Compositio Mathematica

S. JANECZKO
 T. Mostowski
 Relative generic singularities of the exponential map

Compositio Mathematica, tome 96, n ${ }^{\circ} 3$ (1995), p. 345-370
http://www.numdam.org/item?id=CM_1995__96_3_345_0
© Foundation Compositio Mathematica, 1995, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Relative generic singularities of the Exponential Map

S. JANECZKO ${ }^{1}$ and T. MOSTOWSKI ${ }^{2}$
${ }^{1}$ Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland, and Institute of Mathematics, Warsaw University of Technology,
Pl. Politechniki 1, 00661 Warsaw, Poland
${ }^{2}$ Institute of Mathematics, University of Warsaw, ul. Banacha 2, Warsaw, Poland

Received 12 July 1993; accepted in final form 11 May 1994

Abstract

We investigate generic properties of the Exponential Map defined as $\operatorname{Exp}(v)=h_{1}^{v}$, for a vector field $v \in \Gamma(g)$ (where $\Gamma(g)$ denotes the Lipschitz sections of a subsheaf g of vector subspaces of the sheaf of all smooth vector fields on a smooth manifold M and h_{t}^{v} is the flow generated by v). We study restrictions of Exp to a suitable class of germs of submanifolds of M, and find necessary and sufficient conditions for a subsheaf $h \subset g$ such that for a generic vector field $v \in \Gamma(h)$ the singularities of the flow of v arise as singularities of the flow of a generic vector field belonging to $\Gamma(g)$. Applications of these results to Riemannian and sub-Riemannian geometry are presented and the context is chosen to include a theorem of A. Weinstein concerning the Riemannian Exponential Map.

1. Introduction

The main motivation of this paper lies in understanding the theorem of A. Weinstein [12]; in fact, the paper is just a slight generalization, with an easy direct proof, of that theorem. For a smooth n-dimensional manifold X, we consider the space \mathcal{G} of all smooth complete Riemannian metrics on X, endowed with C^{∞}-Whitney topology. For each $g \in \mathcal{G}$ and $q \in X,\left.\exp (g)\right|_{q}: T_{q} X \rightarrow X$ is the smooth map called the classical exponential map. To each $v \in T_{q} X$ it assigns the end point of the unique geodesic curve $\gamma:[0,1] \rightarrow X, \gamma(0)=q, \dot{\gamma}(0)=v$. Let us write $g_{i j}(q)=\left\langle\left.\frac{\partial}{\partial q_{i}}\right|_{q},\left.\frac{\partial}{\partial q_{j}}\right|_{q}\right\rangle$ for the entries of the matrix of the metric g and $g^{i j}(q)$ for the inverse matrix of $g_{i j}(q)$ then the function $H(q, p)=\frac{1}{2} \Sigma_{i, j=1}^{n} g^{i j}(q) p_{i} p_{j}$ on $T^{*} X$, defines a Hamiltonian vector field whose trajectories in $T^{*} X$ project onto geodesics in X (cf. [2]). The exponential map is a Lagrangian map, i.e. $\operatorname{Exp}(g)_{q}=\left.\pi_{X} \circ h_{1}^{v_{H}}\right|_{T_{q} X}$, where $h_{t}^{v_{H}}$ is the flow of the Hamiltonian vector field defined by H and $\left.h_{i}^{v_{H}}\right|_{T_{q} X}$ is a Lagrangian immersion (cf. [1]). Recall that any germ of a Lagrangian immersion can be obtained in the above way by taking for H a suitable function on $T^{*} X$, (not necessarily quadratic with respect to p). By h we denote the space of quadratic Hamiltonians, and by g the space of all smooth Hamiltonians. It was stated by [12] (cf. [11]) that for a generic metric on X, i.e. for a generic $H \in \mathbf{h}$ the $\left.\operatorname{map} \operatorname{Exp}(g)\right|_{q}$ has only the singularities which are generic
for Lagrangian maps, i.e. for a generic Hamiltonian $H \in \mathbf{g}$. Now we consider the problem in a more general way.

Let g be a subsheaf of vector subspaces of the sheaf of all smooth vector fields on a smooth manifold M. There are two natural questions to ask.
(1) Does g admit a subsheaf $h \subset g$ (we call it accessible) such that for a generic $v \in \Gamma(h)$ (where $\Gamma(h)$ denotes the Lipschitz sections of h) the singularities of the flow of v are the same as the singularities of the flow of a generic vector field $w \in \Gamma(g)$.
(2) What are necessary and sufficient conditions for the existence of such pairs g, h ?
In attempting to answer these questions we define the Exp-map as $\operatorname{Exp}(v)=h_{1}^{v}$ for $v \in \Gamma(g)$, where h_{t}^{v} is the flow generated by v, and we study the restrictions of Exp to a suitable class of germs of submanifolds W. We impose some rather natural restrictions on g, e.g. we say assume that any vector field on X, which is a "piecewise section of g " can be approximated by sections of g. Then we find necessary and sufficient conditions, which answer our second question.

The paper is organized in three sections. In section 2 we formulate the problem and describe the assumed properties of the sheaf g. Then we give examples of sheaves satisfying these properties: the sheaf of all smooth vector fields, the sheaf of Hamiltonian vector fields and the sheaf of Hamiltonian vector fields with quadratic Hamiltonians. Section 3 contains the main results. We prove that the image of the r-jet of the Exp-map

$$
E^{r}: \Gamma(g) \times W \rightarrow J^{r}(W, X)
$$

is a submersive submanifold, and that a subspace h of g is accessible if and only if $\left.E^{r}\right|_{\Gamma^{*}(h) \times W}$ is a submersion. The necessary condition (α-property) and the sufficient condition (β-property) for $\left.E^{r}\right|_{\Gamma^{*}(h) \times W}$ to be a submersive map are found using the perturbation technique for the differential equation $\dot{x}=v(x)$. The last section of the paper contains applications to the Riemannian and sub-Riemannian cases, which were most interesting to us. As a consequence, a shorter proof of the standard genericity theorem for the Exp-map on a Riemannian manifold is presented (cf. [12,5]) and an obstruction to the genericity of the Exp-map regarded as a family of Lagrangian maps is indicated. Analogous genericity results are obtained for sub-Riemannian Hamiltonians. In that case the image of the Expmap is an isotropic submanifold and the generic properties of the sub-Riemannian Exp-map are reduced to those of isotropic submanifolds in the cotangent bundle.

2. Formulation of the problem

Let M be a locally trivial fiber bundle over $X, \pi: M \rightarrow X$. Let g be a subsheaf of vector subspaces of the sheaf of all smooth vector fields, $g \subset \Xi(M)$ on M. By
$\Gamma(g)$ we denote the space of Lipschitz sections of g over M. Let $v \in \Gamma(g)$ and let $t \rightarrow h_{t}^{v}: M \rightarrow M$ b a flow on M generated by v. Suppose that at each point $x \in M$ we are given a space of germs \mathcal{M}_{x} of a class of submanifolds of M through x.

Let

$$
\mathcal{M}=\bigcup_{x \in M} \mathcal{M}_{x}
$$

We shall assume that for every $v \in \Gamma(g)$ and $W_{x} \in \mathcal{M}_{x}, h_{t}^{v}\left(W_{x}\right) \in \mathcal{M}_{h_{t}^{v}(x)}$.
Let $W \in \mathcal{M}$, we define the Exp-map in the following way ([6]);

$$
\begin{equation*}
\operatorname{Exp}_{v}: W \rightarrow X, \quad \operatorname{Exp}_{v}=\left.\pi \circ h_{1}^{v}\right|_{W} \tag{1}
\end{equation*}
$$

By $J^{r}=J^{r}(W, X)$ we denote the space of r-jets of smooth mappings $W \rightarrow X$. Let $\pi_{r}: J^{r} \rightarrow X$ denote the canonical projection onto the image space of the mapping. We have a natural map

$$
E^{r}: \Gamma(g) \times W \rightarrow J^{r}(W, X),
$$

we write also

$$
E=E^{r}: \Gamma(g) \rightarrow C^{\infty}\left(W, J^{r}\right), \quad E^{r}(v) ; W \rightarrow J^{r}(W, X),
$$

where $E^{r}(v)$ is the r-jet extention of Exp_{v}.
Let h be a sheaf of vector subspaces of g. Let A^{r} be a submanifold of the jet space $J^{r}(W, X)$.

DEFINITION 2.1. We say that $A^{r} \subset J^{r}(W, X)$ is typical for E^{r} if there is a residual subset $\Gamma^{\prime}(g)$ of $\Gamma(g)$ such that for every $v \in \Gamma^{\prime}(g)$ the corresponding jet-extention $E^{r}(v)$ is transversal to A^{r}.

In what follows we are interested in finding the subspaces of g which retain the typicality property for E^{r}.
DEFINITION 2.2. We say that the subsheaf $h \subset g$ is accessible if for every submanifold A^{r}, which is typical for E^{r}, there exists an open and dense subset $\Gamma^{\prime}(h)$ in $\Gamma(h)$, such that for every $w \subset \Gamma^{\prime}(h)$ the corresponding jet extention $E^{r}(w)$ is transversal to A^{r}.

In what follows we fix $x_{0} \subset M$ with $\pi\left(x_{0}\right)=0 \in X \cong R^{n}$. Let $W=W_{x_{0}} \in$ $\mathcal{M}_{x_{0}}$. We denote

$$
J^{*}=\pi_{r}^{-1}\left(R^{n}-\{0\}\right), \quad J_{g}^{*}=E^{r}(\Gamma(g))(W) \cap J^{*} ;
$$

clearly $\Gamma^{*}(g)=\left\{v \in \Gamma(g) ; v\left(x_{0}\right) \neq 0\right\}$, is an open subset of $\Gamma(g)$.

Fig. 1.

2.1. PROPERTIES OF THE SHEAF g

By $g_{x_{0}}$ we denote the space of germs at x_{0} of the sheaf g. Without loss of generality we introduce two important assumptions which have to be satisfied by our sheaf g.

PROPERTY 2.3. If $w \in g_{x_{0}}$ and $v \in \Gamma(g)$, then

$$
\left(h_{t}^{v}\right)_{*} w \in g_{h_{t}^{v}\left(x_{0}\right)}
$$

it follows that h_{1}^{v} induces an isomorphism $\left(h_{1}^{v}\right)_{*}: g_{x_{0}} \rightarrow g_{x_{1}}$, and $x_{1}=h_{1}^{v}\left(x_{0}\right)$.
Let $v \in \Gamma^{*}(g)$; by γ we denote the integral curve of v starting at x_{0}.
PROPERTY 2.4. Let us take a point p on the curve γ and a section w of g defined in a neighbourhood of p such that $j_{p}^{r} w=0$. Then we assume that there exist:

1. a hypersurface H, separating M into two half-spaces H^{+}and H^{-}, (as illustrated in Figure 1) transversal to γ at the point $p \in H \cap \gamma$, and
2. a family of vector fields $P_{\epsilon}(v, w) \in \Gamma^{*}(g)$, parametrized by $\epsilon \neq 0$, depending linearly on w with the following property

$$
P_{\epsilon}(v, w) \xrightarrow{\epsilon \rightarrow 0}\left\{\begin{array}{ccc}
v & \text { on } & H^{-} \\
v+w & \text { on } & H^{+}
\end{array}\right.
$$

P_{ϵ} converges uniformly together with its derivatives up to order r, outside an open neighbourhood U of p and in a cone-like neighbourhood S of the curve γ,

$$
S=\{x \in M ; d(x, \gamma)<C d(x, p)\}
$$

for some positive constant C, and a metric $d(.,$.$) on M$.
One can briefly state this assumption as follows:
Every vector field on M, which is a "piecewise section of g " can be approximated by sections of g.
Unless otherwise stated, in what follows, we assume both of these properties hold for our sheaf g.
Now we show how these assumptions work in some special situations.
EXAMPLE 2.5. Let g be the sheaf of all smooth vector fields on M. Then we can simply define

$$
P_{\epsilon}(v, w)=v+\varphi_{\epsilon} w,
$$

where φ_{ϵ} is a smooth function on M, such that

$$
\left|D^{a} \varphi_{\epsilon}\right| \leqslant \frac{C_{a}}{\epsilon^{a}}
$$

vanishing on H^{-}, varying on the strip of distance ϵ from H and equal 1 on the rest of H^{+}.

EXAMPLE 2.6. Let g be the sheaf of all Hamiltonian vector fields on $M=$ ($T^{*} X, \omega_{X}$), where ω_{X} is the Liouville symplectic form on the cotangent bundle $T^{*} X$. Let v, w be Hamiltonian vector fields with Hamiltonians H, K respectively, i.e. $\omega_{X}(v, \bullet)=-\mathrm{d} H, \omega_{X}(\omega, \bullet)=-\mathrm{d} K$. Let us denote the above correspondence of 1 -forms and vector fields by J. We put

$$
P_{\epsilon}(v, w)=J d\left(H+\varphi_{\epsilon} K\right),
$$

where φ_{ϵ} is defined as in Example 2.5.
EXAMPLE 2.7. Let g be the sheaf of Hamiltonian vector fields with Hamiltonians quadratic with respect to $p: H(q, p)=\Sigma_{i j} g^{i j}(q) p_{i} p_{j}((q, p)$ denote the standard Darboux coordinates on $T^{*} X$). Then the hypersurface \mathcal{H} is defined by a smooth function L on $X, \mathcal{H}=\{(q, p): L(q)=0\}$, and the function φ_{ϵ} depends only on q.

3. A transversality theorem

We start with a description of the image space of (Exp) $)_{*}$ Let $g_{x}^{(r+1)}$ be the space of germs at x of vector fields in g vanishing at x together with all derivatives up to order r. By $J^{r} g_{x}$ we denote the jet-space of vector fields

$$
J^{r} g_{x}=\frac{g_{x}}{g_{x}^{(r+1)}}
$$

By $\pi^{*} g$ we shall denote the sheaf of $T X$-valued vector fields on M along π; i.e. the fields of the form

$$
x \rightarrow \pi_{*} v(x)
$$

where v is a section of g.

PROPOSITION 3.1.

J_{g}^{*} is an immersive submanifold of J^{r}

and the tangent space $T_{z} J_{g}^{*}$ can be identified with

$$
\left\{j_{x_{1}}^{r} w ; w \in \pi^{*} g_{x_{1}} \mid W_{x_{1}}\right\}
$$

where $j_{x_{1}}^{r} w$ is the r-jet of w and z is equal to the $r-j e t E^{r}(v)$.
Proof. As we remarked in Section 2

$$
J_{g}^{*}=E^{r}\left(\Gamma^{*}(g)\right)(W) \cap J^{r}
$$

We will show that $\left(E^{r}\right)_{*}$ has constant rank on $\Gamma^{*}(g)$.
Let $\xi \subset \Gamma(g)$ and let $t \rightarrow v+t \xi$ be a line in $\Gamma(g)$. Consider the curve $\gamma: t \rightarrow E^{r}(v+t \xi) \in C^{\infty}\left(W, J^{r}\right)$. The tangent vector to γ can be thought of as

$$
\left.\frac{d}{\mathrm{~d} t} E^{r}(v+t \xi)\right|_{t=0}=\left.j^{r} \frac{d}{\mathrm{~d} t} \pi_{*}(y(x, 1, t))\right|_{t=0}=j^{r} \pi_{*}(u(x, 1))
$$

where $y(x, s, t)$ is a solution of the equation (with parameter t)

$$
\begin{equation*}
\partial_{s} y(x, s, t)=(v+t \xi)(y(x, s, t)) \tag{2}
\end{equation*}
$$

We can view y as a perturbation of the solution of the equation $\dot{x}=v(x)$. Thus we can write y in the form

$$
y(x, s, t)=y_{0}(x, s)+t u(x, s)+o(t)
$$

From (2) we see that $u(x, s)$ satisfies the equation

$$
\begin{equation*}
\partial_{s} u(x, s)=D v\left(y_{0}(x, s)\right) u(x, s)+\xi\left(y_{0}(x, s)\right) \tag{3}
\end{equation*}
$$

where $y_{0}(x, s)$ is a solution of the equation

$$
\begin{equation*}
\partial_{s} y_{0}(x, s)=v\left(y_{0}(x, s)\right) \tag{4}
\end{equation*}
$$

We can also write $h_{t}^{v}(x)=y_{0}(x, t)$.
By Property 2.3 we have the following result.

LEMMA 3.2. The linear part of the perturbation y is given by

$$
\begin{equation*}
u(x, 1)=\int_{0}^{1}\left(h_{1-t}^{v}\right)_{*} \xi\left(h_{t}^{v}(x)\right) \mathrm{d} t \in g_{x_{1}} \tag{5}
\end{equation*}
$$

Proof. We write

$$
\begin{equation*}
u(x, s)=\int_{0}^{s}\left(h_{s-t}^{v}\right)_{*} \xi\left(h_{t}^{v}(x)\right) \mathrm{d} t \tag{6}
\end{equation*}
$$

Obviously (6) satisfies equation (3):

$$
\begin{aligned}
\partial_{s} u(x, s) & =\xi\left(h_{s}^{v}(x)\right)+\int_{0}^{s} D v\left(h_{s-t}^{v}(x)\right)\left(h_{s-t}^{v}\right)_{*} \xi\left(h_{t}^{v}(x)\right) \mathrm{d} t \\
& =\xi\left(h_{s}^{v}(x)\right)+\int_{0}^{s}\left(\frac{\partial}{\partial s} h_{s}^{v}\right)_{*}\left(h_{-t}^{v}\right)_{*} \xi\left(h_{t}^{v}(x)\right) \mathrm{d} t \\
& =\xi\left(h_{s}^{v}(x)\right)+D v\left(h_{s}^{v}(x)\right) \int_{0}^{s}\left(h_{s}^{v}\right)_{*}\left(h_{-t}^{v}\right)_{*} \xi\left(h_{t}^{v}(x)\right) \mathrm{d} t
\end{aligned}
$$

where

$$
\begin{equation*}
\int_{0}^{s}\left(h_{s}^{v}\right)_{*}\left(h_{-t}^{v}\right)_{*} \xi\left(h_{t}^{v}(x)\right) \mathrm{d} t=u(x, s) \tag{7}
\end{equation*}
$$

Q.E.D.

Now we prove that $T_{z} J_{g}^{*} \hookrightarrow J^{r} g$. Indeed by (7) we can approximate $u \in T_{z} J^{*} g$ by Riemann sums: each summand

$$
\begin{equation*}
\left(h_{-(1-t)}^{v}\right)_{*} u(x, 1)=\xi\left(h_{t}^{v}(x)\right) \tag{8}
\end{equation*}
$$

belongs, by Property 2.3, to $J^{r} g_{x_{1}} . J^{r} g_{x_{1}}$ is a vector subspace of the (finite dimensional) vector space of all jets of vector fields and therefore closed.

To prove that $J^{r} g \hookrightarrow T_{z} J_{g}^{*}$ we have to show that for every u there exists a ξ such that (6) is satisfied. This will follow from the fact that g has, by assumption, Property 2.4. First, we can assume that $u \in g_{x_{1}}^{(r)}$. We choose a suitable hypersurface H (cf. Property 2.4) intersecting transversally the trajectory γ of v starting at x_{0}. Then apply Property 2.4 putting $w=\left(h_{-\delta}^{v}\right)_{*} u$, and $p=h_{1-\delta}^{v}\left(x_{0}\right)$ (cf. Figure 1). Let us denote by ξ_{0} the vector field equal to v over H^{-}and $v+w$ over H^{+}. ξ_{0} induces a flow $h_{t}^{\xi_{0}}$ which gives a smooth $h_{1}^{\xi_{0}}$ in a neighbourhood of x_{0} and let $E^{r}\left(\xi_{0}\right)$ be its r-jet at x_{0}. By Property 2.4 we have an approximating family P_{ϵ} for which, for sufficiently small ϵ, we have

$$
E^{r}\left(P_{\epsilon}(v, w)\right)=E^{r}(v)+\xi+o(|\xi|)+A_{\epsilon}
$$

(for more details see the proof of Theorem 3.8), where $A_{\epsilon} \xrightarrow{\epsilon \rightarrow 0} 0$ uniformly. Since $\operatorname{dim} J^{r} g_{x}$ is independent of x, then $T_{z} J_{g}^{*}$ is independent of z, so J_{g}^{*} is an immersive submanifold.
Q.E.D.

REMARK 3.3. We conjecture that the space J_{g}^{*} is a submanifold of $J(W, X)$.
The following corollary follows from the above proof.
COROLLARY 3.4. The mapping $E^{r}: \Gamma^{*}(g) \times W \rightarrow J_{g}^{*}$ is a submersion.
Let $h \subset g$, be a subspace of g. We introduce the following space of Lipschitz sections of h

$$
\Gamma^{*}(h)=\left\{v \in \Gamma(h): v\left(x_{0}\right) \neq 0\right\}
$$

PROPOSITION 3.5. A subspace h of g is an accessible subspace of the space g if and only if

$$
\left.E^{r}\right|_{\Gamma^{*}(h) \times W}: \Gamma^{*}(h) \times W \rightarrow J_{g}^{*}
$$

is a submersion.
Proof. First we prove that "only if" part. Let $\left.E^{r}\right|_{\Gamma^{*}(h) \times W}$ be a submersion and let $A^{r} \subset J^{r}$ be a typical submanifold for E^{r}. Then by Thom-Abraham transversality theorem (cf. [6]), there exists an open and dense subset $\mathcal{A} \subset \Gamma^{*}(h)$ such that for every $a \in \mathcal{A}$ the mapping $E^{r}(a): W \rightarrow J_{g}^{*}$, is transversal to A^{r}. Thus the subspace h is accessible. To prove the "if" part, we note that the accessibility of h implies transversality of E^{r} to an arbitrary point from J_{g}^{*}. But this is exactly the submersivity of $\left.E^{r}\right|_{\Gamma^{*}(h) \times W}$.
Q.E.D.

REMARK 3.6. If $\left.E^{r}\right|_{\Gamma^{*}(h) \times W}$ is a submersion then there exists a finite dimensional subspace h_{0} of h, such that if $v \in \Gamma^{*}(h)$ and $t \rightarrow E^{r}(t v) \in J_{g}^{*}$ is a curve, then for every $t \neq 0$ we have

$$
\begin{equation*}
T_{E^{r}(t v)} J_{g}^{*}=\left.\operatorname{Im}\left(\left.E^{r}\right|_{\Gamma^{*}\left(t v+h_{0}\right)}\right)_{*}\right|_{E^{r}(t v)} \tag{9}
\end{equation*}
$$

So the mapping $E^{r}: \Gamma^{*}\left(t v+h_{0}\right) \rightarrow J_{g}^{*}$ is a submersion.
Let $v, \xi \in \Gamma^{*}(g)$. We introduce the following iterated bracket of v and ξ :

$$
\begin{equation*}
[v, \xi]_{i}=\underbrace{[v,[, \ldots,[v, \xi], \ldots,]]}_{i \times} \in \Gamma^{*}(g) \tag{10}
\end{equation*}
$$

where $[v, \xi]_{0}=\xi,[v, \xi]_{1}=[v, \xi]$.
Let h be a subsheaf of g.

DEFINITION 3.7. We say that h satisfies the α-property if for almost all $v \in h$, for every $w \in g_{x_{0}}^{(k)}, k \leqslant r, x_{0} \in M$, and every $W_{x_{0}} \in \mathcal{M}$ there exists an $l \in \mathbf{N} \cup\{0\}$ and germs of vector fields $\xi_{0}, \xi_{1}, \ldots, \xi_{l} \in h_{x_{0}}$, such that

$$
\begin{align*}
& \left.\left.\pi_{*}\left(\left[v, \xi_{0}\right]_{j}+\left[v, \xi_{1}\right]_{j-1}+\cdots+\xi_{j}\right)\right|_{W_{x_{0}}} \in \pi^{*}(g)_{x_{0}}^{(k+1)}\right|_{W_{x_{0}}} \tag{j}\\
& \left(\text { i.e. } j_{x_{0}}^{k}\left(\left.\pi_{*} \sum_{i=0}^{j}\left[v, \xi_{i}\right]_{j-i}\right|_{W_{x_{0}}}\right)=0\right), \quad \text { for } j=0, \ldots, l-1
\end{align*}
$$

and

$$
\begin{align*}
& \left.\left.\pi_{*}\left(\left[v, \xi_{0}\right]_{l}+\left[v, \xi_{1}\right]_{l-1}+\cdots+\xi_{l}-w\right)\right|_{W_{x_{0}}} \in \pi^{*}(g)_{x_{0}}^{(k+1)}\right|_{W_{x_{0}}} \tag{l}\\
& \left(\text { i.e. } j_{x_{0}}^{k}\left(\left.\pi_{*} \sum_{i=0}^{l}\left[v, \xi_{i}\right]_{l-i}\right|_{W_{x_{0}}}\right)=j_{x_{0}}^{k}\left(\left.\pi_{*} w\right|_{W_{x_{0}}}\right)\right.
\end{align*}
$$

By $\pi^{*}(g)_{x_{0}}^{(k+1)}$ we denote the space, defined by g, of germs of sections of the induced bundle $\pi^{*} T X$, with zero k-jet at x_{0}.

THEOREM 3.8. Let g be the sheaf of analytic vector fields. Let $\left.E^{r}\right|_{\Gamma^{*}(h) \times \mathcal{M}}$ be a submersive map. Then h satisfies the α-property.

Proof. We know that for some finite dimensional subspace $h_{0}, h_{0} \subset h$, $\left.E^{r}\right|_{\Gamma^{*}\left(t v+h_{0}\right) \times \mathcal{M}}$ is submersive. Let B_{0} be a closed ball in h_{0}. Then $E^{r}\left(t v+B_{0}\right)$ contains some neighbourhood of $E^{r}(t v)$. Making use of the assumption of analyticity of g we have that $E^{r}\left(t v+B_{0}\right)$ is an analytic subset of J_{g}^{*}. Thus we immediately obtain that (see [7]) there exists an $N \in \mathbf{N}$ such that for every $w \in \Gamma^{*}(g)$

$$
\begin{equation*}
E^{r}\left(t\left(v+t^{N-1} w\right)\right) \in E^{r}\left(t v+B_{0}\right) \tag{11}
\end{equation*}
$$

Thus for every t there exists $\xi \in B_{0}$ such that

$$
\begin{equation*}
E^{r}\left(t\left(v+t^{N-1} w\right)\right)=E^{r}(t(v+\xi)) \tag{12}
\end{equation*}
$$

Using Puiseux theorem we can assume that ξ is a convergent fractional power series:

$$
\xi=\xi\left(t^{1 / m}\right)
$$

(depending also on w).
We notice that $E^{r}(t(v+\xi))$ is the r-jet at x_{0} of the mapping $\pi(z(x, 1, t))$, where $z(x, s, t)$ satisfies the equation

$$
\begin{equation*}
\partial_{s} z(x, s, t)=[t(v+\xi)](z(x, s, t)) \tag{13}
\end{equation*}
$$

Let us denote $u(x, t)=z(x, 1, t)$. Inserting $\bar{s}=s t$ into (13) we find that $u(x, \bar{s})$ (which obviously depends also on ξ), satisfies

$$
\begin{equation*}
\partial_{\bar{s}} u(x, \bar{s})=(v+\xi)(u(x, \bar{s})) ; \tag{14}
\end{equation*}
$$

thus concluding, we see that: $E^{r}(t(v+\xi))$ is the r-jet at x_{0} of $u(x, t)$, where $u(x, \bar{s})$ is the solution of (14).

Let us look on (14) as a perturbation of the equation

$$
\partial_{\bar{s}} y_{0}(x, \bar{s})=v\left(y_{0}(x, \bar{s})\right),
$$

which is clearly satisfied by $y_{0}(x, \bar{s})=h_{\bar{s}}^{v}(x)$. We linearize (14); it is easy to see that the linear (with respect to ξ) term $y=y_{\xi}(x, \bar{s})$ satisfies

$$
\begin{equation*}
\partial_{\bar{s}} y=D v\left(y_{0}\right) y+\xi\left(\bar{s}, y_{0}\right) \tag{15}
\end{equation*}
$$

where $u(x, \bar{s})=y_{0}(x, \bar{s})+y_{\xi}(x, \bar{s})+\{$ terms of order $\geqslant 2$ with respect to $\xi\}$ and $y(x, 0) \equiv 0, y_{0}(x, 0)=x$.

Now we expand ξ with respect to \bar{s}

$$
\xi=\xi_{0}+\xi_{1} \bar{s}+\cdots,
$$

where $\xi_{i}=\xi_{i}(x)$. Then from (15) the r-jet (with respect to x) of the linear term of the expansion of y with respect to $\bar{s}=t$ is

$$
t j_{x_{0}}^{r} \xi_{0}(x) .
$$

That is just the right hand side of the equation (12). If $j_{x_{0}}^{r} \xi_{0}(x) \neq 0$ then similar arguments applied to the left hand side of (12) give the equality

$$
\begin{equation*}
t^{N} j_{x_{0}}^{r} w=t j_{x_{0}}^{r} \xi_{0} \tag{16}
\end{equation*}
$$

So the α-property is satisfied for $k=r$ and $l=0$, if we put $N=1$.
If $j_{x_{0}}^{r} \xi_{0}=0$, then we have to consider the second term of the expansion of y with respect to \bar{s}. To do so we differentiate both sides of (15) with respect to \bar{s}, and put $\bar{s}=t=0$.

Now we have

$$
\begin{equation*}
\left.\partial_{\bar{s}}^{2} y\right|_{\bar{s}=0}=D \xi_{0}(x) v(x)+\xi_{1}(x) . \tag{17}
\end{equation*}
$$

Since $j_{x_{0}}^{r} \xi_{0}=0, j_{x_{0}}^{r}\left[v, \xi_{0}\right]=j_{x_{0}}^{r} D \xi_{0} v$, so we get

$$
\begin{equation*}
\left.j_{x_{0}}^{r} \partial_{\bar{s}}^{2} y\right|_{\bar{s}=0}=j_{x_{0}}^{r}\left(\left[v, \xi_{0}\right]+\xi_{1}\right) . \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
j_{x_{0}}^{r} y(x, t)=\left(\frac{t^{2}}{2}\right) j_{x_{0}}^{r}\left(\left[v, \xi_{0}\right]+\xi_{1}\right)+o\left(t^{2}\right) . \tag{19}
\end{equation*}
$$

Comparing both sides of (12) we obtain the α-property satisfied for $k=r$ and $l=1$, provided $j_{x_{0}}^{r}\left(\left[v, \xi_{0}\right]+\xi_{1}\right) \neq 0$.

If $j_{x_{0}}^{r}\left(\left[v, \xi_{0}\right]+\xi_{1}\right)=0$ then we continue the above procedure. Finally we arrive at the following statement:
Let $l \in \mathbf{N}$ be the smallest number for which

$$
j_{x_{0}}^{r}\left(\sum_{i=0}^{l}\left[v, \xi_{i}\right]_{l-i}\right) \neq 0
$$

Then

$$
j_{x_{0}}^{r} y\left(x_{0}, t\right)=\left(\frac{t^{l}}{l!}\right) j_{x_{0}}^{r}\left(\sum_{i=0}^{l}\left[v, \xi_{i}\right]_{l-i}\right)+o\left(t^{l}\right) .
$$

Passing to vector fields along π we see that this statement ends the proof of Theorem 3.8, i.e. we have got that the α-property is a necessary condition for the submersivity of $\left.E^{r}\right|_{\Gamma^{*}(h) \times \mathcal{M}}$.
Q.E.D.

Now we are going to state the corresponding sufficient condition. For this purpose we assume: at each fiber h_{x} of h, equipped with the inverse limit topology ($h_{x}=\lim _{\underset{U}{ } \ni x} h_{U}$, where U denotes an open neighbourhood of x), there is a distinguished open set $h_{x}^{0} \subset h_{x}$. We take v to be a Lipschitz section of h^{0} and write $v \in \Gamma\left(h^{0}\right)$, i.e. for any $x \in M, v(x) \in h_{x}^{0}$.
DEFINITION 3.9. We say that h satisfies the β-property if for every $v \in \Gamma\left(h^{0}\right)$, for every $w \in g_{x_{0}}^{(k)}, k \leqslant r, x_{0} \in M$, and every $W_{x_{0}} \in \mathcal{M}$ there exists an $l \in \mathbf{N}$ and the germ of a vector field $\xi \in h_{x_{0}}^{0}$, such that

$$
\begin{align*}
& \pi_{*}\left([v, \xi] j \mid W_{x_{0}}\right) \in \pi^{*}(g)_{x_{0}}^{(k+1)} \mid W_{x_{0}} \tag{j}\\
& \text { (i.e. } \left.j_{x_{0}}^{k}\left(\pi_{*}[v, \xi]_{j} \mid W_{x_{0}}\right)=0\right), \quad \text { for } j=0, \ldots, l-1,
\end{align*}
$$

and

$$
\begin{align*}
& \left.\left.\pi_{*}\left([v, \xi]_{l}-w\right)\right|_{W_{x_{0}}} \in \pi^{*}(g)_{x_{0}}^{(k+1)}\right|_{x_{x_{0}}} \tag{l}\\
& \text { (i.e. } \left.j_{x_{0}}^{k}\left(\left.\pi_{*}\left([v, \xi]_{l}-w\right)\right|_{W_{x_{0}}}\right)=0\right) .
\end{align*}
$$

THEOREM 3.10. Let a subsheafh of g satisfy the (β)-property. Then $\left.E^{r}\right|_{\Gamma^{*}(h) \times \mathcal{M}}$ is a submersion.

Proof. Let $v \in \Gamma^{*}(h)$, and h_{t}^{v} be the flow corresponding to v. We denote

$$
g_{x_{1}}=\bigoplus_{k \leqslant r} \frac{g_{x_{1}}^{(k)}}{g_{x_{1}}^{(k+1)}} \oplus g^{(r+1)}, \quad x_{1}=h_{1}^{v}\left(x_{0}\right),
$$

and by

$$
p r_{k}: g_{x_{1}}^{(k)} \rightarrow \frac{g_{x_{1}}^{(k)}}{g_{x_{1}}^{(k+1)}}
$$

we denote the canonical projection. We choose $w_{k i} \in g_{x_{1}}^{(k)}, i \in I_{k} \subset \mathbf{N}$, such that $\left\{p r_{k}\left(w_{k i}\right)\right\}_{i \in I_{k}}$ form a basis of the vector space $g_{x_{1}}^{(k)} / g_{x_{1}}^{(k+1)}$. The set of all elements of the form $\left\{p r_{k}\left(w_{k i}\right), 0 \leqslant k \leqslant r,\right\}_{i \in I_{k}}$ gives a basis of the space $g_{x_{1} /} / g_{x_{1}}^{(r+1)}$.

Take any element $\bar{w}=w_{k i}$ of our basis. Let $w=\pi_{*} \bar{w} \mid W_{x_{1}}$. We show that for $\lambda \in \mathbf{R}$ sufficiently close to zero, there exists a $\xi_{\lambda} \in \Gamma^{*}(h)$, such that the tangent vector $\left.(d / \mathrm{d} t)\left(E^{r}\left(v+t \xi_{\lambda}\right)\right)\right|_{t=0}$ to the curve $t \rightarrow E^{r}\left(v+t \xi_{\lambda}\right)$ is equal to $\lambda w+o(\lambda)$. In fact, let ξ be a section of h, defined in a neighbourhood U of x_{1} such that

$$
\pi_{*}\left([v, \xi]_{l}-\bar{w}\right)\left|W_{x_{1}} \in \pi^{*}(g)_{x_{1}}^{(k+1)}\right| W_{x_{1}},
$$

where

$$
\left.\left.\pi_{*}([v, \xi])_{j}\right|_{W_{x_{1}}} \in \pi^{*}(g)_{x_{1}}^{(k+1)}\right|_{x_{x_{1}}}, \quad \text { for } j=0, \ldots, l-1 .
$$

Let us take a $\delta>0$. We consider $\left(h_{-\delta}^{v}\right)_{*}(\xi) \in h_{x_{\delta}}, x_{\delta}=h_{1-\delta}^{v}\left(x_{0}\right)$, i.e. the vector field $\xi \in g_{x_{1}}^{(k+1)}$, moved to the point x_{δ}. We assume that δ is so small that $x_{1} \in h_{-\delta}^{v}(U)$. Let us take a suitable hypersurface H transversal to the trajectory $\gamma:[0,1] \ni \rightarrow h_{t}^{v}\left(x_{0}\right)$ at the point x_{δ}, (cf. Property 2.4). We consider two parts H^{-} and H^{+}of an open neighbourhood of the trajectory (see Figure 2 below).

Now we consider the following (cf. Property 2.4),

$$
\xi_{0}=\left\{\begin{array}{ccc}
v & \text { on } & H^{-} \\
v+\xi & \text { on } & H^{+}
\end{array}\right.
$$

Let

$$
\mathcal{E}_{t}\left(v+\left\{\begin{array}{lll}
0 & \text { on } & H^{-} \\
\xi & \text { on } & H^{+}
\end{array}\right)\right.
$$

Fig. 2.
denote the flow induced by ξ_{0} on M. By the transversality of H to γ we know that

$$
\mathcal{E}_{1}\left(v+\left\{\begin{array}{lll}
0 & \text { on } & H^{-} \\
\xi & \text { on } & H^{+}
\end{array}\right)\right.
$$

is smooth in a neighbourhood of x_{0}. Thus we can have its r-jet,

$$
\mathcal{E}^{r}\left(v+\left\{\begin{array}{lll}
0 & \text { on } & H^{-} \\
\xi & \text { on } & H^{+}
\end{array}\right)\right.
$$

As before, we denote by

$$
E^{r}\left(v+\left\{\begin{array}{lll}
0 & \text { on } & H^{-} \\
\xi & \text { on } & H^{+}
\end{array}\right)\right.
$$

the r-jet of $\mathcal{E}_{1}\left(\xi_{0}\right)$ at x_{0}.
We compute the linear terms of

$$
E^{r}\left(v+\left\{\begin{array}{lll}
0 & \text { on } & H^{-} \\
\xi & \text { on } & H^{+}
\end{array}\right)\right.
$$

with respect to ξ. Essentially we repeat the proof of Theorem 3.8 , where we studied the equation (15). In the present case we obtain that the solution of (15) has the expansion

$$
j^{k} \pi_{*} y(x, \delta)=\left(\frac{\delta^{l}}{l!}\right) j^{k} \pi_{*}([v, \alpha])+o\left(\delta^{l}\right)=\left(\frac{\delta^{l}}{l!}\right) w+o\left(\delta^{l}\right)
$$

which proves that

$$
E^{r}\left(v+\left\{\begin{array}{lll}
0 & \text { on } & H^{-} \\
\xi & \text { on } & H^{+}
\end{array}\right)=E^{r}(v)+\left(\frac{\delta^{l}}{l!}\right) w+o\left(\delta^{l}\right)\right.
$$

The field ξ is $(k+1)$-flat at x_{δ} so we use the Property 2.4 and write the approximating family $P_{\epsilon}(v, \xi)$. Obviously we have

$$
E^{r}\left(P_{\epsilon}(v, \xi)\right)=E^{r}\left(v+\left\{\begin{array}{lll}
0 & \text { on } & H^{-} \\
\xi & \text { on } & H^{+}
\end{array}\right)+E_{\epsilon}(v, \xi)\right.
$$

where $E_{\epsilon} \xrightarrow{\epsilon \rightarrow 0} 0$.
Then for sufficiently small ϵ we have

$$
E^{r}\left(P_{\epsilon}(v, \xi)\right)=E^{r}(v)+\left(\frac{\delta^{l}}{l!}\right) w+o\left(\delta^{l}\right)+A_{\epsilon}
$$

where $A_{\epsilon} \xrightarrow{\epsilon \rightarrow 0} 0$. We take ϵ so small that $\left|A_{\epsilon}\right|<o\left(\delta^{l}\right), \lambda=\frac{\delta^{l}}{l!}$ and $\xi_{\lambda}=$ $P_{\epsilon}(v, \xi)-v$.
Q.E.D.

Our results can be briefly recapitulated as follows.
COROLLARY 3.11. If h is accessible then h satisfies the α-property. If h satisfies the β-property then h is accessible.

4. Genericity of Exp for Riemannian and sub-Riemannian metrices

Let M be the cotangent bundle; $M=T^{*} X, \operatorname{dim} X=n$, with $\pi=\pi_{X}: T^{*} X \rightarrow X$ the canonical bundle projection. By g we denote the sheaf of Hamiltonian vector fields on $T^{*} X$. Let h be a subsheaf of g and let \mathcal{M} denote a class of germs of submanifolds of M; unspecified for the moment by \bar{g} and \bar{h} we denote the corresponding sheaves of local Hamiltonians on $T^{*} X$; thus \bar{g} is the sheaf of germs of functions f, such that $J d f$ is a section of \bar{g}. For $W \in \mathcal{M}$ and $\bar{p}_{0} \in W$ we denote by $\mathcal{F}_{W_{\bar{p}_{0}}}$ the space of germs of functions on W, at $p_{0} ; \mathcal{F}_{W_{\bar{p}_{0}}}^{(k)}$ are the germs vanishing up to order $k-1$ at \bar{p}_{0}.

Let $v_{f_{1}}, v_{f_{2}} \in \Gamma^{*}(g), v_{f_{i}}=J d f_{i}$, where f_{1}, f_{2} are the corresponding Hamiltonians. We have

$$
\left[v_{f_{1}}, v_{f_{2}}\right]=v_{\left\{f_{1}, f_{2}\right\}}
$$

where $\{.,$.$\} denotes the standard Poisson bracket on T^{*} X$. In the Darboux coordinates (q, p) on $T^{*} X$ we have, of course

$$
\left(\pi_{X}\right)_{*} v_{f}=\partial_{p} f
$$

where by $\partial_{p} f$ we denote the n-tuple $\left(\partial_{p_{1}} f, \ldots, \partial_{p_{n}} f\right) \in\left(\bar{g}_{\bar{p}_{0}}\right)^{n}$.
PROPOSITION 4.1. The α-property for the subsheaf $h \subset g$ is equivalent to the following condition:
(α): For almost all $f \in \bar{h}_{\bar{p}_{0}}$, for every $\eta \in \bar{g}_{\bar{p}_{0}}^{(k)}, k \leqslant r$ and $W_{\bar{p}_{0}} \in \mathcal{M}_{\bar{p}_{0}}$, there exist: an $l \in \mathbf{N} \cup\{0\}$ and $f_{0}, f_{1}, \ldots, f_{l} \in \bar{h}_{\bar{p}_{0}}$ such that

$$
\begin{aligned}
& \left.\sum_{i=0}^{j} \partial_{p}\left\{f, f_{i}\right\}_{j-i}\right|_{W_{\bar{p}_{0}}} \in\left(\mathcal{F}_{W_{p_{0}}}^{(k+1)}\right)^{n}, \\
& \left(i . e .\left.j_{\overline{p_{0}}}^{k}\left(\sum_{i=0}^{j} \partial_{p}\left\{f, f_{i}\right\}_{j-i}\right)\right|_{W_{\tilde{p}_{0}}}=0\right),
\end{aligned}
$$

for $j=0, \ldots, l-1$, and

$$
\begin{aligned}
& \left.\left(\partial_{p} \eta-\sum_{i=0}^{l} \partial_{p}\left\{f, f_{i}\right\}_{l-i}\right)\right|_{W_{\bar{P}_{0}}} \in\left(\mathcal{F}_{W_{\bar{p}_{0}}}^{(k+1)}\right)^{n} . \\
& \left(\text { i.e. }\left.j_{\bar{p}_{0}}^{k} \partial_{p} \eta\right|_{W_{\tilde{p}_{0}}}=\left.j_{\bar{p}_{0}}^{k} \sum_{i=0}^{l} \partial_{p}\left\{f, f_{i}\right\}_{l-i}\right|_{W_{\bar{P}_{0}}}\right) .
\end{aligned}
$$

By a straightforward modification of the above α-property we obtain the β-property expressed in terms of Hamiltonians.

Let $\mathcal{L}_{\bar{p}}, \bar{p} \in T^{*} X$ denote the space of germs at \bar{p} of Lagrangian submanifolds in $\left(T^{*} X, \omega_{X}\right)$. If $v \in \Gamma(g)$ then the class $\mathcal{L}=\cup_{\bar{p} \in T^{*} X} \mathcal{L}_{\bar{p}}$ is obviously preserved by the flow of symplectomorphisms h_{t}^{v}. From now on we take \mathcal{L} as \mathcal{M}.

Let us fix a germ at \bar{p} of a Lagrangian submanifold $W_{\bar{p}} \in \mathcal{L}_{\bar{p}}$. We shall study $\left.E\right|_{W_{\bar{p}}}$, or more formally

$$
\left.\operatorname{Exp}_{v}\right|_{W_{\bar{p}}}=\left.\pi_{X} \circ h_{1}^{v}\right|_{W_{\bar{p}}}, \quad q=\pi_{X}(\bar{p}),
$$

(in the most interesting and classical case $W_{\bar{p}}$ is the germ of the fibre $T_{q}^{*} X$). We notice that in standard terminology $h_{1}^{v} \mid W_{p}$ is a Lagrangian embedding and $\operatorname{Exp}_{v} \mid W_{p}$ is the corresponding Lagrangian projection.

We shall now discuss the genericity property of the Exp-map in the Riemannian geometry.

Let $h \subset g$ denote the subsheaf of Hamiltonian vector fields with quadratic Hamiltonians with respect to p. We look on $\Gamma(h)$ as the space of geodesic vector fields on X with the families of quadratic nondegenerate forms on $T^{*} X$ playing the role of nondegenerate Hamiltonians. In what follows we assume $\operatorname{det}\left(h^{i j}\right) \neq 0$
for our Hamiltonian vector fields $v_{H} \in \Gamma\left(h^{0}\right), H=\Sigma h^{i j} p_{i} p_{j}$, (see Definition 3.9).

THEOREM 4.5. Let $\bar{p} \in T^{*} V$. There exists an open and dense set of Riemannian metrics $h^{\prime} \subset \Gamma(\bar{h})$, such that for every $f \in h^{\prime}$, the Exp-map $\left.\operatorname{Exp}_{v_{f}}\right|_{W_{\bar{p}}}$ has only the singularities appearing in generic Lagrangian projections.

Proof. First we prove the accessibility of h. It is enough to check the sufficient condition, i.e. the β-property for our sheaf h; Without loss of generality we take $\bar{p}_{0}=\left(0, p_{0}\right)$; let $W_{\bar{p}_{0}}=W_{p_{0}}$ be an element of $\mathcal{L}_{\bar{p}_{0}}$. We denote $\mathcal{F}_{p_{0}}=\mathcal{F}_{W_{p_{0}}}$ the space of germs at p_{0} of analytic functions on $W_{p_{0}}$. Thus the β-property reads as follows:

Let $f \in \bar{h}_{\bar{p}_{0}}$ be a nondegenerate Hamiltonian at $q=0$. Let $k \in \mathbf{N}$. For every $\bar{\eta} \in g_{\bar{p}_{0}}^{(k)}$, there exists an $l \in \mathbf{N} \cup\{0\}$ and $f_{0} \in \bar{h}_{\bar{p}_{0}}$ such that $\left(\beta_{j}\right)$:

$$
\left.\partial_{p}\left\{f, f_{0}\right\}_{j}\right|_{p_{0}} \in\left(\mathcal{F}_{p_{0}}^{(k+1)}\right)^{n}, \quad \text { for } j=0, \ldots, l-1
$$

and
$\left(\beta_{l}\right)$:

$$
\left.\left(\partial_{p} \eta-\partial_{p}\left\{f, f_{0}\right\}_{l}\right)\right|_{W_{p_{0}}} \in\left(\mathcal{F}_{p_{0}}^{(k+1)}\right)^{n} .
$$

We write

$$
f=\sum_{i j} g^{i j}(q) p_{i} p_{j} .
$$

Let us take

$$
\begin{equation*}
f_{0}=\sum_{i j} h^{i j}(q) p_{i} p_{j} \in \bar{g}_{\bar{p}_{0}}^{(N)} . \tag{20}
\end{equation*}
$$

Then

$$
\left\{f, f_{0}\right\}_{l}=\partial_{v_{f}}^{l} f_{0}=\sum_{i j k r s}\left(g^{i j}(q) p_{j} \frac{\partial}{\partial q^{i}}-g_{, k}^{i j}(q) p_{i} p_{j} \frac{\partial}{\partial p_{k}}\right)^{l} h^{r s}(q) p_{r} p_{s} .
$$

Let $i_{W_{p_{0}}}$ be a Lagrangian embedding of $W_{p_{0}}$ into $T^{*} X$. First assume that $i_{W_{p_{0}}}\left(W_{p_{0}}\right)$ can be described by

$$
\begin{equation*}
q=\phi(p), \quad \phi(p)=\left(\phi_{1}(p), \ldots, \phi_{n}(p)\right) . \tag{21}
\end{equation*}
$$

Then the $\left(\beta_{l}\right)$-condition can be written in the form

$$
\left.\partial_{p} \eta(q, p)\right|_{\{q=\phi(p)\}}
$$

$$
=\left.\partial_{p} \sum_{i_{1}, \ldots, j_{l+2}} g^{i_{3} j_{3}}(q) \cdots g^{i_{l+2} j_{l+2}}(q) h_{, j_{3} \cdots j_{l+2}}^{i_{1} i_{2}}(q) p_{i_{1}} \cdots p_{i_{l+2}}\right|_{\{q=\phi(p)\}},
$$

for the lowest degree terms in (q, p).
Let us define $I=\left\langle\phi_{1}, \ldots, \phi_{n}\right\rangle$, the ideal in $\mathcal{F}_{p_{0}}\left(=\mathcal{F}_{W_{p_{0}}}\right)$ generated by $\phi_{1}(p), \ldots, \phi_{n}(p)$. We consider $\mathcal{F}_{p_{0}}$ as a graded ring with respect to $I^{s}, s \in \mathbf{N}$.
Let $\eta \in \bar{g}_{p_{0}}$. We put

$$
w=\left.\partial_{p} \eta\right|_{q=\phi(p)} \in\left(\mathcal{F}_{p_{0}}^{(N)}\right)^{n} .
$$

Let s be the biggest integer such that

$$
\begin{equation*}
w \in\left(I^{s}\right)^{n} \tag{22}
\end{equation*}
$$

The matrix $g^{i j}(0)$ is invertible, so we can find $l \in \mathbf{N} \cup\{0\}$ and $f_{0}=\Sigma_{i j} h^{i j}(q) p_{i} p_{j}$ (i.e. a matrix $h^{i j}(q)$), such that

$$
\begin{aligned}
& \sum_{i_{1}, \ldots, j_{\kappa+2}} g^{i_{3} j_{3}}(\phi(p)) \cdots g^{i_{\kappa+2} j_{\kappa+2}}(\phi(p)) h_{, j_{3} \cdots j_{\kappa+2}}^{i_{1} i_{2}} \\
& \quad \times(\phi(p)) \partial_{p}\left(p_{i_{1}} \cdots p_{i_{\kappa+2}}\right) \in\left(I^{s+1}\right)^{n},
\end{aligned}
$$

for $\kappa=0, \ldots, l-1$, and

$$
\begin{aligned}
& \left.\sum_{i_{1}, \ldots, j_{l+2}} g^{i_{3} j_{3}}(\phi(p)) \cdots g^{i_{l+2} j_{l+2}}(\phi(p))\right)_{, j_{3} \cdots j_{l+2}}^{i_{1} i_{2}} \\
& \quad \times(\phi(p)) \partial_{p}\left(p_{i_{1}} \cdots p_{i_{l+2}}\right)-w \in\left(I^{s+1}\right)^{n} .
\end{aligned}
$$

But from (22) we have $I^{s+1} \subset \mathcal{F}_{p_{0}}^{(N+1)}$. Thus we obtain the (β)-condition, i.e.

$$
\left.\partial_{p}\left\{f, f_{0}\right\}_{\kappa}\right|_{q=\phi(p)} \in\left(\mathcal{F}_{p_{0}}^{(N+1)}\right)^{n}, \quad \text { for } \kappa=0, \ldots, l-1,
$$

and

$$
\left.\partial_{p}\left\{f, f_{0}\right\}_{l}\right|_{q=\phi(p)}-w \in\left(\mathcal{F}_{p_{0}}^{(N+1)}\right)^{n} .
$$

Let us discuss briefly what modifications should be done if (21) is not satisfied. Suppose for a moment that $W_{p_{0}}$ is transversal to the fibres of $T^{*} X$. In this case we write $i_{W_{p_{0}}}(q)=(q, \psi(q))$ and the (β)-condition is satisfied immediately. In fact, for any $w=\left(w^{1}, \ldots, w^{n}\right) \in\left(\mathcal{F}_{p_{0}}^{(N)}\right)^{n}$ (elements of $\mathcal{F}_{p_{0}}$ are parametrized by q) there exists an $f_{0}=\Sigma_{i j} h^{i j}(q) p_{i} p_{j}$ such that

$$
w^{k}(q)=\sum_{i} h^{i k}(q) \psi_{i}(q)\left(\bmod \left(\mathcal{F}_{p_{0}}^{(N+1)}\right)\right) .
$$

This is obvious; taking $p_{0}=(1,0, \ldots, 0)$ we find $h^{1 k}(q)=w^{k}(q)$.
The most general " $I J$ "-case, $I \cup J=\{1, \ldots, n\}, I \cap J=\emptyset$, where

$$
i_{W_{p_{0}}}\left(q_{I}, p_{J}\right)=\left(q_{I}, \phi_{J}\left(q_{I}, p_{J}\right), \psi_{I}\left(q_{I}, p_{J}\right), p_{J}\right)
$$

can be treated in a similar way by mixing both methods.
Q.E.D.

REMARK 4.3. A slightly stronger genericity result is true also for the map $\left.h_{1}^{v}\right|_{W_{\mathcal{P}_{0}}}$: $W_{\bar{p}_{0}} \rightarrow T^{*} X$. In this case the (β)-condition is fulfilled and one can state the result as follows:

Let $\bar{p} \in T^{*} X$. There exists an open and dense subset h^{\prime} of quadratic hamiltonians h such that for every $f \in \Gamma\left(h^{\prime}\right)$ the Lagrangian embedding $\left.h_{1}^{v_{f}}\right|_{W_{p_{0}}}$ is generic in the space of all mappings $\left.h_{1}^{v}\right|_{\bar{P}_{0}}$ induced by general Hamiltonian vector fields $v \in \Gamma(g)$. (This extends the Theorem 1 in [11], p. 735).

REMARK 4.4. Let us choose a family of germs $W_{\bar{p}(q)}$ of fibers of $T^{*} X$ defined by a section $X \rightarrow T^{*} X, X \ni q \rightarrow \bar{p}(q) \in T^{*} X$. Then we define

$$
\operatorname{Exp}_{q}=\left.\operatorname{Exp}_{v}\right|_{W_{\tilde{p}}(q)}
$$

and look on it as a family of maps parametrized by $q \in X$. C.T.C. Wall ([11], Conjecture 2, p. 735) conjectured that for a generic metric on X, i.e. $f=$ $\Sigma_{i j} g^{i j} p_{i} p_{j}, \operatorname{Exp}=\left\{\operatorname{Exp}_{q}: q \in X\right\}$ is a generic n-parameter family of Lagrangian projections (cf. [1]). A straightforward calculation shows that the necessary condition (α) is not fulfilled. In this case we have $W=T^{*} X$. Thus the "Wall Conjecture" is not true (cf. [5, 3]). In fact there is an infinite number of constraints resulting from the obvious formula:

$$
\begin{equation*}
\left(h_{t}^{v}\right)_{*} v=v, \quad v=J d f \tag{23}
\end{equation*}
$$

Since f is quadratic with respect to p, this implies that $\left(h_{t}^{v}\right)_{*} v$ must be linear with respect to v, and this is a strong constraint for h_{t}^{v}. To be more explicit, let $(p, Q) \rightarrow G_{t}(p, Q), \operatorname{det}\left(\left(\partial^{2} G_{t} / \partial p \partial Q\right)(p, Q)\right) \neq 0$, be a generating function for h_{t}^{v}, (for a standard notation see [2]). By $(q, p) \rightarrow Q_{t}(q, p)$ we denote the solution of the equation $q-\left(\partial G_{t} / \partial p\right)(p, \bullet)=0$. We define

$$
\Phi^{j}(q, p)=\partial_{q l} Q_{t}^{j}(q, p) \sum_{i} g^{i l}(q) p_{i}-\partial_{p_{s}} Q_{t}^{j}(q, p) \sum_{i k} g_{, s}^{i k}(q) p_{i} p_{k}
$$

By a simple verification we find

$$
\partial_{p}^{\alpha}\left(\Phi^{j} \circ\left(h_{t}^{v}\right)^{-1}\right)(q, p) \equiv 0, \quad \text { for }|\alpha|>1
$$

One can conjecture that all constraints satisfied by the family Exp arise from the one above simply by differentiation.

Now let us pass to the Exp-map in the sub-Riemannian geometry (cf. [9]). Let $M=T^{*} X$ be as above, and $\operatorname{dim} X=n+1$. By $V \subset T X$ we denote a smooth distribution of hyperplanes on X, i.e. a subbundle of $T X$. All our arguments are valid for any dimension of V, however for simplicity of notation, we shall assume that $\operatorname{codim} V=1$. Locally V is annihilated by a 1 -form,

$$
\begin{equation*}
\omega=d q^{n+1}+\sum_{i=1}^{n} A_{i}(q) \mathrm{d} q^{i} . \tag{24}
\end{equation*}
$$

Let $H: T^{*} X \rightarrow R$ be a smooth function. We say that the Hamiltonian vector field v_{H} with hamiltonian H is horizontal if

$$
\left.\left(\pi_{X}\right)_{*} v_{H}\right|_{\bar{p}} \in V_{\pi_{X}(\bar{p})}, \quad \text { for all } \bar{p} \in T^{*} X
$$

By k we denote the sheaf of horizontal Hamiltonian vector fields. An easy check shows that if $v_{f} \in k$, then

$$
f=\bar{f}\left(q, p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right)
$$

for some smooth function \bar{f} and $p_{i}^{\prime}=p_{i}-A_{i}(q) p_{n+1}$.
Let V be equipped with a quadratic nondegenerate form $\langle.,$.$\rangle varying smoothly$ on $q \in X$. By $g^{i j}$ we denote the inverse matrix to that defined by $\langle.,$.$\rangle . Analogously$ to the usual Riemannian case we have the sheaf (subsheaf of k) h of horizontal geodesic vector fields defined by the quadratic Hamiltonians

$$
f(q, p)=\sum_{i j=1}^{n} g^{i j}(q)\left(p_{i}-A_{i}(q) p_{n+1}\right)\left(p_{j}-A_{j}(q) p_{n+1}\right) .
$$

Both these sheaves are subsheaves of the sheaf of Hamiltonian vector fields g. By \bar{h} we denote the space of Hamiltonians quadratic in $p^{\prime}=\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right)$.

Let $X_{i}=\left(\partial / \partial q^{i}\right)-A_{i}(q)\left(\partial / \partial q^{n+1}\right), i=1, \ldots, n$; they give a basis of sections of V. Let $q \in X$. If the basic vector fields X_{i}, along with all their commutators span $T_{q} X$ then the distribution V is said to satisfy the Hörmander condition at q. If this condition is fulfilled at every $q \in X$ then V is called also a non-holonomic distribution (cf. [9, 10]).

Let I be a submanifold of $T^{*} X, \operatorname{dim} I \leqslant n+1$. If $\left.\omega_{X}\right|_{I}=0$, then we call I an isotropic submanifold. Let $\mathcal{I}_{\bar{p}}, \bar{p} \in T^{*} X$ denote the space of germs at \bar{p}, of isotropic submanifolds of dimension n in $\left(T^{*} X, \omega_{X}\right)$. We see that $\mathcal{I}=\cup_{\bar{p} \in T^{*} X}$ is preserved by the flow of symplectomorphisms $h_{t}^{v}, v \in \Gamma(g)$.

In what follows we assume that we are given a fibering π on $X, \pi: X \rightarrow X^{\prime}$, such that ker $\pi_{*} \oplus V=T X$. Locally $\pi(q)=\left(q^{\prime}\right), q=\left(q^{\prime}, q^{n+1}\right), q^{\prime}=\left(q^{1}, \ldots, q^{n}\right)$. Let $W_{\bar{p}} \in \mathcal{I}_{\bar{p}}$. The inclusion $i_{W_{\bar{p}}}: W_{\bar{p}} \rightarrow T^{*} X$ is called an isotropic immersion of $W_{\bar{p}}$, and $\rho_{W_{\bar{p}}}=\pi_{X} \circ i_{W_{\bar{p}}}$ an isotropic projection. Now we define

$$
\kappa_{W_{\bar{p}}}: W_{\bar{p}} \rightarrow X^{\prime}, \quad \kappa_{W_{\bar{p}}}=\pi \circ \rho_{W_{\bar{p}}}
$$

these maps we will call subisotropic maps. A smooth mapping κ : $W_{\bar{p}} \rightarrow X^{\prime}$ is subisotropic if and only if there exists an isotropic immersion $i: W_{\bar{p}} \rightarrow T^{*} X$ such that the following diagram commutes

Let $f \in h$, and $\operatorname{Exp}_{v_{f}}$ be the corresponding Exp-map. We denote $\tilde{E x p}_{v_{f}}=$ $\pi \circ \operatorname{Exp}_{v_{f}}$ and we call $\tilde{\operatorname{Exp}}_{v_{f}}$ a sub-Exp-map. Adapting the proof of the Theorem 4.2 we obtain the following result.

THEOREM 4.5. Let $\bar{p} \in T^{*} X$. Then there exists an open and dense set of quadratic Hamiltonians $h^{\prime} \subset \bar{h}$, such that if $f \in h^{\prime}$, then the sub-Exp-map Exp $v_{f} \mid W_{\bar{p}}$, for any projection π, has only the singularities appearing in generic subisotropic maps.

Now let $q_{0} \in X$ and let H^{n-1} be an isotropic subspace of $T_{q_{0}}^{*} X, \bar{p}_{0} \in$ $H^{n-1}, \bar{p}_{0} \neq 0$. What is interesting for us now is the description of all possible generic singularities of germs

$$
\left(H, \bar{p}_{0}\right) \xrightarrow{\exp (g)} X,
$$

where g varies over the space of all Riemannian metrics on V. To get such a description we apply Theorem 4.5. Thus if $\pi: X \rightarrow X^{\prime}$ is any projection (as in the statement of the Theorem) then all generic singularities of

$$
\tilde{E}=\pi \circ \exp (g)
$$

are of the form

$$
p=\left.\frac{\partial F}{\partial q}(\lambda, q)\right|_{\Sigma_{F}},
$$

where

$$
\Sigma_{F}=\left\{(\lambda, q):\left.\frac{\partial F}{\partial \lambda_{i}}\right|_{H^{n-1} \times X}=0\right\}
$$

with the generating family F having only the generic singularities (see [4]).
To get $\exp (g)$ from $\pi \circ \exp (g)$ we remark that every line l in H^{n-1} passing through 0 is sent by $\exp (g)$ into a geodesic, and thus is a horizontal curve with
a non-zero tangent vector, which is projected by π onto a non-zero vector. Let l_{p} be the line passing through 0 and p; let $\xi_{0}=\bar{p}_{0}$ be considered as a vector in $T_{p_{0}} l_{\bar{p}_{0}}, x_{0}^{\prime}=\tilde{E}\left(\bar{p}_{0}\right)$, and

$$
v_{0}^{\prime}=\left(\tilde{E}_{*}\right)_{\bar{p}_{0}}\left(\xi_{0}\right) .
$$

Let $N^{\prime} \subset X^{\prime}$ be any germ of a submanifold at x_{0}^{\prime} transversal to v_{0}^{\prime} and of codimension one. Let $N \subset X$ be any submanifold of codimension 2, such that $\left.\pi\right|_{N}: N \rightarrow N^{\prime}$ is a diffeomorphism and N is "generic" with respect to V. Now we lift \tilde{E} to a map E into X such that N lies in the image of E and the curves $\tilde{E}\left(l_{p}\right)$ (p close to \bar{p}_{0}) are lifted into horizontal curves. We shall illustrate this procedure a little bit later, in the 2-dimensional case.

Now we investigate the generic subisotropic maps. We denote

$$
D=\left\{p \in W_{\bar{p}}: \operatorname{Im}\left(\rho_{*}\right)_{p} \text { is not transversal to } V_{\rho(p)}\right\}
$$

and

$$
\Delta=\kappa(D)
$$

We will call Δ a horizontal set of $\rho . \Delta$ is the set of points of the image manifold $S=\rho\left(W_{\bar{p}}\right)$, in which S is tangent to the distribution V. Let Γ denote the set of critical points of κ and $\Sigma=\kappa(\Gamma)$ denote the set of its critical values.

LEMMA 4.6. Let V be a contact distribution (V satisfies the strong bracket generating hypothesis [9]), then for a generic subisotropic map κ, D is a curve.

Proof. We show this fact for $n=2, \operatorname{dim} X=3 . \pi: X \rightarrow X^{\prime}, \pi\left(q^{1}, q^{2}, q^{3}\right)=$ $\left(q^{1}, q^{2}\right)$. The general case is straightforward. Distribution V is annihilated by

$$
\begin{equation*}
\omega=\mathrm{d} q^{3}+\sum_{i=1}^{2} A_{i}\left(q^{1}, q^{2}\right) \mathrm{d} q^{i} . \tag{25}
\end{equation*}
$$

$\rho\left(W_{\bar{p}}\right)$ is covered by geodesics. Without loss of generality we restrict our considerations to the vertical $W_{\bar{p}} \subset T_{\pi_{X}(\bar{p})}^{*} X$. We choose the parameterization $\left\{u_{1}, u_{2}\right\}$ of $W_{\bar{p}}$, such that u_{1} parameterizes the geodesics (obviously horizontal with respect to V). Then

$$
\frac{\partial \rho^{3}}{\partial u_{1}}+\sum_{i=1}^{2} A_{i} \circ \kappa \frac{\partial \rho^{i}}{\partial u_{1}} \equiv 0 .
$$

The second equation

$$
F\left(u_{1}, u_{2}\right)=\left(\frac{\partial \rho^{3}}{\partial u_{2}}+\sum_{i=1}^{2} A_{i} \circ \kappa \frac{\partial \rho^{i}}{\partial u_{2}}\right)\left(u_{1}, u_{2}\right)=0
$$

on maximal smooth strata of S defines a smooth curve. We see that $\nabla F \neq 0$. In fact

$$
\frac{\partial F}{\partial u_{1}}=\left(\frac{\partial A_{2}}{\partial q^{1}}-\frac{\partial A_{1}}{\partial q^{2}}\right)\left(\frac{\partial \rho_{1}}{\partial u_{2}} \frac{\partial \rho_{2}}{\partial u_{1}}-\frac{\partial \rho_{1}}{\partial u_{1}} \frac{\partial \rho_{2}}{\partial u_{2}}\right) \neq 0
$$

outside of the set of critical points of κ, because

$$
\left[X_{1}, X_{2}\right]=\left(\frac{\partial A_{2}}{\partial q^{1}}-\frac{\partial A_{1}}{\partial q^{2}}\right) \frac{\partial}{\partial q^{3}} \neq 0
$$

Q.E.D.

Now we assume, $\operatorname{dim} X=3$. For a contact distribution we have the following result.

THEOREM 4.7. Let V be a contact distribution on R^{3}, annihilated by $\omega=$ $\mathrm{d} q^{3}+\Sigma_{i=1}^{2} A_{i}\left(q^{1}, q^{2}\right) \mathrm{d} q^{i}, \pi: R^{3} \rightarrow R^{2}:\left(q^{1}, q^{2}, q^{3}\right) \rightarrow\left(q^{1}, q^{2}\right)$, is the projection. Then for a generic subisotropic map;
(1) ρ is an immersion, $\Delta=\emptyset$ and κ is a diffeomorphism, fold or cusp-map.
(2) ρ is an immersion, $\Gamma=\emptyset$ and Δ is smooth curve.
(3) ρ is a singular map of corank 1, right-left equivalent (\mathcal{A}-equivalent, [8]) to Whitney's Cross-cap $\left(S_{0}\right)$ with horizontal and critical sets tangent with the second order tangency.

Proof. For generic isotropic map, the corresponding map κ is one of the Whitney's stable cases of smooth mappings $R^{2}, 0 \rightarrow R^{2}, 0$ provided S is a smooth hypersurface of R^{3}. If S is the remaining stable case - the Cross-cap (cf. [8]), then the subisotropic map κ is a fold-map. Distribution V, defined by ω is transversal to the fibers of π, so we easily see that, in the smooth case of S, the horizontal (Δ) and critical (Γ) sets are disjoint, which proves the first two cases.

For the lifting of κ we can write

$$
z\left(u_{1}, u_{2}\right)=-\int_{0}^{u_{1}} x\left(s, u_{2}\right) \frac{\partial y}{\partial s}\left(s, u_{2}\right) \mathrm{d} s+\phi\left(u_{2}\right)
$$

where we use the notation $(q)=(x, y, z)$. Thus for x, y, z we write the following expansions

$$
\begin{aligned}
x= & \beta_{1} u_{1}+\beta_{2} u_{2}+\beta_{11} u_{1}^{2}+\beta_{12} u_{1} u_{2}+\beta_{22} u_{2}^{2}+\mathbf{m}^{3} \\
y= & \alpha_{1} u_{1}+\alpha_{2} u_{2}+\alpha_{11} u_{1}^{2}+\alpha_{12} u_{1} u_{2}+\alpha_{22} u_{2}^{2}+\mathbf{m}^{3} \\
z= & -\frac{2}{3} \alpha_{11} \beta_{1} u_{1}^{3}-\left(\frac{1}{2} \beta_{1} \alpha_{12}+\alpha_{11} \beta_{2}\right) u_{1}^{2} u_{2}-\alpha_{12} \beta_{2} u_{1} u_{2}^{2} \\
& +\gamma_{2} u_{2}+\gamma_{22} u_{2}^{2}-\alpha_{1} \int_{0}^{u_{1}} x\left(s, u_{2}\right) \mathrm{d} s+\mathbf{m}^{3}
\end{aligned}
$$

where \mathbf{m} denotes the maximal ideal in the space of germs of smooth functions of variables u_{1}, u_{2}.

The cases $\left(\beta_{1} \alpha_{2}-\alpha_{1} \beta_{2}\right)=0$, and $\alpha_{1}=0$ may appear transversally, then generically $\gamma_{2} \neq 0$ and we have the smooth case of S. So we have to assume $\alpha_{1}=\left(\partial_{y} / \partial u_{1}\right) \neq 0$. In this case we define new coordinates of $W_{\bar{p}}$

$$
\left(u_{1}, u_{2}\right) \rightarrow\left(y, u_{2}\right)=\left(y\left(u_{1}, u_{2}\right), u_{2}\right) .
$$

Now the equation $\left(\partial z / \partial u_{1}\right)+x\left(\partial y / \partial u_{1}\right) \equiv 0$ is transformed into $(\partial z / \partial y)\left(\partial y / \partial u_{1}\right)+$ $x\left(\partial y / \partial u_{1}\right) \equiv 0$, which finally is equivalent to

$$
\frac{\partial z}{\partial y}\left(y, u_{2}\right)=-x\left(y, u_{2}\right)
$$

Thus

$$
z\left(y, u_{2}\right)=-\int_{0}^{y} x\left(s, u_{2}\right) \mathrm{d} s+\phi\left(u_{2}\right) .
$$

By [4] $\kappa:\left(y, u_{2}\right) \rightarrow\left(x\left(y, u_{2}\right), y\right)$ is a fold-map, so $\left(\partial x / \partial u_{2}\right)=0$ and $\left(\partial^{2} x / \partial u_{2}^{2}\right) \neq 0$. Writing

$$
x\left(y, u_{2}\right)=\beta_{1} y+\beta_{11} y^{2}+\beta_{12} y u_{2}+\beta_{22} u_{2}^{2}+\mathbf{m}^{3}
$$

we have

$$
\begin{aligned}
z\left(y, u_{2}\right)= & \gamma_{2} u_{2}-\frac{1}{2} \beta_{1} y^{2}+\gamma_{22} u_{2}^{2}-\frac{1}{3} \beta_{11} y^{3}-\frac{1}{2} \beta_{12} y^{2} u_{2} \\
& -\beta_{22} y u_{2}^{2}+\gamma_{222} u_{2}^{3}+\mathbf{m}^{4} .
\end{aligned}
$$

Finally

$$
\begin{aligned}
& \rho:\left(y, u_{2}\right) \rightarrow\left(\beta_{1} y+\beta_{11} y^{2}+\beta_{12} y u_{2}+\beta_{22} u_{2}^{2}+\mathbf{m}^{3}, y,\right. \\
& \left.\gamma_{2} u_{2}-\frac{1}{2} \beta_{1} y^{2}+\gamma_{22} u_{2}^{2}+\mathbf{m}^{3}\right), \quad \beta_{22} \neq 0,
\end{aligned}
$$

and the singular case: $\gamma_{2}=0$ and $\gamma_{22} \neq 0$ may happen generically.
By a left coordinate change we obtain

$$
j^{2} \rho(0)=\left(\beta_{12} y u_{2}+\beta_{22} u_{2}^{2}, y, \gamma_{22} u_{2}^{2}\right)
$$

The coordinate change

$$
U_{2}=u_{2}+\frac{\beta_{12}}{2 \beta_{2} 2} y
$$

now transforms ρ to a map germ whose 2-jet is following

$$
j^{2} \rho(0)=\left(\beta_{22} u_{2}^{2}-\frac{\beta_{12}^{2}}{4 \beta_{22}} y^{2}, y, \gamma_{22}\left(u_{2}-\frac{\beta_{12}}{2 \beta_{22}} y\right)^{2}\right)
$$

The left coordinate change

$$
\begin{aligned}
& X=\bar{X}-\frac{\beta_{12}^{2}}{4 \beta_{22}} Y^{2}, \\
& Z=\bar{Z}+\frac{\gamma_{22} \beta_{12}^{2}}{4 \beta_{22}^{2}} Y^{2}+\frac{\gamma_{22}}{\beta_{22}} \bar{X}
\end{aligned}
$$

gives

$$
j^{2} \rho(0)=\left(\beta_{22} u_{2}^{2}, y,-\frac{\gamma_{22} \beta_{12}}{\beta_{22}} u_{2} y\right),
$$

which is 2-determined and describes Whitney's Cross-cap.
Now we easily check that the equation of horizontal points D is transformed, in new coordinates, to the following one,

$$
\frac{\partial z}{\partial u_{2}}\left(y, u_{2}\right)=0
$$

i.e.

$$
2 \gamma_{22} u_{2}-\frac{1}{2} \beta_{12} y^{2}+2 \beta_{22} y u_{2}+3 \gamma_{222} u_{2}^{2}+\mathbf{m}^{3}=0 .
$$

Thus for D we obtain

$$
u_{2}=\frac{\beta_{12}}{4 \gamma_{22}} y^{2}+\mathbf{m}^{3} .
$$

Analogously for the set of critical points of κ

$$
\Gamma: u_{2}=-\frac{\beta_{12}}{2 \beta_{22}} y+\mathbf{m}^{2} .
$$

So the order of the tangency of Δ and Σ is given by the formula

$$
x=\frac{\beta_{12}^{2}}{4 \beta_{22}} y^{2}+\mathbf{m}^{3} .
$$

Q.E.D.

REMARK 4.8. One can explicitly calculate the Exp-map in the case of Heisenberg group $\mathbf{H}=\mathbf{R}^{3}$ (cf. [9]), equipped with the distribution V annihilated by

$$
\omega=\mathrm{d} z+\frac{1}{2}(y \mathrm{~d} x-x \mathrm{~d} y),
$$

and Hamiltonian

$$
H(p, q)=\frac{1}{2}\left(p_{1}-\frac{1}{2} y p_{3}\right)^{2}+\frac{1}{2}\left(p_{2}+\frac{1}{2} x p_{3}\right)^{2} .
$$

One computes

$$
\begin{aligned}
\left.h_{1}^{v_{H}}\right|_{\{q=0\}}(p)= & \left(\frac{1}{2}\left(p_{1}\left(\cos p_{3}+1\right)-p_{2} \sin p_{3}\right), \frac{1}{2}\left(p_{2}\left(\cos p_{3}+1\right)\right.\right. \\
& \left.-p_{1} \sin p_{3}\right), p_{3}, \frac{1}{p_{3}}\left(p_{2}\left(\cos p_{3}-1\right)+p_{1} \sin p_{3}\right), \\
& \frac{1}{p_{3}}\left(-p_{1}\left(\cos p_{3}-1\right)\right. \\
& \left.\left.+p_{2} \sin p_{3}\right),\left(p_{1}^{2}+p_{2}^{2}\right)\left(\frac{p_{3}-\sin p_{3}}{2 p_{3}^{2}}\right)\right) .
\end{aligned}
$$

We take $\pi(x, y, z)=(x, y)$. Then we have $\exp (g): W_{\bar{p}} \rightarrow X$, and

$$
\begin{aligned}
\left.\tilde{E}\right|_{W_{\bar{p}}}= & \left(\frac{1}{p_{3}}\left(p_{2}\left(\cos p_{3}-1\right)+p_{1} \sin p_{3}\right), \frac{1}{p_{3}}\left(-p_{1}\left(\cos p_{3}-1\right)\right.\right. \\
& \left.\left.+p_{2} \sin p_{3}\right),\left(p_{1}^{2}+p_{2}^{2}\right)\left(\frac{p_{3}-\sin p_{3}}{2 p_{3}^{2}}\right)\right)\left.\right|_{W_{\bar{p}}}
\end{aligned}
$$

where

$$
W_{\bar{p}}=\left\{\left(p_{1}, p_{2}, p_{3}\right): A p_{1}+B p_{2}+C p_{3}=0\right\} .
$$

By simple check we find that if

$$
\bar{p} \in\left\{\left(p_{1}, p_{2}, p_{3}\right) ; p_{3}=2 k \pi\right\}
$$

and

$$
p_{3}=a p_{1}+b p_{2}+2 k \pi,
$$

then $\exp (g)$ is not generic. In other cases it is an immersion.
The set of singular values of $\pi_{X} \circ h_{1}^{v_{H}}$ (the usual caustic of Exp-map) is formed by the family of rotationally invariant paraboloids

$$
z=\left(x^{2}+y^{2}\right) \frac{2 a-\sin 2 a}{4(1-\cos 2 a)},
$$

and the line $x=0, y=0$, where a is a solution of the equation $\operatorname{tg} x=x$. Simplifying the system by isometry $(x, y, z) \rightarrow\left(x, y, z-\frac{1}{2} x y\right)$, we obtain the generating family for the isotropic map $\left.h_{1}^{v_{H}}\right|_{\{q=0\}}$, namely

$$
\begin{aligned}
F(x, y, z, \lambda)= & x \lambda_{1} \cos \lambda_{3}+y \lambda_{2} \cos \lambda_{3}+z \lambda_{3} \\
& -\frac{\sin 2 \lambda_{3}}{4 \lambda_{3}}+\frac{\lambda_{1} \lambda_{2}}{\lambda_{3}}\left(\cos \lambda_{3}-1\right) \cos \lambda_{3} .
\end{aligned}
$$

Note added in proof. 1. We note that the integral formula (7) implies the accessibility criterion. 2. In the Hamiltonian case, for $p_{0} \neq 0$, condition (β) is not satisfied. However the straightforward proof of Theorem 4.5 follows from the integral formula.

References

1. Arnold, V. I., Gusein-Zade, S. M. and Varchenko, A. N.: Singularities of Differentiable Maps, Vol. 1. Birkhauser, Boston, 1985. Engl. ed.
2. Arnold, V. I.: Mathematical Methods of Classical Mechanics. Second Edition, Graduate Texts in Math. 60, Springer-Verlag, 1989.
3. Buchner, M. A.: Stability of the cut locus in dimensions less than or equal to 6. Inventiones Math. 43 (1977) 199-231.
4. Janeczko, S.: On isotropic submanifolds and evolution of quasicaustics. Pacific J. of Math. 158 No. 2 (1993) 317-334.
5. Klok, F.: Generic singularities of the exponential map of Riemannian manifolds. Preprint Mathematisch Instituut, Rijksuniversiteit Groningen, ZW-8022.
6. Lang, S.: Introduction to Differentiable Manifolds. New York, London 1962.
7. Łojasiewicz, S.: Ensembles semi-analytiques, IHES, 1965.
8. Mond, D.: On the classification of germs of maps from R^{2} to R^{3}. Proc. London Math. Soc. (3), 50 (1985) 333-369.
9. Strichartz, R. S.: Sub-Riemannian geometry. J. Differential Geometry 24 (1986) 221-263.
10. Strichartz, R. S.: Corrections to "Sub-Riemannian Geometry", J. Differential Geometry 30 (1989) 595-596.
11. Wall, C. T.: Geometric properties of generic differentiable manifolds. Lecture Notes in Math. 597 (1977) 707-774.
12. Weinstein, A.: The generic conjugate locus. In Global Analysis, Proc. Symp. in Pure Math. 15 (1970) 299-302.
