EO·Fi0 = 1. The equations look like:

So one sees that -.02 depends only on the coefficients of the intersection matrix
of the components of the fibers. Then an easy computation in the semi-stable
case (which is sufficient) concludes the proof of the lemma.

PROPOSITION 11. Let f : X ~ C be an elliptic fibration over a smooth con-
nected projective curve over a field k of any characteristic. The Néron-Tate
height h(P) of a point P E XK(K’) (where K’ is a finite extension of K, the
function field of C) is given by the expression

Proof. To prove this proposition (due to Manin), we will use the axiomatic
characterization of h(P) given by Tate:

(1) h(nP) = n2h(p)
(2) 1 h (P) - h(P)1 is bounded on K.
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Here K is the algebraic closure of K.
We first prove (2). Note that h(P) is the naive height of P associated to the

theta divisor Eo. (One has, [K’ : K]h(P) = (Eo . EP).)
Define p(P) by:

One has

because by adjunction

So we get (2) because
a) deg(f*03C9X’/C’)  [K’ : K]deg(wx/c) because 12 deg(!*úJx’/c’) is the

minimal discriminant which is smaller than the discriminant of the base

change 12[K’ : K]deg(f*03C9X/C)
b) -~2P  A [K’ : K] (by Lemma 10).

To obtain (1) note that at the generic fiber one has

where nD is the divisor D multiplied by n and [nP] is the point n times P in the
group XK (K). Thus E[nP]- Eo + 0 [np] and n (Ep - Eo + Op) are two divisors
of degree absolutely zero that are the same on the generic fiber. Corollary 12
now follows from Corollary 9. Theorem 7 then follows from the original proof
in [7].

COROLLARY 12. We have

if deg(A)  24(g - 1).
Proof. Note that each nv  2 for v E S. Hence 2m is a lower bound for

03A0nv. Also, 2m is a lower bound for deg(0394). One recognizes
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as the volume of the unit ball B in Z. Minkowski’s famous theorem on points
of a lattice XK(K) in a bounded symmetric convex domain B gives

For 03BBr vol(B) = 2r vol(XK(K))
there is a non-zero point in B n XK (K).

Formula (4.1) contains a torsion term. We require an upper bound for this
torsion term. It is given in the following theorem. (Note that for constant elliptic
curves the torsion is bounded by 1 + 2ql/2 + q as one easily checks that torsion
sections are constant.)

THEOREM 13. Let X f C be a nonconstant pencil of elliptic curves over a
curve C of genus g defined over a finite field k (with q elements) of characteristic
p &#x3E; 0. Then if K is the function field of C and pe is the inseparability degree
of the j map C ~ !pl associated to f, one has

where s is the degree of the conductor of X L C.
Proof. Note that if f is not semi-stable, the order of a torsion point divides

4(q - 1) (see [18]), so we are reduced to the semi-stable case. To prove this
theorem we use a local argument of G. Frey as reported in [4]. This says that in
the semi-stable local case, the valuation of the discriminant of the elliptic curve
divided by the subgroup generated by a torsion point P of order a prime number
p is the discriminant of the original elliptic curve multiplied or divided by p.
Then one applies Theorem 3 to the two elliptic curves to get the result. The only
trouble is that the inseperability degree of the j-map may change. We now show
that this cannot happen.

(a) First suppose that the inseparability degree of the j-map is zero, i.e. the
Kodaira-Spencer class is not zero. If we let S denote the set of points of C where
the fiber of f : X ~ C is not smooth, one has the commutative diagram:

where by abuse of notation f-1(C - S)) is again denoted S. On the level of
tangent spaces one has a commutative diagram of exact sequences:
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The vertical maps are not zero because the morphism 7r is separable (even when
the order of P is divisible by the characteristic, the morphism 7r has general fiber
finite of cardinal the order of P!) The Kodaira-Spencer map of f is:

The first horizontal arrow is the Kodaira-Spencer map of f, so it is non-zero by
hypothesis. Because TC-S is a line bundle, the map must be injective.

On the open set C - S’, S ~ S’ (of C) where the map 1r is etale, the vertical
map X is an isomorphism, so the map

is not zero. (Note that S’ is closed and not equal to C because S’ - S is the
locus where ker(X’ - X) ~ C - S is etale.)
Now we can deduce what we want:

. is not zero because its composition with the natural map

is not zero.

(b) If the Kodaira-Spencer map associated to f : X ~ C is zero, and the
family is not constant, there exists a finite separable morphism

7r: C1 ~ C

from a smooth curve CI such that XI (the regular minimal model of X x C1)
c

is a pull back by FeC1 where Fc, is the Frobenius morphism of CI. Here 03C0 is
the map that makes points of order 5 rational. (If char = 5, 7r is the map which
makes points of order 7 rational.) It follows that we will be reduced to (a) if we
can prove the following lemma.

LEMMA 14. Let X be a nonconstant elliptic curve over a function field of one
variable K over a finite field k, and let P be a torsion point in X(K) of prime
order f. Then the inseparability degree of the j-map associated to X/~P~ is:

(i) equal to the inseparability of the j-map associated to X if Ê ~ p;
(ii) equal to IIp times the inseparability of the j-map associated to X.
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Proof. Part (i) follows from the fact that the injection

prime to p-torsion in X(K) -t prime to p-torsion in X(K1/p)
is a bijection (making a point of (~ ~ p)-torsion rational requires a seperable field
extension). For part (ii), we first note that since X and X/(P) are nonconstant,
they must be ordinary. The map X - X/ (P) factors through the multiplication
by p-map in X, so one gets a dual map

Because X/(P) is ordinary, a is purely inseparable of degree p. The relative
Frobenius

is also purely inseparable of degree p and its kemel is a simple p-group. Hence,
the intersection with ker(a) is zero or all ker(a). But, if it was zero, X/(P)
would be supersingular for the kemel of multiplication by p in X/~P~ would
be filled up by ker(a) and ker(F). Hence, X is the pull-back of X/~P~ by the
Frobenius of K. This proves (ii).

Remark. The argument of (ii) proves that the order of the p-torsion in X is
bounded by pe, the inseparability degree of the j-map. This result is contained
in the article [22] of F. Voloch.

THEOREM 15. Let f : X ~ C denote a pencil of elliptic curves over a complete
nonsingular curve of genus g defined over a finite field with q elements. Let m
denote the degree of the conductor of X over C. Suppose that Br(X) is finite.
Then one has the following bound for the Tate-Shafarevich group:

where C(g, r) depends only on g and the rank r of X(K).
Proof. We have already bounded all the necessary terms on the right-hand

side of (4.1). It only remains to bound P2 (X, q-S) as s ~ 1.
First, we bound h2 = dimQ~ (H2(X, Q~)). Since the Euler-Poincaré charac-

teristic c2 is equal to deg(A), i.e., 12deg(03C9), it is enough to bound

By Lemma 4, Pic(X) = Pic(C), so that

i.e., hl = 2g. Using Theorem 3 we get
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By (4.1), and what we have done so far, it only remains to prove that

This bound follows from Deligne [3], Tate’s conjecture (the number of roots of
P2 equal to q is exactly r) and the observations:

where |03B1i| = q, so that

Remark. The rank r is bounded also in terms of the genus of C and the
conductor (see [2]).
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