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Abstract. Let F (g) = F(x, y) be a form in Z [x, y] of degree r  3 and without multiple factors.
A generalization of the classical Thue inequality |F(x)|  h is the inequality |F(x)|  h|x|03B3 where
1 x is the maximum norm. When y  r - 2 this inequality has only finitely many solutions in integers.
The present paper deals with upper bounds for the number of such solutions.

1. Introduction

As is well known, a Thue equation

has only finitely many solutions in integers. Here F is a form of degree r  3 with
coefficients in z and without multiple factors, and h E Z. Upper bounds B1 (r, h)
for the number of solutions which depend only on r and h but are independent of
the coefficients of F were given by Evertse [2] and then by Bombieri and Schmidt
[1]. Clearly the Thue inequality

also has only finitely many solutions. Upper bounds B2(r, h) for the number of
solutions were given by Schmidt [7] and by Thunder [9], [10]. It is an immediate
consequence of Roth’s Theorem that a generalized Thue inequality

where 1 x = max(|x|, Iyl) and where y  r - 2, has only finitely many solutions.
The obvious question whether there is a bound B3(r, 03B3, h) for the number of
solutions of (1.2) has a negative answer, as may be seen as follows.

Given two forms F, G as above, write F - G if there is a transformation
T E SL(2, Z) with F(x) = G(Tx); here we use the notation x = (x, y). We
will show that given -y &#x3E; 0 and given a form G there is a constant c1(G, y) &#x3E; 0

and there are infinitely many forms F N G such that the inequality |F(x)|  |x|03B3
* 
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has at least c1(G, I)H (F)2..., / r2 primitive solutions. Here a pair (x, y) is called
primitive if gcd(x, y) = 1, and H(F) is the maximum modulus of the coefficients
of F. 

For natural k let T be the map (x, y) ~ (X, Y) with X = kx + y, Y =
(k-1)x+y, and set F(X) = G(T-1X).Then F ~ GandH(F) «G k’, with the
implicit constant in « depending only on G. We have |G(x)| «G |x|r for x E R2,
and therefore when k is large, the inequality |G(x)|  k03B3 will have »G,-y k203B3/r

integer solutions x. In fact it will have WG,.y k203B3/r primitive solutions with xy &#x3E; 0,
and these solutions will have |G(x)|  Ikx + yl-1. When x is such a solution and
X = Tx, then X is again primitive and IF(X)I = |G(x)|  Ikx + yll = lxi-1.
Thus |F(X)|  |X|03B3 has »G,y k203B3/r »G,-y H(F)203B3/r2 primitive solutions. 
Now suppose that F is a form of degree r with s + 1 nonzero coefficients in

Z:

where 0 = ro  ri  ···  rs = r. We will not need to assume that F has no

multiple factors. As we saw in [6], new methods can be used for the Thue inequality
when F is "sparse," i.e., when r &#x3E; 2s. It tums out that the analogous condition
r - y &#x3E; 2s works for the generalized Thue inequality. In what follows, set

THEOREM. Let F be of the type (1.3), p a number with

and y = r - p. Then the number of primitive solutions of the generalized Thue
inequality (1.2) is

where

When 4s  p ~ r, the number of primitive solutions is

with an absolute constant in « and
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In particular when 03C1  s log s, r  s log3 s, then s log3 r « r and c3 
s(c4s)r/03C1 with an absolute constant c4, so that the number of primitive solutions
is « s(c4s)r/03C1h2/03C1. When p = r, we recover the bound « s2h2/r of [6, below
(1.9)], at least for primitive solutions. A special case of (1.2) is

The number of primitive solutions, assuming 4  03C1  r, is  cr/03C14h2/03C1.
Note that we have to restrict ourselves to primitive solutions. For there certainly

are forms F for which the Thue equation F(x) = 1 has a solution = with

IËoI arbitrarily large. Then x = tx will have |F(z)|  |x|03B3 precisely when
|t|r  |x0|03B3|t|03B3, i.e., when |t|03C1  |x0|03B3. The number of choices for t cannot be
bounded in terms of r, s, p.

Let f (x, y) be a polynomial of total degree y  r - 2s. Suppose f has
coefficients of modulus  M. The diophantine equation

yields (1.2) with h = (03B3 i 2) M. When x = tx0 with xo primitive, then also
=0 satisfies (1.2), so that the number of possibilities for =0 is estimated by our
Theorem. Once % is fixed, (1.7) gives an algebraic equation for t of degree r,
hence with at most r solutions t. Hence the number of solutions of (1.7) is

with r, given by (1.6). Again, under suitable conditions on r, s, p, good explicit
bounds may be given.

Mahler [4] gave an asymptotic formula for the number NF(h) of solutions
of the Thue inequality (1.1). He established that NF(h) N AFh2/r as h ~ 00,
where AF is the area of the region of x e R 2 with |F(x)|  1. We expect that for
0 5 y  r - 2 there is an analogous formula for the number NF,,y(h) of solutions
of the generalized Thue inequality (1.2):

where AF,..y is the area of the plane region |F(x)|  |x|03B3. This should hold generally,
i.e., for forms F not necessarily of the sparse type (1.3); but good error estimates
are more likely for sparse forms.

2. The Plan of the Paper

We will follow [6] very closely - our task will be to show that the method developed
in that paper for Thue inequalities extends to generalized Thue inequalities.
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The Mahler height of a form

is

IthasthepropertiesthatM(F(x, y)) = M(F(y, x)),andM(FG) = M(F)M(G).
The Mahler height M(a) of an algebraic number a is the height of its homogenized
defining polynomial (chosen to have coprime coefficients in Z). If F as above has
coefficients in Z, each M(03B1i)  M(F).

Set

with

Then

since R &#x3E; rs.

We will distinguish large, medium and small solutions to (1.2). Writing x =

(x, Y), 1 Il = max(|x|, |y|), (x) = min(j x 1, 1 y 1), a solution will be called

large if

medium if

small if

PROPOSITION 1. The number of primitive large solutions is  c6(s, r, p). When
03C1  4, this number is
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PROPOSITION 2. The number of primitive medium solutions is

PROPOS mON 3. The number of small solutions is  c7(s, r, p)h’ with K
given by (1.6). When 03C1  4s, the number of small solutions is « c3h2/03C1 with
C3 = c3(r, s, p) as in the Theorem.

The Theorem follows from these propositions since the bound (2.7) is

and the bound in (2.8) is

3. Large Solutions

LEMMA 1. For every 1 = (x, y) with (1.2) and y ~ 0 there is an ai (as given in
(2.1)) with

Proof. This lemma corresponds to Lemma 4 of [6] and the proof is the same.
In fact one just has to recall (1.4) and to substitute in Lemma 1 of [1], which
essentially is already in Lewis and Mahler [3].

LEMMA 2. There is a subset S of the set {03B11, ..., 03B1r} of cardinality |S| 
6s + 4 such that for every x with (1.2) and y 0 0 there is an ai E S with

Proof. This corresponds to Lemma 8 of [6] and is deduced in exactly the same
way.

Now if |x|  YL, say y  YL, we have from (2.4) that the minimum in (3.1) is
 y-(p+2)/2, and therefore

Observe that y  YL = C2/(03C1-2) &#x3E; M(F)2r/(03C1-2)  M(F)  M(az). But in [8]
it was pointed out that the number of solutions of 1 ai - ; |  y-P with y &#x3E; M(ai )
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is  c8(r, 03C1), and when 03C1  3, it is in fact « (log r/log 03C1)2(1+log log r/ log p).
If we apply this with (p + 2)/2 in place of p and note that log((p + 2)/2) » log p,
we see that for fixed ai our number of solutions is under an analogous bound. After
multiplication by 1 S « s we obtain the estimates of Proposition 1.

4. Medium Solutions

Given (1.3), let Pi for 0  i  s be the point in the plane with coordinates
( ri, - log |ai|). In [6] we defined the Newton Polygon to be the "lower boundary"
of the convex hull of Po,..., Ps, and denoted its vertices by Pi(0), Pi(1),..., Pi(l);
here 1  ~  s. Also 03C3(i, j) for i ~ j was the slope of the segment PiPj. Further
for 0  j  ~ we set o,(i(j» = u(1(j - 1), i(j)) and for 0  j  1 we
set 03C3+(i(j)) = 03C3(i(j), i(j + 1)), so that 03C3(i(j)), 03C3+(i(j)) are the slopes of the
segments of the Newton polygon to the left and to the right of Pi(j). For each root a
of f (x) = F(x, 1) we defined integers k(a), K(03B1) having 0  k(a)  K(03B1)  ~.
Also, H = H(f) was the maximum modulus of the coefficients ai, and q an integer
with la. = H.

LEMMA 3. Suppose (1.2) holds with |x|  |y|, y ~ 0. Let a be a root of f(x)
with

Suppose that q  i(K) where K - li7(a). Then there is a u, 1  u  i(K),
with

Proof. Our lemma corresponds to Lemma 15 in [6]. The only difference in the
proof is that in Lemma 10 of [6], h is to be replaced by h|x|03B3 = h|y|03B3 = hlylr-p,
and therefore the conclusion of that Lemma is true with 1 y P in place of |y|r.
LEMMA 4. Suppose (1.2) holds with |x|  1 y and

Let a be a root of f (x) with (4.1). Suppose that i(k)  q where k = k (a). Then
there is a v, 1  v fi s - i(k), with
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Proof. The lemma corresponds to Lemma 16 of [6]. In analogy to (8.8) of that
paper we now have

with

As in [6] we have log(|03B1|v0394*(03B1, v)) &#x3E; 0, so that

by (4.3), and therefore |x|  21 a y 1. We may infer that

with

so that

Case 1. p - v - ri(k)  0. We proceed as in [6]. The number k = k(a) has
03C3+(i(k)) &#x3E; log lai - log(e3s), and on the other hand (1( i( k), q)  03C3+(i(k)) by
q &#x3E; i(k) and by convexity considerations. Therefore

for clearly 03C3(i(k), q) = (log 1 aq - log 1 ai(k) |)/(ri(k) - rq). When p - v - rq  0,
we observe that 03C3(i(k), q)  0 by the choice of q and that
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When p - v - rq  0, we observe that a(i(k), q)  03C3(0, q), and

Since by hypothesis p &#x3E; 2s &#x3E; v, we obtain

By (4.7) this holds always in Case 1, and therefore

which in conjunction with (4.5) yields (4.4).

since v  s  p. We claim that

This is certainly true if u (s) = u(1(Z))  log lai + log(e3s), and otherwise
K = K(a) was smallest with 03C3+(i(K))  log lai + log(e3s) (see [6, Sect. 6]).
But k  K, so that indeed (4.9) holds. Now (4.6) gives

But

Thus

We observe that 0  i(k)  q, therefore cr(0, i(k»  u(0, q), and

which together with (4.10) gives (4.8) again, and therefore (4.4).
Now if
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we have (4.3) by (2.6), and since either q  i(K) or q &#x3E; i(k) will certainly hold,
the conclusion of Lemma 3 or Lemma 4 will hold. Moreover, the right hand sides of
(4.2), (4.4) will increase in u resp. v, so that we may replace u, v by 8. Combining
this with Lemma 7 of [6] we obtain the following lemma, which corresponds to
Lemma 17 of [6].

LEMMA 5. There is a set S of roots of F( x, 1) and a set S* ofroots of F(1, y),
both of cardinality  6s + 4, such that every solution of (1.2) with (4.11) either
has

for some a E S, or has

for some a* E S*.

The medium solutions to (1.2) were those with YS  ~x~, |x|  YL. Without
loss of generality we may restrict ourselves to solutions with

We will estimate such solutions with (4.13) (the case (4.12) being easier since the
exponent of H is better). We have

with

by (2.2) and since p &#x3E; 2s. Let y0/x0,..., yv /zv be the solutions of (4.14) with
YS  x  YL, ordered such that x0  ···  xv. Then for 0  i  v,

so that we have the "gap principle"
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by (2.4), (2.5), (4.15). Therefore

On the other hand, by the definitions (2.2), (2.3), (2.4) of R, C, YL, we get

But M(F)  (r + 1)H according to Mahler [5], so that we obtain

The same upper bound holds for log XV. Comparison with (4.16) yields

Taking account of the summation over a* E S* we obtain Proposition 2.

5. Small Solutions

LEMMA 6. Let p( y) = Asyrs + ... + A1yr1 + Ao be a polynomial with real
coefficients with r = rs &#x3E;... &#x3E; ri &#x3E; ro = 0 and with |As|  1. Let h &#x3E; 0 and

0  03B3  r - s, p = r - 03B3 as in (1.4). Then the real numbers y with

make up a set of measure

Gi’r’en x  1, the numbers y with (5.1) and 1 y | &#x3E; x make up a set of measure

This lemma corresponds to Lemma 19 of [6], but the role of the variables has
been interchanged.

Proof. Define

Then p0(y) = p(y),
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We now introduce a new parameter Z. We will initially concentrate on numbers y
with

Set

Then g(y) restricted to y &#x3E; 0 (or to y  0) is a polynomial of degree r - 1 if y E Z,
and in general is a linear combination of powers of y (or of -y), the highest power
of y occurring being yr-1. In fact it is a sum of at most s + 1 powers, therefore has
at most 2s + 1 real zeros. The same is true if the - sign in (5.6) is replaced by +.
Therefore there are at most 4s + 2 real numbers y with Ip’(y)1 = hs2|y|03B3/Z. The
real numbers y with (5.5) and Ip’(y)1 &#x3E; hs2|y|03B3/Z make up at most 4s + 4  8s
intervals and half-lines. If yl , y2 with (5.1 ) lie in such an interval, we have on the
one hand

On the other hand, if, say, 0  Yt  y2, then

Therefore y2 - y1  2(03B3+1)03C3-2Z, so that our interval is of length  2(03B3+1)s-2Z.
Thus if we neglect a set of measure  16(y + 1)s-1Z, we may concentrate on
numbers y with |p’(y)|  hs2|y|03B3/Z, i.e., with

We now repeat the argument with hs2/Z in place of h and q(y) = p1(y)yr1-1 in
place of p(y). If we neglect a further set of measure  16(y + 1)s-1 Z, we may
suppose that |q’(y)|  hs4|y|03B3/Z2. Now q’(y) = p’1(y)yr1-1 + (r1 - 1)p1(y)yr1-2.
The second summand here is of modulus  (r1 - 1)hs2|y|03B3/Z2 by (5.5), (5.7), so
that we obtain |p’1(y)yr1-1|  r1hs4|y|03B3/Z2, whence by (5.4),

We now deal with this in a manner analogous to (5.7). We have to replace pl, ri, h
by p2, r2 - 1, rl s2h/Z. So if we neglect a further set of measure  16(/+ 1 )8-1 Z,
we may suppose that
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And so on. The conclusion is that except for a set of measure 5 s . 16(-y + 1 )s-1 Z =
16(y + 1)Z, the numbers y with (5.1), (5.5) have

(where r 1... ri-1 = 1 when i = 1). Incidentally, here we have used the fact that
pi(y)yri-i has degree r - i, so that its derivative is of degree r - i - 1  r - s &#x3E; 03B3
for i  s, and therefore the analogue of the function in (5.6) at the ith step of the
argument is not zero.
We now apply (5.8) with i = s and note that ps(y) is a constant of modulus

 r. We get

If we also neglect y with |y|  (7 + 1)Z, then altogether we are neglecting a
set of measure  18(y + 1)Z. Now (5.5) holds, and lyl &#x3E; (y + 1)Z in conjunction
with (5.9) yields Z03C1(03B3 + 1)P-S  rs-2 82s h. This is impossible if we choose
Z = Zo = (rs s2sh)1/03C1(03B3+1)(s/03C1)-1. Therefore the numbers y with (5.1) constitute
a set of measure  18(y + 1)ZO, giving (5.2).

On the other hand when lyl x, then (5.9) gives ZS  rss2shxs-03C1. This is
impossible if we choose Z = Z1 = rs2h1/sx1-(03C1/s). Therefore the numbers y with
(5.1), (5.5) and |y|  x constitute a set of measure  16(y + 1)Zl. The interval
Iyl  Z1 (the complement of (5.5)) has measure 2Z1, so that we get altogether
 18(7 + 1)ZI, i.e., (5.3).
We now tum to the proof of Proposition 3. The problem is to estimate the

number of solutions with ~x~  Ys. We may supose that |x|  |y| and 1 x  Ys.
This number is Ez(x) over x with Ixl  Ys, where z(x) is the number of integers
y with (1.2) and |x|  1 y 1. Given x, the number of real y with F(x, y) = ± |y|03B3 or
with y = ±x is  4s + 7 (e.g.  s + 1 solutions of F(x, y) = |y|03B3 with y &#x3E; 0,
and the same for y  0 or F(x, y) = -|y|03B3, plus 3 solutions with y = fx or
y = 0). Thus the real numbers y with |x|  |y|, IF(x, y)|  h|y|03B3 make up at
most 2s + 4 intervals. The number z(x) then ils 5 y(x) + 2s + 4, where M(x) is
the total measure of these intervals. The number of small solutions then is

The first summand here is

with
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by (2.4), (2.5). In the case when 03C1  4s we obtain

with

where

Thus

The second summand in (5.10) is 03A31 + 03A32, with 03A31, E2 respectively a sum over

By (5.2) of Lemma 6

By (5.3) of Lemma 6

The sum on the right is

so that

with
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When 03C1  4s we have

Combining our results we see that the total number of small solutions to (1.2) is
« c6(r, s, p)h’ with = max(2/p, 1/(p - 2s)), and a certain constant c6, and
it is « C3(r, s, p)h 21p when 03C1  4s.
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