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Abstract. In this paper estimates of linear forms in elliptic logarithms are applied to solve the problem
of determining, for given n  2, all sets of n consecutive cubes adding up to a perfect square. Use
is made of a lower bound of linear forms in elliptic logarithms recently obtained by Sinnou David.
Complete sets of solutions are provided for all n between 2 and 50, and for n = 98.

1. Introduction

Every beginning student of number theory surely must have marveled at the mirac-
ulous fact that for each natural number n the sum of the first n positive consecutive
cubes is a perfect square, that is

It seems natural to ask whether this phenomenon keeps occurring when the initial
cube is shifted along the number axis over an arbitrary distance. In other words,
are there any integral solutions to the Diophantine equation

other than the trivial ones? A simple search reveals that this happens for many
values of n. From Table 2 at the end of this paper one may read off that for all odd
values of n below 50 such solutions do exist. In the remark immediately following
the proof of Lemma 1 an explanation of this observation is given.

Surprisingly for such an obvious question, no more than a handful of relevant
references could be found in the literature. Dickson [7, p. 585-588] has a few and
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in a recent paper of Cassels [4] the case n = 3 is solved. On the other hand, no
publication was found in which this problem has been addressed in any systematic
way.

This paper is about equation (1) and how it may be solved for each integer
n  2. The approach set forth in the following lines provides an algorithmic
solution method that - at least in principle - should work for general n.

Clearly, for each n  2 trivial solutions are given by x = 0 and x = 1. Also, any
solution (x, y) of (1) with x  0 uniquely determines one with x &#x3E; 0 associated
with a smaller value of n. So from here on only solutions (x, y) with x &#x3E; 1 will be
considered non-trivial.

By means of the transformation

equation (1) is mapped to

where d = dn : := 1 4n2(n2 - 1). To solve (1), it clearly suffices to solve (3) for
integers X and Y when d = dn and n  2 are given.

For general d ~ 0 equation (3) is the short WeierstraB representation of an
elliptic curve that has been investigated extensively (cf. [1], [2], [3]). In fact,
these curves helped to shape this branch of mathematics as it is today by provid-
ing numerical evidence for important conjectures. Moreover, the curves (3) with
d = - n2 are intimately connected with the congruent number problem (cf. [9],
[10]). As a result, quite a bit of information on (3) is available in the literature.

Traditionally, the problem of finding all integral points on an equation like (3) is
solved by reducing this equation to a finite number of quartic Thue equations. Sub-
sequently, each individual Thue equation can be solved by an effective procedure
based on Diophantine approximation techniques (cf. [20]), or by older methods
which depend on explicit knowledge of certain number fields that crop up in the
process (cf. [16]). These standard methods are of an ad hoc nature: one never
knows beforehand precisely which hurdles have to be taken, it cannot be foreseen
which tricks are required in a single case (see also [4]). Explicit examples of the
difficulties one may be faced with are given in [18].

This paper will stay clear of this course of action. Instead, detailed information
shall be used on the group structure of the elliptic curve given by (3) with d = dn.
In [ 17] the authors describe how an explicit lower bound of linear forms in elliptic
logarithms, recently obtained by S. David in [6], may be employed to solve elliptic
equations. This method requires explicit knowledge of the generators for E(Q).
Once this information has been obtained, the elliptic logarithm method runs along
in a way that is not as curve-dependent as the Thue approach. Clearly, this could
be a definite advantage. On the other hand, there are curves for which a set of
generators is as good as impossible to compute, because at least one generator
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is extremely large. For these curves the Thue method remains the more practical
one. In [ 18, Conclusion] the authors elaborate on this point. Here we shall closely
follow the method exposed in [17].

In Table 2 all solutions to equation (1) are listed for n in the range 2, ... , 50
and n = 98. All related curves are of rank 1, 2 or 3. The extra case is added as it

happens to be the smallest value of n for which the corresponding elliptic curve is
a rank 4 curve.

Probably the most remarkable of all solutions found is the one which expresses
the perfect square 20792 as the sum of 33 consecutive cubes, starting with 333.

2. Preliminaries on the elliptic curve

Let En/Q be the elliptic curve defined by equation (3) with

d = dn := 1 4n2(n2 -1). Further, let v(m) denote the number of distinct odd
prime divisors of m.

LEMMA 1. For n  2, the group En(Q) has torsion subgroup Z/2Z with non-
trivial point Po =(0, 0) of order 2, and its rank rn satisfies the inequalities,

Proof. Most of these assertions are immediate consequences of [11, Chap-
ter X, Proposition 6.1, p. 311 ]. According to this proposition, En(Q)tors ~ Z/2Z
unless dn = 4a4 for some a ~ Z or -dn is a perfect square. This forces
En(Q)tors ~ Z/2Z, as neither of these two special cases is possible. Further,
Proposition 6.1 also implies that rn +1  2.# distinct prime divisors of 2dn,
which gives the required upper bound for rn. Finally, En(Q) contains the

point Pn = (Xn,Yn) = 
, 

(1 2n(n + 1),1 2n2(n + 1)), which corresponds to the
trivial solution (1, !n(n + 1)) of equation (1). It is not difficult to see that

2Pn = (1 4,1 8(2n2 - 1)). Because X(2Pn) ~ Z, the point Pn cannot be of finite
order and hence rn j 1. 0

REMARK. It was observed by Henri Cohen that the point Qn = -2Pn + (0,0) =
( n2 ( n2 - 1), 1 2n2(n2 - 1)(2n2 - 1 ) ) on (3) corresponds to a point on (1) which is
integral for odd n. This explains why "non-trivial" integral solutions of (1) exist
for all odd values of n.

The upper bound for the rank rn in Lemma 1 is too large to be of much
practical use. However, in each individual case, by checking the homogeneous
spaces for solvability, the exact value of the rank may be computed using descent
by 2-isogeny as En has a rational point of order 2. Unfortunately, this procedure,
given by J. Tate in his Haverford lectures in 1961 and reproduced by various
authors (see for instance [5, p. 63-68], [14, p. 89-98], and [11, p. 301-304]) is
not always effective: if there are points of order 2 in the Tate-Shafarevich group
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III (En/Q), one may have a problem. In the range 2  n  50,98 only n = 41
and n = 44 cause trouble in this respect. We used both Ian Connell’s Apecs 3.2
(which runs under Maple) and John Cremona’s algorithm mwrank.sun to do the
rank calculations. In order to determine the rank, one first checks a finite number
of quartic equations for rational solutions. Here, these equations are of type

where a1 a2 = dn or -4dn and al is squarefree. If no rational point can be found,
maybe one can prove that no such point exists by local solvability techniques.
Failing this, one has to do another descent. In our range, this happened for n = 41
and n = 44, where we found a small number of quartics (4), locally solvable
everywhere but without apparent rational point. Our calculations also suggested
a rank value of at least 1. We proceeded as follows. If (4) is locally solvable
everywhere, then

must be globally solvable by Hasse-Minkowski. When a rational solution is
known - and there is no reason to fear that such a solution might be difficult
to find - this conic can be rationally parameterized. Assuming the existence of a
rational point on (4), this parameterization yields a system of quadratic equations

with Rz = Q3(u, v), where Q1,Q2,Q3 are quadratic forms with integer coeffi-
cients, and R e Z is a squarefree divisor of the resultant of Q1 and Q2. For each
of the finitely many possible values of R, we found all relevant systems (5) to be
locally insoluble at some prime p, confirming our rank 1 suspicion.
A further discussion of the actual computations is postponed to the final sec-

tion.

The next task is to compute a complete set of generators for En(Q) modulo
torsion. The first hurdle that has to be taken is the computation of sufficiently
many independent points. This may give some problems as is clearly illustrated in
[3]. Once rn independent points have been found, it is easy to obtain 2rn+l coset
representatives of the quotient group En(Q)/2En(Q); these representatives are
chosen in such a way that the maximal value of their canonical heights is minimal.
Recall that the canonical height on En(Q) is a quadratic form

which is positive definite on En(Q)/En(Q)tors, and that the naive logarithmic
height (or Weil height) is defined by
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where P = (X(P),Y(P)) E En(Q) and X(P) = ris with gcd(r, s) = 1. The

difference h(P) - 2h(P) is bounded; explicit bounds are given in the following
lemma.

LEMMA 2. Let P E E,, (0), then

Proof. From [ 13, Theorem 1.1 ] - or rather from [ 13, Example 2.2] - we have

as required. The lower bound may be obtained similarly. o

REMARK. It may be of interest to note that the canonical height of the point
Pn = (1 2n(N+1),1 2n2(n+ 1)) on (3) can be approximated by techniques described
in [12] (see also [19]). We found that h(Pn) is asymptotic to 1 8 log 2n2, which
happens to be a good fit, even for small values of n.

Now let Po = (0, 0) and let Pl,..., Prn be independent points of En(Q) that
correspond to a candidate set of generators for En(Q)/En(Q)tors. Select a complete
set S of 2rn+1 representatives for En(Q) modulo 2En(Q) from the set

and set B := maxpes h(P). Then from Lemma 2 and [13, Proposition 7.2] we
deduce that

generates the free part of En(Q). A direct search then should give the required set
of generators. Provided, of course, this number B is small. Otherwise some more
descent work has to be done (see for instance [15, final section]).

From here on we assume that a complete set of generators of infinite order has
been determined. Let us suppose that

For P E En(Q), there exist rational integers m 1, ... , mrri such that

where Po = (0, 0) and e E {0,1}.



300

For integral P = (X(P),Y(P)) we intend to estimate the integral vector
m = (m1,..., mrn). If we let m be a column vector, then (P) = mT1tnm. Here
the matrix 1tn is given by Jin = (1 2~Pi, Pj)) rn X rn , where

is the Néron-Tate pairing. The matrix Hn is positive definite and hence

where 03BBn is the smallest eigenvalue of ?-ln and Mn := max1irn Imil. It is

easy to calculate an once the rank rn and the set of generators (Pl, ... , Prn~ are
known.

From (9) we see that large coefficients mi in (8) imply a large canonical height
value h(P) and by Lemma 2, this forces h(P) to be large, which in tum makes
X(P) large, because h(P) = logX(P) for integral X(P). As the number of
integral points on (3) is finite, X(P) is bounded, and this implies that Mn is
bounded. In the next sections an upper bound for Mn will be derived.

3. Elliptic logarithms

Again let P = (X(P),Y(P)) be an integral point on (3) with d = dn. The
boundedness of X(P) can be expressed by saying that P cannot be too close to
the identity 0 of the group En(Q). In order to measure the distance between P and
O, we use the group isomorphism

given by

(see [22, p. 429]). Here

is the fundamental real period of the WeierstraB p-function associated with (3)
for d = dn. There is no loss of generality in assuming that O(P) E [0,1).
Then O(P) E [0,1 2] when Y(P)  0. We may as well assume this from
now on. The quantities ui := 03C9~(Pi) for i = 1,..., rn are known as the elliptic
logarithms.
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Applying 0 to (8) yields

and hence a rational integer mo exists such that

Clearly, |m0|  1 + |m1| + ··· |mrn |  1 + rnMn.
Multiplying (11) by 03C9 and setting L(P) := 03C9~(P) yields

An upper bound for IL (P) in terms of n and Mn is quickly obtained.

LEMMA 3. Let P = (X(P),Y(P)) E En(Q) be an integral point on (3) with
d = dn and X (P) &#x3E; 0. Assume further that P satisfies (8) and let L(P) be as in
(12). Then

Proof. From Lemma 2 and (9) it follows that

as required. 0

This upper bound for 1 L (P) 1, combined with Sinnou David’s lower bound produces
an upper bound for Mn. We shall reproduce this lower bound for IL (P) as it can
be found in [17], omitting the details.

LEMMA 4. (S. David) Let P E En(Q) be given as in Lemma 3. Further, let

hn = max{log 1728, 4 log n}, and for i = 0, ..., rn, let Ai be a positive number,
satisfying Ai  max {(Pi),hn, 67r (ui/03C9)2} (uo = w by definition J. If

then a lower bound for IL(P)I is given by

where
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This is a special case of [6, Theorem 2.1]). From [ 17, Appendix] it can be seen
that we may take T = i and Wl 1 = !w(1 + i).

4. The computation of solutions

If we take Bn = 2rnMn + 3 in Lemma 4, then combining (13) and (14), leads to
the following inequality 

-

which provides an upper bound for Mn. This upper bound generally is very
large - up to 106° in the range of n-values we consider. This is way out of reach
of any practical search method. So we apply the LLL-reduction process described
in detail in [17, Section 5]; see also [21, Chapter 3]. A brief breakdown of this
procedure should suffice at this point.

From Lemma 3 we deduce

where 1(1 = 2n03C9-1 exp( 1.9055), k2 = an, and K3 is a (usually large) upper
bound for Mn. Let £ be the ( rn + 1)-dimensional lattice, generated by the columns
of the matrix

where K0 will be a large integer that will be conveniently chosen later.
If the vector (MI, ... ,mr,m0) E Zrn+1 satisfies 1 mi |  Is’ 3 for i = 0, 1,...,rn,

and

with

then, because of (11),



303

On the other hand, if f b 1, ... , brn+1} is an LLL-reduced basis of £, then

Combining this with (17) yields

From (16) and (18) we now obtain a new upper bound for Mn, implicitly given by
the inequality

provided the right-hand-side of (18) is positive, i.e.

It is reasonable to expect that ~b1~ ~ (det AL)1/(rn+1) = K1/(rn+1)0. Therefore, if
we choose K0 such that k1/(rn+1)0 is slightly larger than the right-hand side of (20),
then most likely this inequality is satisfied. In that case equation (19) produces a
new upper bound which is of the size of log Mn, a considerable improvement.
In most cases, the reduction process can be applied a few times before no further
improvement is obtained. In Table 1, the successive values of Mn are listed. The
size of the original Mn is determined almost exclusively by the rank of the curve.
Two reduction steps were sufficient to bring the ultimate Mn-value down to 6 or
below; only for n = 98 an extra reduction step was required. This means that a final
direct search for points that may have been missed is always feasible. In order to
execute the reduction process we need to know the ~(Pi) values correctly to a great
number of decimal places. In [22] Don Zagier describes a very efficient algorithm
to compute these values to the precision needed. We programmed his algorithm in
the very fast UBasic 8.30 language. The LLL-reduction step was carried out by
using Pari GP 1.38’s integral LLL algorithm.

The results of our calculations are gathered in two tables, from which the com-
putational process can be directly read off. Only for n = 29, 41, 44, and 47 in the
range of chosen n-values, Apecs could not determine the rank unconditionally.
Fortunately, John Cremona’s algorithms - especially mwrank.sun - tumed out to
be very useful in these exceptional cases. We remind the reader of our discussion
of section 2, just before Lemma 2. Also for n = 29, 38, 46, and 47, the bound (7) is
larger than 20, which is rather big for a direct search. Here an extra computational
effort was needed. The fact that we encountered few hard cases is very encour-

aging and may count as a modest success for the method of elliptic logarithms in
general.

The final table contains all solutions to the original problem for n = 2, ... , 50, 98.
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TABLE I. Rank and generators of En(Q) (n = 2, ... , 50, 98)
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TABLE 1. - contd.
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TABLE II. Consecutive cubes adding up to a square (n = 2,..., 50, 98)
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