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To the memory of Professor A. V Malyshev.

Let n be a positive integer

and for a e An let a denote the unique element of An satisfying aâ - 1 (mod n).
For n odd, 03B5 = 0 or 1, 03B4 == ±1 put

Zhang Wenpeng [5] recently conjectured that for every odd n and q &#x3E; 0

and proved it, even in a somewhat stronger form for n being a prime power or a
product of two primes.

On the other hand, G. Terjanian [4] conjectured that L03B5,03B4p ~ Ø for every prime
p &#x3E; 29 and every choice of E and 6. This conjecture has been proved by Chaladus
[1] by applying Nagell’s bound for the least quandratic nonresidue modulo p.
We prove the following theorem, which confirms Zhang’s conjecture, improves

his error term for n being a prime power, and improves Chaladus’s theorem except
for finitely many primes.
THEOREM 1. For every choice ofs = 0, 1 and b = ±1 we have
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where

and v(n) is the number of distinct prime factors of n.

Consider a positive integer n, not necessarily odd, a positive integer m coprime
to n, 0  j, k  m, an odd divisor r of n, b = ±1 and put

We shall deduce Theorem 1 from the following estimate of this quantity.
THEOREM 2. For any choice of m  n, coprime to n, 0  j, k  m, odd r

dividing n and b == f: 1 we have

where the constant in the 0 symbol is absolute and effective.

To obtain Theorem 1 from Theorem 2 we only need to observe that

The proof of Theorem 2 is based on four lemmas.

LEMMA 1. If r is an odd divisor of n, we have

where e(t) = exp(203C0it).
Proof. (m) is a character mod n, whose conductor f is equal to the squarefree

kemel of r. Hence by a known formula (see [2], Chapter IV, Sect. 20, assertion
IV)

otherwise.

Since
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we obtain

otherwise,

which gives the lemma.

LEMMA 2. For all integers v, w and an odd integer r dividing n

where v is the number of distinct prime factors of n.
Proof. This is a slight improvement of a result of Malyshev [3], where instead of

the last factor min{(v,n), (w,n)} is obtained. We indicate only the necessary
changes to Malyshev’s proof to obtain (2).
We use Kr(v, w, n) to dénote the sum in the left side of (2). For prime-powers

Malyshev shows

where Cp = 2 for odd primes and C2 = 20. By symmetry we also have

and, taking into account that

we conclude that

To treat the case of composite numbers Malyshev establishes the composition
rule

where

and the numbers wi satisfy
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This implies that and hence

Consequently on substituting (3) into (4) we obtain

and (2) follows by noting that 03A0Cp  -,,f2-. 2".

LEMMA 3. For any integer n  2 we have

where v is the number of distinct prime divisors of n.
Proof.

Here the second sum is O(logn). We estimate the first sum as follows:

since each term is at most 2, except possibly those corresponding to p = 2 and
p = 3. ~

LEMMA 4. For any integer n  2 we have

Proof.
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Here the first sum is bounded from above by the convergent sum 03A3~k=1k-3/2, and
the second and third sum is O (log n). ·

Proof of Theorem 2. For 0  j  m, 0  u  n we define Oj (u) as

otherwise

and extend it periodically with period n. Clearly we have

We develop ~j into a trigonometric series:

A substitution of expansion (6) into (5) yields

To estimate Tvw we distinguish four cases.

Applying Lemma 1 twice we obtain

then by symmetry
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(iv) If v ~ 0 and w ~ 0, then by Lemma 2

Substituting these estimates into (7) we obtain

where

The coefficients can be determined from an inversion formula:

In particular,

Hence the main term of (11) satisfies

On the other hand, the geometric series in (13) can be easily summed. With
z = e(vm/n) we have

thus
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(we used the fact that |1 - e(t)| = 21 sin 03C0t|). As v runs from 1 to n - 1, the residue
of vrra modulo n assumes the values 1 to n - 1, since (m, n) = 1, and we have
(vm, n) = (v, n). Hence

Since sin t  (2/ir)t on [0, 1r /2], this sum is

by Lemma 3. Thus the first sum in estimate (12) of R is O(2V log n), and by
symmetry so is the second.

By the same arguments, the third sum can be estimated as follows:

by Lemma 4.
Substituting these estimates into (12) we obtain
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Theorem 2 follows from (12), (14) and (15).
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