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Abstract. We investigate generic properties of the Exponential Map defined as Exp(v) = hi, for a
vector field v E r (g) (where 0393(g) denotes the Lipschitz sections of a subsheaf g of vector subspaces
of the sheaf of all smooth vector fields on a smooth manifold M and ht is the flow generated by v).
We study restrictions of Exp to a suitable class of germs of submanifolds of M, and find necessary
and sufficient conditions for a subsheaf h C g such that for a generic vector field v ~ 0393(h) the
singularities of the flow of v arise as singularities of the flow of a generic vector field belonging to
r(g). Applications of these results to Riemannian and sub-Riemannian geometry are presented and
the context is chosen to include a theorem of A. Weinstein conceming the Riemannian Exponential
Map.

1. Introduction

The main motivation of this paper lies in understanding the theorem of A. Weinstein
[12]; in fact, the paper is just a slight generalization, with an easy direct proof, of
that theorem. For a smooth n-dimensional manifold X, we consider the space 9
of all smooth complete Riemannian metrics on X, endowed with C°°-Whitney
topology. For each g E 9 and q e X, exp(g) 1 q: TqX ~ X is the smooth map
called the classical exponential map. To each v E TqX it assigns the end point
of the unique geodesic curve y : [0, 1] ] ~ X, 03B3(0) = q,  (0) - v. Let us write
gijg) = ~~ ~qi|q, ~ ~q,|q~ for the entries of the matrix of the metric g and gij (q)
for the inverse matrix of gij(q) then the function H(q, p) = 1 203A3ni,j=1gij(q)pipj
on T*X, defines a Hamiltonian vector field whose trajectories in T*X project
onto geodesics in X (cf. [2]). The exponential map is a Lagrangian map, i.e.
Exp(g ) q = 1r X o hvH1|TqX, where hvHt is the flow of the Hamiltonian vector field
defined by II and hvHi|TqX is a Lagrangian immersion (cf. [1]). Recall that any
germ of a Lagrangian immersion can be obtained in the above way by taking for
H a suitable function on T*X, (not necessarily quadratic with respect to p). By h
we denote the space of quadratic Hamiltonians, and by g the space of all smooth
Hamiltonians. It was stated by [12] (cf. [11]) that for a generic metric on X, i.e.
for a generic H E h the map Exp(g)|q has only the singularities which are generic
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for Lagrangian maps, i.e. for a generic Hamiltonian H E g. Now we consider the
problem in a more general way.

Let g be a subsheaf of vector subspaces of the sheaf of all smooth vector fields
on a smooth manifold M. There are two natural questions to ask.

(1) Does g admit a subsheaf h C g (we call it accessible) such that for a generic
v E r(h) (where r(h) denotes the Lipschitz sections of h) the singularities of
the flow of v are the same as the singularities of the flow of a generic vector
field w E r(g).

(2) What are necessary and sufficient conditions for the existence of such pairs
g, h?

In attempting to answer these questions we define the Exp-map as Exp(v) = hv
for v e r(g), where ht is the flow generated by v, and we study the restrictions
of Exp to a suitable class of germs of submanifolds W. We impose some rather
natural restrictions on g, e.g. we say assume that any vector field on X, which is
a "piecewise section of g" can be approximated by sections of g. Then we find
necessary and sufficient conditions, which answer our second question.

The paper is organized in three sections. In section 2 we formulate the problem
and describe the assumed properties of the sheaf g. Then we give examples of
sheaves satisfying these properties: the sheaf of all smooth vector fields, the sheaf of
Hamiltonian vector fields and the sheaf of Hamiltonian vector fields with quadratic
Hamiltonians. Section 3 contains the main results. We prove that the image of the
r-jet of the Exp-map

is a submersive submanifold, and that a subspace h of g is accessible if and
only if Er|0393*(h) W is a submersion. The necessary condition (a-property) and the
sufficient condition (0 -property) for Er|0393*(h) W to be a submersive map are found
using the perturbation technique for the differential equation x = v(x). The last
section of the paper contains applications to the Riemannian and sub-Riemannian
cases, which were most interesting to us. As a consequence, a shorter proof of
the standard genericity theorem for the Exp-map on a Riemannian manifold is
presented (cf. [12,5]) and an obstruction to the genericity of the Exp-map regarded
as a family of Lagrangian maps is indicated. Analogous genericity results are
obtained for sub-Riemannian Hamiltonians. In that case the image of the Exp-
map is an isotropic submanifold and the generic properties of the sub-Riemannian
Exp-map are reduced to those of isotropic submanifolds in the cotangent bundle.

2. Formulation of the problem

Let M be a locally trivial fiber bundle over X, 03C0: M ~ X. Let g be a subsheaf
of vector subspaces of the sheaf of all smooth vector fields, g ~ 039E(M) on M. By
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r(g) we denote the space of Lipschitz sections of g over M. Let v E r(g) and let
t ~ hvt:M ~ M b a flow on M generated by v. Suppose that at each point x e M
we are given a space of germs Mx of a class of submanifolds of M through x.

Let

We shall assume that for every v e r(g) and Wx E Mx, hvg(Wx) E Mhvt(x).
Let W E M, we define the Exp-map in the following way ([6]); 

By Jr = Jr(W, X) we denote the space of r-jets of smooth mappings W ~ X.
Let 7r,: J’’ - X denote the canonical projection onto the image space of the
mapping. We have a natural map

we write also

where Er(v) is the r-jet extention of Expv.
Let h be a sheaf of vector subspaces of g. Let AT be a submanifold of the jet

space Jr(W X).
DEFINITION 2.1. We say that Ar C Jr(W, X) is typical for ET if there is a
residual subset r’ (g ) of 0393(g) such that for every v e 0393’(g) the corresponding
jet-extention Er(v) is transversal to A’° .

In what follows we are interested in finding the subspaces of g which retain the
typicality property for ET.

DEFINITION 2.2. We say that the subsheaf h C g is accessible if for every
submanifold Ar , which is typical for ET , there exists an open and dense subset
0393’(h) in 0393(h), such that for every w c 0393’(h) the corresponding j et extention Er(w)
is transversal to Ar.

In what follows we fix xo C M with Jr (zo) = 0 E X ~ Rn. Let W = Wx0 E
Mx0. We denote

clearly I*(g) = {v E r(g); v(x0) ~ 0}, is an open subset of 1’(g).
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Fig. 1.

2.1. PROPERTIES OF THE SHEAF g

By gxo we denote the space of germs at xo of the sheaf g. Without loss of generality
we introduce two important assumptions which have to be satisfied by our sheaf
g.

PROPERTY 2.3. If w E gxo and v E f(g), then

(hvt)*w ~ ghvt(x0);
it follows that hv1 induces an isomorphism (hv1)*: gxo ~ gx1, and x 1 = hv1(x0).

Let v E F* (g); by 03B3 we denote the integral curve of v starting at xo.
PROPERTY 2.4. Let us take a point p on the curve y and a section w of g defined
in a neighbourhood of p such that jrp w = 0. Then we assume that there exist:

1. a hypersurface H, separating M into two half-spaces H+ and H-, (as
illustrated in Figure 1) transversal to -y at the point p E H ~ 03B3, and

2. a family of vector fields P~(v, w) E I* (g), parametrized by e 54 0, depending
linearly on w with the following property

P~ converges uniformly together with its derivatives up to order T, outside an
open neighbourhood U of p and in a cone-like neighbourhood S of the curve
03B3,
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for some positive constant C, and a metric d(.,.) on M.

One can briefly state this assumption as follows:

Every vector field on M, which is a "piecewise section of g" can be approxi-
mated by sections of g.
Unless otherwise stated, in what follows, we assume both of these properties
hold for our sheaf g.

Now we show how these assumptions work in some special situations.

EXAMPLE 2.5. Let g be the sheaf of all smooth vector fields on M. Then we can

simply define

where ~~ is a smooth function on M, such that

vanishing on H - , varying on the strip of distance c from H and equal 1 on the rest
of H+.

EXAMPLE 2.6. Let g be the sheaf of all Hamiltonian vector fields on M =

(T*X, wx), where 03C9X is the Liouville symplectic form on the cotangent bundle
T*X. Let v, w be Hamiltonian vector fields with Hamiltonians H, H respectively,
i.e. 03C9X(v,2022) = -dH, 03C9X(03C9,2022) = -dK. Let us denote the above correspondence
of 1-forms and vector fields by J. We put

where we is defined as in Example 2.5.

EXAMPLE 2.7. Let 9 be the sheaf of Hamiltonian vector fields with Hamiltonians

quadratic with respect to p: H ( q, p) = 03A3ijgij(q)pipj((q, p) denote the standard
Darboux coordinates on T*X). Then the hypersurface H is defined by a smooth
function L on X, 1l = {(q, p): L(q) = 0}, and the function ~~ depends only on
q.

3. A transversality theorem

We start with a description of the image space of (Exp)*. Let g(r+1)x be the space
of germs at x of vector fields in g vanishing at x together with all derivatives up to
order r. By Jr gx we denote the jet-space of vector fields
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By 03C0*g we shall denote the sheaf of TX-valued vector fields on M along 7r; i.e.
the fields of the form

where v is a section of g.

PROPOSITION 3.1.

J*g is an immersive submanifold of J’

and the tangent space TzJ*g can be identified with

where jrx1 w is the r-jet of w and z is equal to the r-jet Er(v).
Proof. As we remarked in Section 2

We will show that (ET)* has constant rank on r*(g).
Let 03BE C r(g) and let t - v + te be a line in I(g). Consider the curve

y: t - Er(v + t03BE) E C~(W, Jr). The tangent vector to y can be thought of as

where y(x, s, t) is a solution of the equation (with parameter t)

We can view y as a perturbation of the solution of the equation i = v(x). Thus we
can write y in the form

From (2) we see that u(x, s) satisfies the equation

where yo(x, s) is a solution of the equation

We can also write hvt(x) = yo(x, t).
By Property 2.3 we have the following result.
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LEMMA 3.2. The linear part of the perturbation y is given by

Proof. We write

Obviously (6) satisfies equation (3):

where

Now we prove that TzJ*g  J’° g . Indeed by (7) we can approximate u e Tz J* g
by Riemann sums: each summand

belongs, by Property 2.3, to J’g,,,. JT gXl is a vector subspace of the (finite dimen-
sional) vector space of all jets of vector fields and therefore closed.

To prove that JT 9 ’---+ TzJ*g we have to show that for every there exists a e
such that (6) is satisfied. This will follow from the fact that g has, by assumption,
Property 2.4. First, we can assume that E g(r)x1. We choose a suitable hypersurface
H (cf. Property 2.4) intersecting transversally the trajectory y of v starting at xo.
Then apply Property 2.4 putting w = (hv-03B4)*u, and p = hv-6(xo) (cf. Figure 1).
Let us denote by eo the vector field equal to v over H - and v + w over H+. eo
induces a flow ht° which gives a smooth hi° in a neighbourhood of xo and let
Er(03BE0) be its r-jet at x o . By Property 2.4 we have an approximating family Pe for
which, for sufficiently small c, we have
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(for more details see the proof of Theorem 3.8), where At: ~ 0 uniformly. Since
dim Jrgx is independent of x, then TzJ*g is independent of z, so J*g is an immersive
submanifold. Q.E.D.

REMARK 3.3. We conjecture that the space Jg is a submanifold of J(W, X).
The following corollary follows from the above proof.

COROLLARY 3.4. The mapping .E’’: r*(g) X W - J*g is a submersion.
Let h C g, be a subspace of g. We introduce the following space of Lipschitz

sections of h

PROPOSITION 3.5. A subspace h of g is an accessible subspace of the space g if
and only if

is a submersion.

Proof. First we prove that "only if" part. Let Er|0393*(h) x w be a submersion and let
AT C jr be a typical submanifold for ET. Then by Thom-Abraham transversality
theorem (cf. [6]), there exists an open and dense subset C 0393*(h) such that
for every a e A the mapping Er(a) : W ~ J*g, is transversal to Ar. Thus the
subspace h is accessible. To prove the "if" part, we note that the accessibility of h
implies transversality of ET to an arbitrary point from J*g. But this is exactly the
submersivity of Er|0393*(h) W. Q.E.D.

REMARK 3.6. If Er|0393*(h) W is a submersion then there exists a finite dimensional
subspace ho of h, such that if v e 0393*(h) and t ~ ET ( tv) e J*g is a curve, then for
every t fl 0 we have

So the mapping ET : f*(tv + ho) - J; is a submersion.

Let v, 03BE E r*(g). We introduce the following iterated bracket of v and e:

where [v, e]o = e, [v, 03BE]1 = [v, e].
Let h be a subsheaf of g.
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DEFINITION 3.7. We say that h satisfies the a-property if for almost all v E h, for

every w E g(k)x0, k  r, zo e M, and every Wx0 e M there exists an 1 e N U {0}
and germs of vector fields go , 03BE1,..., 03BEl ~ hx0, such that

and

By 03C0*(g)(k+1)x0 we denote the space, defined by g, of germs of sections of the
induced bundle 03C0*TX, with zero k-jet at Xo.

THEOREM 3.8. Let 9 be the sheaf of analytic vector fields. Let ETlr*(h)xM be a
submersive map. Then h satisfies the 03B1-property.

Proof. We know that for some finite dimensional subspace ho, ho C h,
Er|0393*(tv+h0) M is submersive. Let Bo be a closed ball in ho. Then Er(tv + B0)
contains some neighbourhood of ET (tv). Making use of the assumption of analyt-
icity of g we have that E’’ (tv + Bo ) is an analytic subset of J; . Thus we immediately
obtain that (see [7]) there exists an N E N such that for every w E 0393*(g)

Thus for every t there exists e e Bo such that

Using Puiseux theorem we can assume that e is a convergent fractional power
series:

(depending also on w).
We notice that Er(t(v + 03BE)) is the r-jet at xo of the mapping 03C0(z(x, 1, t)),

where z(x, s, t) satisfies the equation
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Let us denote u(x, t) = z(x, 1, t). Inserting s = st into (13) we find that
u(x, s) (which obviously depends also on 03BE), satisfies

thus concluding, we see that: Er(t(v + 03B6)) is the r-jet at xo of u(x, t), where
u(x, s) is the solution of (14).

Let us look on (14) as a perturbation of the equation

which is clearly satisfied by yo(x, s) = hvs(x). We linearize (14); it is easy to see
that the linear (with respect to e) term y = y03BE(x, s) satisfies

where u(x, s) = y0(x, s) + Yç (x, s) + f terms of order  2 with respect to 03BE} and
y(x, 0) - 0, yo(x, 0) = x.
Now we expand e with respect to s

where gj = 03B6i(x). Then from (15) the r-jet (with respect to x) of the linear term of
the expansion of y with respect to s = t is

That is just the right hand side of the equation (12). If jrx003BE0(x) ~ 0 then similar
arguments applied to the left hand side of (12) give the equality

So the a-property is satisfied for k = r and l = 0, if we put N = 1.
If jrx003B60 = 0, then we have to consider the second term of the expansion of y

with respect to s. To do so we differentiate both sides of (15) with respect to S, and
put x = t = 0.
Now we have
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and

Comparing both sides of (12) we obtain the a-property satisfied for k = r and

l = 1, provided jrx0([v, 03B60] + 03B61) ~ 0.
If jrx0([v, 03B60] + 03B61) = 0 then we continue the above procedure. Finally we arrive

at the following statement:

Let l E N be the smallest number for which

Then

Passing to vector fields along 7r we see that this statement ends the proof of
Theorem 3.8, i.e. we have got that the a-property is a necessary condition for the
submersivity of Er|0393*(h) M. Q.E.D.

Now we are going to state the corresponding sufficient condition. For this pur-
pose we assume: at each fiber hx of h, equipped with the inverse limit topology
(hx = lim hu, where U dénotes an open neighbourhood of x), there is a dis-

tinguished open set h0x C hx. We take v to be a Lipschitz section of h° and write
v E 0393(h0), i.e. for any x e M, v(x) e h0x.
DEFINITION 3.9. We say that h satisfies the 03B2-property if for every v e 0393(h0),
for every w e g(k)x0, k  r, Xo E M, and every Wxo E M there exists an l E N
and the germ of a vector field 03B6 E h0x0, such that

and
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THEOREM 3.10. Let a subsheaf h of g satisfy the ((3)-property. Then E7’1r*(h)xM
is a submersion.

Proof. Let v E 0393*(h), and ht be the flow corresponding to v. We denote

and by

we denote the canonical projection. We choose Wki E g(k)x1, i E Ik C N, such that
{prk(wki)}i~Ik form a basis of the vector space g(k)x1/g(k+1)x1. The set of all elements
of the form {prk(wki), 0  k  r,}i~Ik gives a basis of the space gx1/g(r+1)x1.

Take any element w = Wki of our basis. Let w = 03C0*w|wx1. We show that for
À E R sufficiently close to zero, there exists a çÀ E 0393*(h), such that the tangent
vector (d/dt)(Er(v+t03B603BB))|t=0 to the curve t ~ Er(v + t03B603BB) is equal to 03BBw + o(03BB).
In fact, let 03B6 be a section of h, defined in a neighbourhood U of x such that

where

Let us take a 03B4 &#x3E; 0. We consider (hv-03B4)*(03B6) E hX6’ x6 = hÏ-8(xO), i.e. the
vector field e e g(k+1)x1, moved to the point X8. We assume that 6 is so small that
xi E hv-03B4(U). Let us take a suitable hypersurface H transversal to the trajectory
y: [0, 1] ~ ~ hvt(x0) at the point X8, (cf. Property 2.4). We consider two parts H-
and H+ of an open neighbourhood of the trajectory (see Figure 2 below).
Now we consider the following (cf. Property 2.4),

Let
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Fig. 2.

denote the flow induced by eo on M. By the transversality of H to ï we know
that

is smooth in a neighbourhood of xo. Thus we can have its r-jet,

As before, we denote by

the r-jet of 03B51(03B60) at xo.
We compute the linear terms of

with respect to 03B6. Essentially we repeat the proof of Theorem 3.8, where we studied
the equation (15). In the present case we obtain that the solution of (15) has the
expansion
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which proves that

The field e is (k+1)-flat at X8 so we use the Property 2.4 and write the approximating
family P~(v, 03B6). Obviously we have

where E, 6 0.
Then for sufficiently small E we have

where A~ ~ 0. We take f so small that
P~(v, 03B6) - v.

Our results can be briefly recapitulated as follows.

COROLLARY 3.11. If h is accessible then h satisfies the a-property. If h satisfies
the f3-property then h is accessible.

4. Genericity of Exp for Riemannian and sub-Riemannian metrices

Let M be the cotangent bundle; M = T*X, dim X = n, with 7r = 7rx: T*X ~ X
the canonical bundle projection. By g we denote the sheaf of Hamiltonian vector
fields on T*X. Let h be a subsheaf of g and let M denote a class of germs
of submanifolds of M; unspecified for the moment by g and h we denote the
corresponding sheaves of local Hamiltonians on T*X ; thus y is the sheaf of germs
of functions f, such that Jdf is a section of g. For W E M and po E W we
denote by FWp0 the space of germs of functions on W, at po ; F(k)Wp0 are the germs
vanishing up to order k - 1 at po.

Let vf1, vf2 E 0393*(g), vfi = Jdf i , where f1, f 2 are the corresponding Hamil-
tonians. We have

where {.,.} denotes the standard Poisson bracket on T*X. In the Darboux coordi-
nates (q, p) on T*X we have, of course
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where by Op f we denote the n-tuple (âpi f, ..., âpn f ) E (g15o)n.
PROPOSITION 4.1. The a-property for the subsheaf h C g is equivalent to the
following condition:

(a): For almost all f E h15o’ for every q E g-(k)p0, k  r and Wpo E M15o’ there
exist: an l E N U tOI and fo, fi,..., fi E hp0 such that

By a straightforward modification of the above a-property we obtain the 03B2-property
expressed in terms of Hamiltonians.

Let £p, p E T*X denote the space of germs at p of Lagrangian submanifolds
in (T*X, 03C9X). If v E 0393(g) then the class £ = Up~T*X£p is obviously preserved
by the flow of symplectomorphisms hl. From now on we take £ as M.

Let us fix a germ at p of a Lagrangian submanifold Wp E £p. We shall study
Elwp’ or more formally

(in the most interesting and classical case WP is the germ of the fibre T*qX). We
notice that in standard terminology hv1| Wp is a Lagrangian embedding and Expv1 wp
is the corresponding Lagrangian projection.
We shall now discuss the genericity property of the Exp-map in the Riemannian

geometry.
Let h C g denote the subsheaf of Hamiltonian vector fields with quadratic

Hamiltonians with respect to p. We look on r(h) as the space of geodesic vector
fields on X with the families of quadratic nondegenerate forms on T*X playing
the role of nondegenerate Hamiltonians. In what follows we assume det(hij) ~ 0
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for our Hamiltonian vector fields VH E 0393(h0), H = 03A3Ehij-pipj, (see Definition
3.9).

THEOREM 4.5. Let p E T*V. There exists an open and dense set of Riemannian
metrics h’ C 0393(h), such that for every f E h’, the Exp-map Expv, 1 w. has only
the singularities appearing in generic Lagrangian projections.

Proof. First we prove the accessibility of h. It is enough to check the sufficient
condition, i.e. the /?-property for our sheaf h; Without loss of generality we take
p0 = (0, po) ; let Wpo = Wpo be an element of £130. We denote Fpo = FWp0 the
space of germs at po of analytic functions on Wpo . Thus the /3-property reads as
follows:

Let f e hpo be a nondegenerate Hamiltonian at q = 0. Let k ~ N. For every
~ ~ g(t)p0, there exists an 1 E N ~ {0} and fo E hpo such that
(03B2j):

and

We write

Let us take

Then

Let iWp0 be a Lagrangian embedding of Wp0 into T*X. First assume that
iWp0(Wp0) can be described by

Then the (03B2l)-condition can be written in the form
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for the lowest degree terms in (q, p).
Let us define I = ~~1,..., 0,,), the ideal in Fp0(= Fwpo) generated by

01 (p), ..., 0. (p). We consider Fp0 as a graded ring with respect to 18, s E N.
Let ri C 9po. We put

Let s be the biggest integer such that

The matrix gij (0) is invertible, so we can find l E N U {0} and fo = 03A3ijhij (q)pipj
(i.e. a matrix hij(q)), such that

for K = 0, ... , l - 1, and

But from (22) we have Is+1 c F(N+1)p0. Thus we obtain the (03B2)-condition, i.e.

and

Let us discuss briefly what modifications should be done if (21) is not satisfied.
Suppose for a moment that Wpo is transversal to the fibres of T*X. In this case we
write iwp0(q) = (q, 0(q» and the (03B2)-condition is satisfied immediately. In fact,
for any w = (w1,..., wn) e (F(N)p0)n (elements of Fp0 are parametrized by q)
there exists an fo = 03A3ijhij(q)pipj such that
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This is obvious; taking po = (1, 0, ... , 0) we find h1k(q) = wk(q).
The most general "I J"-case, I ~ J = {1,..., n}, l n J = 0, where

can be treated in a similar way by mixing both methods. Q.E.D.

REMARK 4.3. A slightly stronger genericity result is true also for the map hv1|Wp0:
Wp0 ~ T*X. In this case the (03B2)-condition is fulfilled and one can state the result
as follows:

Let p E T*X. There exists an open and dense subset h’ of quadratic hamiltonians
h such that for every f E 0393(h’) the Lagrangian embedding hvf1 Iwpo is generic in
the space of all mappings hv1|Wp0 induced by general Hamiltonian vector fields
v E 0393(g). (This extends the Theorem 1 in [11], p. 735).
REMARK 4.4. Let us choose a family of germs Wp(q) of fibers of T*X defined
by a section X ~ T*X, X 3 q ~ p( q ) E T*X. Then we define

and look on it as a family of maps parametrized by q e X. C.T.C. Wall ([ 11 ],
Conjecture 2, p. 735) conjectured that for a generic metric on X, i.e. f =

03A3ijgijpipj, Exp = {Expq: q E X} is a generic n-parameter family of Lagrangian
projections (cf. [1]). A straightforward calculation shows that the necessary condi-
tion (a) is not fulfilled. In this case we have W = T*X. Thus the "Wall Conjecture"
is not true (cf. [5, 3]). In fact there is an infinite number of constraints resulting
from the obvious formula:

Since f is quadratic with respect to p, this implies that (hvt)*v must be linear
with respect to v, and this is a strong constraint for ht . To be more explicit, let
(p, Q) - Gt(p, Q), det((~2Gt/~p~Q)(p, Q» 54 0, be a generating function for
hvt, (for a standard notation see [2]). By (q, p) - Qt(q, p) we dénote the solution
of the equation q - (~Gt/~p)(p, .) = 0. We define

By a simple verification we find

One can conjecture that all constraints satisfied by the family Exp arise from
the one above simply by differentiation.
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Now let us pass to the Exp-map in the sub-Riemannian geometry (cf. [9]). Let
M = T*X be as above, and dim X = n + 1. By V ~ TX we denote a smooth
distribution of hyperplanes on X, i.e. a subbundle of T X . All our arguments are
valid for any dimension of V, however for simplicity of notation, we shall assume
that codim V = 1. Locally V is annihilated by a 1-form,

Let H : T*X ~ R be a smooth function. We say that the Hamiltonian vector
field vH with hamiltonian H is horizontal if

By k we denote the sheaf of horizontal Hamiltonian vector fields. An easy check
shows that if v f E k, then

for some smooth function f and p’i = pi - Ai(q)pn+1.
Let V be equipped with a quadratic nondegenerate form (.,.) varying smoothly

on q ~ X. By gij we denote the inverse matrix to that defined by (.,.). Analogously
to the usual Riemannian case we have the sheaf (subsheaf of k) h of horizontal
geodesic vector fields defined by the quadratic Hamiltonians

Both these sheaves are subsheaves of the sheaf of Hamiltonian vector fields g.

By h we denote the space of Hamiltonians quadratic in p’ = (P, p’n).
Let Xi = (~/~qi)- Ai(q)-Ai(q)(~/~qn+1), i = 1,..., n; they give a basis of sections

of V. Let q E X. If the basic vector fields Xi, along with all their commutators
span TqX then the distribution V is said to satisfy the Hormander condition at q.
If this condition is fulfilled at every q E X then V is called also a non-holonomic
distribution (cf. [9, 10]).

Let I be a submanifold of T*X, dim I  n + 1. If wX|I = 0, then we call
I an isotropic submanifold. Let Ip, p E T*X denote the space of germs at p, of
isotropic submanifolds of dimension n in (T*X, wx). We see that 2’ = ~p~T*X
is preserved by the flow of symplectomorphisms hvt, v E 0393(g).

In what follows we assume that we are given a fibering 7ronX, 03C0: X - X’, such
that ker 7r* ~ V = T X . Locally 7r(q) = (q’), q = ( q’, qn+1), q’ = (q1,..., qn).
Let Wp E Ip. The inclusion iw,: Wp ~ T*X is called an isotropic immersion of
Wp, and pw, = 7rx o iWp an isotropic projection. Now we define
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these maps we will call subisotropic maps. A smooth mapping 03BA: Wp - X’ is
subisotropic if and only if there exists an isotropic immersion i: Wp ~ T*X such
that the following diagram commutes

Let f E h, and Expvf be the corresponding Exp-map. We denote xpvf =
’Ir o Expv f and we call Expv f a sub-Exp-map. Adapting the proof of the Theorem
4.2 we obtain the following result.

THEOREM 4.5. Let p e T* X . Then there exists an open and dense set of quadratic
Hamiltonians h’ C h, such that if f E h’, then the sub-Exp-map Éxpvf |Wp, for any
projection 03C0, has only the singularities appearing in generic subisotropic maps.

Now let qo E X and let Hn-1 be an isotropic subspace of TQoX, Po E
H’-’, PO 0 0. What is interesting for us now is the description of all possi-
ble generic singularities of germs

where g varies over the space of all Riemannian metrics on V. To get such a
description we apply Theorem 4.5. Thus if 7r: X ~ X’ is any projection (as in the
statement of the Theorem) then all generic singularities of

are of the form

where

with the generating family F having only the generic singularities (see [4]).
To get exp(g) from 7r o exp(g) we remark that every line 1 in Hn-1 passing

through 0 is sent by exp(g) into a geodesic, and thus is a horizontal curve with
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a non-zero tangent vector, which is projected by 7r onto a non-zero vector. Let
l p be the line passing through 0 and p; let 03B60 = Po be considered as a vector in
Tpolpo, x’0 = (p0), and

Let N’ C X’ be any germ of a submanifold at x’ transversal to v’ and of
codimension one. Let N C X be any submanifold of codimension 2, such that
¡rIN: N - N’ is a diffeomorphism and N is "generic" with respect to V. Now we
lift E to a map E into X such that N lies in the image of E and the curves E(l p )
(p close to po ) are lifted into horizontal curves. We shall illustrate this procedure a
little bit later, in the 2-dimensional case.
Now we investigate the generic subisotropic maps. We denote

D = {p E Wp : Im(03C1*)p is not transversal to v03C1(p)}
and

We will call A a horizontal set of p. A is the set of points of the image manifold
S = p(Wp), in which S is tangent to the distribution V. Let r denote the set of
critical points of 03BA and E = 03BA(0393) denote the set of its critical values.

LEMMA 4.6. Let V be a contact distribution (V satisfies the strong bracket
generating hypothesis [9]), then for a generic subisotropic map K, D is a curve.

Proof. We show this fact for n = 2, dim X = 3. 03C0: X X’, 7r( ql, q2, q3) =
(ql, q2) . The general case is straightforward. Distribution V is annihilated by

p(Wp) is covered by geodesics. Without loss of generality we restrict our consid-
erations to the vertical Wp C T*03C0X(p)X. We choose the parameterization {u1, u2}
of Wp, such that u parameterizes the geodesics (obviously horizontal with respect
to V). Then

The second equation
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on maximal smooth strata of S defines a smooth curve. We see that V F =1 0. In
fact

outside of the set of critical points of 03BA, because

Q.E.D.

Now we assume, dimX = 3. For a contact distribution we have the following
result.

THEOREM 4.7. Let V be a contact distribution on R3, annihilated by 03C9 =

dq3 + 03A32i=1 Ai(q1, q2) dqi, 7r: R3 ~ R2:(q1,q2,q3) ~ (q1, q2), is the projection.
Then for a generic subisotropic map;

(1) p is an immersion, A = Ø and K is a diffeomorphism, fold or cusp-map.
(2) p is an immersion, f = Ø and A is smooth curve.
(3) p is a singular map of corank 1, right-left equivalent (,A-equivalent, [8J) to

Whitney’s Cross-cap (So) with horizontal and critical sets tangent with the
second order tangency.

Proof. For generic isotropic map, the corresponding map n is one of the Whit-
ney’s stable cases of smooth mappings R2, 0 ~ R2, 0 provided S is a smooth
hypersurface of R3. If S is the remaining stable case - the Cross-cap (cf. [8]), then
the subisotropic map K is a fold-map. Distribution V, defined by 03C9 is transversal
to the fibers of 03C0, so we easily see that, in the smooth case of S, the horizontal (A)
and critical (0393) sets are disjoint, which proves the first two cases.

For the lifting of K we can write

where we use the notation (q) = (x, y, z). Thus for x, y, z we write the following
expansions
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where m denotes the maximal ideal in the space of germs of smooth functions of
variables u1, u2.

The cases (pla2 - 03B1103B22) = 0, and al = 0 may appear transversally, then
generically 03B32 ~ 0 and we have the smooth case of S. So we have to assume
al = (~y/~u1) ~ 0. In this case we define new coordinates of Wp

Now the equation (~z/~u1)+x(~y/~u1) = 0 is transformed into (~z/~y)(~y/~u1)+
x(~y/~u1) ~ 0, which finally is equivalent to

Thus

By is a fold-map, so and

Writing

we have

Finally

and the singular case: 03B32 = 0 and -f22 0 0 may happen generically.
By a left coordinate change we obtain

The coordinate change

now transforms p to a map germ whose 2-jet is following
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The left coordinate change

gives

which is 2-determined and describes Whitney’s Cross-cap.
Now we easily check that the equation of horizontal points D is transformed,

in new coordinates, to the following one,

i.e.

Thus for D we obtain

Analogously for the set of critical points of K

So the order of the tangency of A and E is given by the formula

REMARK 4.8. One can explicitly calculate the Exp-map in the case of Heisenberg
group H = R3 (cf. [9]), equipped with the distribution V annihilated by



369

and Hamiltonian

One computes

We take 1r(X, y, z) = (x, y). Then we have exp(g): Wp ~ X, and

where

By simple check we find that if

and

then exp(g) is not generic. In other cases it is an immersion.
The set of singular values of 7rx o hiH (the usual caustic of Exp-map) is formed

by the family of rotationally invariant paraboloids
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and the line x = 0, y = 0, where a is a solution of the equation tg x = x.

Simplifying the system by isometry (x, y, z) - (x, y, z - 2xy), we obtain the
generating family for the isotropic map hvH1 f =01, namely

Note added in proof. 1. We note that the integral formula (7) implies the access-
ibility criterion. 2. In the Hamiltonian case, for p0 ~ 0, condition (03B2) is not
satisfied. However the straightforward proof of Theorem 4.5 follows from the
integral formula.
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