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Abstract. We investigate the connection between monodromy and weight filtration for one-parameter
smoothings of isolated singularities. We give a formula for the signature of the intersection form in
terms of the Hodge numbers of the vanishing cohomology.
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1. Introduction

Let V be a finite dimensional vectorspace and let N be a nilpotent endomorphism of
V. Then for each integer n there exists a unique decreasing filtration W = W ( N, n )
of V such that N (Wi ) C Wi-2 for each i and the induced map Ni : GrWn+j ~
GrWn-i is an isomorphism for all i.

If F : Z - C is a flat projective morphism with smooth generic fiber, then
associated to the critical value 0 we have a limit mixed Hodge structure Hn(ZF)
whose weight filtration is equal to W (N, n) where N is the logarithm of the
unipotent part of the monodromy transformation T around 0.
A similar situation arises in the case of an isolated hypersurface singularity

f : (Cn+1, 0) ~ (C, 0) and its vanishing cohomology n(Xf,0). Again we have a
monodromy operator T, but now the description of the weight filtration is slightly
more complicated: write

where Hn(Xf,0)1 (resp. Hn(Xf,0)~1) is the subspace on which T acts with eigen-
value 1 (resp. eigenvalues ~ 1). Then W = W(N, n + 1) on Hn(Xf,0)1 and
W = W(N, n) on Hn(Xf,0)~1.

In this note we deal with the case of the weight filtration on the vanishing
cohomology of a one-parameter smoothing of an isolated singularity. Part of the
results were announced in [9] with a short indication of proof. In this general case the
decomposition (1) has to be replaced by a suitable decomposition of GrWHn ( X j,o).
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We also give precise results about the polarizations on these summands and express
the index of the intersection form (in the even-dimensional case) in terms of Hodge
numbers. This generalizes and simplifies [8] Theorem 4.11 and [9] Theorem 2.23.
The main tool in our proof is a strong globalization theorem for one-parameter
smoothings of isolated singularities, in the spirit of the Appendix of [4].

The author thanks the University of Hannover for its hospitality in June-July
1994, the Forschungsschwerpunkt Komplexe Mannigfaltigkeiten for its financial
support and Wolfgang Ebeling for his suggestions and encouragement.

2. Monodromy and weight filtration

Let (X’, x) be an isolated singularity of a complex space of pure dimension n + 1,
and f : (X’, x ) ~ (C, 0) a holomorphic function germ. Suppose that X := f-1(0)
has an isolated singularity at x. We let X’@ denote the Milnor fibre of f at x. We
first sharpen a globalization theorem due to Looijenga [4]:

THEOREM 1. Let f : (X’, x) ~ (C, 0) be a smoothing of an isolated singularity
of pure dimension n. Then there exists a flat projective morphism F : Z - C, a
point z E Zo and an isomorphism h : (X’, x) --+ (Z, z) such that F o h = f and
F is smooth along Zo B tzl and such that the restriction mapping Hn(ZF, C) -
Hn(X’f,x, C) is surjective. Here ZF denotes the generic fibre of F.

Proof. If n = 0 then f is finite, hence projective. So in the sequel we suppose
that n  1. We follow the proof of [4]. Let Y be an affine variety of dimension
n + 1 with a unique singular point y and P a regular function on Y such that the
germ f : (X’, z) - (C, 0) is biholomorphic to P : (Y, y) ~ C. The existence
of Y such that (X’, x) - (Y, y) follows from work of Artin [1] and Hironaka [2],
and the existence of a polynomial P with the desired properties follows from finite
determinacy for germs with isolated singularities, due to Mather and Looijenga
[4]. We assume Y to be embedded in affine N-space such that y = 0. Let m denote
the ideal of regular functions on Y vanishing at y. Fix a positive integer k such
that all germs P + g for g E mk are analytically isomorphic to P. Let Z’ denote
the projective closure of Y. We may assume that Z’ B {y} and Z’ B Y = Z’~ are
smooth.

Choose a sufficiently general (to be made precise below) homogeneous poly-
nomial g of degree d  k sufficiently big and let Q = P + g. Let Z = {(03B6, t) E
Z’  C| 03B6d0Q(03B61/03B60,..., 03B6N/03B60) = t03B6d0}. We embed Y in Z as the graph of Q and
let z = ( y, 0). The projection F of Z onto the second factor provides a globaliza-
tion of f. We will show that we can choose g in such a way that it has the desired
properties. First we require that 9 defines a smooth hypersurface in pN-1 which is
transverse to Z’~ and that z is the only critical point of F on F-1 (0).
We fix a good Stein representative f : X’ ~ à for the germ f in the sense

of [3] Chapter 2.B. Write 03A9·f = nXI / df 1B nxtl. By [3] Theorem 8.7, the sheaf
Hnf*(03A9·f) is coherent. Let Wy = j*03A9n+1YB{y} where j : Y B {y} ~ Y is the inclusion
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map. Put Yt = Q-1 (t). First observe that for t ~ 0 sufficiently small the restriction
map Hn(Yt, C) ~ Hn(X’f,x, C) is surjective. This follows from the specialization
sequence

(here we use that F has no critical point at infinity) and the fact that for an affine
variety of dimension n the cohomology groups are zero in degrees &#x3E; n. Moreover,
for such t there is a natural map p : H0(Y,03C9Y) ~ H0(Yt, 03A9nYt) ~ Hnf*(03A9·f)(t)
which is the composition of the map ~ ~ the restriction to Yt of ~/dP and the
restriction to X’f,x. Then p is the composition of two surjections, hence surjective.
(The second map is surjective as Hn(Tt, C) ~ Hn(X’f,x, C) is surjective.) Choose
1/1, ... , 1/r e H0(Y,03C9Y) whose images generate Hnf*(03A9·f)(t) for all t ~ 0 suffi-
ciently small. If 9 is a small perturbation of f, they will still generate Hng*(03A9·g)(t)
for all t ~ 0 sufficiently small, again by Looijenga’s coherence theorem.

There exists l E N such that 1/1 , ... , TIr extend to sections of 03C9Z’(lZ~). Let D =
Z’~ ~ Z’0 = Z’~ ~ Z’t. Then ~1/dQ,...,~r/dQ extend to sections of 03A9nZt((l - d)D).
So if d  l the map H0(Zt,03A9nZt) ~ Hn(X’f,x,C) is surjective. Then a fortiori
Hn(Zt, C) ~ Hn(X’f,x, C) is surjective.

By [9] we have the following exact sequences of mixed Hodge structures
associated with the Milnor fibre X’f,x of f at 0:

where the subscript 1 denotes the generalized eigenspace of T for the eigenvalue
1 and j V = N = log(T) (resp. V j = Nc = log(Tc)) on Hnc(X’f,x)1 (resp.
Hn(X’f,x)1). We recall
THEOREM 2.

See [9] Corollary 1.12. Both N and Ne map Wi to Wi-2-
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THEOREM 3. For all i  0 the map

is an isomorphism.

REMARK 4. In the hypersurface case, i.e. when X’ is smooth, the map V is an
isomorphism and we recover [8] Corollary 4.9.

Proof. We choose a flat projective morphism F : Z ~ C, a point z E Z and
an isomorphism h : (X’, x) - (Z, z) such that F o h = f and F is smooth along
Z0 B {z} as in Theorem 1. Let ZF denote the generic fibre of F. Then one has the
exact sequence of mixed Hodge structures

where Hn(ZF) carries the limit mixed Hodge structure. There is a monodromy
action T on this sequence, and T acts as the identity on Hn(Zo). We have the
following sequence

and N = kt o V o k. As k is surjective, its transpose kt is injective and defines
an isomorphism of mixed Hodge structures im(V) - im(N) such that kt o Ne =
N o kt. As W = W(N,n) on Hn(ZF)1 we get that W = W(N,n+1) on im(N).
We conclude that W = W(N,, n + 1) on im(V).

It follows that GrW(im(V)) is completely determined by the kemel of Ne
on im(V). In order to determine this kemel, observe that (4) implies that ker(V)
has weights  n and that (7) implies that coker(j) has weights  n + 1. Hence
ker(V) C im( j ). So we have the exact sequence

and hence ker(Nc) has weights  n. By considering the action of Ne on the exact
sequence

we obtain the exact sequence

and hence ker( So from (5) we obtain

LEMMA 5. We have the exact sequence of mixed Hodge structures
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THEOREM 6. Regarding the map Hnc(X’f,x) ~ Hn(X’f,x) we have that

is an isomorphism for all i  0, i.e. W = W(N, n) on im(j).
Proof. Choose a globalization F : Z ~ C of f as in the proof of Theorem 2.

Then j is factorized as

Let pn (ZF) = ker(L: Hn(ZF) -+ Hn+2(ZF)) denote the primitive cohomology.
Here L is the cup product with the hyperplane class. As a general hyperplane does
not pass through the point x, the image of kt is contained in Pn(ZF).
We have the nondegenerate pairing S on Pn(ZF), given by

It is (-l)"-symmetric, Wa = (W2n-1-03B1)~ and S(Nx, y) + S(x,Ny) = 0.

Moreover N03B1 : GrWn+03B1Pn(ZF) ~ GrWn-03B1Pn(ZF) is an isomorphism for all
03B1  0. If Pn+a := ker(N03B1+1 : GrWn+03B1Pn(ZF) ~ GrWn-03B1-2Pn(ZF)), the form
(x,y) ~ S(Cx,N03B1y) is hermitian positive definite on Pn+a by [7], Lemma
6.25.

Let Qa = GrWn-03B1ker(k) C GrWn-03B1Pn(ZF). Then GrWn+03B1 im(j) ~ (Q03B1)~ as
GrWn+03B1 ker( j ) = 0. Therefore,

so we have to show that

Clearly, Q a C N a Pn+a as N = 0 on ker(k). So let x e N03B1(Q03B1)~ n Q03B1. Write
x = Nax’ with x’ E Pn+a n (Q03B1)~. Then S(Cx’, Nlxl) = 0 hence x = 0.

THEOREM 7. (i) For all i &#x3E; 0 the map

is an isomorphism;
(ii) for all i  0 the map

is an isomorphism.
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Proof. For i &#x3E; 0 we have GrWn+i ker(V) = 0 so

This space is mapped isomorphically to GrWn-i+2 im(V) by Ni-l according to
Theorem 3. As coker(V) has weights  n + 2, we have

This proves (i). Ones proves (ii) similarly using Theorem 6 instead of Theorem
3.

3. Primitive decomposition

Let V be a finite dimensional vector space and N a nilpotent endomorphism of
V, n an integer and W = W(N, n). Then we have the following decomposition
of GrW(V). Recall that Ni : GrWn+i(V) ~ Grwi(V) is an isomorphism for all
i  0. Put

for i  0 and 0 else. Then we have the primitive decomposition

We will give an analogous but more subtle decomposition of GrWHn(X’f,x)1 and
GrWHnc(X’f,x)1 (we use the same notation as in the preceding section). This was
first mentioned in [6] and proved by Saito in a letter to the author. Define

for i  0 and 0 else, and

for i &#x3E; 0 and 0 else. By Theorem 7 Bn+i is mapped isomorphically to Grw i ker(V)
by Ni o j and An+i is mapped isomorphically to GrW ker(j) by V o Ni-1.

THEOREM 8. We have

and
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Proof. Define a graded vectorspace C by C2a = 0 and

Define an endomorphism À of degree -2 of C as 03BB(x, y) = (j(y), V(x)). From
Theorem 7 we obtain that for all i  0 the map Ai : C2n+i --+ C2,,-i is an

isomorphism. Hence, if D2n+i = ker(03BBi+1: C2n+i --+ C2n-i-2) for i  0 and 0

else, then we have that the map 03BB03B1 : D2n+; - C2n+z-« is injective for 03B1  2i and
else the zero map. We obtain the primitive decomposition

Finally observe that D2n+2i+1 = An+i+1 ~ Bn+i.

REMARK 9. The previous theorem leads to the decomposition

with B = ~03B1 ~i0 nijB03B1+2i and A = ~03B1~i0 NiA03B1+2i. We have W
W(N, n) on B and W = W(N,n + 1) on A. Similarly we have

with B’ - ~03B1 ~i0 NiB03B1+2i and A’ = ~03B1 ~i0 V Ni Aa+2+2i. These are
decompositions as graded mixed Hodge structures. We have W = W(Nc,n)
on B’ and W = W ( Ne, n - 1) on A’. The maps V : A ~ A’ ( -1 ) and j : B’ ~ B
are isomorphisms. Observe that A = 0 if and only if (X, x ) is a rational homology
manifold and that B = 0 if and only if (X’, x) is a rational homology manifold.

See also [5] for the case of isolated complete intersection singularities.
We finally want to indicate how one can polarize the mixed Hodge structures

GrWHn(X’f,x) and GRWHnc(X’f,x). For the part of these on which the monodromy
acts with eigenvalues ~ 1, we can use the global case, and these mixed Hodge
structures are polarized by N. So let us consider the eigenvalue 1 part.

By Remark 9 it suffices to define polarizations on the Hodge structures Ai and
Bi, i.e. on the graded quotients of the local cohomology groups.

Define the pairing

by
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THEOREM 10. The form (x, y) ~ ~j(x), Niy) polarizes Bn+i for all i  0. The

form (x, y) H ~x, VNi-1y~ polarizes An+i for all i  1.

Proof. Fix a globalization F : Z ~ C as in Theorem 1. We have the inclusion
kt: GrWn+iHnc(X’f,x)1 ~ GrWn+iPn(ZF)1; observe that ~k(z),~~ - S(z,kt(~))
for ~ e Hnc(X’f,x) and z e Hn(ZF)1.

Let i  0. For 0 ~ 03B6 ~ Bn+i we have Ni+1c03B6 = 0 hence kt(ç) E Pn+i . This
implies that ~Cj(03B6), Ni(03B6)~ = S(Ckt03B6, Ni(kt03B6)) &#x3E; 0.

Let i  1; then the map k : GrWn+iPn(ZF)1 ~ GrWn+iHn(X’f,x)1 is an iso-
morphism, as k is surjective and ker k = im(Hn(Z0) ~ Hn(ZF)) is of weight
 n. Let ~ e An+i and z E Pn+i such that ~ = k(z), then Ni~ = 0 implies that
N i z E ker(k) C ker( N ) so Ni+1 z = 0. Hence again z e Pn+i. So if z ~ 0 we
have ~C~,VNi-1~~ = ~Ck(z),VNi-1k(z)~ = S(Cz,Niz) &#x3E; 0.

As an application we consider the intersection form h on Hnc(X’f,x,R) given
by h(w, ~) = ~X’f,x 03C9 1B ~ = (-1)n(n-1)/2~j(03B6), ~~. Clearly its null space is equal
to ker(j). In the case that n is even, h is a symmetric bilinear form, and we will
compute its index in terms of the Hodge numbers

Note that if tLpq = dim GrpFGrWp+qHnc(X’f,, C) then hpq = hn-p,n-q.

THEOREM 1 l. Let n be even. Then the index u( h) of h is given by

Proof. First note that Wn-1Hnc(X’f,x) is an isotropic subspace of h which
contains its null space. Moreover the orthogonal complement of Wn-1Hnc(X’f,x)
with respect to h is equal to WnHnc(X’f,x). Therefore h induces a symmetric
bilinear form h’ on GrWnHnc(X’f,x) such that 03C3(h’) = 03C3(h). We extend h’ to a
hermitian form on GrWnHnc(X’f,x, C). Let

Then we have the decomposition

which is orthogonal with respect to h’. It follows from Theorem 10 that h’ is definite
on each of these summands, and its sign on Nip+i,q+in+2i and VNi-1Ap+i,q+in+2i is
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equal to (-1)p+i (note that C = (-1I)p+n/2 on these summands). Finally observe
that

and
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