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Introduction

Let X = Xd be a projective variety of dimension n and degree d embedded in
IpN: then the group Lin(X) of projectivities sending X to itself is a linear algebraic
group defined by equations of degree at most d .

In fact, one can find polynomials Pl,..., Pr of degree at most d whose common
zero set is X and one can observe then that Lin(X) C PGL(N + 1) is defined by
the infinite set of equations Pi(gx) = 0 for each i = 1,..., r and for each x in X,
where g E PGL(N + 1). But these equations Pi (gx) = 0 have the same degree in
g and x.

There are two possibilities now, viz., either

(i) Lin(X) is a finite group or
(ii) Lin(X) has dimension bigger than zero.

In case (i), as was essentially observed by Andreotti in [An50], a variant of the
Bezout theorem shows then that card(Lin(X))  d(N+1)2. In fact more generally
if a variety X C IpN is the unique irreducible component of top dimension of the
intersection of hypersurfaces of degree  m then we have the bound

provided that Lin(X) is finite. Taking for m the degree d of X gives the above
estimate.

In particular, by the same argument the intersection of Lin(X) with the linear
subspace of diagonal matrices has card  mN.
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In case (ii), since any linear algebraic group of positive dimension contains a
subgroup isomorphic either to C or to C*, by Rosenlicht’s cross-section theorem
([Ro56]) it follows that (cf. [Ma63]) X is birationally ruled .

Our first result is a particular issue of this alternative.

THEOREM 0.1. Let X = Xd be a projective variety of dimension n and degree
d in JPN, and let G be an abelian subgroup of GL(N + 1) acting faithfully on X.
Then either

2022 card(G)  d2n or
2022 X admits a linear C* -action.

At first glance it seems that the bound card(G)  d2" is often less effective than
the Andreotti-type estimate card(G)  d N , but we should observe that our point
of view is to consider n fixed (whereas N can go to infinity): thus only our bound
gives a polynomial bound in the degree. In the later applications to varieties of
general type N moreover depends rather badly on n and d.
We may remark that C* contains finite subgroups of arbitrary order, but these

subgroups are all cyclic: in the rest of the first section we elaborate on this remark
as follows. If there is a linear action of a finite abelian group having subgroups with
a small number of generators, we relate bounds for the index of such subgroups to
the existence of linear (C* )k -actions on X.

At this point the reader might wonder why we are interested about the linear
actions of finite abelian groups? To answer this question we need a small historical
digression. For a curve C the groups Bir(C) of birational automorphisms and
the group Aut(C) of biregular automorphisms coincide. After Schwarz and Klein
proved the finiteness of the group Aut(C) of automorphisms of a curve C of genus
at least 2, Hurwitz [Hu93] showed that one has indeed a sharp estimate

card(Aut(C))  42(2g - 2).
In higher dimension, after it was realized that even the group Aut(X) could be
discontinuous and infinite, thus not an algebraic group (cf. [PS97]), emerged the
idea that the right analogue of a curve of genus g at least 2 would be a variety X
of general type. For these, Bir(X) acts linearly on a pluricanonical system which
yields a birational image of X. Matsumura showed ([Ma63]) that for varieties of
general type Bir(X) is finite.

Earlier, Andreotti ([An50]) had given an explicit bound for card(Bir(X)) when
X is a surface of general type. Unfortunately his bound is exponential in the
birational invariants of X, whereas Hurwitz’s bound is linear.

The first progress conceming polynomial bounds in higher dimension was
obtained by Howard and Sommese [HS82], who pointed out the important role of
the study of the actions of abelian groups. They proved a quadratic bound for the
cardinality of an abelian group acting on a surface of general type, and remarked
that by a classical result of Jordan the stabilizer of a point contains an abelian
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subgroup whose index is bounded by a constant depending only on the dimension
n of X.

Using this approach, and the existence of invariant loci of bounded degree for
the action of the group Bir(X) (Weierstrass and discriminant loci) Corti [Co91]
was able to give a polynomial upper bound in the case of surfaces, immediately
followed by Huckleberry and Sauer [HS90] who used some deep results on the
structure of finite groups. Finally Xiao [Xi90] first obtained a linear estimate in
the abelian case, later ([Xi93] and [Xi]) extended Hurwitz’s result to surfaces of
general type proving a linear bound with coefficient (42)2. Since it is not clear to
us that the approach à la Hurwitz of considering the quotient X/Bir(X) has any
chance of being carried out in dimension 3 or more, and since for surfaces all other
approaches have as a initial step the polynomial bounds in the abelian case, we
provide in Section 2 a solution to this step in higher dimension:

THEOREM 0.2. Let X be a variety of general type which has at worst log-terminal
Gorenstein singularities and with Kx nef. Let G C Bir(X) be an abelian group
of birational automorphisms. Then we have the following bound

Conceming the hypotheses of the above theorem, we should remark that an
essential ingredient in the proofs by Andreotti and the others was the theorem
about the existence of a fixed explicit m such that the mth pluricanonical map is
birational (this number is 5 for surfaces, cf. [Bo73]). To our knowledge, a general
result of this sort is still missing in higher dimension (even in dimension 3, in spite
of Mori’s result about the finite generation of the canonical ring). Therefore we
have to restrict to the case (KX nef) where the Riemann-Roch formula guarantees
that the plurigenera grow fast enough, and we use results of Demailly and Kollar
yielding an explicit but very large m depending only on the dimension. Since our
bounds in Section 2 (probably also in Section 1) are far from being optimal, we
devote Section 3 to the analysis of an inductive method, using the semipositivity
of direct images of relative canonical sheaves, to obtain a lower degree bound.

Our result there is limited for simplicity to dimension 3:

THEOREM 0.3. Let X be a 3-fold of general type and let G be an abelian
subgroup of Bir(X). Let m be a positive integer such that HO (X, mKX) contains
an eigenspace for the action of G of dimension at least 2. Then we have

card(G)  max(6P2(X), P3m-2(X)).
Here Pk(X) denotes the kth plurigenus of X.

If one would be able to show the existence of such an integer m depending
only on the dimension (cf. [Xi90]), then we would get the desired linear bound.
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Combining the above theorem with the techniques introduced in the previous sec-
tions, we are able to prove a polynomial estimate of degree 4 in the 3-dimensional
case.

In the final section we pose some questions whose answer would be important
in the study of higher dimensional varieties and their groups of automorphisms.

We acknowledge support from the DFG-Schwerpunktprogramm "Komplexe
Mannigfaltigkeiten" and the 40%-program M.U.R.S.T.

This collaboration takes place in the frame of the AGE project, H.C.M. contract
ERBCHRXCT 940557.

The final version was written while the first author was "Professore distaccato"
at the Accademia dei Lincei.

Added in Proof
In the mean time three more papers have been written [Ji95], [Sz95], [Xi95], the
last two inspired by our paper, making substantial progress. In [Ji95] it is stated
that abelian automorphism groups of minimal 3-dimensional smooth projective
varieties X can be bounded linearly in K3x. Xiao Gang [Xi95], combining ideas
from our paper and his technique from [Xi90], does the same in arbitrary dimension.
Finally Szabb [Sz95] proves the following results:

. Let Xn C JPN be a projective variety of dimension n and degree d such that
Lin(X) is finite. Then there is the bound

If Lin(X) is in addition abelian, there is the optimal bound

as suggested in Remark 1.2 and conjectured independently by C. Peters.
e Let X be a minimal n-dimensional variety of general type and let r denote its

index. Then

where f and g are functions depending only on n and not on X.

We like to thank the referee for suggesting to formulate Corollary 1.6.

1. Abelian groups acting linearly on projective varieties

In this section X = Xd C JPN will be an embedded projective variety of dimension
n and degree d. A linear C* - action on WN is given as follows: there exist coordinates
xo, ... , xN, integers ao,..., aN such that the ideal generated by their differences
(ai - aj) is the whole ring of integers and the action of cC* on JPN
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is given by

The above condition that the differences (a2 - aj) be coprime guarantees that we
have an injective homomorphism into PGL(N + 1).
We shall say that X admits a linear C*-action if there is a linear C* -action on

WN leaving X invariant.
We shall say that X admits an abelian linear action of order if there is an

abelian subgroup G of GL(N + 1) of order k which embeds in PGL(N + 1) and
leaves X invariant.

Since C* contains cyclic groups of any order, if X admits a linear C-action.
then X admits an abelian linear action of arbitrary order.
We have the following striking converse:

THEOREM 1.1. Let X = Xd be a projective variety of dimension and degree d in
]pN , and let G be an abelian group acting linearly on X as above. Then either

2022 card(G)  d2n or
2022 X admits a linear C* -actt’on.

REMARK 1.2.
. Let X be the Fermat hypersurface in Pn+1. Then for d  3 we have the exact
sequence

1 ~ (JLd)n+1 - Lin(X) ~ Sn+2 ~ 1,
where 03BCd is the group of dth roots of unity and Sn is the symmetric group. In
particular from this we see that the order of an abelian subgroup of Lin(X)
cannot be bounded by a polynomial in d of degree smaller than n + 1.
Moreover in this example all the monomials of degree strictly smaller than
d correspond to distinct characters of the abelian group. Therefore (compare
the first step of the proof of the above theorem) in general there is no invariant
rational function of degree strictly smaller than d.

. If X is a smooth hypersurface, then KnX = d(d - n - 2)n. More generally for
a smooth complete intersection K% 5 dn+1.
In analogy with Xiao’s conjecture, one may ask whether there exists a con-
stant C(n), such that in the above theorem the sharper estimate card(G) 
C(n)dn+1 holds.
At least for hypersurfaces this was proven by Howard and Sommese [HS82].

Proof of Theorem 1.1. Without loss of generality we may assume that X is
nondegenerate. We shall prove the result essentially by induction on n.

Step (1) We shall show that either there exists a linear (cC* ) n-action on JPN such
that X is the closure of an orbit, or there exist polynomials Fl , Fo of degree at
most d such that the rational functions FI /Fo is G-invariant and non constant
on X.
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Step (2) Assume 0 is as in Step (1), let f : X ~ C be its Stein factorization,
and let Y be a general fibre of f. Let q be the degree of C - ]pl, 8 the degree of
Y in rN and G’ be the subgroup of G leaving Y invariant. Then

card(G)  card( G’),
and moreover

03B303B4  d2.

Proof of Step (1 ). Let xo, ..., )XniYn+l) ..., yN be a coordinate system on
PN given by eigenvectors of the linear action of G and such that xo, ..., xn are
algebraically independent on X. Therefore the projection

7rj: X ~ Pn+1,

given by the coordinates XO, ..., xn, yj has as image an irreducible hypersurface
Ej of degree at most d.

Let x = (xo, ... , xn ) and let Pj = Pj(x, Yj) be the equation of 03A3j. Since X is
nondegenerate, the degree of Pj is at least 2, whence Pj, being irreducible, is not
a monomial. Let Fo and FI be two distinct monomials appearing in Pj: since the
projection 7rj commutes with the action of G, Pj is an eigenvector for G, whence
the monomials Fo and Fi have the same eigenvalue, and the rational function
~ = F1/F0 is G-invariant.

Clearly 0 is constant on X if and only if there exists A such that Fl - 03BBF0 = 0
on X. But then Fl - AFo, being a function of x and yj in the ideal of X is a multiple
of Pj; since its degree equals the one of Pj, Pj = Fl - 03BBF0 is a binomial. Notice
that yj must appear in Pj but cannot divide it: therefore Pj will be of the form

We are therefore done unless for each j = n + 1,..., N our polynomial Pj is a
binomial. Up to multiplying yj by a constant we may assume that X is contained
in the locus of zeroes Z of the polynomials Pj = xD(j) - Yi -j xB(j). Let a be the
least common multiple of the aj’s and write a = ajbj. Then Z is stable under the
(C*)n-action which makes t = (to, ..., tn) operate on PN by

Let 7T be the linear projection to Pn given by the coordinates x and let U ~ (C*)n C
Pn be the open set where all coordinates are nonzero. Then

(i) ir - (U) n X is dense in X since the restriction of 03C0 to X is dominant
(ii) 03C0-1(U) n X is contained in 03C0-1(Z) which is a finite union of orbits of

dimension n.
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Therefore X is the closure of an orbit of dimension n and Step (1) is proven.

Proof of Step (2). G acts trivially on r1 by construction. Therefore the G-orbit
of any point of the curve C has cardinality bounded by 03B3. We conclude the proof
of the first assertion since the subgroup G’ is the inverse image of the stabilizer of
a general point of C. The inequality 03B303B4  d2 follows since ,6 is the degree of the
hypersurface on X cut out by a polynomial Fl - 03BCF0 which is of degree at most
d.

End of the proof. By induction either we are as in Step (2) with

which implies the desired bound

or there exist invariant rational functions 01, .... 4Jk: X ~ rI such that

(i) 1/J: X - Pk given by 4Jl, ... , 4Jk is dominant
(ii) the general fibre W of the Stein factorization of e dominates Pn-k under the

projection p given by (xo, ... , xn-k )
(iii) for each general fibre W there exists a (C*)n-k-action sending t =

(tu, tn-k) to a diagonal matrix diag(ta0,..., tan-k, tE(n-k+1), ,..., tE(N))
with a E (j)|  dnN and with W the closure of an orbit of dimension n - k.

The (C*)n-k-actions as in (iü) are only finitely many, therefore there exists a
single (C*)n-k-action as above such that the general fibre W is an orbit closure.
In particular this action leaves X invariant as required. Q.E.D.

We are going to show now that the above proof can be used to derive a more
precise statement. For this purpose we need a well known lemma.

LEMMA 1.3. Let T = (C* )’n and assume that we are given a T -action on IP N
and a nondegenerate orbit Tx. Diagonalize the action of T and assume that g is a
diagonal projectivity which leaves T x invariant. Then g belongs to the T -action.

Proof. We view PN as the projective space of diagonal matrices. Since Tx
is nondegenerate, x is an invertible diagonal matrix. For general t E T there
exists t’ E T such that gtx = t’x, here we identify t and t’ with their images in
PGL(N +1). But then g = t’t-1, as we wanted to show. Q.E.D.

DEFINITION 1.4. Let us say that a projective variety X satisfies property Ph if
for all abelian linear actions of a group G on X there exists a subgroup G’ c G of
index [G : G’]  d2" h and admitting a set of h generators.

COROLLARY 1.5. Let G and X be as in Theorem 1.1. Then the maximal integer
m such that X admits a linear effective (C*)m-action (i.e., with a general orbit on
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X of dimension m) equals the minimal integer h such that property Ph holds for
X.

Proof. If there exists an effective (C*)m-action, since (C*)m ~ (Z/pZ)m for
each positive integer p, you see immediately that properties P0,..., Pm- 1 do not
hold. Conversely, if moreover there is no (C*)m+1-action, then in the proof of
Theorem 1.1 we construct a rational map 1b : X ~ Pk with k maximal such that
the general fibre W of e is the closure of an orbit of an effective (C*)m’-action
with m’ = n - k. If we let G’ be the stabilizer of W we see that the. property Pm,
holds by Lemma 1.3. So by the above argument we have m’  m. On the other
hand we have found an effective (C* )m’ -action, hence m  m’. This completes
the proof of the Corollary.

In fact the proof of Theorem 1.1 shows the following result.

COROLLARY 1.6. Let Xdn C JPN be a projective variety of degree d and dimension
n. Assume that Lin(X) D G, a finite Abelian subgroup of GL(n + 1). Then there
exists a G-invariant pencil of hypersurfaces of degree at most d.

2. Abelian groups of automorphisms of varieties of général type

We assume throughout this section that X is a variety of general type having at worst
log-terminal Gorenstein singularities and with KX nef. By the results of Demailly
[De93] and Kollàr [Ko93] mKX is globally generated for m  2(n + 2)! (n + 2),
where n = dim X. But then consider the finite morphism 03A6|mKX| : X - A,
and take a point z E 0394reg such that on its inverse image 03A6 is etale, finite, and
take then a general complete intersection curve C D 03A6-1(z). C is smooth, and
|nmKX| ~ InmKxlcl is onto. Since |nmKX|C| is very ample we have the
birationality of |nmKX| (cf. [Wi81,87]). Since the sum of a birational and free
linear system with a free linear system is a birational and free linear system, |mKX|
gives a birational morphism onto its image as soon as m  2(n+1) (n + 2) ! (n + 2).
If thus m satisfies the above inequality we have a morphism X ~ Y C PN such
that the degree d of Y satisfies d  m n Kx . We want to give polynomial bounds
for the order of an abelian subgroup G of Bir(X).

Clearly G has a faithful linear action on IpN which leaves Y invariant, and
therefore we can apply the results of section 1 to obtain the following theorem.

THEOREM 2.1. Let X be a variety of general type which has at worst log-terminal
Gorenstein singularities and with Kx nef and let G C Bir(X) be an abelian group
of birational automorphisms. Then we have the following bound

where
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COROLLARY 2.2. Assume that X is an n-dimensional variety of general type
admitting a birational model X’ with at worst log-terminal Gorenstein singularities
and Kx’ nef. Let G C Bir(X) be an abelian group of birational automorphisms.
Then, if we let Pm(X) be the mth plurigenus of any desingularization of X, and
we define y as

we have

where C(n) = [2(n + 1)(n + 2)!(n + 2)]n2 n .
Proof. In fact KnX’ = y since the plurigenera are birational invariants, thus we

simply apply Theorem 2.1 to X’. Q.E.D.

3. Sharper bounds in the 3-dimensional case

In this section we want to improve our bounds in the 3-dimensional case, keeping
essentially the same hypotheses as in Section 2.

In fact in Section 2 we have seen that if an n-dimensional variety of general
type has a birational model X with at worst Gorenstein log-terminal singularities
and KX nef, then there exists an integer

such that the following property holds.
For each abelian group G C Bir(X) let V = H0(X,OX(mKX)), so that G

acts linearly on V, and we can diagonalize the action of G to get the eigenspace
decomposition

Then we have:

e dim V~  2 for some character x e G*.

We assume from now on that X is 3-dimensional and we consider a G-invariant

pencil
03BB:X ~ P1.

given by a 2-dimensional subspace of Vx.
Let X’ C X x P1 be the graph of the rational map À. G acts on X’ through

g·(x,t) = (g. x, t). Taking a resolution of singularities X we obtain a morphism
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whose Stein factorization will be

The morphism X ~ X will be denoted by 7r. Let u E ]pl be a general point. Then
g-1(u) = {t1,..., tk} and f -1 (u) = Ytl U... U l’tic. The smooth surfaces Yi are
of general type by the "easy" addition formula

Clearly the group G acts birationally on X and biregularly on C compatibly with
the above factorization diagram. We have a subgroup G’ of G of index 5 k which
acts as the identity on C. Therefore we can reduce to the case where G c Bir(Y),
Y a general fibre of  ~ C. Xiao [Xi90] proved for minimal surfaces of general
type S a linear bound

provided K2S  140. Taking for S the minimal model of Y we observe that

and that K2S = P2(S) - ~(OS) = P2(Y) - ~(OS). Since ~(OS)  1 it is therefore
enough to give an upper bound for P2(Y). To do this consider the map

By Fujita [Fu78], Kawamata [Ka82] and Viehweg [Vi82] the locally free sheaf

is strictly semipositive on C.

LEMMA 3.1. The bundle E 0 wc 0 O(D) is globally generated for any divisor
D on C of degree at least one.

Proof. Take any point q E C and consider the exact sequence

It is enough to show

By Serre-duality this means

A nonvanishing section of E* Q9 Oc (-D + q) gives an injection
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Since E* is strictly seminegative this implies that deg OC(D - q)  0 what is

absurd. Q.E.D.

REMARK 3.2. The same proof shows more generally that

is globally generated for k  1 and all line bundles L on C with deg L  2, and
deg L  1 for k  2.

The lemma implies that

for each effective divisor of degree at least one. But

and since

we get

If g, the genus of C, is at least 2 we observe that the index of G’ in G is bounded
by 4g + 4, cf. [Na87]. We can choose D of degree 1 and D’ effective and lin-
early equivalent to Kc - D. Since for every effective divisor D"  D’ we have
H 1 ( C, E ~ 03C9C(D + D" ) ) = 0, we have

whence

Therefore in this case

Assume now g  1. We take D = O(p) for some point p E C and then D - Kc
is an effective divisor of degree at most 3. Since
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we get the inequality

Since

we get

Therefore

Hence we have proved the following result.

THEOREM 3.3. Let X be a 3-fold of general type and let G be an abelian sub-
group of Bir(X). Let rrt be a positive integer such that HD(X, mKX) contains an
eigenspace for the action of G of dimension at least 2. Then we have

card(G)  max (6P2(X), P3m+2(X)).

COROLLARY 3.4. Let X be a 3-fold of general type with at worst log-terminal
Gorenstein singularities and nef canonical bundle KX. Let G be an abelian sub-
group of Bir(X). Then we have

where the constant c can be effectively computed and is in any case strictly smaller
than 1047.

Proof. By what we have seen in Sections 1 and 2, for

the assumptions of the previous theorem are satisfied and it suffices to bound the
plurigenera P2(X), P3m+2(X). Let us carry out the estimate for P3m+2(X), the
estimate for 6P2(X) yielding a smaller number. Let W be a general surface in
(3m + 2)Kx and let C be a general curve section of W by a hypersurface in
(3m + 2)Kx. By restriction and Kawamata-Viehweg vanishing we get that

where the last inequality just comes from bounding by the degree.
Since m is large, the last term is bounded by 28m3. This proves the Corol-

lary. Q.E.D.
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REMARK 3.5. Observe that for each fixed r there are constants a and b such that
for every smooth 3-fold X with KX nef

The first inequality is true in all dimensions.
Proof. The estimate bKnX  Pr(X) follows by restriction as in the above

corollary. The second estimate is obtained as follows: By the Kawamata-Viehweg
vanishing theorem we have for r  2

Since X is smooth, the Riemann-Roch formula yields

Using Miyaoka’s result c2(X)KX  0 we get for r  3 the estimate

REMARK 3.6. By the above we see that morally any polynomial bound in a fixed
plurigenus Pr (X ) is equivalent to a polynomial bound of the same degree in K3X.
If the number m in Theorem 3.3 could be chosen to be a constant, then we would
have a linear bound.

4. Final comments

Replacing the invariant pencil of Section 3 by an equivariant pencil (cf. [HS82]),
certainly has the advantage that we only need Pr  2, but creates the difficulty of
bounding the index of G’ when the genus 9 of the base curve C of the pencil is 0
(the proof of Theorem 3.3 works for an equivariant pencil when g &#x3E; 2 verbatim
and for g = 1 up to multiplication by 6, which is an upper bound for the group of
automorphisms of an elliptic curve which have a fix point). This approach would
be feasible if the following questions would have a positive answer.

QUESTION 4.1. Given a smooth variety X of general type and a fibration f :
 ~ P1 (i.e. f has connected fibres), are there at least 3 singular fibres?

QUESTION 4.2. Be given a smooth variety X of general type and a fibration
f :  ~ P1. Can one give an upper bound for the number of singular fibres which
produces a linear bound in terms of birational invariants in the case where f is
obtained from a pluricanonical mapping 4JmK?
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Both questions have a positive answer in the surface case (cf. [HS82] and in
fact for Question 4.2 one simply applies the classical Zeuthen-Segre formula). In
dimension 3 L. Migliorini [Mi] proved the existence of at least one singular fibre,
cf. also [Kov] in higher dimension.
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