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Abstract. Let A be the Néron model of an abelian variety over the field of fractions of a discrete
valuation ring D with residue characteristic p &#x3E; 0. Let 03A6(p) denote the prime-to-p part of the group
of connected components of the geometric special fibre of A. Lorenzini has constructed a four step
functorial filtration on 03A6(p) and proved certain upper bounds for its successive quotients. We improve
these bounds, and show that they are sharp. As an application, we give a complete classification of the
possible 03A6(p) for abelian vaieties whose reduction has toric part, abelian variety part and unipotent
part of fixed dimensions.

1. Introduction

The aim of this article was originally to improve certain results of Dino Lorenzini
conceming the groups of connected components of special fibres of Néron models
of abelian varieties. Let D be a strictly henselian discrete valuation ring, K its
field of fractions, k its residue field and Ax an abelian variety over K with Néron
model A over D. Let p  0 be the characteristic of k and let 03A6(p) denote the
prime-to-p part of the group of connected components of Ak. In [7] Lorenzini
constructs a functorial four step filtration on 03A6(p) and shows that this filtration
has certain properties. In particular, he gives upper bounds for the successive
quotients. These bounds are of the following type. For a prime 1 and a finite abelian
group G of 1-power order, say G EÉ ~i1Z/laiZ with a1  a2  ···, he defines
6’(G) 1 := lal - 1 + (l - 1) 03A3i2 ai. Then he gives bounds for the 03B4’l of certain
successive quotients in terms of the dimensions of the toric and abelian variety
parts of the special fibres of Néron models of AK over various extensions of D.
In [7, Remark 2.16] he remarks that the bounds might possibly be improved by
replacing 8f by an other invariant 61 defined as follows: for G as above one has
03B4l(G) = 03A3i1(lai - 1). This improvement is exactly what we do in this article.
The results can be found in Section 3. Needless to say, we follow very much the

approach of [7] in order to prove these sharper bounds. In fact, only Lemma 2.13
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of [7] has to be changed, so the proof we give is rather short. We have taken this
opportunity to weaken slightly the hypotheses of Lorenzini’s results (he supposes
D to be complete and to be algebraically closed).

In Section 2 we recall Lorenzini’s filtration. In Section 3 we state and prove the

bounds on the 03B4l of the l -parts of certain successive quotients and in Section 5 we
show by some examples that the bounds of Section 3 are sharp; Section 4 is used to
show some results on finite abelian groups that are needed in the other sections.

After all this work it turned out that a complete classification of the possible
03A6(p) for abelian varieties whose reduction has toric part, abelian variety part and
unipotent part of fixed dimensions was in reach. The result, which is surprisingly
simple to state, can be found in Theorem 6.1.

In this article we will frequently speak of the abelian variety part, the toric part
and the unipotent part of the fibre over k of a Néron model over D. Since we are
only interested in the characteristic polynomials of certain endomorphisms on the
toric and abelian variety part, it suffices to define these parts after base change to
an algebraic closure of k, and up to isogeny. Over the algebraic closure of k we can
apply Chevalley’s theorem; in [1, Theorems 9.2.1 and 9.2.2] one finds statements
of the required results.

I would like to thank Xavier Xarles for indicating a mistake in an earlier version
of this article, and Rutger Noot for his help conceming the proofs of Lemmas 4.11
and 4.12.

2. Lorenzini’s Filtration

Let D be a discrete valuation ring, let K be its field of fractions and k its residue
field. Let Ax be an abelian variety over K, A its Néron model over D and
03A6: = Ak / AZ the finite étale group scheme over k of connected components of the
special fibre Ak. Let p  0 be the characteristic of k and let 03A6(p) be the prime-to-p
part of 03A6; if p = 0 we define 03A6(p) to be equal to 03A6. In this section we will briefly
recall the construction in [7] of a descending filtration

which is functorial in AK and invariant under base change by automorphisms of
D. Since 03A6(p) is the direct sum of its l-parts 03A6l, with 1 ranging through the primes
different from p, it suffices to describe the filtration on each 03A6l. We replace D by
its strict henselization and view the group scheme (b over the separably closed field
k as just a group.

Let 1 ~ p be a prime number. Let K ~ KS be a separable closure, let Dl be
the integral closure of D in KI and let be the residue field of DS; note that k is
an algebraic closure of k and that k - k is purely inseparable. The first step in the
construction of the filtration is the description of 03A6l in terms of the Tate module
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Uj := Tl(A(KS)) with its action by I := Gal(KS/K) given in Proposition 11.2 of
[5]:

The long exact cohomology sequence of the short exact sequence

of continuous I-modules gives a canonical isomorphism (see [5, (11.3.8)])

where for M any abelian group, tors(M) denotes the subgroup of torsion elements.
Let It be the quotient of I corresponding to the maximal tamely ramified extension
of D, and let P be the kemel of I - It. Then It is canonically isomorphic to

03A0q~p Tq(Gm(k)) = 03A0q~p Zq(1) and P is a pro-p group. The Hochschild-Serre
spectral sequence shows that

with the lower indices It and I denoting coinvariants and "(-1)" a Tate twist. Let
Nl be the submodule of Ul which is generated by the elements 0’(x) - x with Q in I
and x in Ul. Then by definition we have (Ul)I = Ul/Nl. As in [5, §2.5], we define
Y := UIl. Then Y, which is called the fixed part of Ul, is canonically isomorphic
to Tl(Ak(k)). Let AK be the dual of AK; i.e., AK = Pico We will denote by
A’ the Néron model over D of AK, by 03A6’ its group of connected components, etc.
Let (., .): Ul x Ui - Zi ( 1 ) be the Weil pairing. For any y in V’, Q in I and x in
Ul we have (u(x) - x, y) = ~03C3(x), y) - (x, y) = 03C3(~x,03C3-1(y)~) - (x, y) = 0. It
follows that Nl is contained in the orthogonal V’~l of V’l in Ul. Since Ul/V’~l is
torsion free, we conclude that

Remark 2.6. In the proof of Theorem 3.3 we will see that V’l /Ni is in fact a
finite group, hence we have -b = (V’~l/Nl)(-1).
Now it is clear that any filtration on V’~l induces a filtration on (DI. As in [5, § 2.5],
we define Wl C Yl to be the submodule corresponding to the maximal torus in
Ak. Let Wl C Vi C Yl be the submodules called the essentially toric part and the
essentially fixed part in [5, §4.1]; if G/k’ is the connected component of the special
fibre of a semi-stable Néron model of AK over a suitable sub-extension of K - KS
then 1 corresponds to Tl(G(k)) and Wt to the Tate module of the maximal torus
in G. We denote by t, a and u the dimensions of the toric part, the abelian variety
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part and the unipotent part of Ak; we denote by Î and ã the analogous dimensions
of any semi-stable reduction of AK. Note that t+a+u=+ã = dim(AK). An
easy application of the Igusa-Grothendieck orthogonality theorem (which states
that Wl = Y n vl 1 see [5, Theorem 2.4], or [12, Theorem 3.1]), gives us the
following filtration of V’~l, in which the successive quotients are torsion free and
of the indicated rank:

Lorenzini’s filtration (2.1) on 03A6l is the filtration induced by (2.5) and (2.7). Note
that in fact any finite sub-extension of K ~ KS induces a filtration on 03A6l as above;
see [7, Theorem 3.1] for results conceming those filtrations. The reason we only
consider the filtration coming from extensions over which AK has semi-stable
reduction is that only that filtration matters for the bounds on 03A6(p) of the next
section.

3. Bounds on 03A6(p)
We keep the notation of the previous section. Recall that K is strictly henselian.
First we define some invariants of finite abelian groups and fix some notation
needed to state our results.

DEFINITION 3.1. For 1 a prime number and a = (a1, a2,...) a sequence of
integers ai  0 with a2 - 0 for i big enough, let 61(a) := 03A3i(lai - 1 ). For
1 a prime number and G ÉÉ ~iZ/laiZ a finite abelian group of 1-powers order
let 03B4l(G) := 03B4l(a), where a := (a1, a2,...). For G a finite abelian group let
b(G) := LI Óz(Gz), where G = ~lGl is the decomposition of G into groups of
prime power order.

Notation 3.2. Let K be the minimal sub-extension of Es over which AK has
semi-stable reduction; it corresponds to the kemel of I acting on V, see [5, § 4.1].
We define Kt to be the maximal tame extension in , and for all l ~ p we let Kl
denote the maximal sub-extension of  whose degree over K is a power of 1. We
denote by Î, S, tt, at, ut, tt, al and ui the dimensions of the toric parts, the abelian
variety parts and the unipotent parts of the corresponding Néron models of AK.
For each prime l ~ p we let I(l) be the subgroup of I such that I/I(l) is the quotient
Z¡(l) of 1t.

Let At be the Néron model of AK over the ring of integers Dt of Kt. Then
Gal(Kt/K) acts (from the right) on At, compatibly with its right-action on
Spec(Dt). This action induces an action of Gal(Kt/K) on the special fibre Atk.
Let a be a generator of the cyclic group Gal(Kt/K). Let 1 ~ p be a prime number
and i  1 an integer. Let ft,2 denote the cyclotomic polynomial whose roots are
the roots of unity of order li. We define ma,t,i and mt,t,i to be the multiplicities
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of fl,i in the characteristic polynomials of u on the abelian variety part and on
the toric part, respectively, of Atk (say one lets or act on Tl(Atk(k)) Q9 Q). Let
mi,i Ma,l,i + mt,l,i. Finally, for j  1 we define Pa,l,j := |{i  1 ma,l,i  j}|,
Pt,l,j := Iti 1 mt,l,i  j}| and pl,j := |{i  1 1 ml,i  j}|. For an interpre-
tation of Pa,l = (pa,t,i, Pa,I,2, ... ) in terms of ma,l = (ma,l, 11 Ma,1,2, ... ) etc. using
partitions, see the beginning of the proof of Lemma 4.5.

THEOREM 3.3. Let 10 p be a prime number and consider the filtration (2.1) on
(Pl. With the notations above, we have:
1. The group 03A63l can be generated by t elements.

COROLLARY 3.4.
1. The group 03A63(p) can be generated by t elements.

Proof (of Theorem 3.3). We begin with some generalities. We always have
MI = (MI(l))Zl(1). The functors M F--+ Mi(,) and M 1--+ MI(l) are exact on the
category of finitely generated Zl-modules with continuous 7(n-action, and, for
such modules, the canonical map M1(l) - MI(’) is an isomorphism, hence MI(l)
is torsion free if M is torsion free. For M a finitely generated Zl-module with
continuous Zl(1)-action we have MZl(1) - M/(03C3-1)M and MZl(1) = M [03C3-1],
where u is any topological generator of Zl(1).

Next we recall some general facts on the action of I on Ul. Let I denote the

subgroup Gal(Ks/) of I. Then Î acts trivially on Y - Ui and on Ul/l; the
action of I on Ul factors through the biggest pro-l quotient Zl(1) of  and is given by
an isogeny Ul/l ~ l(-1) (see [5, §9.2, Theorem 10.4]). It follows that Ni fl Wl
is open in Wi. The group I acts on v via its finite quotient Gal(KIK) = III;
this action can be described in terms of an action of I /I on the special fibre of the
Néron model of AR (see [5, §4.2]). Dually, I acts with finite image on Ul/Wl.

As promised in Remark 2.6 we will show that 03A6 1 = V’~l /Nl. It suffices to show
that V’i,.l and Ni have the same rank. We have rank(Ul/V’~l) = t + 2a. From
the generalities at the beginning of the proof it follows that Ul / NI = (Ul)I =
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((Ul)I(l))Zl(1) = (UI(l)l)Zl(1). Let (7 be a topological generator of Zl(1). The exact
sequence

shows that rank((Ul)I) = rank(UIl) = rank(VI) = t + 2a. In order to prove
Theorem 3.3 we may neglect the Tate twist in (2.5).

By definition, we have 03A63l = Wl/Nl fl Wi. Since Wi is a free Zl module of
rank t, 1 can be generated by t elements.

Let us now consider 03A62l/03A63l. Since b2 = l/l fl Ni, the group 03A62l/03A63l is a
quotient of (l/l)I = ((l/Wl)I(l))Zl(1). Lemma 4.4 implies that 03B4l(03A62l/03A63l) 
b’1(((WI/WI)ICI))ZI(1)). By the generalities above, (l/Wl)I(l) is isomorphic as

Zl(1)-moduleto -Oal(K/Kz)/ Note that -Ga1(K/Kz) . is the Tate module of the
toric part of the special fibre of the Néron model of AK over the ring of integers of

Kl, and that Wl = Gal(/K)l. It follows that for all i  1 the multiplicity of fi,; i
in the characteristic polynomial of a generator o, of Gal(Kt/K) on (l/Wl)I(l) is
mt,l,i and that 1 is not a root of this characteristic polynomial. Applying Lemma 4.5
and Corollary 4.7 gives the second part of the theorem.

The proof of parts 3, 4, 5 and 6 of the theorem follows the same lines. For exam-
ple, (D /03A62l is a quotient of ((l n V’~l)/l)I. The group I acts with finite image on
(l n V’~l)/l. The Grothendieck-Igusa orthogonality theorem [5, Theorem 2.4]
shows that (Vj n Vi’ /WZ)ICl) has rank 2(al - a). We have

which shows that the hypotheses of Lemma 4.5 are satisfied. Since vi n V’~l /Wl
is isogenous to l/Vl, the multiplicities of the fl,i in the characteristic polynomial
of a generator (7 of Gal(Kt/K) on (Vl n V’~l/l)I(l) are precisely the mat/,i.

The proof of part 6 is entirely similar to the proofs of parts 2 and 3. For parts 4
and 5 one notes that V’~l/l~ V’~l is dual to ’l/W’l, that V’~l/l is dual to
’l/V’l Qnd one uses that AK and A’ K are isogenous. CI

Proof (of Corollary 3.4). One just considers the factorization into irreducible
factors of the characteristic polynomial of a generator o, of Gal( l(t / l() acting on
the semi-abelian variety part of Atk.
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4. Some Abelian Group Theory

In this section we prove some results needed in the proof of Theorem 3.3. We fix a
prime number 1 and consider finite Z l -modules, i.e., finite abelian groups of l -power
order. Recall that there is a bijection between the set of isomorphism classes of finite
Z d-modules and the set of partitions (i.e., sequences m = (m1, m2, ...) of non-
negative integers such that m1  m2  ··· and mi = 0 for i big enough): a finite
Z l-module M corresponds to the partition m = (m1, m2, ... ) which satisfies M ~
~i1 Z/lmiZ. To any partition m we attach the number 03B4l(m) := 03A3i1(lmi - 1).
Note that with these definitions, we have 03B4l(M) = 03B4l(m), with 03B4l(M) as in
Definition 3.1.

LEMMA 4.1. Let 0 ~ B ~ E ~ A ~ 0 be an extension of finite Zl-modules.
Let b = (b1, b2,...), e and a denote their invariants. Define ni : := ai + bi and
n = (ni, n2,... ). Let m = (m1, m2, ... ) be the invariant of A ~ B; i. e., m is the
sequence obtained by reordering (a1, b1, a2, b2, ... ). Then we have m  e  n,
with "" the lexicographical ordering.

Proof. Let us first prove that e  n. We use induction on lEI. We have ei %
a 1 + b 1 = n 1 since la1+b1 kills E. If e 1  n, 1 there is nothing to prove, so we
suppose that e 1 = n 1. Choose any element x in E of order let and consider the

subgroup it generates. We get a diagram

in which the rows and columns are exact. Now the columns are split, since lbl
is the exponent of B, etc. Hence b’ : = ( b2, b3,...), e’ : = ( e2, e3,... ) and a’ :=
(a2, a3, ...) are the invariants of B’, E’ and A’, respectively. The proof is finished
by induction.

Let us now prove that e  m. By passing to Pontrjagin duals, if necessary, we
may assume that b1  a 1. Then m 1 = b 1. If e 1 &#x3E; m1 there is nothing to prove,
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hence we suppose that e 1 = m 1 = b 1. We choose any element x in B of order lb1.
Just as above we find a diagram

in which the columns are split. Induction finishes the proof. ~

Remark 4.2. It would be nice to have a complete description of the possible
invariants of extensions E of finite ZI-modules A by B in terms of the invariants
of A and B. As Hendrik Lenstra pointed out to me, the problem can be phrased in
terms of Hall polynomials, see for example [8]. An interesting question is whether
there exist partitions a, b and e such that the corresponding Hall polynomial is not
zero but has a prime number as root (note that this Hall polynomial is non-zero
if and only if there exists a so-called Littlewood-Richardson sequence of type
(a, b; e )).
LEMMA 4.3. Suppose that a = (a1, a2, ... ) and b = (b1, b2, ... ) are partitions of
N (i.e., 03A3i1 ai = N = 03A3i1 bi) and that a  b in the lexicographical ordering.
Then 03B4l(a)  6z(b), with equality if and only if a = b.

Proof. Consider the set X of all partitions of N with its lexicographical order-
ing. From the inequality

satisfied for any integers n  m it follows that bl: X ~ Z is strictly increas-
ing. ~

LEMMA 4.4.

1. For M a finite Zi -module we have bl (M)  0, with equality if and only if
M = 0.

2. Let 0 ~ M’ ~ M - M" ~ 0 be a short exact sequence offinite Zi -modules.
Then 03B4l(M)  03B4l(M’) + 6z(M"), with equality if and only if the sequence is
split.

3. Let 0 ~ M’ ~ M ~ M" ~ 0 be a short exact sequence of finite Zi -
modules. Suppose that M is killed by la and that 1 M’l = lb. Then 03B4l(M) 
03B4l(M") + b( la - la-1).

Proof. This follows directly from Lemmas 4.1 and 4.3.
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LEMMA 4.5. Let M be a finitely generated free Zl-module with an automorphism
u of finite order. Suppose that M/(03C3 - 1)M is finite, or, equivalently, that the
automorphism 03C3~1 of the Ql-vector space M 0 Q does not have 1 as eigenvalue.
For i  1 let mi be the multiplicity, in the characteristic polynomial of u, of the
cyclotomic polynomial fi whose roots are the roots of unity of order li. For each
j  1, letpj:= |{i  1 mi  j}|. Then Ól(M/(u - 1)M)  03A3i1(lpi - 1).

Proof. Let q = (ql, q2, ...) bethepartitionobtainedbyreordering (ml, m2, ...).
Then p := (pl, p2, ...) is what is usually called the conjugate of q: when viewing
partitions as Young diagrams, p and q are obtained from each other by interchanging
rows and columns. In particular, we have 03A3i1 pi = 03A3i1 mi.

Let n be the order of u. Then M is a module over the ring Zl[x]/(xn - 1). Let
us write n = lrn’ with n’ not divisible by 1. Then Zl[x]/(xn - 1) is the product
of the ring Zl[x]/(xlr - 1) by another ring R and x - 1 is invertible in R. This
implies that M is the direct sum of two modules, one over Zl[x]/(xlr - 1) and the
other over R, and that the module over R does not contribute to M/(u - 1)M.
Hence we have reduced the problem to the case where the order of u is lr.

Let il  i2  ···  iPI denote the integers i  1 such that mi &#x3E; 0. For
1  j  Ph let Fj : = fij be the corresponding cyclotomic polynomials, and let
F : = Fi F2 ... FPI. Since M is torsion free as Zl-module, M is a module over the
ring A := Zl[x]/(F). For any A-module N, we define N := N/(x - 1)N. Let us
first note that for all j we have Fj(1) = 1. It follows that A = Z/lp1Z. For N an
A-module, N is an A-module, hence lpl annihilates N.
We daim that 1 MI = l03A3i1 pi. To prove this, note that |M| = 1 det( 0" - 1)|-1l,

with 1 . Il i the l-adic absolute value on Ql, normalized by |l|l = 1/1. So in order
to compute IMI we may replace M by any u-stable lattice M’ in M 0 Q ~
~i1(Ql[x]/(fi))mi. Taking M’ := ~i1(Zl[x]/(fi))mi and noting that fi(1) = l
gives the result.

Let a = (al,a2,...) be the invariant of M; i.e., M ~ ~i1Z/laiZ and a1 
a2  ···. Note that a and p are partitions of the same number, hence in view of
Lemma 4.3, it suffices to show that a  p in the lexicographical ordering. Since lp1
annihilates M, we have a1  pi. If a1  pi there is nothing to prove, so we assume
that a1 = pi. Let y be in M such that its image y in M corresponds to (1, 0, 0, ...).
Let A’ denote the submodule Ay of M. Since M is free as a Zl-module, A’ is free
as a Z i -module, and we have A’ = Zl[x]/(G), with G dividing F. Let 0  s  pi
be the number of irreducible factors of G. Then we have A’ = Z/lsZ. We have a
short exact sequence

of A-modules, with M’ not necessarily free as Zl-module. Multiplication by x - 1
on this sequence induces an exact sequence
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The element 1 of A’, which is annihilated by 1 1, is mapped to y which has annihilator
lp1. It follows that s = pl, that G = F and that M[x - 1 = 0. Let us now consider
the finite A-module tors(M’). Multiplication by x - 1 acts injectively, hence
bijectively. Since x - 1 is in the maximal ideal of A, it follows that tors(M’) = 0,
hence that M’ is free as ZI-module. The proof is now finished by induction on
rank(M), since M’ ~ ~i2Z/laiZ and the partition p’ obtained from M’ is
(p2, p3,...). 0

Remark 4.6. Lemma 4.5 can be seen as a bound on the cohomology group
Hl(Z/nZ, M), where 1 in Z/nZ acts on M via a. It is an interesting question,
raised by Xavier Xarles, to obtain similar bounds for non-cyclic groups.

COROLLARY 4.7. Let M be a finitely generated free Zl-module with an auto-
morphism a of finite order. Suppose that M/(03C3 - 1 )M is finite. Then

03B4l(M/(03C3 - 1)M)  rank(M).

Proof. We use the notation of the beginning of the proof of Lemma 4.5. Then
one has:

The proof is finished by applying Lemma 4.5. 0

LEMMA 4.8. Let M be a finitely generated free Zl-module with an automorphism
(1 of finite order. Suppose that M/(03C3 - 1)M is finite and that

03B4l(M/(03C3 - 1)M) = rank(M). Then M is a direct sum of Zi-modules of the
type Zl[x]/(f1·f2... fr) with (1 acting as multiplication by x and where fi denotes
the cyclotomic polynomial whose roots are the roots of unity of order Zi.

Proof. The proof is by induction on rank(M) and consists of an inspection
of the proofs of Lemma 4.5 and Corollary 4.7. First of all we must have that
n’ = 1. Secondly, we note that mi = qi for all i  1 since the inequalities in
(4.7.1) are equalities (here we use that 03A3i1 mi = 1 qi and that 0(li)  ~(lj)
if 1  i  j). So m is the conjugate partition of p, hence A = Zl[x]/(F) with
F = f1·.f2 ... IPI. The formula for the number of elements of IMI in the proof
of Lemma 4.5 shows that a and p are partitions of the same number. By the
hypotheses of the lemma we are proving, we have 6l(a) = 6l(p). Lemma 4.3
implies that a = p. The end of the proof of Lemma 4.5 shows that A’ = A and
that M’ is free as Zi-module. By induction on rank(M), we know that M’ is of the
indicated type. It remains to show that the short exact sequence (4.5.1) splits. To
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do that, it is sufficient to show that Ext1A(Ai, A) = 0, where Ai = Zl[x]/(f1··· fi)
with i  pl. This Extl is easily computed using the projective resolution

with f = Il ... fi and 9 = li+1 ... fp 1. 0

The following lemmas will be used in Sections 5 and 6.

LEMMA 4.9. Let M be a finite Zl-module and let

be a strictly descending filtration. Suppose that for all i with 0  i  r - 2 the

group Mi/Mi+2 is cyclic. Then M is cyclic.
Proof. For r  2 there is nothing to prove. If we know the result for r = 3, the

general case follows by induction since then M0/M3 is cyclic and the filtration
Mo D M2 D M3 D ... D Mr has length r - 1. So assume now that r = 3.
Let x be an element of M° such that its image in MO 1 M2 is a generator. Then
a certain multiple ax of x gives a generator of M1/M2. Since M 1 is cyclic, and
Ml 1M2 a non-trivial quotient, ax is a generator of M1. The subgroup of M°
generated by x contains M and its quotient by M is M0/M1. We conclude that
x generates Mo. o

Remark 4.10. The proof of Lemma 4.9 generalizes immediately to a proof of
the following assertion. Let A be a local ring and M an A-module with a finite
strictly descending filtration Mi such that the Mi/Mi+2 are cyclic. Then M is
cyclic.

LEMMA 4.11. Let 0 ~ B ~ E ~ A ~ 0 be a short exact sequence of finite
Zd-modules with invariants b, e and a. Let t  0 be an integer and suppose that B
is generated by t elements. Then for all i  1 we have ai  ei+t.

Proof. For a partition p, let p’ denote its conjugate. Then for all i  1 we have
l03B1’i = A[li]/A[li-1]|. Let d be the endomorphism of the set of partitions defined
by: d(p)i = pi+1 for all i  1. Let d’ be the conjugate of d: d’(p) = d(p’)’. Then
d’(p)i = max(o, pi - 1 ). When viewing a partition p as a Young diagram in which
the pi are the lengths of the columns, d and d’ remove the longest column and
row, respectively. For a finite ZI-module M with invariant m, the submodule l M
has invariant d’(m). The maps d and d’ commute. In the rest of this proof we will
consider the partial ordering on the set of partitions in which p  q if and only if
for all i  1 : pi  qi. Note that p  q is equivalent to p’  q’. Below we will use
that p  q if and only if: p’1  q’1 and d’(p)  d’ ( q ). We will also use that if N and
M are finite ZI-modules with invariants n and m such that N is a subquotient of
M, then n  m.
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The proof of the lemma is by induction on 1 E 1. What we have to prove is that
a  dt(e). The exact sequence 0 ~ B[l] ~ E[l] - A[l] shows that a’1  e’ - t.
Note that dt(e)’1 = max(0, e’1 - t), hence we have a’1  dt(e)’1. The exact sequence
0 ~ B ~lE ~ lE ~ dA shows (induction hypothesis) that d’(a)  dt ( d’ ( e )) =
d’(dt(e)). The two inequalities just proved imply that a  dt(e). 0

LEMMA 4.12. Let 1 be a prime. Let 0 - B - E - A - 0 be a short exact
sequence of finite Zi -modules with invariants b, e and a, respectively. Then

where for any real number x, lx J and r x l denote the largest (resp. smallest) integer
 x (resp.  x).

Proof. We have Ei(ai + bi) = Zi ei. Lemma 4.1 asserts that a + b  e in the
lexicographical ordering. Consider the set S of all pairs (r, s) of partitions, such
that r + s  e and ¿i( ri + si ) = Zi ei. Let f: S -+ Z be the map which sends
( r, s) to 8z( r) + 03B4l(s). We will show that f achieves its minimum at all (r, s ) in S
with the property that, for all i  1, one has {ri, si} = {~ei/2~, ~ei/~}.

Suppose now that (r, s) is an element of S where f has a minimum. We have
to show that 1 ra - si|  1 for all i  1. Suppose that this is not the case. Let j  1

be minimal for the property that 1 rj - sj | &#x3E; 1 and 1 ri - si|  1 for all i  j. We
may and do suppose that rj-sj &#x3E; 1. Note that if j &#x3E; 1 we have Sj-1 1 &#x3E; sj. We
define r’ and s’ as follows: (r’i, s)) - ( ri - 1, si + 1) if i  j and ri = rj; in all
other cases (r’i, s’i) = (ri, s2). Note that r’ and s’ are partitions, that 03A3i(r’i + si) is
equal to Zi ei and that f(r’, s’) is strictly smaller than f (r, s). D

5. Examples

The aim of this section is to give examples that show that the bounds in Theorem 3.3
and Corollary 3.4 are sharp, in a sense that will become clear in the examples. The
examples we construct here will play an important role in Section 6. We give our
examples over the field K : = C((q)) of formal Laurent series over the complex
numbers with its usual valuation, but it is easy to get similar examples in mixed
characteristic, or equal characteristic p &#x3E; 0.

The building stones of our examples are the following. For each integer n  1

we let En be the so-called Tate elliptic curve "Gm/qnZ" over K as described in
[2, §VII] or in [11, §6] (En is obtained from the analytic family of elliptic curves
over the punctured unit disc with coordinate q whose fibres are the C*/qnZ, by
base change from the field of finite tailed convergent Laurent series to K). It is
well known that the special fibre of the Néron model of En over D : C [ [q] is an
extension of Z/nZ by the multiplicative group.
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For each prime 1 and integer r  0 we define the ring

where as before fl,i is the polynomial whose roots are the roots of unity of order
lie When 1 &#x3E; 2, we let Al,r be an abelian variety over C obtained as follows:
we choose an isomorphism of R-algebras between Ai r ~ R and a product of a
number of copies of C and define Al,r := (AI,, 0 R)/039Bl,r (it is well known that the
trace form on 039Bl,r implies the existence of a polarization). The first three examples
will be isogenous to twists of products of copies of En and of Al,r,K. Of course
Lemma 4.8 tells us how to cook up the required examples.

EXAMPLE 5.1. Let d  0 and let G be any finite abelian group that can be
generated by d elements. Then G ÉÉ ~di=1Z/niZ, say. For AK := 03A0di=1 Eni one
has 03A6 = 03A63 = ~ti=1 Z/niZ and we have d = t = dim(AK).

EXAMPLE 5.2. Now consider parts 2 and 4 of Theorem 3.3. Let 1 be a prime. For
i  1 we let Bl,i be the abelian variety El 0 039Bl,i over C; i.e., Bl,i is a direct sum of
copies of E1, indexed by some Z-basis of 039Bl,i, and 039Bl,i acts on BI,i according to its
action on itself. In particular, multiplication by x in 039Bl,i induces an automorphism
03C3 of Bl,i. Note that cr has order lie Let Ci,; be the twist of BI,i,K over K(q1/li)
by 0"; i.e., Cl,i is the quotient of the K-scheme Bl,i,K Spec(K) Spec(K(q1/li)) by
the group Gal(K(q1/li/K) = Z / l i Z (here we choose a root of unity of order Ii)
which acts by a ~ ua on the first factor and via its natural action on the second
factor.
We will now compute the group of connected components T of the Néron

model of Ci,; over D, using (2.4). First of all we have Tl(E1(Ks)) = Zl(1) e Zl,
with I acting via its quotient Zl(1) in the following way: an element of I with
image a in Zl(1) acts as multiplication by the matrix (1 0 a 1). By construction,
Tl(Cl,i(Ks)) = Tl(E1(Ks)) 0 039Bl,i and an element in I with image a in Zl(1) acts
as (1 0 a 1) 0 xa. Since Cl,i has 5 = t = 0, we have 03A81l = 03A82l and p3 = 0. The
filtration Zl(1) C T,(E1(KS) induces the filtration Wl C Tl(Cl,i(Ks)). It follows
that 03A8l is the cokernel of (x-10 xx-1) and that 03A8l/03A81l and 03A82l/03A83l are both isomorphic
to 039Bl,i/(x - 1) = Z/1’Z. An analogous computation shows that T = TI. One can
show that is isomorphic to Z/liZ e Z/liZ if l &#x3E; 2 and to Z/2i+1Z e Z/2i-1Z
if l = 2.

Let G be a finite abelian group of 1-powers order, say with invariant a =
(a1, a2,...). Then for AK := 03A0i1 Cl,ai we have 03A6l/03A61l ~ 03A62l/03A63l ~ G and
03B4l(G) = tl = dim(AK). We remark that abelian varieties over K that are isoge-
neous to Ax provide examples with 03A6l/03A61l not isomorphic to 03A62l/03A63l.
EXAMPLE 5.3. For 1 &#x3E; 2 prime and i  0 we let Dl,i be the abelian variety over
K obtained by twisting Al,iK over K(ql/li) by the automorphism cr of Ai ; which
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is induced from the multiplication by x in 039Bl,i. Then we have Tl(Dl,i(Ks)) =
Tl(Al,i(C)) = Al,i 0 Zi, and an element in I with image a in Zl(1) acts as
xa. Let TI 1 denote the group of connected components of attached to Dl,i. In
this case we have t = a = 0, hence Ti 1 = 03A81l and 03A82l = 0. By (2.4) we have
03A8l = Al,i/(x - 1) = Z/liZ.

Suppose now that 1 fl 2. Let G be a finite abelian group of 1-power order, say
with invariant a = (a1,a2,...). Then for AK := 03A0i 1 Dl,ai we have (Pl 03A61l,
03A62l = 0, 03A61l/03A62l ~ G and 6z(G) = 2al = 2 dim(AK). The case 1 = 2 is a little bit
différent because ma,2,1 is always even.

EXAMPLE 5.4. Let 1 be prime and let r &#x3E; 0 and s &#x3E; 0 be positive integers. We
will construct an abelian variety AK with t = a = 0,  = lr - 1, ã = (Ir+s - Ir) /2
and 03A6 = 03A6l ~ Z/l2r+sZ. It follows from Theorem 3.3 that in such an example
03A6l/03A61l and 03A62l are cyclic of order 16’°, that 03A61l/03A62l is cyclic of order 11 and that
03A6l/03A62l and 03A61l are cyclic of order lr+s. Hence this example shows that, as far as
the exponent is concemed, the two-fold extension 03A6l/03A63l can be arbitrary.

As in the previous examples, fl,i will dénote the polynomial whose roots
are the roots of unity of order li, and Air is the ring Z[x]/(fl,1···fl,r). · Let
039Bl,r,s := Z[x]/(fl,r+1··· fl,r+s)- Let Dl,r,, be an abelian variety over K obtained
by replacing 039Bl,i by 039Bl,r,s and q1/li by q1/lr+s in the construction of Dl,i in Exam-
ple 5.3. Let CI,T be as in Example 5.2. Our example Ax will be isogeneous to
CI,T X DI,r,s. Let V := Tl((Cl,r X DI,r,s)(KS)) 0 Q. Then V is a Ql-vector space
with an action of I = Gal(Ks/K). We have an isomorphism of Ql-vector spaces
with I-action

such that an element of I with image a in Zl(1) acts via

Let

be the filtration (2.7) on V. Then V2 is simply the first term in (5.4.1 ) and V1 is the
sum of the first two terms. For any ZI-lattice M in V let Mi := M n Vi. To get
our example Ax, it suffices to find an I-invariant Z l-lattice M in V such that MI 1
and M/M2 are isomorphic, as Zl[I]-modules, to AI,,+, ~ Zl, where an element of
I with image a in Zl(1) acts on 039Bl,r+s ~ Z as xa. Namely, since M is I-invariant,
M is the 1-asdic Tate module of an abelian variety Ax which is isogeneous to
Cl,r x Dl,r,s; for Ahr one has 03A6l/03A62l and 03A61l cyclic of order lr+s, hence *l cyclic
of order l2r+s by Lemma 4.9.
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Let us now try to find such a M. Note that we have canonical projections
039Bl,r+s - Al,r and 039Bl,r+s ~ Al,r,s which induce an embedding 039Bl,r+s ~ Zl C V1.
We will first show that we only have to look among the sublattices M with
MI = Al,r+s Q9 ZI. Namely, if M is an I-invariant ZI-lattice in V of the type we
are looking for, then for a suitable element of the form v = (a, b, a ) of V* (here
we consider V as a Q l -algebra and V* denotes the group of units of V) v M is
isomorphic to M as Zl[I]-module and has (vM)1 1 = 039Bl,r+s ~ Z l . Since the Zl[I]-
module structure determines the filtration, we also have (vM)/(vM)2 ~ M/M2.

From now on we only consider M with M’ = AI,,+, ~ Zl. Such M are
determined by their image in V/M1. So we look for an I-invariant torsion free
Zi-submodule N of VIM’ = V1/M1 ~ Al,, 0 QI whose image in lll,r 0 QI is
a lattice and for whose associated M we have M/M2 ~ 039Bl,r+s 0 Zl. It follows
that such a N is isomorphic, via the canonical projection, to its image in 039Bl,r 0 Qz.
Lemma 4.8 implies that this image is isomorphic to AI,, ~ Zz, hence of the form
z·039Bl,r 0 Z for some z in (039Bl,r 0 Ql)*. We conclude that N is of the form im( a ) ,
where

with 0: 039Bl,r 0 Z 1 - V1/M1 
a morphism of Zl-modules, and z E (039Bl,r ~ Ql)*.

For a given pair (0, z), let N~,z denote the image of the corresponding a.
Let us first study what it means for (0, z) that N~,z is I-invariant. Using that

N~,z is I-invariant if and only if it is invariant under the matrix in (5.4.2) with a
replaced by 1, one easily sees that N~,z is I -invariant if and only if

To find out which (0, z) satisfy (5.4.5), we write out everything in terms of the Zl-
basis (1, x,..., xlr-2) of Al, r 0 Zl. Let y = (y,, y2) be in VI such that 0(l) = .
One then checks that

Applying (5.4.5) with a = xlr-2, and using that 03A3lr-1i=0 xi = 0 in AI,,, gives

where gr = fl,1 ··· Il,r and gT is the derivative of gr. The conclusion is that N~,z
is I-invariant if and only if 0 is given by (5.4.6) and (y, z) satisfies (5.4.7). For a
given such pair (y, z), let My,z denote the lattice M in V corresponding to N~,z.

It remains now to be seen that there exist (y, z) satisfying (5.4.7) such that
My,z / M;,z is isomorphic to 039Bl,r+s Q9 Zi, or, equivalently, such that (My,z/M2y,z)I
is cyclic. In order to have a useful description of My,z, we lift 0 to V1 as follows:
let : Al,r (D Zi ~ V’ be the morphism of Zl-modules such that
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Then we have an isomorphism of Zl-modules:

Let T be an element of I with image 1 in Zl(1). Then r acts on V by the matrix
in (5.4.2) with a = 1. One computes that in order to make f3 invariant under I, one
must let r act on the source of f3 in (5.4.9) by

Using this formula, we can study My,z/M2y,z. Recall that AI,,+, 0 Z is the image
in Tll of the sum of the two canonical projections from AI,,+, 0 Zl to AI,, 0 Zi
and Al,r,s 0 Zl. It follows that

with T acting on N by

where : 039Bl,r 0 Zi - VI /V2 = AZ,r,s 0 QI is  composed with the projection
V1 ~ V1/V2; we have 0(x’) = xiy2 for 0  i  lr - 2.

Note that 03A6l/03A62l ~ N/( - 1 ) N . Hence 03A6l/03A62l is cyclic if and only if the
endomorphism r - 1 of the FI-vector space N 0 FI has corank 1. Now N 0 FI is
the direct sum of Fl[03B5]/(03B5lr+s-lr) and Fl[03B5]/(03B5lr-1), with - = x - 1. The matrix
of r - 1 with respect to the direct sum of the bases (1,03B5,...,03B5lr+s-lr-1) and
(1,03B5,...,1 IF Ir -2) is of the form

It follows that r - 1 has corank 1 if and only if the upper right coefficient of A is not
zero, or, equivalently, if and only if there exists b in Az,r 0 Zi such that x~(b) - ~(xb)
is a unit in Al,r,s ~ Zz. A computation shows that x~(xlr-2) - ~(xlr-1) = gr(x)y2.
Now recall that we are free to choose y = (y,, y2) in V1 and z in (039Bl,r ~ QI)* as
long as (y, z) satisfies (5.4.7). Note that 9r( x) and g’r(x) are units in 039Bl,r,s 0 Qi and
Al,r 0 Qi, respectively. Hence we can choose y2 = gr( x )-1 and z = x-1g’r(x)-1,
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EXAMPLE 5.5. Our final example is the analog of Example 5.4 in the case a = 0.
More precisely, let 1 be a prime and r  0 an integer. Then there exists an abelian
variety AK with t = a = 0, l = l r - 1 and 03A6=03A6l ~ Z/l2rz.

Let Cl,r be as in Example 5.2. The abelian variety AK can be found in the isogeny
class of Cl,r in the same way as used in Example 5.4. In this case the construction
is somewhat easier, since the filtration on V has only two steps (V 1 = V2), so we
leave the details to the reader. Let us just mention that all formulas up to (5.4.10)
remain valid (in adapted form), and after (5.4.10) one shows that M/(-1)M can
be cyclic with the same method as used to show that N/( - 1)N can be cyclic.

6. Classification of the 03A6(p)
The aim of this section is to prove the following theorem.

THEOREM 6.1. Let D be a strictly henselian discrete valuation ring of residue
characteristic p  0. Let G be a finite commutatt’ve group of order not divisible by p.
For each prime l =1= p, let ml := (ml,1, ml,2, ... ) be the partition corresponding to
the 1-part Gl of G (i. e., Gl n2e ~i1Z/lml,iZ and ml,1  ml,2" ). Let d, t, a and
u be non-negative integers such that d = t -f- a -f- u. Then there exists an abelian
variety over the field of fractions of D, of dimension d, toric rank t, abelian rank
a and unipotent rank u which has 03A6(p) ~ G, if and only if

where for any real number x, ~x~ and ~x~ denote the largest (resp. smallest) integer
 x (resp.  x).

Proof. We will start by showing that if AK is as indicated in the theorem, then
(6.1.1) holds. Let l ~ p be a prime. Let fl be the map from the set of partitions to
R defined by

Then f is strictly increasing for the partial ordering in which a  b if and only
if ai  bi for all i. One easily sees that f is increasing for the lexicographical
ordering on the set of partitions of a fixed number, but we won’t use that. Consider
the filtration

induced by (2.1). Theorem 3.3 shows that
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Let nl be the invariant of 03A6l/03A63l. Lemma 4.11 shows that for all i  1 we have

nl,i  7n,,i+t, or, in the terminology of the proof of that lemma, that nl  dt(ml)
in the partial ordering. Lemma 4.12 says that

It follows that

Summing over all l ~ p and dividing by 2 gives (6.1.1).
It remains to show that all groups G satisfying (6.1.1) can occur as the 03A6(p) of

an abelian variety AK over the field of fractions K of D of dimension d, toric rank
t, abelian rank a and unipotent rank u. It is sufficient to show that all groups G
satisfying

occur in such a way, since one can replace Ax by the product of Ax with an
abelian variety Bx which has unipotent reduction and trivial group of connected
components.

Let us first suppose that K = C((q)). Let d, t, a, u and G be as in the
theorem, and suppose that they satisfy (6.1.7). We have G ~ ~i1Z/niZ with
ni  1 and ni+1|ni for all i. Let BK be of the type described in Example 5.1: it
has dimension t, completely toric reduction and group of connected components
Z/nl Z ~···~ Z/ntZ. The abelian variety AK we are constructing will be of the
form

and such that all CK,l have unipotent reduction. Note that in fact such an AK has
unipotent rank u, since for 1 ~ 2 the function fl defined above has integer values.
For 1 =1 2 we define

where C K,l,i is the abelian variety defined as follows. If ml,i ~ 1 is odd, then CK,l,i
is the abelian variety constructed in Example 5.4 with r = (mt,i - 1)/2 and s = 1.
If rrzt,i = 1, then CK,t,2 is the abelian variety constructed in Example 5.3 with
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i = 1. If ml,i is even, then CK,1,i is the abelian variety constructed in Example 5.18
with r = ml,i /2. Note that the group of connected components of the reduction of
CK,l,i is cyclic of order lml,i. For 1 = 2 the construction of CK,l is a bit different.
Let r  0 be maximal such that m2,i &#x3E; 1 for all i  r. Then CK,2 will be of the
form

where CK,2,i is defined as CK,i,i but with replaced by 2, and where DK,2 is as
follows. Let v be the number of i &#x3E; t such that m2,i = 1. If v is even we let DK,2
be the product of v/2 elliptic curves which have unipotent reduction and group
of connected components isomorphic to Z/2Z x Z/2Z. If v is odd we let DK,2
be the product of (v - 1)/2 elliptic curves with unipotent reduction and group of
connected components isomorphic to Z/2Z x Z/2Z and one elliptic curve with
unipotent reduction and group of connected components cyclic of order 2. One
verifies easily that AK has all the desired properties.

To finish the proof of the theorem, we have to show that similar examples exist
over any strictly henselian discrete valuation ring D with residue characteristic p.
Since our examples are products of the examples of Section 5, it suffices to show
that the examples in Section 5 exist over D. Since we do not suppose D complete,
we cannot use a Tate curve "Gm/qZ" with q a uniformizer of D. Instead we can
use any elliptic curve E over K which has toric reduction and trivial group of
connected components. Then I acts on the Tate module Tl (E (KS)) through its
quotient Zl (1 ) and for a suitable choice of a Zl-basis of Tl(E(Ks)), an element of
I with image a in Zl(1) acts as (10 a1). It follows that Examples 5.1 and 5.2 with El
replaced by E still work. To make Example 5.3 work over D, it is enough to show
that for all 1 ~ p and r &#x3E; 0 such that lr &#x3E; 2, there exists an abelian scheme over
D of relative dimension lr-1(l - 1)/2 and with an action by 7, [x] / (fi,,). Once
one has these abelian schemes, the constructions of Section 5 can be carried out
over D. The fact that such abelian schemes exist is a consequene of the theory
of abelian varieties of "CM-type". Fix an l and r as above. The moduli scheme
over Z[1/l] of abelian schemes of the desired type, with a suitable polarization
and 1-power level structure, is finite etale and not empty. Another way to prove the
desired existence is to consider isogeny factors over Q(03B6lr) of the Jacobian of the
Fermat curve of degree lr. Yet another way to construct these abelian varieties is to
use elliptic curves with an action by the ring of integers of an imaginary quadratic
subfield of Q(03B6lr). 0

7. Further Remarks and Questions

Although Theorem 6.1 gives a complete classification of the prime-to-p parts of
the groups of connected components of special fibres of Néron models with some
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fixed invariants, there are still questions left. For example, it is clear that the groups
of connected components -D have functorial additional structure coming from the
fact that the category of abelian varieties has an involution: every abelian variety
has its dual. More precisely, suppose that 03A6 comes from the abelian variety AK.
Let Ax be the dual of AK and denote its group of connected components by 03A6’.
Then there are several pairings with values in Q/Z, conjecturally perfect and the
same up to sign, between 03A6 and 03A6’; see [5, §§1.2, 1.3, 11.2], [9], [7, §3] and [10].
Let us note by the way that the pairing given in [12, Proposition 3.3] cannot exist,
since it is supposed to have values in (Q/Z)(1); the mistake in the proof is that
the direct sum decomposition in the unique displayed formula in it is not unique.
Anyway, for each of the remaining pairings we get a filtration

It would be interesting to know the common refinement of this filtration with (2.1 ).
Also, it would be of interest to prove that the various pairings are the same up to a
determined sign. Some relations between the two filtrations (2.1) and (7.1) on the
1-part for 1 ~ p can be found in [7, Theorem 3.21], under the hypothesis that Ax
has a polarization of degree prime to 1.

Let us consider the functor from the category of abelian varieties over K to the

category of finite abelian groups which associates to each abelian variety the group
of connected components of the special fibre of its Néron model. A rather vague
question one can ask is through what categories of abelian groups endowed with
some extra structure this functor factors. We have seen for example that there is a
filtration of four steps on the prime-to-p part, but as we have just remarked that is
certainly not all there is.

Lorenzini has shown [7, Theorem 3.22], under the hypothesis that there is a
polarization of degree prime to 1, that 03A6’2,~l is the prime-to-p part of the kemel of
the map from -* to the group of connected components of AL, where K ~ L is
any extension over which AK has semi-stable reduction. It would be interesting to
generalize this. Even in the case in which Ax acquires semi-stable reduction after
a tamely ramified extension K -- L, when the theory of [3] applies, 1 have not
been able to give a description of the filtration (2.1 ) in terms of the special fibre of
the Néron model of AL with its action of Gal(L/K).

The p-part of 03A6 remains difficult. For example, one expects a bound for its
order in terms of the dimension of AK if the toric part of the reduction is zero,
but even in the case of potentially good reduction 1 don’t know of any such bound
(of course, if AK is the Jacobian of a curve with a rational point, the usual bound,
i.e., the bound we have when k is of characteristic zero, holds, since one can apply
Winters’s theorem [14]). In a forthcoming article [4] one can find a generalization
of a result of McCallum (unpublished) which says that in the case of potentially
good reduction the p-part is annihilated by the degree of any extension after which
one obtains semi-stable reduction, but not in general by the exponent of the Galois
group of such an extension. Work in progress by Bosch and Xarles, using a rigid
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analytic uniformization of Néron models, seems to imply that there is a four-step
functorial filtration on the whole of 03A6, for which three of the four successive
quotients can be described in terms of the inertia group acting on the character
group of the toric part of the semi-stable reduction. The remaining successive
quotient comes from an abelian variety, obtained by Raynaud’s extension, which
has potentially good reduction. This part is still a mystery.
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