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Introduction

Classical Brill-Noether Theory concems the behaviour of special linear systems
on a general smooth curve C of genus g. Because of the Riemann-Roch Theorem
this is equivalent to the study of secant space divisors (see the definition below) of
the complete canonical linear system IKc on C. In this paper we study the secant
space divisors for a general non-special (not necessarily complete) linear system
on a general smooth curve C.

Let C be a smooth irreducible complete curve defined over an algebraically
closed field K of characteristic 0. We use the following notation for linear systems
on C. Let be an invertible sheaf of degree d on C. An (n + 1)-dimensional linear
subspace V of the space r(C; ) of global sections of  defines an n-dimensional
linear system on C. We identify this linear system with the projective space P(V)
and we write gnd(V). If s is a nonzero element of V, then Ds is the associated
divisor on C. If no confusion is possible, we write gd . For an integer e  1, let C( e)
be the eth symmetric product of C. We identify a point on C( e) with the effective
divisor E of degree e on C it represents. For E E C(e) we define

Take a non-negative integer f with e - f  n.

0.1. DEFINITION. E E C(e) is called an e-secant (e - f - l)-space divisor if
dim(gnd (-E)) = n - e + f. (In case gd defines an embedding C C Pn then the
linear span (E) has dimension e - f - 1. This explains the terminology.)

0.2. NOTATION. Ve-fe(gnd) = {E E C(e):dim(gnd(-E))  n - e + f}. Those
subsets of C(e) have a natural scheme structure (see [1]).
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0.3. FACT. (see [1]) If Z is an irreducible component of Ve-fe(gnd) then dim(Z) 
e - f (n + 1 - e + f ). If e - f (n + 1 - e + f)  0 and if each irreducible
component of Ve-fe(gnd) has dimension e - f (n + 1 - e + f ) then Ve-fe(gnd) is a
Cohen-Macaulay scheme.

0.4. DEFINITION. Assume e - f (n + 1 - e + f)  0 and let Z be an irreducible
component of Ve-fe(gnd). We say that Z has the expected dimension ifdim(Z) =
e - f (n + 1 - e + f ). If each irreducible component of Ve-fe(gnd) has the expected
dimension, then we say that Ve-fe(gnd) has the expected dimension.

In this paper, we prove

0.5. THEOREM. Let C be a general curve of genus g. Let d be an integer with
d  g + 3 and let n be an integer with 2  n  d - g. Let g’3 be a general
non-special n-dimensional linear system of degree d on C. Then Ve-fe(gnd) is non-
empty if and only if e - f(n + 1 - e + f)  0. Whenever non-empty, Ve-fe(gnd) is
a reduced subscheme of C(e) of the expected dimension.

The reducedness statement is the most interesting part and the deepest statement
of the theorem. Let H be the closure in the Hilbert scheme Hilbd;g(Pn) of the locus
parametrizing smooth irreducible curves of degree d and genus g in Pn embedded
by a non-special linear system (of course n  d - g; also H is an irreducible
component of that Hilbert scheme). The reducedness statement of Theorem 0.5

implies that a lot of intersection numbers computed in Chapter vm of [1] give
the number of linear subspaces in Pn (i.e. each one counted with multiplicity one)
satisfying certain conditions with respect to the curve C C Pn corresponding
to a general point on H. As an example, the Cayley-number [(d - 2)(d - 3)2
(d - 4)/12] - [g(d2 - 7d + 13 - g)/2] is the exact number of 4-secant lines of C
if C corresponds to a general element of H C Hilbd;g(P3). As far as I know, such
kind of result was only known for special types of curves (complete intersection
curves; rational curves - see [12]) in P3. Now we have such results for curves
that are general with respect to moduli as abstract curves. In [10], A. Hirschowitz
proves - using methods completely different from ours - that C has finitely many
4-secants lines if C corresponds to a general point on H C Hilbd;g(P3), but he
does not consider the reducedness-problem.

The proof of the theorem is divided in 2 parts. First we prove the theorem in
the complete case (n = d - g). In this case, both the existence and the dimen-
sion statement follows immediately from classical Brill-Noether Theory. For the
reducedness statement we use the Petri-Gieseker Theorem. As E. Ballico point-
ed out to me, from this case both the existence and dimension statement in the

non-complete case follow easily adapting the arguments from [2].
In order to prove the theorem in the non-complete case, we consider the fol-

lowing problem. Let gd = P(V) be a linear system on C and let E e Ve-f (g’3)
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be an e-secant ( e - f - 1 )-space divisor for 9’3. Let W be a codimension 1 linear
subspace of V containing V(-E), then E E Ve-f-1e(gn-1d(W)). Geometrically,
if 9’3 embeds C in P(V*), then W D V (-E) means that W corresponds to a point
in the linear span (E). The inequality

always holds (difference between dimension of Zariski tangent spaces; see

Lemma 3.1). We need to find conditions implying equality.
We prove

0.6. PROPOSITION. Let E E Ve-fe (g’). Suppose each subdivisor E’ of E of
degree n - e + f + 1 imposes independent conditions on gnd(-E) (i.e. gnd(-E -
E’) = Ø) and suppose E - P ~ Ve-f-1e(gnd) for P E E. Then, for a codimension
1 linear subspace W - general under the condition that it contains V (-E) - we
have

In case Y’1 defines an embedding C C P(V*), then the set of points W on (E)
not satisfying the conclusion of Proposition 0.6, is closely related to the concept of
a focal scheme (see e.g. [4]; [5]; [3]). As a matter of fact, the proof of the theorem
in the non-complete case is very much influenced by [5]. We prove a stronger
statement than the above proposition and as such it becomes a generalisation of
Theorem 2.5 in [5].

The organization of the paper is as follows. In Section 1 we recall the description
of the Zariski tangent spaces to Ve-fe(gnd) obtained in [6]. In Section 2 we prove
Theorem 0.5 for the complete linear systems. In Section 3 we prove (the stronger
version of) Proposition 0.6. In Section 4 we finish the proof of Theorem 0.5 in

the non-complete case.
The author would like to thank the referee for his/her valuable comments.

1. Sécant Space Divisors

In this part, we fix an arbitrary smooth irreducible complete curve C and a linear
system gd = gnd(V) on C. Here, V is an (n + 1 )-dimensional linear subspace of
r(C; £) with ,C an invertible sheaf of degree d on C. We simply write vee- f for
the scheme Ve-fe(gnd) introduced in 0.2. Take E E Ve-fe and let TE(Ve-fe) be the
Zariski tangent space of Ve-fe at E. In case E E Ve-f-1e one has TE(Ve-fe) =
TE(C(e)), so now assume E e Ve-f-1e. We recall the description of TE (Vee f
from [6]. In this description we use the common natural identification between
TE(c(e)) and H°(E; OE (E» (see [1]), so we give a description of TE(Ve-f ) as
a subspace of H°(E; OE(E)).
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Let (3: H°(E; OE(E)) ~ V(-E) ~ H0(E; ~ OE) be the map obtained
from the cup-product homomorphism after mapping V(-E) to f( C; (-E)) (i.e.
locally dividing the elements of V (-E) by the equations of E). Let Ov (E) : V ~
H0(E; ~ OE) be the natural restriction map. For e E V(-E), consider

1.1. PROPOSITION.

Now, assume the linear system gd is complete (i.e. V = r(C; )). From the
exact sequence 0 ~ (-E) ~  ~ ~OE ~ 0 we obtain the exact sequence

Because of Proposition 1.1, v E HO(E; OE(E)) belongs to TE(Ve-fe) if and only
if (80 (3) (v ~ V (-E)) = 0. From this observation and then repeating the arguments
from [1], p. 161, 162, we find the following description for TE(Ve-fe) in the case
of complete linear systems.

1.2. PROPOSITION. Suppose 9d is a complete linear system and let E E
Ve-feBVe-f-1e. Consider the so-called Petri map

defined as the composition of the ordinary Petri map

(i.e. the cup-product) and the natural restriction to E. Serre duality defines a
perfect pairing between H°(E; OE (E)) and HO (E; Kc 0 OE). Let [im(03BC)]* C
HO (E; OE(E)) be the orthogonal complement of im (ii) C HO (E; KC 0 DE) with
respect to this pairing. Then

2. The Complete Case

Let C be a general curve of genus g, let n  3 be an integer and let ,C be a general
line bundle of degree g + n on C. Let 9;+n be the associated complete linear system
P(r(C; £)) on C. For integers e; f with e; f  1 and n - e -E- f  1 we write V e-f
instead of Ve-f (gng+n).

2.1. THEOREM. Ve-fe is not empty if and only if e  (n + 1 - e + f ) f . In case
e  (n + 1 - e + f ) f then Ve-fe is a reduced scheme of the expected dimension.
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2.2. REMARK. Once we know that vee- f is of the expected dimension, then the
scheme Vé -f is Cohen-Macaulay. Hence, in order to prove that it is reduced, it is
enough to prove reducedness at a general point of each irreducible component.

2.3. NOTATION. Given any smooth irreducible projective curve C, we assume
that we fix a base point P° e C. Then on J(C) - identified with Pic°(C) - we
consider the well-known subschemes

If G is an invertible sheaf on C of degree d, then we write [] for the point on J(C)
defined by -(-dP0). Clearly dim(r(C; )  r + 1 if and only if [] E Wâ. If
E E C(e) then we write [E] instead of [OC(E)]. If x E WrdBWr+1d then grd(x) is
the complete linear system P(r(C; )) with G e Picd(C) and [] = x.

Proof of Theorem 2.1. Clearly E E Ve-fe if and only if [] - [E] E Wn-e+fg+n-e,
hence [] e Wn-e+fg+n-e + wg if Ve-fe is not empty.

Consider the map  : Wn-e+fg+n-e x W0e ~ J(C) : (x; y) - z + y. Then

im(T) = J(C) if and only if dim(Wn-n+fg+n-e) + e  g. Since C is general, we know
from Brill-Noether Theory that dim(Wn-e+fg+n-e = 03C1n-e+fg+n-e(g) = g-(n-e+f+1)f.
Since [] is a general point on J(C) we obtain both the non-emptiness and the
dimension statement of this theorem.

In order to prove the reducedness statement, we use the stronger Gieseker-Petri
Theorem (a conjecture of Petri, first proved by Gieseker in [9] for arbitrary fields K,
later on there appeared other proofs using however Char(K) = 0: [8]; [11]). This
Gieseker-Petri Theorem states that, for a general curve C and for any invertible
sheaf .Nl on C, the cup-producthomomorphism

is injective.
Assume e &#x3E; (n+1 - e+f)f and let Z be an irreducible component of

vee- f. Let T C Ve-fe+1 x C be defined by (E ; P) E T if and only if E - P  0.
From the dimension statement, we know that Z is not contained in the image
of 03BA: T ~ C(e) : (E; P) ~ E - P. Hence, if E is a general point on Z,
then M = (-E) defines a complete linear system gn-e+fg+n-e without fixed points.
Because of the Gieseker-Petri Theorem, im (Mo) has dimension (n - e + f + 1 ) f ,
hence M defines a linear subsystem g(n-e+f+1)f-2g-2 1 of the canonical linear system
ikcl on C. Since E is general with respect to g(n-e+f+1)f-12g-2, it follows that

g(n-e+f+1)f-12g-2 (- E) 0 because e  (n - e + f + 1)f. Algebraically this means
that the natural restriction map im(03BC0) ~ H°(E; Kc 0 OE) is injective. Using
the notations from Proposition 1.2, it follows that
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and then from Proposition 1.2, it follows that Ve-f is smooth at E.

3. The focal set

As mentioned in the introduction, we make a little disgression now, proving a
sharper version of Proposition 0.6. Let £ be a line bundle of degree d on a smooth
irreducible complete curve C, let V be an (n +1)-dimensional linear subspace of
r(X ; G) and write 9;1 = gnd(V). Let E E C(e) be an e-secant (e - f - l)-space
divisor for gâ. Take a codimension 1 linear subspace W of V containing V(-E).
Then E is an e-secant (e - f - 2)-space divisor for the linear system 9’d-I(W).
Geometrically, if gd defines an embedding of C in pn = P(V*) then W is a point on
the linear span (E) ; if W g C and we take the projection Pn- ~ Pn-1 = P(W*),
then the linear span of the image of E has dimension dim(~E~) - 1.

3.1.LEMMA. dim(TE(Ve-fe(gnd)))-dim(TE(Ve-f-1e(gn-1e(W))))  n+1-e+
f.

Proof. (We use the notations introduced in Section 1.) Since ker(~V(E)) =
ker(~W(E)), im(~W(E)) is a hyperplane in im(~V(E)). For v E TE(Ve-fe(gnd))
and E V(-E) we have 03B203BE(v) E im(~V(E)). Thenv E TE(Ve-f-1e(gn-1d(W)))
if and only if 03B203BE(v) E im(4)w(E)). So, V(-E) defines an (n - e + f + 1)-
dimensional linear family of linear functions

(p03BE(v) is the class of 03B203BE(v)). The intersection of the kemels of those linear functions
is exactly TE(Ve-f-1e (gn-1d(W))). This proves the lemma.

3.2. NOTATION. There is a bijection between codimension 1 subspaces W of
V containing V(-E) and the projective space defined by the dual vectorspace
(V/V(-E))*. Each W e (V/V(-E))* defines a linear map

(the notation pe comes from the proof of Lemma 3.1). We obtain a linear family of
linear maps

Let W E (V/V (-E))*. From the proof of Lemma 3.1 we obtain

if and only if pE(W) is surjective.
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3.3. DEFINITION. The focal set FE of E with respect to gd is defined by

This terminology comes from a comparable definition of focal sets in e.g. [4]; [5];
[3].

The family PE can be considered as being defined by a linear map

The following terminology comes from [7].

3.4. DEFINITION. The family pE is 1-generic if for each v E TE(Ve-fe(gnd)) and
for each s E V (-E) - both nonzero - we have

(One also says: there are no non-trivial pure tensors in ker(A).)

REMARK. For v E TE(Ve-fe(gnd)) and s E V (-E) both nonzero, the equation
À( v Q9 s) = 0 is equivalent to the following statement. For each W E (Y/V (-E))*
one has [(pE(W))(v)](s) = Ps(v) = 0 and this is equivalent to 03B2s(v) = 0, hence
s is a nonzero element of the kernel of the map V(-E) ~ im(~v(E)) : 03BE -
03B203BE(v).

From Theorem 2.1 in [7], we obtain

3.5. PROPOSITION. If the family pE is 1-generic then FE has codimension
dim(TE(Ve-fe(gnd))) - (n-e+f).

Now Proposition 0.6 is implied by the following stronger statement. It is a
generalization of Theorem 2.5 in [5].

3.6. THEOREM. Let E be an e-secant (e - f - 1 )-space divisor for some linear
system 9d on C. Suppose each subdivisor E’ of degree n - e + f + 1 of E imposes
independent conditions on 9d ( - E) (i.e. gnd(-E - E’) is empty).

Proof. Suppose n - e + f +1  2 and suppose for some P E E one has E - P E

Ve-(f+1)e-1(gnd). We are going to prove that pE is not 1-generic. Let El = E - P.e-1 d

We can find s E V with El C D, but E e D,. Take a base 03BE1,..., 03BEn-e+f+1 for
V(-E) with E+P ~ D03BE1; E+P C Dei for 2  i  n-e+f+1. Take a nonzero
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element v of H0(E; OE(E)) with Ei C Z(v). (Here Z(v) is the zero-scheme of
v; it is a closed subscheme of E and we consider it as an effective divisor on C.)
Then 03B203BE1(v) E ~~V(E)(s)~ and 03B203BEi(v) = 0 for i  2, hence v E TE(Ve-fe(gnd)).
Since n-e+f+1  2, we find 03B203BE2 (v) = 0, hence 03BB(v ~ 03BE2) = 0 and so the
family pE is clearly not 1-generic.

Next, assume n - e + f + 1  1 and in case n - e + f + 1  2 assume E - P ~
Ve-(f+1)e for each P e E. We are going to prove that pE is 1-generic. Suppose
v E TE(Ve-fe(gnd)), nonzero, does not induce an injection V(-E) ~ im(~V(E)).
Take a nonzero element 03BE E V(-E) with 03B203BE(v) = 0. Write Ei = Z(v) c E and
E2 = E - Ei. Then E2 + E c Dç, hence gnd(-E - E2) ~ 0. Because of our
assumptions deg(E2)  n - e + f. In case n-e+f+1 = 1, we obtain a
contradiction. Now, assume n-e+f+1  2. Take Q E E2. Because of our
assumptions, we can find 03BE E V(-E) with (D03BE - E) n E2 = E2 - Q. Because
v E TE(Ve-fe(gnd)), we have 03B203BE(v) e im(CPv(E)). But Z(j3ç(v)) = E - Q. Since
E - Q ~ Ve-(f+1)e-1(gnd() we obtain a contradiction.

Further on, we also need the following lemma.

3.7. LEMMA. Let 9d = gnd(V) be a linear system on a smooth curve C and take
E e C(e)(e  n) with dim(V(-E)) = n + 1 - e. Let f = min({e;n + 1 - e})
and assume for some F = P1 + ··· + Pf  E we have dim(V(-E - F)) =
n + 1 - e - f. Take a codimension 1 linear subspace W of V with W D V (-E)
andW(-(E - Pi)) = W(-E) = V(-E) for 1  i  f. Then

(Geometrically, if gnd defines an embedding of C in P’ = P(V*) then W is a point
on the linear span (E) but for 1  i  f, W is not a point of the linear span
(E - Pi), a hyperplane in (E).)

Proof. Because TE(Vee(ged)) = TE (C(e» = HO(E; OE(E)), the inequality

is proven as in Lemma 3.1.

Write E0 = 0  E1 = P1  E2 = P1 + P2  ···  Ef = P1 + P2+ ··· +
PI = F. Because of the assumptions, we can find 03BE-,...,03BEf-1 in V(-E) with
DÇi n (E + F) = E + Ei. Choose VI,.." vf in H°(E; OE(E)) with Z(vi) =
E - Ei. Take v = 03A3ki=1civi with ck ~ 0 and k  f. Then Z(v) D E - Ek but
E - Ek-1 ~ Z(v). It follows that E - Pk C Z(03B203BEk-1(v)) but E et Z(03B203BEk-1(v)).
The assumption W(-(E - Pk)) = W(-E) implies 03B203BEk-1(v) ~ im(~(E)). It
follows that v ~ TE(Ve-1e(gn-1d(W))), hence TE(Ve-1e(gn-1d(W))) has nonzero
intersection with (vl, ... , vf~. This implies dim(TE(Ve-1e(gn-1d(W)))) = e - f,
hence the lemma is proved.
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4. The non-complète case

4.1. DEFINITION. Let 9d = 9d(V) be a linear system on a smooth curve C.
Let e; f be positive integers with n - e + f  1. Suppose E is an e-secant
(e - f - 1 )-space divisor.

(i) We say that E is a good secant divisor if the following two conditions are
satisfied. For each subdivisor E’ of E of degree n - e + f + 1 the linear system
gnd(-E - E’) is empty; for each P e E one has E - P rt Ve-(f+1)e-1(gnd).

(ii) Assume e - (n + 1 - e + f) f  0. We say that 9d is of general secant type
for Ve-fe(gnd) if the following conditions hold: Ve-fe(gnd) is not empty; it is of the
expected dimension; it is reduced as a scheme and for each irreducible component
Z of Ve-fe(gnd), a general point E of Z is a good secant divisor.

(iii) We say that gnd is of general secant type if for all integers e; f  1 satisfying
n+1-e+f  2 one of the following two possibilities occur. If e  (n+1-e+f)f
then Ve-fe(gnd) is empty; if e  (n + 1 - e + f)f then gnd is of general secant type
for Ve-fe(gnd).

4.2. PROPOSITION. Let 9d = 9d(V) be a linear system on a smooth curve C.
Suppose n  3 and assume 9d is of general secant type. Let W E P(V*) be a
general codimension 1 Zinear subspace of V. Then the linear system gd-1 (W) is
of general secant type.

Proof. Let W e P(V*). Elements E e Ve-fe(gn-1d(W))(n-e+f  2; f  1)
can be obtained in two ways:

The irreducible components of Ve-fe(gn-1d(W)) have dimension at least e -
(n-e+f)f.But Ve-fe(gnd) is empty if e  (n+1-e+f)f and vee-! (9d) has
the expected dimension if e  (n + 1 - e + f)f. It follows that for a general point
E of some irreducible component of Ve-fe(gn-1d (W)) possibility (ii) occurs.

Let Ue-(f-1)e = Ve-(f-1)e(gnd)BVe-fe(gnd) and consider

defined by: (E; W) E T if and only if W D V(-E). Consider the projection
morphism p’ : T - Ue-(f-1)e. The fibres of this morphism have dimension
n-(n-e+f), hence dim (T)=e-f(n-e+f)+n. So, if e  f(n-e+f),
then T does not dominate P(V*). In that case we conclude Ve-fe(gn-1d(W )) = 0
for a general W e P(V*). We also conclude that, in case e  f(n-e+f) and
if Ve-fe(gn-1d (W)) is not empty for a general W E P(V*), then each irreducible
component of it has dimension e - f(n - e + f).

Now, first, assume f  2, hence f - 1  1. Let T’ C T be defined by
(E; W ) E T’ if and only if W E FE. For a general element of some irreducible
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component of Ve-(f-1)e(gnd) we can apply Theorem 3.6, hence dim(T’)  n +

e - f (n - e + f). It follows from Fact 0.3 that for W E P(V*) general no
irreducible component of Ve-fe(gn-1d(W)) is contained in the fibre of T’ over
W. Hence, if Z is an irreducible component of Ve-fe(gn-1d(W)) and if E is
a general element of Z then W g FE. Since E is a general element of some
irreducible component of Ve-(f-1)e ( g) ) and moreover 9d is of good secant type, it
follows that dim(TE(Ve-fe(gn-1d(W)))) = e - (n - e + f ) f. This proves that, for
W E P(V*) general, each irreducible component is reduced and of the expected
dimension (remember Remark 2.2). Because T ~ T’, it also proves that a general
non-empty fibre of the projection T - P(V*) has dimension e - f (n - e + f),
hence T dominates P(V*). This proves the non-emptiness of Ve-f (9d-l (W)) for
W E P(V*) general. For W E P(V*) general, we still have to prove: if E is
a general point of some irreducible component of Ve-f (gd-1 (W)), then E is a
good secant divisor. Remember that, as an element of Ve-(f-1)e (9d)’ E is a good
secant divisor. In particular, each subdivisor E’ of E of degree n - e + f imposes
independent conditions on V(-E). But W (-E) = V(-E), so this condition
still holds. On the other hand, for each P E E, E - P g Ve-(f-1)e(gnd). This
means V(-(E - P)) = V(-E) for P E E. Since W D V(-E), it is clear that
W(-(E - P)) = W(-E) too.

Next, we consider the case f = 1. We already proved that Ve-1e(gn-1d(W)) = Ø
if 2e  n + 1 for a general W e P(V*), so we assume 2e  n + 1. For W e P(V*)
general, a general element E of some irreducible component of Ve-1e(gn-1d(W))
is a general element on C(e). So, we can consider E as a general element of C(e)
and W as a general element of P((V/V(-E))*). A general E E C(e) satisfies the
assumption of Lemma 3.7 for the linear system 9’d (here we use char(K) = 0).
From Lemma 3.7 we conclude dim[TE(Ve-1e(gn-1d(W)))] = e - (n - e + 1).
This proves the reducedness statement. We still need to prove that E is a good
secant divisor for 9d-1 (W). Since E E C(e) is general, each subdivisor E’ of
degree n + 1 - e of E imposes independent conditions on V(-E) (char(K) =
0). Since V(-E) = W(-E), this claim also holds for W(-E). Moreover if
P E E then dim(V(-(E - P))) = dim(V(-E)) + 1. But W is a general
element of P((V/V(-E))*), hence V(-(E - P» e W. This means E - P g
Ve-2e-1(gn-1d (W)) and we proved that E is a good secant divisor for gn-1d (W ).

4.3. PROOF OF THEOREM 0.5. Because of Proposition 4.2 and the fact that
we proved Theorem 0.5 alreàdy in the complete case (Theorem 2.1), we only
need to prove the following statement. Let C be a general curve of genus g and
let gng+n (n  3) be a general complete linear system on C. Let E be a general
point on some irreducible component of Ve-fe(gng+n). Then E is a good secant
divisor.
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From the proof of Theorem 2.1, we know that gng+n - E corresponds to a general
element of Wn-e+fg+n-e. So, take a general gn-e+fg+n-e on C and E a general element of
C(e). Then any subdivisor E’ of E of degree n - e + f + 1 imposes independent
conditions on gn-e+fg+n-e. Moreover, a point P E E is a general point on C. Since
gn-e+fg+n-e is a special linear system on C, it follows that dim|gn-e+fg+n-e+P| = n-e+f.
This proves E - P ~ Ve-(f+1)e-1 (gng+n). So we proved that E is a good secant divisor
for 9;+n. ·
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