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0. Introduction

In [11], Lubin and Tate established a version of explicit class field theory over a
local field Kj: the ray class fields are generated by torsion points of the Lubin—Tate
formal Ap-module, where Ay is the ring of integers in K. This is an analogue of
the Kronecker—Weber theorem that the ray class fields of Q are generated by roots
of unity.

In this paper, we will derive an analogue of another classical theorem [15, Theo-
rem 5.7] which asserts that the ring class field of an order in an imaginary quadratic
field is generated by the moduli of elliptic curves with complex multiplications
by that order. In fact, our theory (Section 4) describes the ring class field of any
Ap-order O in an arbitrary separable extension K of K. The moduli space here
is the Lubin-Tate moduli space (Section 2) that parametrizes liftings of a formal
Ap-module. The role of elliptic curves with complex multiplications will be played
by liftings with endomorphism action by O. These objects are first introduced by
Gross [4] in case K is a quadratic extension of K. Following his terminology,
such liftings are called quasi-canonical liftings.

Some properties of these quasi-canonical liftings will be studied. In particular,
we will compute the Newton polygon of the multiplication-by-mo map (7 is a prime
element of K) of a quasi-canonical lifting (Section 6). From this computation, the
valuations of the moduli (in a suitably normalized coordinate system) can be
derived. In particular, we characterize the situations where the moduli are prime
elements of the ring class field. When K/ K is quadratic, this has been done by
Gross [4] and Fujiwara [3]. The result is fundamental in the non-archimedean local
height computation of Heegner points by Gross—Zagier. For other applications, see
(3], [8].

In Sections 11-13, we study the Gross—Hopkins period map (see [5], [6], and
Sect. 11) from the Lubin-Tate moduli space to a projective space. We present an
explicit form of the period map and study its valuational properties, which are
contained in its valuation function (Section 7). It turns out (Section 13) that the
exceptional set of its valuation function looks like walls in (part of) the apartment
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of the Bruhat-Tits building of SL,,(K)), and the vertices are exactly the valuations
of moduli of quasi-canonical liftings.

Finally, in Section 14 we determine the endomorphisms of the canonical lifting,
which is defined to be a lifting with endomorphism action by the maximal order.
Thus all results in Gross [4] in the case of height 2 are generalized to the case of
arbitrary finite height.

1. Notations and conventions

Let K be a non-archimedean local field, Ay its ring of integers, 7o a fixed prime
element, and ko ~ F, its residue field. We use K, o to denote the completion of the
algebraic closure of Ky, and Ay its ring of integers, ky its residue field.

Let K be a finite separable extension of K¢ and let A, 7, k ~ Fq s be the corre-
sponding constructs for K . The valuation on K is normalized so that ord( K *) = Z.
Therefore, ord( K§) = €Z, where e is the ramification index of K/ K. Finally, we
use n = ef to denote the extension degree [K : K).

An Ay-lattice in a finite-dimensional K-vector space V is a free Ag-submodule
of V of rank equal to dim V. An Ag-order in K is an Ap-subalgebra of K which
is an Ao-lattice. In what follows, we will say simply “lattice” and “order” instead
of “Ag-lattice” and “Ag-order”.

All formal modules are assumed to be 1-dimensional, commutative, and of
finite height. If G is a formal Ag-module, then the multiplication-by-a map on
G (a € Ap) is denoted by [a]g. The group of a-torsion points is denoted by
Glal.

If z, m are integers, m > 0, we use (z mod m) to denote the unique integer k£
suchthat0 < £k < m — 1 and k = z (mod m).

2. Liftings and the Lubin-Tate moduli space

Let k' be an extension of kg, regarded as an Ag-algebra. We denote by Cj- the cate-
gory of complete, noetherian, local Ag-algebras whose residue fields are extensions
of k'. This category has an initial object W 4,(k’) (see [2] and also [14, II. Sect. 5]).
In particular, every R € Cys has a canonical structure of a W4, (k’)-algebra.

Let G be a formal Ag-module over &’ and let (R, mg) € Cjr. We define a lifting
of G over R to be a formal Ag-module G over R such that G ® (R/mp) = G. Two
liftings G, G are considered isomorphic if there is an isomorphism f: G — G’ of
formal Ag-modules over R such that f ® (R/mp) is the identity automorphism of
G.

Let X5(R) be the set of isomorphism classes of liftings of G over R. This
is a co-variant functor on the category Cx/. A fundamental theorem due to Lubin
and Tate [12, Theorem 3.1] (see also [1, Proposition 4.2], [7, Theorem 22.4.4])
asserts that when G is of finite height n, the functor X is representable by
Wa, (K[t ... ta—1ll, i.e. X5 ~ Spf Wa,(k")[t1, ..., ta—1]]. More precisely,
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THEOREM. Assume that G is a formal Ay-module of finite height n over an exten-
sion k' of ko. Thereis alifting G of G over W 4, (k')[t1,. . . , tn—1 ]| with the following
property: for any lifting G over (R, mg) € C, there is a unique element m € mfp !
such that the lifting obtained from G by specializing t; to m; is isomorphic
to G.

The lifting G is called a universal lifting of G. It is not unique though any two
such are isomorphic. To fix a choice of G is to choose a coordinate system on X,
i.e. to attach an element m € m% ! to every lifting G € X&(R). We call m the
modulus of G.

When (R, mp)is adiscrete valuation ring, it is interesting to study the valuations
of the moduli of liftings. For example, if G, G’ are liftings with moduli m, m/,
then

n—1

N = min}Z; ordg(m; — m!)

has the following meaning: the identity automorphism of G ® (R/mg) = G’ ®
(R/mpg) can be lifted to an isomorphism G — G’ over R/mJ but cannot be lifted

to one over R/m{*1.

3. The isogeny construction

Now asume that R is the ring of integers in some finite extension of Ko and that G
is a lifting over R of G, which is defined over R/mp and is of height n. The Tate
module T'(G) is defined to be

lim Gy,
m
where the map G[r**!] — G[r] is [m]g. It is a free Ag-module of rank n.
Specifying a lattice L in T'(G) ® K containing T'(G) is equivalent to specifying
a finite Ap-invariant subgroup scheme C, of G. We then can form the quotient
G/C. This formal Ag-module can be given a canonical structure of a lifting of
G@") (¢V = #C(Ay), G4") being the formal Ap-module obtained by applying
the base change ¢ — 27 to G ), which we now describe:
We can find a formal Ap-module G’ and an isogeny g: G — G’ such that the
kernel of g is Cr, and g ® (R/mg) is the Nth power of Frobenius: X — X" . In
fact, such a pair (g, G’) is furnished by Serre’s formula [10, Theorem 1.4]:

9 X)= JI G(X,e),
c€CL(Ao)
and G'is suchthat G'(¢9(X), 9(Y)) = ¢(G(X, Y)) and [a]g/(9(X)) = g([a]e(X))
for all @ € Ap. The condition that g ® (R/mpg) is the Nth power of Frobenius
implies that the reduction of G’ is G(?"). Therefore, G is a lifting of G(¢"). The
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isomorphism class of this lifting does not depend on the choice of (g, G'). We will
denote this lifting by G'1, and denote the isogeny g: G — G, by gr. It is immediate
from Serre’s formula that G, can be defined over R[C(Ap)].

Let K’ = End(G) ® K. This is an extension of K of degree < n. For any two
lattices Ly, L, 2 T(G), we can identify Hom(Gr,, GL,) ® Ko with K’ by the
correspondence

¢'—>9221 ogogr,.

Here gZzl means h ® b-! € Hom(GL,, G) ® Ky, ifb € Ag,and h: G, — Gisan
isogeny such that h o g1, = [b]¢ ([10], 1.6). We claim: under this correspondence,
Hom(Gy,, Gp,) is identified with

Hom(Ll, Lz) ={yp e I(’|¢.L1 C Ly}.

To see this, assume that ¢ is an isogeny and put ¢ = gzzl o¢ogr,. Choose b € Ay
such that [b]g o gEzl is an isogeny. It is easily checked that ¢ ® b is an isogeny and
(¥ ® b)([b]5'CL,) C CL,. That s, (¥ ® b) . (b='Ly) C Ly.

Conversely, if 1) = g;zl o¢ogr, issuchthaty.L; C Ly, wecanchoose b € Ay
such that ¢ ® b, ¢ ® b are both isogenies. For any y € Gp,[b], write y = gr,()
with z € [b]5'(CyL,). We then have (¢ ® b)(y) = g1, o (¥ ® b)(z) = O since
(¥ ® b)(z) € Cf, by assumption. Thus we have proved that G, [b] C ker(¢ ® b).
Therefore, ¢ is an isogeny ([10], 1.5).

4. Quasi-canonical liftings

Let F be the Lubin-Tate A-module associated to (K, 7) (i.e. the unique formal
A-module over A such that [1]rer(X) = X7, see [12]), considered as a formal
Ag-module of height n over A. Let F = F ® k, so that F can be regarded as a
lifting of F'. We call F the canonical lifting of F. A lifting of the form Fy, (for
some lattice L in T'(F') ® K containing T'( F")) is called a quasi-canonical lifting
(of F(4"), where ¢V = [L : T(F)]). The modulus of Fy, will be denoted by m,.

Since the endomorphism [7]|r of F satisfies ([7]Fr ® k)(X) = X ¢/ and ¢/ =
#F[r], we see that F;, = F,_i;, for any L. Thus we are led to the action of 7% on
the set of all lattices in T'( F") ® K. The orbits of this action are called lattice classes
and the lattice class of a lattice L is denoted by [L]. From preceding discussions,
Fi, depends on [L] only. Thus we can define Fp, for any L by F;, = F,-m[, for
m > 0.

By Lubin-Tate theory [11], F, can be defined over an abelian extension of K.
We shall determine the smallest field of definition of FT,. First of all, we note that
the group A* acts on lattice classes in an obvious way. For every N, it also acts on
X F"(qN)(R) = m};—l through the Artin symbol whenever R is an abelian extension
of A. The relation of these actions is:

Foop = FF’K), or equivalently m, -1y, = m%’K), forany a € A*,
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Indeed, letting gr,: F' — F7, be the morphism given by Serre’s formula, we then
have g(La’K) = g,-1;, by Lubin-Tate theory [11] and the above relation follows
immediately. Now it is easy to see that F7, can be defined over the class field of
72 x O%, where

Op ={a€ K|aL C L} ~End(Fy).

This class field is called the ring class field of the order O, (Note: this depends
on 7). We are going to show that this is actually the smallest field of definition of
Fr,.

As we have seen in Section 3, End(F7,) ® K can be identified with K.

PROPOSITION 1. Let Ly, L, be lattices in T(F) ® Ko. The following three
statements are equivalent:

(i) Fp, is isomorphic to Fy, as formal Ag-modules;
(ii) The lattice classes [L1), [L,] are in the same A*-orbit;
(iii) End(F7,), End(F1,) are the same order O in K, and Ly, L are isomorphic
O-modules.

Proof. (i) = (iii): First we observe the following: For any L and any non-zero
z € T(G), Hom(Fp, 5, Fr,) is an Or-module isomorphic to L by the discussion
in the end of Section 2. Now if (i) is fulfilled, clearly End(F7,) and End(F7,) are
identified with the same order O in K, and L; and L, are isomorphic as O-modules
by the observation we just made. (ii) = (i): if L; = a~'L,, the automorphism
[a]: F — F induces an isomorphism Fj, — Fp,. (iii) = (ii): an O-module
isomorphism from L to L, is multiplication by some element um” of K*. Clearly
u sends [L1] to [L]. O

PROPOSITION 2. Let Ly, L, be lattices in T(F) @ Ko. Then Fy, and Fy, are
isomorphic as liftings (of some F (@™)) if and only if [L1] = [Ly].

Proof. Without loss of generality, we may assume that L;, L, are lattices
containing T(G). Let g1,: F — Fp, be the isogeny defining F, (say given by
Serre’s formula). By the preceding proposition, we may assume that L, = a L, for
some a € A*. Then an isomorphism from Fy, to Fy, is given by g1, o [a]F o g7
(see the discussion at the end of Section 3). Any other isomorphism is obtained
by composing an automorphism of Fp,,, therefore is of the form gz, o [ab]F o .‘JZ,I ,
with b € Or, = Ofp,. It is easy to see that the reduction of this isomorphism is
[ab] zowy- The latter is identity if and only if ab = 1 since z € A + [z]5(,n) is
injective. Therefore, the isomorphism is an isomorphism of liftings if and only if
ab=1and L, = L. a
THEOREM 1. The smallest field containing K over which Fy, is defined is the
class field of 7% x O%. In other words, K(my) is the ring class field of Oy,

Proof. This is immediate from the relation m,-1; = m(['f’K) and the preceding
proposition. a
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COROLLARY. Forany N > 0, K(mp, Fr[rN)]) is the class field of 7% x (1 +
™Or).

Proof. Indeed, if u € 0%, z € F[x"], we have (u, K).z = gpo[u"!|po
g7 '(z) by Lubin-Tate theory. Thus (u, K) fixes K(mg, Fg[r™N]) if and only
if uy = y (mod L) for all y € n~N L. Clearly this condition is equivalent to
u =1 (mod 7V OL). O

Let O be an order in K. It is customary to call a lattice in K a proper O-lattice
if End(L) = O. Two proper O-lattices L;, L, are equivalent if L; = zL, for
some z € K*.

COROLLARY. Let G ~ A*/O* be the Galois group of the ring class field of
O. Then G permutes the quasi-canonical liftings Fr, with Op, = O. The action is
simply transitive on each orbit, and the orbits correspond bijectively to equivalence
classes of proper O-lattices. O

PROPOSITION 3. Let G be a lifting of F ®y, ko over Ay such that End(G) ~ O
is an order in A. Then there is some L such that G is isomorphic to Fy, over Ag as
formal Ag-modules.

Proof. 1t is enough to show that G and F’ are isogenous. For any lattice M in
T(G)® K¢ containing T'(G), the endomorphismring of Gpris {a € K |aM C M}
(note that T'(G) ® Ky is a 1-dimensional K -vector space by the assumption on
End(G)). Therefore we can choose M so that G'as has the structure of a height 1
formal A-module. As a height 1 formal A-module is unique over Ay, G, must be
isomorphic to F'. 0

With the hypotheses of the last proposition, choose an isomorphism f: G — F.
Then g = f ® ko € Autg (F). Let the ring homomorphism ¢: A = Endg (F) —
D = Endg, (F) be defined by reduction. Then G is a quasi-canonical lifting of the
pair (F, g o ¢ 0 g~!) in the sense of Gross [4], cf. Section 14.

5. Some numerical invariants of quasi-canonical liftings

Let T = T(F) and let L be a lattice in T ® Ko. Form the filtration {L; =
Ln W—iT}iez and let [; = dimg,L;4+1/L;. We have [; < [;_. because the map
70 Liy1 — L;41-e induces an injection L;y1/L; — Liy1-¢/Li—e.

On the other hand, we clearly have /; = O for all ¢ sufficiently large, and /; = f
for all ¢ sufficiently small. Therefore, there is a unique nondecreasing sequence of
integers, of length n, ag(L) < -+ < ap—1(L), with the following property: for
every integer ¢z and every natural number m, ¢ appears m times in the sequence if
and only if m = [;_. — L.

EXAMPLE 1.If L = T,thentheset{ao(T),...,an—1(T)} consists of 0, 1,...,e—
1, each occurring with multiplicity f.
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It is easy to see that in general, for each r € Z/eZ, there are exactly f indices
J1y---,Jf such thataj,(L) = r (mod e).
EXAMPLE 2. If K/K is unramified and L 2 T, then the numbers {ao(L), ...,
an—1(L)} are the exponents of the elementary divisors of L/T, ie. L/T ~

®7=d Ao/mg? ") .
In general, the structure of L/T as an Ag-module is L/T =~ @?;IAO/

wéaj (L)/el 4 if L D T. More precisely, there are elements 2y, ...,z,—1 € T ® Ko
such that Az; = 7~ (%(L)=e+1T for each jand I = @;;lewj.

Indeed, if m; = l;_e — I; > 0, we let y;1,...,Yim; € Li—et+1 be such that
they generate the cokernel of mo: Liy1/L; — L;—ct1/Li—e. Let L' be the Ao-
submodule of L generated by the n elements {y;;}i 1<j<m;. Form the filtration
{L!};cz for L' and define the numbers {I}}. We clearly have I} = I; = O for large
i. We also have I[_, — I} > l;_. — l; = m;, since the cokernel of mg: L:-H/Lﬁ- —
L}_.,,/L!_, contains the linearly independent elements y;1, ..., Yim,. It follows
that length, (L’/T') > length, (L/T). Since L' C L, we musthave L' = L. Now
we can suitably re-label the n elements {y;; }i 1<j<m; a8 Zo, ..., Zn—1 to conclude
the proof of the above claim.

EXAMPLE 3. If we consider the lattice 7~'L, we will obtain aj(7~*L) =
aj(L) + t.
EXAMPLE 4. Let (,) be a non-degenerate symmetric Ko-bilinear form on
T ® K satisfying (az, y) = (z,ay) foralla € K,z,y € T ® Ko Define
LV = {z € T ® Ko|(z, L) C Ap}. This is a lattice with Orv = Or. Then
a;j(L¥) = d+ e—1— a,_1—;(L), where d is such that TV = 79T

This is clear from the following computation:

AN ey leneth LV/(LY n7~*T)

VnaT MOV (VA -(HDT)
VNN O ALt & Vet s LV 4 (xi+1=4T)V
= N8 (V=G T) fr-GHOT IV + (r9T)Y
(Lnritl=dr)v

(L N wi=dT)Vv

LN i~
=f- lengthAom = f—lg-1-.

IY = length,,

= f — length,,

= f — length,,

NowletO < ro(L) < -+ - € rn—1(L) beintegers suchthata;(L) = r;(L) (mode)
and such that r,_;(L) is minimal with respect to this property. For example, if
e =3, f =1, then (rg, 71, r2) is one of the following: (0, 1,2), (0,2,4), (1,3,5),
(1,2,3), (2,4,6), (2,3,4).
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It is easy to see that the sequence (L) = (ro(L),...,7n—1(L)) is determined
by 7#(L) = (r(L) mod e). Therefore, there are n!/( f!)¢ possible values of 7(L).

The sequence of integers ag(L) — ro(L), ..., an-1(L) — rn—1(L) is still a non-
decreasing sequence, with all elements divisible by e. Therefore, we can write

4i(L) = ri(L) + e(so(L) + -+ + (1),

where so(L), ..., sn—1(L) are non-negative integers.

In the lattice class [L], we can choose a unique representative Lg satisfying
LoD T, Ly  m~'T. This Ly is also characterized by ag(Lo) = 0. The numbers
a(Lo), r(Lo), 7(Lo), s(Lo) are canonically associated to the lattice class [L]. We
denote them by a[L], 7[L], 7[L], s[L] respectively.

The above constructions can be applied to any rank 1 free A-module T'. For
the rest of this section, take T = A and (2, y) = Trg/k,(zy). Let O be an order
in K.

PROPOSITION 4. The following statements are equivalent:

(i) Every proper O-lattice is free over O.
(ii) The Galois group of the ring class field of O acts simply transitively on
quasi-canonical liftings Fr, with Or, = O.
(iii) OV is a free O-module.
(iv) ai(O) + an—1-i(O) is a number independent of i.

Proof. The equivalence of (i) and (ii) is clear from the second corollary to
Theorem 1. It is obvious that (iii) implies (iv). Conversely, if (iv) holds, put
OV = zL, where z € OV\{0} is such that ord(z) is minimal. Then 1 € L and
O C L C A.Butone can easily see that a(O) = a(L) by assumption and therefore
#(A/O) = #(A/L). Thus O = L and OV is free.

Since (i) clearly implies (iii), it remains to show that (iii) implies (i). Let L be
a proper O-lattice. We claim that LV L = OV. One direction is easy: (LVL, O) =
Tr(LYLO) C Ag,s0 LYL C OV. To show the other inclusion, it is enough to show
that (LVL)Y C O.Wehavez € (LVL)Y = Tr(zLVL) C Ag = =LV C (LV)" =
L = z € O = O. Now since 0V is a free O-module, LVL = OV implies that L
is an invertible module over the local ring O. Therefore, L is free. m]

Let AV = 7~%A be the inverse different of K /K.
LEMMA 1. Suppose that the residue field of O is of order ¢ ', then
#(A/0) = g~ U +E1e;(0V)/e] = ¢Bla;[0V]/e]

=1 _(-8le,0"e,
¢/’ -1

Proof. We have #(A/0) = #OV/AY) = #(OV/A)g¥, and ag(OY) =
d, a[OV] = a(0V) — d. So the first formula follows from the discussion after

#(A*]O%) =



ON THE MODULI OF QUASI-CANONICAL LIFTINGS 301

Example 2. The second formula follows easily from the first. o

6. The Newton polygon of o],

As a shorthand we use ¢; to denote (¢/ — 1)/(g — 1).

THEOREM 2. Let Fi, be a quasi-canonical lifting and let the Newton poly-
gon of [mo|r, be the polygonal line joining (1, €), (g, w1),...,(q" "}, wn—1),
to (¢, wy, = 0). Then

D Dt Firn(9) e LR A L1 Py P
4G 9541 ' 9595+1

where f; 7111(q) € Z[g, q~ ] is a polynomial depending on j and ¥[L)] only.

Note that in the statement of the theorem, we do not assume that (¢’, w;) is a
break on the Newton polygon. We only assume that it lies on the Newton polygon.
The proof of the theorem will be given in Sections 9 and 10. An explicit formula
for f; 7z will be given in Section 10, and we will see:

COROLLARY. The point (¢, w;) is a break of the Newton polygon of [mo]r,
if and only if aj[L] # a;—1[L]. In particular, if K /Ky is unramified, (¢’, w;) is
a break if and only if s; # 0; if K/K) is totally ramified, (¢°, w;) is always a
break.

Hazewinkel [7] (cf. Sect. 11) shows that a universal lifting F over
Wa,(k)It1,. .., tn—1]] can be chosen in a way such that

[mo]#(X) = X7, (mod g, t1,...,tk—1) (mod degq* + 1).

Choosing this particular universal lifting means choosing a particular coordinate
system on the Lubin—Tate moduli space X 7. Now we can reformulate Theorem 2
as follows:

THEOREM 2'. Let wy, ..., ws_1, w, = 0 be given by the formula in Theorem 2.
Assume that a;[L] # aj_1[L]. Then
ord((mL)j) = wj. 0O

COROLLARY. Let O be an order in K such that a,_1{OV] # an—2[O]. Put
r = r[OV]. Then (mov )n—1 is a prime element in the ring class field of O if and
only if the following two conditions are satisfied: (i) the residue field of O is ko;
(ii) we have the relation

% (== ) -

=0
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REMARK. The proof will be given in Section 10. The condition on r is satisfied
in particular when 7; + 7,—1—; is independent of z.

EXAMPLE. The Newton polygon of [mo]F, where F' is the canonical lifting, is
easily seen to be the polygonal line joining (1, €), (¢/, e — 1),...,(g(¢" 11, 1),
to (¢", 0). This is the case 7 = 7can = (0,...,0,1,...,1,...,e—1,...,e = 1)
(each number occurs f times). So we obtainforj = ¢f + k, 0< k< f—1

k_ k+1 _
fise(@) = g7 (‘Ij+l ((6 —i) - Zf - i) — ((e —9)- qufr_ 11))

N 1—qg
=(e—1)+ -1

We can use this to compute the valuations of the moduli of any quasi-canonical
liftings with 7 = Ty (€.g. when K / K is unramified, we always have 7 = 7can = 0
and f; = 1 for all j). This generalizes Keating [8, Prop. 7], where the case
T = Tean, $=(0,...,0, 8,-1), O = A + 7°»-1 4 is treated.

If O is an order with 7[(J] = 7¢ay and residue field ko, then (mov ), is a prime
element of its ring class field.

Let n = 2. We obtain Gross’ formula [4, Prop. 5.3]:

1/(g+ 1)¢*~!, if K/Kj is unramified;

ord(my) =
(mz) {1/q3, if K /Ko is ramified.

Note that in this case, every quasi-canonical lifting has 7 = 7, so this gives the
valuations of the moduli of all quasi-canonical liftings, and it depends only on the
single number s = s;[L], called the “level” of the quasi-canonical lifting. In this
case my, is always a prime element of the ring class field. See also Fujiwara [3,
Prop. 2].

7. Valuation functions

Let f be a non-zero rigid analytic function on {u € K |ord(u) > 0}. There is a
unique piecewise linear continuous function V¢: Rso — Rsuchthat V¢(ord(u)) =
ord( f(u)) for all u whose valuation ord(x) lies in a dense open subset of Ry. The
function V7 is called the valuation function of f. It follows immediately from the
definition that Vy, = V; 4 V,, and we expect to have the relation Vi, = Vi oV}
in general.

Explicitly, take coordinates and write f(X) = XaxXF, then

Vi(z) = rr}cin{ord(ak) + kz}.
The set E of all z such that ming{ord(ax) + kz} is achieved at more than one

value of k is called the exceptional set of f. For any u such that ord(u) € E; we
have Vy(ord(u)) = ord( f(u)).
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The formula V¢(z) = ming{ord(ax) + kz} enables us to define valuation func-
tions for more general power series (non-convergent, with negative or fractional
powers, etc) and extend the domain of V; to a larger subset of R. The identity
Vfog = Vj o V, holds provided that Vg“(E +) contains no open set.

It is well known that V; and the Newton polygon of f contain the same infor-
mation about f. The latter is defined to be the boundary of the convex hull of

U{(z, y) €R*|z > k, y > ord(ax)}.
k

The graph of V is sometimes called the Newton copolygon of f.
All these can be generalized to power series of several variables. For more
details, see Lubin [9, Sect. 3].

8. Special subgroups

Now let G be an arbitrary formal Ag-module over Ay of height n. Let the Newton
polygon of [ro] s be the polygonal line joining (1, wo(G)), (g, w1(G)),...,(¢"" !,
wn—1(G)), to (¢™, wn(G)). We have wo(G) = e and w,(G) = 0. Again, we do
not assume that every (¢*, w;(G)) is a break of the Newton polygon.

The following data clearly all convey the same amount of information
about G:

o The Newton polygon of [mo]a;

e The valuation function of [7¢]g;

o The decreasing sequence w(G) = (w1(G),...,w,—1(G));

e The sequence u(G) = (u1(G), ..., un—1(G)), where (recall that ¢; = (¢ —
1)/(g—1)

uj(G) =

w;i(G)  wj(G).
q; G+
e The decreasing sequence v(G) = (v1(G),...,v(G)), where
w;i-1(G) — wi(G)
The numbers v;(G) are simply the slopes of the Newton polygon, and we have
the following interpretation: v;(G) is the largest number ¢ having the following

property:
there is an Ag-invariant subgroup scheme C of G[mo), of order ¢/, such that
ord(z) > tforallz € C

(here and elsewhere, we identify a finite group scheme with its Ag-points).

An Ag-invariant subgroup scheme C of G[ro] of order ¢¢ is called special if
min{ord(z) |z € C} = v4(G) and C D {z € G[mo]|ord(z) > v4(G)}.
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Clearly, a special subgroup of order ¢? exists ford = 0, 1,...,n. And it is unique
if and only if (¢?, w4(G)) is a break on the Newton polygon of [ro]c. When
(¢, w1(@)) is a break, the unique special subgroup of order ¢ is studied in [9],
where it is called the canonical subgroup.

As suggested by K. Keating to me, when (¢?, wq(G)) is a break, the subgroup
{z € G[mo]|ord(z) > wa(G)} can be called a generalized canonical subgroup.
So the generalized canonical subgroups form a filtration of G[7¢], indexed by the
breaks. Then a special subgroup can be characterized as an Ap-invariant subgroup
that lies between two successive generalized canonical subgroups.

We do not have an interpretation of the number «;(G). But it turns out that
for G = Fp,, u;(G) can be expressed by a particularly nice formula (Theorem 2).
Proposition 5 below partially explains why: when G’ is isogenous to G and the
kernel of the isogeny is a special subgroup, u(G") is related to u(G) is a very
elegant way.

The following lemma can be verified by straightforward computations.

LEMMA 2. For any positive integer d < n, the following are equivalent:
(i) The polygonal line joining (1, w}), (g, w}),...,(¢"~ !, w!_,) to (q",

I
a convex polygonal line, where v = w;(G)+ (¢ — 1) wq(G) fori < d, w!
¢*w;(G) fori > d;

(i) (1+ ¢)wa(G) > wa—1(G) + ¢~ wa1(G);

(iii) u4(G) < va-1(G)qd—1/(Ga+14%7");

(iv) va(G) — wa(G) > ¢*va11(G). o
PROPOSITION 5. For any positive integer d < n, if one of the equivalent con-

ditions in the preceding lemma holds, and C is any special subgroup of G[m)
of order ¢°, G' = G/C, then we have

e

(i) wi(G") = wi, where w} is given in (i) of the preceding lemma;
(i) w(G") = (w(G),...,us-1(G), ¢uy(G),...,¢%un—1(G));
(iii) U(Gl) = (UI(G) - wd(G)? ERE) Ud(G) - wd(G)’ qdvd+l(G)’ cey qdvn(G))'

Proof. 1t is routine to verify the equivalence of the statements (i), (ii), (iii), so it
is enough to give a proof of (i). This can be done by the same method for proving
Theorem B of Lubin [9], which is the special case d = 1, ¢ = p of our proposition.
The idea is to calculate Vi) _, as Vg o V[r 0 V:q'l, where g: G — G’ is an isogeny
with kernel C'. Because C is special, we can determine V,, by Serre’s formula. We
omit the details. a

This proposition is of independent interest. But it is not absolutely necessary in
the sequel.
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9. Proof of Theorem 2

Now consider the quasi-canonical lifting G = Fy,. We assume that L is such that
a(L) = a[L],ie. L D T and L =~ 'T. We can find elements zo, ...,z _1 €
T ® Ko such that Az; = 7~ (4(E)=¢+DT for each j and L = @7] Aoz;.

Letgy: F — Fp, betheisogeny defining F7,, withkernel C'r,, which we identify
with L/T. Let ¢°® = #(CL N F[r']). The following lemma is immediate from
Serre’s formula and Lubin-Tate theory.

LEMMA 3. For any torsion point & € F,(Ap), let o(z) be the smallest integer t
such that © € F[r'] 4+ CL. The valuation ord(gr(z)) depends on o(z) only and is
a strictly decreasing function of o(z). Explicitly, let t = o(z), then

¢ ) — geli=1)

ord(gr(z)) = (@ = 1)gG 17 + 2 (g — 1)gt-DI" o

Lemma 3 is the key to compute the Newton polygon of [mg], . From it we see
that the valuations of the torsion points of F7, are computable, and these are just
the slopes of the Newton polygon (see Lemma 4 (i) below). All we need is some
patience to unravel the formula.

Let ¢ be the function such that ord(gz(z)) = ¢(o(z)).

LEMMA. 4.

() v;j(FL) = ¢(a;-1(L) + 1).
(ii) Let Ly = EB?;IAOW(')' Y2; 4+ L. Then Sy, the subgroup of F[ro) identified with
Lq/L, is special of order q°.
(iii) Fr, is isomorphicto Fr,/Sq.
(iv) If moreover we have sq(L) > 0, then

a[Ld] = a(7r0Ld)
= (ao(L),...,a4-1(L), ag(L) —e,...,an—1(L) — €).

Proof. (i) is immediate from Lemma 3 because the numbers v;(G) are the val-
uations of elements in F7[mo] = ¢ L([7r0]1;1 (CL)). (ii) and (iii) are obvious. In (iv),
we need the assumption that s4(L) > 0 only to ensure that (ag(L),...,a4-1(L),
aq(L) —e,...,an,—1(L) — e) is non-decreasing. m]

Fix some d and assume that sq(L) > 0. Let G’ = Fr,, ¢°® = #Cror, 0
Fr*]).

LEMMAS.
@) c(i)=c(t—e)+#{jla; >t} foralli € Z, if we put c(i) = if fori < 0.
) (@) =c(i))-#{jlji>d, a;(L)—e+ 1< i}
(iii) Fort < aq(L) — e, (i) = (7).
(iv) Fori > 0, ¢'(aq[Lg] + t) = c(aq[L] + ¢) + (n — d).
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W e(@)=c(i—1)ifi > an—1(L)—e+ 1.

Proof. (i) Observe that ¢(i + 1) — ¢(2) = l;, where [; is defined in Section 5. By
definition, /;_. — I; = #{j | a;(L) = i}. Now the formula can be proved by an easy
induction. (ii) is obvious and (iii) is an easy consequence of (ii). (iv) is deduced
using (i), (ii) and the fact a4[L4] = a4[L] — e. (V) is easily seen from the remark
after Example 2 of Section 5. a

LEMMA 6. Assume that sq4(L) > 0. We have (i) v4(G') = vd(G) wq(G), (ii)
va+1(G") = ¢%va41(G). Consequently, v4(G) — wy(G) > ¢*vas1(G).

Proof. (ii) can be easily deduced using Lemma 5(iv). In fact we see that v;(G’) =
¢*v;(G)forall j > d+1.Similarly, using Lemma 5(iii) and the fact that aq(L)—e >

aq4-1(L), we can show that v;(G’) — v;(G) = z is the same forj = 1,...,d. Slnce
we have X7 (¢ - ¢ Yi(G") = wo — w, = e, we can compute and get
T = —wy. a

By Lemma 3, Lemma 4(i), and Lemma 5(i), u( F7,) depends on a[L] only. Thus
we can define f;-(q) to be such that u;(F1) = f;(9)¢°/(g;gj+1) for any F,
such that a[L] = r. We will compute f; 7(¢) in the next section and show that it
is a polynomial function € Z[q, ¢~!]. Assuming this, we can prove Theorem 2
now. Use an induction on ¥s;[L]. We have assumed that the theorem is true when
s[L] = 0, i.e. ¥s;[L] = 0.If ¥s;[L] > 0, choose any d such that s4[L] > 0. Note
that 7[Lg] = r[L] and s4[Lg] = sq[L]) — 1, s;[L4] = s;[L]if j # d. By Lemma 6
and Proposition 5 (or rather, the proof of Lemma 6), we have

u(FL) = (’u,l(FLd), cees ud—l(FLd), q_dud(FLd), cey q'dun_l(FLd)).

Now we can apply the induction hypothesis to F7,, to conclude the proof.

10. Computation of f; (L)

We maintain the notations and assumptions of the preceding section. Moreover,
until the end of this section, we assume that a(L) = a[L] = r(L), so s(L) = 0.
We are going to derive a formula for u;(Fp) = fj,F[L](q)qj /(¢jg;+1). We shall
omit the reference to F7, or L in notations because this causes no ambiguity. For
example, r; is 7;(L); u; is u;( FL).

One more definition is in order. For z € Z/eZ, we use Z to denote the unique
representative £ € Z of z suchthat 0 < Z < e — 1. If z,..., 2 € Z/eZ, we
write

To X X Tk

ifO< (21 —2o) <+ < (ex —20).If2,y,2 € Z/eZ and z < y < 2, we say
that y is between x and z. For example, if e = 10, we have 2 < 5 < 6 < 8, and
759<0<x4.

LEMMA 7. The following formulas hold:
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@) u; = ]qJ (e = ((q— 1)(v1 — v2) + (¢* — 1)(v2 — v3)

(@ = 1)(v; = vj41)));
clry-1+1) gl gelim) “(r;)
.. q q q q
i) v; — v; = -+ : - 7>
(i) v; — v (¢f = Dg=f 7 = (@ = D= (¢ = !

(iii)) ¢(7) = if — ) _ max([(é — rj)/e],0).

720
Proof. (i) is trivial. (ii) is direct from Lemma 3. (iii) can be verified for negative
i and by an induction based on the relation c¢(i) = c(i — e) + #{j|i < r;}. O

PROPOSITION 6. For any j, suppose that 7, ..., Ty, are all numbers among
70,...,T; which are between T;_1, and 7;, not equal to 7;_1 and such that

il X Ty S0 S Ty ST
Put uy = j — 1. Then we have

R z (s = T Lamede)

mj_1 =— y_ max([(rj_1+1—r;)/e], 0).

i20

REMARK. From this proposition we see immediately: 7,_; = 7; & v; =
vi41 € fi17 = fiF

Proof. Let Ry < --- < Ry be integers such that r;_; < Ry < r; and Ry =
i, (mode). Such integers are uniquely determined. Then we have c(i) = if +
mj_1 —tif B¢+ 1 < ¢ < Riq. For simplicity, we let m = m;_; in the remaining
of this proof.

Therefore, by Lemma 7(ii),

V5 — Vj+1
qm+(Ro+1)f
" (o7 - D)gR
k=2 [ Ret1 ifym—t f
q (1-1/¢%)
* E ( 2 (¢7 — 1)gti=11

i=R:+2




308 J-K. YU

q(Rt+1+1)f+m—(t+l) Y
’ (¢7 = 1)gferf
R f e (ke o
+ k q1f+ (k 1)(1 _ l/qf) ~ quf+m (k 1)
i=Rp_142 (qf —_ l)q("_])f (qf — 1)quf

- Ripy — Rt—l gf—(t+1) _ gt
( +Z( e

Ry — Ry —1 q_(k_l))

+
g*-! ¢/ -1

k—

L
_ g (Pueps Tu, mod e)

t=0

PROPOSITION 7. Suppose that j > 1 is such that 7; # Tjy10orj =n— 1. If
r; = 0, then f; 7 = e. Otherwise, sort T, ..., T; info a sequence

7_‘1}0'\(?1}1 '\<"'-\<,F’Uja

with v; = j. Then

/ I (Ty, — To,_, mode
fir = g ((Fuo — Ty, mode) + Z (7 v(;?' ) ,
t=1

where m;; is as in Proposition 6.

REMARK. Note that this gives an explicit formula for all f; 7, forif 7; = 7,41 =

<o = Tipy # Tipusrs then fiz = fiy17 = -+ - = fj4,7 and the above gives the
formula for f;4, 7.

Proof. Perform an induction on j. The case 7; = 0is quite easy. Now assume that
r; >0andr; = rj_1 = = rj—y # Tj—y—1. By the induction hypothesis, our

formula is valid for f;_,_1 7. It remains to verify that f; = = fi_,7 = fiu—17 +
(1= ¢ (vj= — vj— l,+1) is still given by our formula.

To get the expression for v;_, — vj_, 41, we assume that 7, < --- 5 7, are
all numbers among 7y, .. ., 7;_,, which are between 7;_, 1 and 7;_, and not equal
to 7;_,—1. Then one can express v;_, — v;_,+1 in terms of these numbers and
m;—_,—1 by Proposition 6.

To get the expression for f;_,_17, we have to sort 7o,...,7;_,_1. It is easily
seen that we will get

fv]_,,_k.,,l X% fv]._,,_.l <X Ty - = ij_,,_k = Fj—u—la
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and the sequence 7, .. ., Ty, is nothing more or less than 7;_,_g4+1,...,7;_,.
Now it is routine to verify the result. One will see that every thing matches
provided that we have the relation m; = m;_,_1 — k. This is easy verified. Thus

the proof is complete. a
COROLLARY.
R q"’ -1 Mmap—1+f
fn—l,'r - qf—lq 9
with
_ Tn-1+1-— Ti-‘
Mmp—1 = E [ A .

>0

Proof of Corollary to Theorem 2. Now we drop the assumption that s[L] = 0
and consider an arbitrary quasi-canonical lifting F. The point (¢’, wJ(FL)) is
not a break < v;(Fr) = vj41(FL) & vj(FL)gigi+1/¢ = uj—195-1¢;/¢° ! (by

Lemma 7(i); in fact LHS < RHS always holds) & f; z1j9” silL] = fi-i/n) ©
Sj[L] = 0 and fj,;[L] = fj—l,‘l_‘[L] = .Sj[L] = 0 and 'I‘j_l[L] = Tj[L] & aj[L] =
aj_l[L]. (]

Proof of Corollary to Theorem 2'. The degree of the ring class field of O is given
in Lemma 1. By the corollary to Theorem 2 and our assumption, ord((meov )n,—1) =
wy—1(Fov). It remains to find out when #(A*/0*) = w,_1(Fov)~! holds. Using
the explicit formula for f,_1 7, we easily get the two conditions. 0

11. Explicit parametrizations of Lubin-Tate space and
Gross—-Hopkins map

Let Ap[v] be the polynomial ring of infinitely many variables vy, v, ..., over Ao.
Let f(v)(X ) be the unique power series with coefficients in K [v] which satisfies

FX) = X+ = 3 wfE) (X7,

i>1

where f(v)? ‘(X)) is the series obtained from f(v)(X ) by replacing each variable v;
by v;?'. It can be shown [7] that there is a unique formal Ap-module law F'(v) over
Ao[v] whose logarithm is f(v). In that case, [7o] () has the following property [6,
Prop. 5.8]:

[WO]F(U) = ’kaqk, (mod o, vy, ..., 'Uk--l), (mod deg qk +1).

Moreover [7],
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PROPOSITION. We can specialize F(v) by setting each v; to some suitable a; € A
to get the canonical lifting F over A.

PROPOSITION. Specialize F(v) as follows: setting v; to t; € Allt]l = Allty,...,
tn1llfor1 < i < n—1, v; to @; for i > n, we obtain a formal Ay-module over
A[[t]l, to be denoted by F or F(t). Then F is a universal lifting of F.

REMARK. When K /K is ramified, F cannot be a universal lifting in the sense
of Section 2, for A # W4, (k). Here, we mean that F furnishes an isomorphism of

From now on we assume that K [ K is unramified and © = 7. Moreover, we
assume that [7o]r € Ao[[X 1. By [11], this is possible and it implies that F' is
actually defined over Ao. Consequently, F(¢") = F for all N. All quasi-canonical
liftings are liftings of ', and have ¥ = 7o = 0. We easily get f;o = 1 forall j.

We choose a universal lifting F of F as follows: F is obtained from F(v) by
setting v; = t; forl1 < i< n -1, v, =1, v; = 0for: > n. Then one can show
as in [6, Sect. 13] that the modulus of the canonical lifting is 0.

Now we take a closer look at the logarithm f(v) of F(v). Let

fO)X)= T bm(0)XT".

m20

A recursive expression for the coefficients b,(v) is immediate from the defini-
tion:

m—1 .
bo(v) =1, bn(v)=m5" Y bi(v)ol,_.
1=0

We are going to write down a more explicit formula for b,,(v). It turns out
that the monomials in b,,(v) can be indexed by ordered partitions of m. An
ordered partition of m means a decomposition of m into a sum of positive integers:
m = Y7_;l;. Equivalently, we can say that an ordered partition of m means
dividing (0, 1,...,m — 1) into segments (0,...,I; — 1), ({1,..., i+l = 1),....
Let S; (¢ > 1) be the set of the first elements in segments of length ¢. Then the
sets {S;}i>1 are determined by the ordered partition and conversely, determine the
ordered partition. For our applications, it is most convenient to refer to the collection
of sets S = {5;}i>1 as an ordered partition. Now introduce the following notation:
¢(Si) = Tzes,;¢%. An easy induction yields
LEMMA 8. Forallm > 0,

21059
bm(v) = 3 [T
s ¢« To

where the sum is taken over all ordered partitions S = {S;}i»1 of m. a
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From this formula we can get a similar formula for the coefficients b,,(t) of the
logarithm of F ().

PROPOSITION 8. Forany j > 0,
kl_l_fgo 5 bjtnk(t)
exists in Ko[[t]l. The limit is

Z t——:l i _
SeP; 7r(()1/ ) (G+=(n—i)#5;)

where P; is the set of all ordered partitions S = {S;}i>1 such that (1) there is an
integer k such that S is an ordered partition of j + nk; (2) j + nk — n &€ Sp; (3)
S; is empty forall ¢ > n.

Proof. Let ay = wfbjynk(t). It is clear that if we specialize the expansion of
b (v) to get the expansion of by, (t), only terms involving ordered partitions such
that S; is empty for all z > n are left. It is also clear that ax — ax_; is the sum of
terms involving ordered partitions such that j 4+ nk —n ¢ S,,. Then j + nk — n has
to belong to some S; +twith1 < ¢ < n—1and 0 <t < ¢ — 1, and the exponent
of ¢; in such a term is at least g/ +7k—7~(i=1) 5 gi+nk=2n Tt follows immediately
that {ay } is a Cauchy sequence and converges to the claimed limit. a

It is immediate from the above formula that the limit power series converges
on the open unit polydisc (X 7 ® Ko)(Ko) = {z € K§~'|ord(z) > 0} and hence
defines a rigid analytic function there. Gross and Hopkins define the maps

o(t) = lim T*b(2),
Qj(t)zkgngo o ak(t), j=1,2,...,n—1,

and use them to define the map ®: Xz ® Ko — P*~! ® Ko, t — [®o(2),...,
®,,_1(t)]. That this map is well-defined and étale follows from

PROPOSITION 9. The determinant of T(t) = (®(t), Dy, ®(t),..., Dy,_,®(2)) is
a unit in Ao[[t]). If the characteristic of Ky is positive, we have det T(t) = 1.

We will give a proof of the second statement. Let
T'(t) = (®(t), t1 Dy, ®(2),. .., tn—1Dy,_, B(2))

and we will show det T"(t) = tit ... tn_1. Write ®;(t) = Tscp,th, where

. - n_l
t, = my LEC=i#s0/m) T 42059,

=1
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Then t; Dy, ®;(t) is given by

3t

S€P,
0€ Sk
Now we expand det7”(t). A typical term in the expansion is sgn(a)tg((g% ...

(0)

(n—1) 'Where o is a permutation on {0, 1,...,n — 1} and ts(0) is a term in the

ts(n—1)>
expailsion of ®,(g), tg((g is a term in the expansion of ¢xDy, ®,(x) for 1 < k <
n—1.

Let m — 1 = max; max;(S(k);+ (i — 1)). Assume m — 1 € S(ko) + (3o — 1).
Then (ko, t) is unique and in fact m = o(ko) (modn). Suppose m > ig. Let
ki be such that o(k;) = m — ip (modn). Define a new permutation: o’(kg) =
o(k1), o'(k1) = o(ko), o'(k) = o(k) if K # ko, k1. Let S"(k) = S(k) if
k # ko, k1. Let S’(ko) be the same as S(ko) except that m — g is removed from
S(ko)iy- Let S(k1) be the same as S(k;) except that m — ig is added to S(k1)i,-

We may have to remove some numbers from S’(ko),, or to add some numbers to
S'(k1)n so that tg,((g)) is a term in the expansion of @ (o) (?), tg,gg is a term in the
expansion of ¢ Dy, B,y for 1 <k < n — 1.

Now it is easy to verify that tg((g)) . tg.%z:g = tg',((g)) s tgi,gz:i% But the signs

sgn(c), sgn(o’) differ. So they are cancelled with each other in the expansion of

detT'(t).
Thus only terms such that m = ig are left. But there is only one such term,
namely 1-¢; - - - - t,—1. This completes the proof of det 7'(¢) = 1. m]

Gross and Hopkins define an action of G = Aut(F’) on both X and P*~! and
show that the map ® is G-equivariant. In fact, let R be the ring of integers in the
division algebra over Ky of invariant 1/n, then Endz(F) = R and G(k) = R* (cf.
Sect. 14). The action of G(k) on P"~! can be extended to the action of the larger
group (R ® Ky)* and we have the following wonderful property.

PROPOSITION. Ift, t' € Xp(Ao), g € G(k), then ®(t) . g = ®(¥') if and only if
there is an element f € Homy (F(t), F(t')) ® 4, Ko such that f @ ko is equal to
g.

Using this proposition, one can show that the inverse image of [e;] precisely
consists of those quasi-canonical liftings F7, such that E;-‘;(} Js;(L) = i (mod n).
Here e; = (1, 0,...,0), e2 = (0,1, 0,...,0),..., are the standard basis of G}
and z — [z] is the projection G™\ {0} — P"~L,

12. The Bruhat-Tits building for SL,, (X))

In the current case (K /Ko unramified, 7 = m), the 7Z-orbits of lattices in K are
the same as the K §-orbits. This shows that the quasi-canonical liftings correspond
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bijectively to the vertices of the Bruhat-Tits building for SL,,(Kjp). We find that
our next main result (Theorem 3) is best formulated in terms of the apartment .A
of this building, which is described below:

Let p,, € R" be the vectore; + -+ -+ €,, W = R"/Rp,, and ¢: R* — W be
the natural map. The set of vertices in A is ¢(Z"). Let px = Xf_je; € R™ (1
k < n). Then for any point z € Z", and any ¢ € S, C GL,(Z), the n points
#z+0o.p;))(1 <t < n) form an (n — 1)-simplex in A and any simplex is
contained in such an (n — 1)-simplex. The geometric realization |.A4| of A is an
(n — 1)-dimensional affine space. To see this, we remark that the affine root system
® of SL,,( K) consists of the affine functions e} —e —m (i # j, m € Z, {e]}isthe
dual basis of {e;}) on W and the geometric realization of (n — 1)-simplices in the
apartment are the Weyl chambers of ®. Therefore, by standard theory of Coxeter
groups, | A| is the (n — 1)-dimensional space W. The action of S, on R™ induces
an action on W. A fundamental domain for this action is {¢(z) |z; > --- > z,},
which can be considered as a geometric realization |.A*| for some subcomplex A+
in an obvious way.

We shall put two coordinates s, [ on |.A|, which we identify with W. For
any point P = #(t1,...,t,) € W, we set s;(P) = tiy1 — ti, li(P) = s1(P) +
283(P)+- - +1is;(P). Wealsoset[(P) &ef l,—1(P). This function has the following
remarkable property: for any (n — 1)-simplex with vertices Py, ..., P,—1, the
integers [( P;) are all distinct modulo n. By abuse of notation, we also use /;(s) to
denote s; + 255 + - - -+ 13;, forany s € R

13. Valuation functions of Gross—Hopkins map
To state the following theorem, we shall use g~ (P) to denote the point
(q_I](P)’ LR q—ln_l(P)) € Rn_lv

for any P € |A|. Recall that ¢; = (¢ — 1)/(g — 1).
THEOREM 3. Let t € X(A),

y; = Lt <°fd(ti) B Ord(ti+1))
l ¢ 4 g1/’

for1 <i<n—1. Assumel >y > -+ 2 Yn—1 > 0. There is some (n— 1)-simplex
A on A with vertices Py, ..., P,_1 such thaty is on the geometric simplex in R" ™!
spanned by ¢~'(P0) ... ¢~"Pn-1)_ Arrange the index so that [(P;) = j (modn).
Then we have

: n—1
Ly~ [n"] > (n- i)sz'(Pj)J-
=1

n—1
ord(®;(t)) > q,(p;
@) > X 0 o

The equality holds when y is not on the face of A opposite to P;.
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REMARK. Lett € X(A) and y; be given as above. The condition1 > y; > -+ - >
Yn—1 > O is equivalent to that the Newton polygon of the multiplication-by-7
morphism on F'(t) has a break at (¢*, ord(¢;)) foreach: =1,...,n — 1.

EXAMPLE 1 (n = 2). We have

ord(®(t)) = gzl_j—lord(t) - m, if g~(m+1) < g-({l-_lord(t) < ¢~(@m-1),
ord(®(t)) = % ord(t) —m, if ¢~2m+D) < 9;’—1 ord(t) < g72™.

Therefore, the exceptional set of ®( (resp. ®1) consists of the valuations of the
moduli of quasi-canonical liftings of odd (resp. even) levels.

EXAMPLE 2 (n = 3). The exceptional sets of ®, ®;, ®, in the region 1 > y; >
y2 > 0 are shown in Figure 1, Figure 2, Figure 3, and Figure 4 is all the three
figures overlapped. The vertices in Figure 4 represent the valuations of the moduli
of quasi-canonical liftings.

We begin the proof with a few Lemmas.
LEMMA 9. The valuation function of ®;(t) restricted to
Ti Tit1

> ,
q; qi+1

Q:{xeRggl 1<i<n—2}

is the same as that of

n—1
\I’j(t) = Z W_["_IE("—i)siJ H Ul?‘.'(!)’
s€F, i=1
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Ord(fz)

Fig. 2. Exceptional set of ®;.

ord(t;)

Fig. 3. Exceptional set of ®,.

where U,_1 = t;{f’;‘“, U; = t}/q‘ti__l_ll/q‘“, 1 < i< n—2, and Fj is the set of all
(n — 1)-tuple s of non-negative integers such that sy + 283+« - -+ (n— 1)s,_1 =
J (modn). Moreover, the exceptional sets Eg; and Ey, are also the same.

Proof. Using the notations in the proof of Proposition 9, ¥ ;(¢) can be rewritten

as follows:
() =) tJS(s)’
S

where §(s); = {li—1(s)+it|t =0, 1,...,s; — 1}. We make the following claim:
givent € A such that ord(t) € W, if t%(t) is of minimal order in the expansion of
®;(t), s; = #5;, then S = S(s). Both statements of the lemma will follow from
this claim.
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To prove the claim, let z = ord(t). By assumption, the minimum of Xq(T;)z; —
n~1%(n — )#T; (T € P;) occurs when T = S. Recall that the ordered partition
S of m can be considered as a finite sequence of positive integers (/;) such that
Xl; = m. Our claim is equivalent to: (/;) is an increasing sequence. But this is
easy to verify: if [; > [, exchange /; and /;,| we get a new ordered partition
T and it can be shown that Xq(T})z; — n~! E(n — 2)#T; is strictly smaller than
Yq(S;)x; — n~'E(n — i)#S; using the relation z;/q; > z;41/¢;+1. This finished
the proof of the claim and also of the lemma. O

For any (n — 1)-simplex A with vertices P, ..., P,_; on A, let |¢®| be the
geometric simplex in R*~! spanned by ¢=!(F) . ¢=HPn-1) This first statement
of Theorem 3 is contained in the following, which is basically a consequence of
our description of | A™|.

LEMMA 10. The subset Q' = {z € ’;61 |1> 21> -+ > 2n_1} is the union of
all |¢®| forall A on A*. m|

LEMMA 11. Let f(X) = Zgezrar X" be a power series in n variables,
Vi(z) = rr}cin{ord(ak) +k.z}

be its valuation function. For any k, the set {x € R™ | V§(z) = ord(ax) + k .z} is
convex. 0

From these lemmas, Theorem 3 can be translated into the following state-
ments:

(A) For any vertex P on A, let j = [(P), then the minimal of
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E ¢iqi+1

occurs when and only when ¢ = s(P).
(B) If P’ is a vertex adjacent to P, then the minimum of

G d" ") = [n 'Y (- i), teF

> ﬁ— @@ F) = |n Y (- 0)ti|, teF

occurs when ¢t = s(P) (it may also occur somewhere else).
These statements are further translated into the following lemma:

LEMMA 12. Let € € Z"! be such that ¢ = 0 or ¢ = s(P) — s(Q) for some
adjacent vertices P, Q on A. For any s € Z"! such that I(s) = 0 (modn), we
have

, (s 1 1 _ .
qu,(c)(qh( ) 1) (q‘ — - e 1> >n IZ(” —1)s;.

In case € = 0, the equality holds if and only if s = 0.

Proof. Let b = n™1%(n — i)s;. Let z = ¢~! < 1. Let W(q) be the LHS of the
inequality in question. We are going to expand W(1/z)/(1 — z) into a Laurentz
series around z = 0: W(z)/(1 — 2) = X;czax2* and to show that a; > b for all
t>0,anda; >O0forall: € Z.

Let us introduce the following symbol: for any real z, {«} is defined to be |z |
if z > 0, otherwise it is defined to be 0. Then the coefficient a) of the expansion
of W(z) is easily seen to be

ak:’g <{k+li$8+€)}_ {k+il,~(e)}_{k+i1:(rsl+€)}
) e
_Z({k+l(s+e)} {k+(i(e)}_{k+lz_{(s+e)}

+ {k—_'_—li,:—l-—(e—)}>+{k+51+€1}“{k+fl}

_{k+l(s+e)}+{k_+ﬁ}. (o)

n n

Now assume k£ > 0. We claim that if a}, is defined by the above formula with all
{ -} replaced w1th |-], then ar > aj. To see the claim, we look at (*). Note that
{z/i}={z/(+1)} > |z/i] - [x/(z+1)] for any real z. This takes care of the terms
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{k+li(s+¢€)/i} —{k+1(s+¢€)/i+1}. We also note that |/;(¢)| is always less than or
equal to . Therefore, if k +;(¢) < 0, we have —{k+1;(¢)/i} +{k+L(e)/i+1} =
=040 = —(=1)+(-1) = = [k+l(€)/i] + [k +1i(€)/i+ 1]. If k+1i(€) > O, this
equality surely holds also. But it is very easy to see from (*x) that in fact a, = b
(using the fact |z + n| — |z] = n for any # € R, n € Z). Thus we have proved
ap > bfork > 0.

If k < 0, then all the terms of the form {k +/;(¢)/¢} or {k +1i(¢)/¢+ 1} vanish.
Thus the inequality {z/i} — {z/(¢+ 1)} > 0 implies that aj, is non-negative (look
at (x)).

Finally, if ¢ = 0 and the equality holds, we will show that s = 0. Examining
the above arguments, we find that the equality holds precisely when |/;(s)| < i for
all ¢. But /,,_;(s) is divisible by n, so it must be equal to 0. Moreover, I,_>(s) =
ln—1(s) = 0 (modn — 1), so l,_»(s) must vanish also. Inductively we then show
that all /;(s) are zero. It follows s = 0. o

The proof of Theorem 3 is now completed.

14. Endomorphisms of reductions of the canonical lifting

Let W be the ring of integers in the completion of the maximal unramified extension
of K. We shall determine the endomorphism ring of F® 4 (W/xNW)forall N > 1.
This result is due to Gross [4] when n = 2 and to Tatevossian [16] when K /K
is unramified. Our proof of the general case is based on Gross’ method. Thus we
want to re-normalize our constructions, following Gross [4] (cf. discussions at the
end of Sect. 4).

Let L be the unramified extension of K of degree n and B its ring of integers.
Let Gp be the special model of the Lubin—Tate B-module over B attached to
(L, mo) such that [1g]gz(X) = moX + X", Let G be Gp ®p ko. Considering
Gg only as an Ap-module, we get a formal Ag-module G A, of height n. By our
choice of [mg)Gy., it follows that G 4, is actually defined over k. In particular, the
Frobenius ¢: X +— X7 is an endomorphism of G 4,. In fact

n—1
R = End; (G4,) = P By',
1=0
where B acts on G4, by b — [b]g,,. We have o™ = [mo]g,,, wo[bla, = [%]5, 00
where ¢ is the Frobenius automorphism of L/ K. This shows that R is the ring of
integers in the division algebra over K of invariant 1/n.

Now fixing an Ag-embedding ¢: A — R. Then G 4, can be given a formal A-
module structure via ¢, to be denoted by G 4. Clearly G 4 is of height 1. Therefore
it lifts uniquely to W. This unique lifting, when considered as an Ap-module,
is denoted by F' and is called the canonical lifting of (G Agy L) Let Fy_y =
Fo W/t Nw,

RN_1 = EndW/,rNW(FN_l).
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Reductions of homomorphisms give embeddings
RN—>RN_1 g "'—>R1 —>Ro.

Identifying each Ry with its image in Ry = R, we have N\yoRn = A, which is
identified with ¢.(A).

THEOREM 4. Forall N > 0,
Ry = A+ VR,

Proof. Using formal cohomology, Gross [4] showed that the A-module Ry/ R is
annihilated by 7 and reduced the theorem to the following statement:
dimg(Ro/R1) = n — 1. We observe that Gross’ result in particular implies
A+ 7R CR;.

LEMMA 13. Let f € Endy 2w (F1), g € (W/n*W )X ] be such that g(0) = 0.
Then

(f + mg) o [0l — [mo]F, o (f + mg) = 0, (modn?, X7°).

Proof. Since [mo]F, (X) = X" (mod~), we can write [mo]r, (X) = mh(X) +
X", with h(X) € (W/x*W)[X]. So

[molm o (f + mg) — [mo]F o f
=n(h(f+7g9) = h(f)) + (f +79)" — f© =0, (modr?).
Therefore,
(f +7g)o[mo]r — [mo]m o (f + 7g)
= fo[mo]m + mg o [mo]m — [mo]m o f
=rg(rh(X)+ X% ) =0, (modr?, X"). o

LEMMA 13'. Let f € Ry. Lift f arbitrarily to a power series f' € W[ X1 with
f'(0) = 0. Then f' o [ro]F, — [mo]F, o f' = 0 (mod72, X™).

Proof. This is a restatement of last lemma. a
LEMMA 14. There is some v € W* and some g € W[[X]] with g(0) = 1 such
that

[ro]m (X) = ur X7 "g(X), (modr?, X7").

Proof. This is clear from the Newton polygon of [mg]F, see the example in
Section 6. a
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We can replace ¢ by any aee™!(a € Autg(G 4,)). Therefore, by the theorem
of Skolem—Noether, we may assume that the maximal unramified subextension
A’ of A/Ay is contained in B (both A and B are now considered as subrings of
R = Endg(G 4,))-

LEMMA15.()) A’+7R = A+7R.(i)) A’+¢R = A+R.(iii)) R} C A+pR.

Proof. To see (i), note that the inclusion A’ + TR C A + 7R is obvious, and
that their quotient modulo 7 R are both of order ¢’ (ii) follows from (i). To prove
(iii), let f € Ry. Write f = E?QOI[bi]@Bcpi, with b; € B. Lift f to f' € W[ X]
as

n—1 )
f(X)= Z [bi]GB(Xq' = boX + higher terms.
—

An easy computation using Lemma 14 shows that f’ o [mo]F, — [mo]F, o f' is
of ordy > ¢/, and the coefficient of X7" ™/ is ur(by — bg"—f) (mod 2). By
Lemma 13/, this implies that by € A’ + moB. It follows that f € A’ + R =
A+ pR. m]

LEMMA 16. For any integer j such that0 < j < f — 1, we have

J-1 ) n—1 )
() ¢'R=PrBe + P By
1=0 1=
) n—1 )
(i) A+¢'R=(A+7R)+ P By'. m]
1=j
LEMMA 17.R; C A+ 7R. .

Proof.Given f € Ry, write f = 21’-‘;01 [b:]g,#'- ByLemmals, f € A+pR. By
Lemma 16, we can adjust f by adding an element of A+ 7 R (which is known to be
contained in R;) and assume that by = 0. Lift f to f/(X) = X7 ![b]g,(X?) =
b1 X? + higher terms. Compute f’ o [mg]m — [mo]F, © f'. We find that it is of
ordy > ¢"~/*! and the coefficient of X"~ is —uwb‘]'"_f (mod 7). This
implies that b; € moB and therefore, f € ¢*R.

Thus we have established R; C A + ¢ R. Repeat the argument inductively. We

finally obtain R; C A+ ¢/ R = A+ 7R. a

Now we have proved R; = A + 7 R. It follows that dimg(R/R;) = n — 1. By
Gross’ result, this completes the proof of Theorem 4. a
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