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0. Introduction

In [11], Lubin and Tate established a version of explicit class field theory over a
local field K0: the ray class fields are generated by torsion points of the Lubin-Tate
formal Ao-module, where Ao is the ring of integers in h’o. This is an analogue of
the Kronecker-Weber theorem that the ray class fields of Q are generated by roots
of unity.

In this paper, we will derive an analogue of another classical theorem [ 15, Theo-
rem 5.7] which asserts that the ring class field of an order in an imaginary quadratic
field is generated by the moduli of elliptic curves with complex multiplications
by that order. In fact, our theory (Section 4) describes the ring class field of any
Ao-order 0 in an arbitrary separable extension K of Ko. The moduli space here
is the Lubin-Tate moduli space (Section 2) that parametrizes liftings of a formal
Ao-module. The role of elliptic curves with complex multiplications will be played
by liftings with endomorphism action by 0. These objects are first introduced by
Gross [4] in case Il is a quadratic extension of Ko. Following his terminology,
such liftings are called quasi-canonical liftings.

Some properties of these quasi-canonical liftings will be studied. In particular,
we will compute the Newton polygon of the multiplication-by-03C00 map (03C00 is a prime
element of K0) of a quasi-canonical lifting (Section 6). From this computation, the
valuations of the moduli (in a suitably normalized coordinate system) can be
derived. In particular, we characterize the situations where the moduli are prime
elements of the ring class field. When K/K0 is quadratic, this has been done by
Gross [4] and Fujiwara [3]. The result is fundamental in the non-archimedean local
height computation of Heegner points by Gross-Zagier. For other applications, see
[3],[8].

In Sections 11-13, we study the Gross-Hopkins period map (see [5], [6], and
Sect. 11 ) from the Lubin-Tate moduli space to a projective space. We present an
explicit form of the period map and study its valuational properties, which are
contained in its valuation function (Section 7). It tums out (Section 13) that the
exceptional set of its valuation function looks like walls in (part of) the apartment
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of the Bruhat-Tits building of SLn(K0), and the vertices are exactly the valuations
of moduli of quasi-canonical liftings.

Finally, in Section 14 we determine the endomorphisms of the canonical lifting,
which is defined to be a lifting with endomorphism action by the maximal order.
Thus all results in Gross [4] in the case of height 2 are generalized to the case of
arbitrary finite height.

1. Notations and conventions

Let K0 be a non-archimedean local field, Ao its ring of integers, iro a fixed prime
element, and k0 ~ Fq its residue field. We use K0 to denote the completion of the
algebraic closure of K0, and Ao its ring of integers, ko its residue field.

Let Il be a finite separable extension of .Ko and let A, 7r, k -r F y be the corre-
sponding constructs for K. The valuation on K0 is normalized so that ord(K*) = Z.
Therefore, ord(K*0) = eZ, where e is the ramification index of K/K0. Finally, we
use n = e f to denote the extension degree [K : K0].

An Ao-lattice in a finite-dimensional h’o-vector space V is a free Ao-submodule
of V of rank equal to dim V. An Ao-order in K is an Ao-subalgebra of K which
is an Ao-lattice. In what follows, we will say simply "lattice" and "order" instead
of "Ao-lattice" and "Ao-order".

All formal modules are assumed to be 1-dimensional, commutative, and of
finite height. If G is a formal Ao-module, then the multiplication-by-a map on
G (a E A0) is denoted by [03B1]G. The group of a-torsion points is denoted by
G[a].

If x, m are integers, m &#x3E; 0, we use (x mod m) to denote the unique integer k
such that 0  k  m - 1 and k m z (mod m).

2. Liftings and the Lubin-Tate moduli space

Let k’ be an extension of ko, regarded as an Ao-algebra. We denote by Ck’ the cate-
gory of complete, noetherian, local Ao-algebras whose residue fields are extensions
of k’. This category has an initial object WAo( k’) (see [2] and also [14, II. Sect. 5]).
In particular, every e Ck, has a canonical structure of a W Ao( k’)-algebra.

Let G be a formal Ao-module over k’ and let {R, mR ) ~ Ck’. We define a lifting
of G over .R to be a formal Ao-module G over R such that G o (R/mR) = G. Two
liftings G, G’ are considered isomorphic if there is an isomorphism f : G ~ G’ of
formal Ao-modules over R such that f 0 (R/mR) is the identity automorphism of
G.

Let XG(R) be the set of isomorphism classes of liftings of G over R. This
is a co-variant functor on the category Ck’. A fundamental theorem due to Lubin
and Tate [12, Theorem 3.1] (see also [1, Proposition 4.2], [7, Theorem 22.4.4])
asserts that when G is of finite height n, the functor Xo is representable by
WA0{k’)[[t1,..., tn-1]], i.e. XG ~ Spf WA0(k’)[[t1,..., tn-1]]. More precisely,
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THEOREM. Assume that G is a formal Ao-module offinite height n over an exten-
sion k’ofko. There is a lifting g of G over WA0(k’)[[t1,..., tn-1]] with the following
property : for any li, fting G over (R, mR) E C, there is a unique element m E mR 1
such that the lifting obtained from 9 by specializing ti to mi is isomorphic
to G.

The lifting g is called a universal lifting of G. It is not unique though any two
such are isomorphic. To fix a choice of 9 is to choose a coordinate system on XG,
i. e. to attach an element m E m"R-1 to every lifting G E XG(R). We call m the
modulus of G.

When (R, mR) is a discrete valuation ring, it is interesting to study the valuations
of the moduli of liftings. For example, if G, G’ are liftings with moduli m, m’,
then

has the following meaning: the identity automorphism of G 0 (R/mR) = G’ 0
(R/mR) can be lifted to an isomorphism G ~ G’ over R/mR but cannot be lifted
to one over R/mN+1R.

3. The isogeny construction

Now asume that R is the ring of integers in some finite extension of Ko and that G
is a lifting over R of G, which is defined over R/mR and is of height n. The Tate
module T(G) is defined to be

where the map G[03C0m+10] ~ G[03C0m0] is [7rO]G- It is a free Ao-module of rank n.
Specifying a lattice L in T(G) ~ Ko containing T(G) is equivalent to specifying
a finite Ao-invariant subgroup scheme CL of G. We then can form the quotient
G/CL. This formal Ao-module can be given a canonical structure of a lifting of
0(qN) (qN = #CL(A0), 0(qN ) being the formal Ao-module obtained by applying
the base change x ~ xqN to G), which we now describe:
We can find a formal Ao-module G’ and an isogeny g: G ~ G’ such that the

kemel of g is CL and g 0 (R/mR) is the Nth power of Frobenius: X - XqN. In
fact, such a pair (g, G’) is fumished by Serre’s formula [10, Theorem 1.4]:

and G’ is such that G’(g(X), g (Y» = g(G(X, Y)) and [a]G’(g(X)) = g([a]G(X))
for all a E Ao. The condition that g ~ (R/mR) is the Nth power of Frobenius
implies that the reduction of G’ is C(qN) . Therefore, G’ is a lifting of 0(qN) . The
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isomorphism class of this lifting does not depend on the choice of (g, G’). We will
denote this lifting by GL and denote the isogeny g: G ~ GL by gL. It is immediate
from Serre’s formula that GL can be defined over R[CL(A0)].

Let K’ = End(G) ~ K0. This is an extension of Ko of degree  n. For any two
lattices LI, L2 2 T(G), we can identify Hom( GL, , GL2) ~ Ko with K’ by the
correspondence

Here9L21 means h~b-1 E Hom(GL2’ G)~K0, if b E A0, and h:GL2 ~ G is an
isogeny such that h o 9L2 = [b]G ([10], 1.6). We claim: under this correspondence,
Hom(GL1, GL2) is identified with

To see this, assume that 0 is an isogeny and put 03C8 = g-1L2 o ~ o 9LI- Choose b E Ao
such that [b]G o g-1L2 is an isogeny. It is easily checked L2 that e 0 b is an isogeny and
(03C8 ~ b)([b]-1GCL1) ~ CL2. That is, (03C8 ~ b). (b-1L1) C L2.

Conversely, if lb = 9£21 0 cjJo 9LI is such that 0 . L 1 g L2, we can choose b E Ao
such that 1b ~ b, ~ ~ b are both isogenies. For any y e G LI [b], write y = 9LI (x)
with x E [b]Õl(CLl). We then have (~ ~ b)(y) = gL2 0 (’ljJ 0 b)(x) = 0 since
(1b 0 b)(x) E CL2 by assumption. Thus we have proved that GL1 [b] 9 ker(o 0 b).
Therefore, ~ is an isogeny ([10], 1.5).

4. Quasi-canonicalliftings

Let F be the Lubin-Tate A-module associated to (K, 7r) (i.e. the unique formal
A-module over A such that [03C0]F~k(X0 = Xqf, see [12]), considered as a formal
Ao-module of height n over A. Let F = F 0 k, so that F can be regarded as a
lifting of F. We call F the canonical lifting of F. A lifting of the form FL (for
some lattice L in T(F) 0 1(0 containing T(F)) is called a quasi-canonical lifting
(of F(qN), where qN = [L : T(F)]). The modulus of FL will be denoted by mL.

Since the endomorphism [1r]F of F satisfies ([03C0]F ~ k)(X) = Xqf and qf =
#F[03C0], we see that FL = F1r-IL for any L. Thus we are led to the action of 7rz on
the set of all lattices in T(F) ~ Ii7o. The orbits of this action are called lattice classes
and the lattice class of a lattice L is denoted by [L]. From preceding discussions,
FL depends on [L] only. Thus we can define FL for any L by FL = F1r-m L for
m » 0.

By Lubin-Tate theory [11], FL can be defined over an abelian extension of K.
We shall determine the smallest field of definition of FL. First of all, we note that
the group A* acts on lattice classes in an obvious way. For every N, it also acts on

XF(qN)(R) = mR through the Artin symbol whenever R is an abelian extension
of A. The relation of these actions is:

Fa-1L = F(a,K)L, or equivalently Ma-IL = m(a,K)L, for any a ~ A*.
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Indeed, letting gL : F ~ FL be the morphism given by Serre’s formula, we then
have g(a,K)L = ga -1 L by Lubin-Tate theory [11] and the above relation follows
immediately. Now it is easy to see that FL can be defined over the class field of
03C0Z x Or, where

This class field is called the ring class field of the order VL (Note: this depends
on 03C0). We are going to show that this is actually the smallest field of definition of
FL.

As we have seen in Section 3, End(FL) 0 K0 can be identified with K.

PROPOSITION 1. Let Li, L2 be lattices in T(F) 0 Ko. The following three
statements are equivalent:

(i) FLI is isomorphic to FL2 as formal Ao-modules ;
(ii) The lattice classes [L1], [L2] are in the same A*-orbit;

(iii) End(FL1), End(FL2) are the same order O in K, and Li, L2 are isomorphic
O-modules.

Proof. (i) ~ (iii): First we observe the following: For any L and any non-zero
x E T(G), Hom(FOL.x, FL) is an OL-module isomorphic to L by the discussion
in the end of Section 2. Now if (i) is fulfilled, clearly End(FL1) and End( FL2) are
identified with the same order O in K, and L 1 and L2 are isomorphic as 0-modules
by the observation we just made. (ii) ~ (i): if Li = a-1L2, the automorphism
[a]: F ~ F induces an isomorphism FL1 ~ FL2. (iii) ~ (ii): an (9-module
isomorphism from L1 to L2 is multiplication by some element u03C003BD of K*. Clearly
u sends [Li] to [L2]. ~

PROPOSITION 2. Let Li, L2 be lattices in T(F) 0 K0. Then FL1 and FL2 are
isomorphic as liftings (of some F(qN)) if and only if[L1] = [L2].

Proof. Without loss of generality, we may assume that Li, L2 are lattices
containing T(G). Let gL:F ~ FL be the isogeny defining FL (say given by
Serre’s formula). By the preceding proposition, we may assume that L1 = aL2 for
some a E A*. Then an isomorphism from FL1 to FL2 is given by 9L2 o [a]F o 9£11
(see the discussion at the end of Section 3). Any other isomorphism is obtained
by composing an automorphism of FL1, therefore is of the form 9L2 o [ab]F o 9£11,
with b E OL1 = OL2. It is easy to see that the reduction of this isomorphism is
[ab]F(qN). The latter is identity if and only if ab = 1 since x E A ~ [x]F(qN) is
injective. Therefore, the isomorphism is an isomorphism of liftings if and only if
ab = 1 and Li = L2. ~

THEOREM 1. The smallest field containing K over which FL is defined is the
class field of 03C0Z x VL. In other words, K(mL) is the ring class field of OL.

Proof. This is immediate from the relation ma-IL = m(a,K)L and the preceding
proposition. ~
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COROLLARY. For any N &#x3E; 0, K (ML, FL[03C0N]) is the class field of 03C0Z x (1 +
7rN OL).

Proof. Indeed, if u e O*L, x E FL[1rN], we have (u, K). x = gL o [u-1]F o
g-1L(x) by Lubin-Tate theory. Thus (u, K) fixes K(mL, FL[03C0N]) if and only
if uy m y (mod L) for all y E 1r-N L. Clearly this condition is equivalent to
u ~ 1 (mod 03C0NOL). ~

Let O be an order in K. It is customary to call a lattice in K a proper 0-lattice
if End( L ) = O. Two proper O-lattices L1, L2 are equivalent if L1 = x L2 for
some x e K*.

COROLLARY Let G ~ A*/O* be the Galois group of the ring class field of
0. Then G permutes the quasi-canonical liftings FL with OL = O. The action is
simply transitive on each orbit, and the orbits correspond bijectively to equivalence
classes ofproper 0-lattices. 0

PROPOSITION 3. Let G be a lifting of F 0k ko over Ao such that End(G) ~ O
is an order in A. Then there is some L such that G is isomorphic to FL over Ao as
formal Ao-modules.

Proof. It is enough to show that G and F are isogenous. For any lattice M in
T(G)~K0 containing T(G), the endomorphism ring of GM is {a E K aM C M}
(note that T(G) ~ Ko is a 1-dimensional K-vector space by the assumption on
End(G)). Therefore we can choose M so that GM has the structure of a height 1
formal A-module. As a height 1 formal A-module is unique over Ao, GM must be
isomorphic to F. o

With the hypotheses of the last proposition, choose an isomorphism f : G ~ FL.
Then g = f ~ k0 e Autk0(F). Let the ring homomorphism l: A = EndA0(F) ~
D = Endk0 (F) be defined by reduction. Then G is a quasi-canonical lifting of the
pair (F, g o t o g-1) in the sense of Gross [4], cf. Section 14.

5. Some numerical invariants of quasi-canonical liftings

Let T = T(F) and let L be a lattice in T 0 K0. Form the filtration {Li =
L n 03C0-iT}i~Z and let li = dimk0Li+1/Li. We have li  li-e because the map
03C00: Li+1 ~ Li+1-e induces an injection Li+1/Li ~ Li+1-e/Li-e.

On the other hand, we clearly have li = 0 for all i sufficiently large, and l i = f
for all i sufficiently small. Therefore, there is a unique nondecreasing sequence of
integers, of length n, a0(L)  ···  an-1(L), with the following property: for
every integer i and every natural number m, i appears m times in the sequence if
and only if m = li-e - lie

EXAMPLE 1. If L = T, then the set {a0(T), ... , an-l 1(T)} consists of 0, 1, ... , e-
1, each occurring with multiplicity f.
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It is easy to see that in general, for each r E Z/eZ, there are exactly f indices
jl, ... , j f such that aji (L) ~ r (mod e).
EXAMPLE 2. If K / K 0 is unramified and L 2 T, then the numbers {a0(L),...,
an-1(L)} are the exponents of the elementary divisors of L/T, i.e. L/T ~
~n-1j=0A0/03C0aj(L)0A0.

In general, the structure of L /T as an Ao-module is L/T ~ ~n-1j=0A0/
03C0~aj(L)/e~0 Ao if L D T. More precisely, there are elements xo, ..., xn-1 E T 0 Ko
such that Axj = 03C0-(aj(L)-e+1T for each j and L = ~n-1j=0A0xj.

Indeed, if mi = li-e - li &#x3E; 0, we let yi1,...,yimi E Li-e+1 be such that
they generate the cokemel of 03C00: Li+1/Li ~ Li-e+1/Li-e. Let L’ be the Ao-
submodule of L generated by the n elements {yij}i,1jmi. Form the filtration
{L’i}i~Z for L’and define the numbers {l’i}. We clearly have l’i = li - 0 for large
i. We also have l’i-e - l’i  li-e - li = mi, since the cokemel of TTo: L’i+1/L’i ~
L’i-e+1/L’i-e contains the linearly independent elements yi1,..., yimi. It follows

that lengthA0(L’/T)  lengthA0(L/T).Since L’ C L, we must have L’ = L. Now
we can suitably re-label the n elements (yij}i,1jmi as xo, ... , xn-1 to conclude
the proof of the above claim.

EXAMPLE 3. If we consider the lattice 03C0-t L, we will obtain aj(03C0-tL) =
aj(L)+t.
EXAMPLE 4. Let (, ) be a non-degenerate symmetric K0-bilinear form on
T ~ K0 satisfying ~ax, y) = ~x, ay) for all a E K, x, y E T ~ Ko Define
LV = {x E T ~ K01 (x, L~ ç A0}. This is a lattice with OLV = OL. Then
aj(LV) = d + e - 1 - an-1-j(L), where d is such that TV = 03C0-dT.

This is clear from the following computation:

Now let 0  r0(L) ··· rn-1(L) be integers such that aj(L) ~ rj(L)( mod e)
and such that rn-1(L) is minimal with respect to this property. For example, if
e = 3, f = 1, then (ro, r1, r2) is one of the following: (o,1, 2), (o, 2, 4), (1, 3, 5),
(1, 2, 3), (2, 4, 6), (2, 3, 4).
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It is easy to see that the sequence r(L) = (ro(L),..., rn-1(L)) is determined
by f(L) = (r(L) mod e). Therefore, there are n!/(f!)e possible values of r(L).

The sequence of integers ao(L) - ro(L), ... , a,,, - 1 (L) - rn-1(L) is still a non-
decreasing sequence, with all elements divisible by e. Therefore, we can write

where so(L), ... , sn-1(L) are non-negative integers.
In the lattice class [L], we can choose a unique representative Lo satisfying

Lo D T, Lo 1; 1r-IT. This Lo is also characterized by ao(Lo) = 0. The numbers
a(Lo), r(Lo), r(Lo), s(Lo) are canonically associated to the lattice class [L]. We
denote them by a[L], r[L], r[L], s[L] respectively.

The above constructions can be applied to any rank 1 free A-module T. For
the rest of this section, take T = A and (x, y) = TrK/K0(xy). Let V be an order
in K.

PROPOSITION 4. The following statements are equivalent:

(i) Every proper 0-lattice is free over 0.
(ii) The Galois group of the ring class field of O acts simply transitively on

quasi-canonical liftings FL with VL = V.
(iii) 0’ is a free 0-module.
(iv) ai(O) + a, - 1 - i (0) is a number independent of i.

Proof. The equivalence of (i) and (ii) is clear from the second corollary to
Theorem 1. It is obvious that (iii) implies (iv). Conversely, if (iv) holds, put
Ov = xL, where x e OV/{0} is such that ord(x) is minimal. Then 1 E L and
o C L C A. But one can easily see that a(O) = a(L) by assumption and therefore
#(A/O) = #(A/L). Thus O = L and VV is free.

Since (i) clearly implies (iii), it remains to show that (iii) implies (i). Let L be
a proper 0-lattice. We claim that LV L = Vv. One direction is easy: (LV L, 0) =
Tr(LVLO) g Ao, so LV L C 0’. To show the other inclusion, it is enough to show
that (LVL)V C 0. We have x E (LVL)V ~ Tr(xLV L) g A0 ~ xLv C (LV)V =
L =&#x3E; x E OL = 0. Now since Ov is a free 0-module, LV L = Ov implies that L
is an invertible module over the local ring 0. Therefore, L is free. 0

Let 4v = 1r - d A be the inverse different of K/K0.
LEMMA 1. Suppose that the residue field of O is of order qf 1, then

Proof. We have #(A/O) = #(OV/AV) = #(OV/A)q-df, and ao(GV) =
d, a[OV] = a(OV) - d. So the first formula follows from the discussion after
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Example 2. The second formula follows easily from the first. 0

6. The Newton polygon of [7rO]FL
As a shorthand we use qj to denote (qi - 1)1(q - 1).
THEOREM 2. Let FL be a quasi-canonical lifting and let the Newton poly-
gon of [7rO]FL be the polygonal line joining (1, e), (q, w1),...,(qn-1, Wn-1),
to (qn, Wn = 0). Then

where fj,r[L](q) E Z[q, q- 1 is a polynomial depending on j and r[L] only.
Note that in the statement of the theorem, we do not assume that (qi, wj) is a

break on the Newton polygon. We only assume that it lies on the Newton polygon.
The proof of the theorem will be given in Sections 9 and 10. An explicit formula
for fi,r[L] will be given in Section 10, and we will see:

COROLLARY The point (qj, W j) is a break of the Newton polygon of [03C00]FL
if and only if aj[L] ~ aj-1[L]. In particular, if K/K0 is unramified, (qj, wj) is
a break if and only if sj ~ 0; if K/K0 is totally ramified, (qj, wj) is always a
break.

Hazewinkel [7] (cf. Sect. Il) shows that a universal lifting F over
WA0(k)[[t1,...,tn-1]] can be chosen in a way such that

Choosing this particular universal lifting means choosing a particular coordinate
system on the Lubin-Tate moduli space XF. Now we can reformulate Theorem 2
as follows:

THEOREM 2’. Let wl, ... , Wn-l, wn = 0 be given by the formula in Theorem 2.
Assume that aj[L] ~ aj-i [L]. Then

ord((mL)j) Wi- ~

COROLLARY. Let O be an order in K such that an-1[OV] ~ a,,-2[0’1, Put
r = r[Ov]. Then (mov )n-l is a prime element in the ring class field of (1 if and
only if the following two conditions are satisfied: (i) the residue field of (1 is ko;
(ii) we have the relation
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REMARK. The proof will be given in Section 10. The condition on r is satisfied
in particular when ri + rn-1-i is independent of i.

EXAMPLE. The Newton polygon of [03C00]F, where F is the canonical lifting, is
easily seen to be the polygonal line joining (1, e), (qf, e - 1),..., (q(e-1)f, 1 ),
to (qn, 0). This is the case r = +can = (0,..., 0, 1,..., 1,..., e - 1,..., e - 1)
(each number occurs f times). So we obtain for j = if + k, 0  k  f - 1

We can use this to compute the valuations of the moduli of any quasi-canonical
liftings with r = +can (e.g. when K/K0 is unramified, we always have r = r-c. = 0
and fj = 1 for all j). This generalizes Keating [8, Prop. 7], where the case
r = rcan, s = (0, ... , 0, Sn-1), O = Ao + 03C0sn-1A is treated.

If 0 is an order with r[O] = fcan and residue field ko, then ( mov )n- i is a prime
element of its ring class field.

Let n = 2. We obtain Gross’ formula [4, Prop. 5.3]:

Note that in this case, every quasi-canonical lifting has f = r-,. so this gives the
valuations of the moduli of all quasi-canonical liftings, and it depends only on the
single number s = s1[L], called the "level" of the quasi-canonical lifting. In this
case mL is always a prime element of the ring class field. See also Fujiwara [3,
Prop. 2].

7. Valuation functions

Let f be a non-zero rigid analytic function on tu ~ K | ord(u) &#x3E; 0}. There is a
unique piecewise linear continuous function Vf: R&#x3E;0 --+ R such that V j (ord(u)) =
ord(f(u)) for all u whose valuation ord(u) lies in a dense open subset of R&#x3E;0. The
function Vf is called the valuation function of f. It follows immediately from the
definition that Vfg = Vf -I- Vg, and we expect to have the relation Vfog = Vf o Vg
in general.

Explicitly, take coordinates and write f(X) = EakX k, then

Vf(x) = min{ord(ak) + kx}.

The set Ef of all x such that mink f ord(ak) + kx} is achieved at more than one
value of k is called the exceptional set of f. For any u such that ord(u) e E f we
have Vf(ord(u)) = ord(f( u)).
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The formula Vf(x) = mink{ord(ak) + kx} enables us to define valuation func-
tions for more general power series (non-convergent, with negative or fractional
powers, etc) and extend the domain of Vf to a larger subset of R. The identity
Vfog = Vj o Vg holds provided that V-1g(Ef) contains no open set.

It is well known that Irf and the Newton polygon of f contain the same infor-
mation about f. The latter is defined to be the boundary of the convex hull of

The graph of Vf is sometimes called the Newton copolygon of f.
All these can be generalized to power series of several variables. For more

details, see Lubin [9, Sect. 3].

8. Spécial subgroups

Now let G be an arbitrary formal Ao-module over Ao of height n. Let the Newton
polygon of [03C00]G be the polygonal line joining (1, wo(G)), (q, w (G)), ..., @ (q n-1 
wn-1(G)), to (qn, wn(G)). We have wo(G) = e and wn(G) = 0. Again, we do
not assume that every (q2, wi(G)) is a break of the Newton polygon.

The following data clearly all convey the same amount of information
about G:

2022 The Newton polygon of [03C00]G;
2022 The valuation function of [7rO]G;
2022 The decreasing sequence w( G) = (w1(G),..., Wn-t (G));
. The sequence u(G) = (u1(G),..., un-1(G)), where (recall that qj = (qj -

1)/(q - 1))

2022 The decreasing sequence v(G) = (vi(G), ..., Vn( G)), where

The numbers vj(G) are simply the slopes of the Newton polygon, and we have
the following interpretation: vj (G) is the largest number t having the following
property:

there is an Ao-invariant subgroup scheme C of G[03C00], of order q3, such that
ord(x)  t for all x E C

(here and elsewhere, we identify a finite group scheme with its Ao-points).
An Ao-invariant subgroup scheme C of G[7rol of order qd is called special if

and
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Clearly, a special subgroup of order qd exists for d = 0, 1,..., n. And it is unique
if and only if (qd, wd(G)) is a break on the Newton polygon of [7ro]G. When
(q, wl(G)) is a break, the unique special subgroup of order q is studied in [9],
where it is called the canonical subgroup.

As suggested by K. Keating to me, when (qd, wd(G)) is a break, the subgroup
{x e G[03C00]| ord(x)  wd(G)} can be called a generalized canonical subgroup.
So the generalized canonical subgroups form a filtration of G[7ro], indexed by the
breaks. Then a special subgroup can be characterized as an Ao-invariant subgroup
that lies between two successive generalized canonical subgroups.
We do not have an interpretation of the number Uj( G). But it tums out that

for G = FL, uj(G) can be expressed by a particularly nice formula (Theorem 2).
Proposition 5 below partially explains why: when G’ is isogenous to G and the
kemel of the isogeny is a special subgroup, u(G’) is related to u(G) is a very
elegant way.

The following lemma can be verified by straightforward computations.

LEMMA 2. For any positive integer d  n, the following are equivalent:

(i) The polygonal line joining (1, w’0), (q, w’1),...,(qn-1, w’n-1) to (qn, w’n) is
a convex polygonal line, where wi = Wi( G) + (q2 - 1)wd(G) for i  d, wi =

PROPOSITION 5. For any positive integer d  n, if one of the equivalent con-
ditions in the preceding lemma holds, and C is any special subgroup of G[03C00]
of order qd, G’ = GjC, then we have

where w’i is given in (i) of the preceding lemma;

Proof. It is routine to verify the equivalence of the statements (i), (ii), (iii), so it
is enough to give a proof of (i). This can be done by the same method for proving
Theorem B of Lubin [9], which is the special case d = 1, q = p of our proposition.
The idea is to calculate V[03C00]G’ as Vg o V[03C00]G o V-1g, where g : G ~ G’ is an isogeny
with kemel C. Because C is special, we can determine Vg by Serre’s formula. We
omit the details. 0

This proposition is of independent interest. But it is not absolutely necessary in
the sequel.
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9. Proof of Theorem 2

Now consider the quasi-canonical lifting G = FL. We assume that L is such that
a(L) = a[L], i.e. L D T and L 1J 7r-’T. We can find elements x0,...,xn-1 ~
T 0 K0 such that Axj = 03C0-(aj(L)-e+1)T for each j and L = ~n-1j=0A0xj.

Let gL : F ~ FL be the isogeny defining FL, with kemel CL, which we identify
with LIT. Let qC(i) = #(CL n F[7r’]). The following lemma is immediate from
Serre’s formula and Lubin-Tate theory.

LEMMA 3. For any torsion point x E FL(Ao), let o(x) be the smallest integer t
such that x E F[7r’] + CL. The valuation ord(gL(x)) depends on o(x) only and is
a strictly decreasing function of o(x). Explicitly, let t = o(x), then

Lemma 3 is the key to compute the Newton polygon of [03C00]FL. From it we see
that the valuations of the torsion points of FL are computable, and these are just
the slopes of the Newton polygon (see Lemma 4 (i) below). All we need is some
patience to unravel the formula.

Let ~ be the function such that ord(9L( x)) = ~(o(x)).
LEMMA. 4.

(i) vj(FL) = ~(aj-1(L)+1).
(ii) Let Ld = ~d-1j=0A003C0-10xj + L. Then Sd, the subgroup of FL[03C00] identified with

Ld/L, is special of order qd.
(iii) FLd is isomorphic to FL/Sd.
(iv) If moreover we have sd(L) &#x3E; 0, then

Proof. (i) is immediate from Lemma 3 because the numbers vj(G) are the val-
uations of elements in FL[03C00] = gL([03C00]-1F(CL)). (ii) and (iii) are obvious. In (iv),
we need the assumption that sd(L) &#x3E; 0 only to ensure that (ao(L), ... , ad- 1 (L),
ad(L) - e,..., an-l (L) - e) is non-decreasing. 0

Fix some d and assume that sd(L) &#x3E; 0. Let G’ = F03C00Ld, qc’(i) = #(C03C00Ld ~
F[03C0i]).
LEMMA 5.
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Proof. (i) Observe that c(i + 1) - c(i) = li, where li is defined in Section 5. By
definition, li-e-li = #{j| aj(L) = i}. Now the formula can be proved by an easy
induction. (ii) is obvious and (iii) is an easy consequence of (ii). (iv) is deduced
using (i), (ii) and the fact ad[Ld] = ad [L] - e. (v) is easily seen from the remark
after Example 2 of Section 5. c

LEMMA 6. Assume that sd(L) &#x3E; 0. We have (i) vd(G’) = vd(G) - wd(G), (ii)
vd+1(G’) = qdVd+1(G). Consequently, Vd(G) - wd(G)  qdvd+1(G).
Proof. (ii) can be easily deduced using Lemma 5(iv). In fact we see that vj(G’) =qdvj(G) for all j  d+1.Similarly, using Lemma 5(iii) and the fact that ad(L)-e 

ad- 1 (L), we can show that vj(G’) - vj (G) = x is the same for j = 1,..., d. Since
we have 03A3nj=1(qj - q j-1 ) vj (G) = wo - wn = e, we can compute and get
X = -wd. 0

By Lemma 3, Lemma 4(i), and Lemma 5(i), u(FL) depends on a[L] only. Thus
we can define fj,r(q) to be such that uj(FL) = fj,r(q)qj/(qjqj+1) for any FL
such that a[L] = r. We will compute /y,f(?) in the next section and show that it
is a polynomial function e Z[q, q-1]. Assuming this, we can prove Theorem 2
now. Use an induction on 03A3sj[L]. We have assumed that the theorem is true when
s [L] = 0, i.e. 03A3sj[L] = 0. If 03A3sj[L] &#x3E; 0, choose any d such that sd[L] &#x3E; 0. Note
that r[Ld] = r [L] and sd[Ld] = Sd[L] - 1, sj[Ld] = sj[L] if j ~ d. By Lemma 6
and Proposition 5 (or rather, the proof of Lemma 6), we have

Now we can apply the induction hypothesis to FLd to conclude the proof.

10. Computation of fj,f (L)
We maintain the notations and assumptions of the preceding section. Moreover,
until the end of this section, we assume that a(L) = a[L] = r(L), so s(L) = 0.
We are going to derive a formula for uj(FL) = fj,r[L](q)qj/(qjqj+1). We shall
omit the reference to FL or L in notations because this causes no ambiguity. For
example, rj is rj(L); uj is uj(FL).

One more definition is in order. For x E Z/eZ, we use x to denote the unique
representative x E Z of x such that 0  x  e - 1. If xo, ..., xk E Z/eZ, we
write

if 0  (XI - x0)  ···  (Xk - xo) . If x, y, z E Z/eZ and x ~ y ~ z, we say
that y is between x and z. For example, if e = 10, we have 2 ~ 5 ~ 6 ~ 8, and
7 ~ 9 ~ 0 ~ 4.

LEMMA 7. The following formulas hold:
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Proof. (i) is trivial. (ii) is direct from Lemma 3. (iii) can be verified for negative
i and by an induction based on the relation c(i) = c(i - e) + #{j | i  rj}. ci

PROPOSITION 6. For any j, suppose that ru1,...,ruk are all numbers among
ro,..., rj which are between rj-1, and rj, not equal to rj- 1 and such that

Put uo = j - 1. Then we have

with

REMARK. From this proposition we see immediately: +j-i 1 = r-j vj =
vj+1 ~ fj-1,r = fj,r.

Proof. Let R0  ···  Rk be integers such that rj-1  Rt  rj and Rt ~
ri t (mode). Such integers are uniquely determined. Then we have c(i) - i f +
mj-1 - t if Rt + 1  i  Rt+1. For simplicity, we let m = mj-l 1 in the remaining
of this proof.

Therefore, by Lemma 7(ii),
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PROPOSITION 7. Suppose that j  1 is such that r-j 0 fj+l or j = n - 1. If
rj = 0, then fj,f = e. Otherwise, sort r0, ..., r-j into a sequence

with vj = j. Then

where mj is as in Proposition 6.

REMARK. Note that this gives an explicit formula for all fj,r, for if *j = rj+1 =
... = rj+v =1 rj+v+1, then fj,r = !j+l,r = ··· = fj+,,f and the above gives the
formula for fj+,,F. ·

Proof. Perform an induction on j. The case rj = 0 is quite easy. Now assume that
rj &#x3E; 0 and rj = r j- 1 = ··· = rj-v ~ rj-v-1. By the induction hypothesis, our
formula is valid for fj-v-1,r. It remains to verify that fj,r = !j-v,r = fj-v-1,r +
(1 - qj-v)(vj-v - vj-v+1) is still given by our formula.

To get the expression for vj-v - vj-v+1, we assume that ru1 ~ ··· ~ ruk are
all numbers among ro, ... , rj-v which are between r-j - v - 1 and rj-v and not equal
to rj-v-1. Then one can express vj-v - vj-v+1 in terms of these numbers and

mj-v-1 by Proposition 6.
To get the expression for fj-v-1,r, we have to sort ro,..., rj-v-1. It is easily

seen that we will get
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and the sequence ru1,..., ruk is nothing more or less than rj-v-k+1,..., rj-v.
Now it is routine to verify the result. One will see that every thing matches

provided that we have the relation mj = mj-v-1 - k. This is easy verified. Thus
the proof is complete. c

COROLLARY.

with

Proof of Corollary to Theorem 2. Now we drop the assumption that s[L] = 0
and consider an arbitrary quasi-canonical lifting FL. The point (qj, wj(FL» is
not a break ~ vj (FL) = vj+1(FL) ~ uj(FL)qjqj+1/qj = uj-1qj-1qj/qj-1 (by
Lemma 7(i); in fact LHS 5 RHS always holds) v fj,r[L]q-sj[L] = fi-1,r[L] ~
sj[L] = 0 and fj,r[L] = fj-l,TfLl p sj[L] = 0 and rj-1[L] = Tj[L] ~ aj[L] =
aj-1[L]. ~

Proof of Corollary to Theorem 2’. The degree of the ring class field of O is given
in Lemma 1. By the corollary to Theorem 2 and our assumption, ord((mOv )n-1) =
wn-1(FOv). It remains to find out when #(A*/O*) = wn- (Fov )-1 holds. Using
the explicit formula for fn-1,r, we easily get the two conditions. 0

11. Explicit parametrizations of Lubin-Tate space and
Gross-Hopkins map

Let A0[v] be the polynomial ring of infinitely many variables v1, v2, ... , over Ao.
Let f(v)(X) be the unique power series with coefficients in K[v] which satisfies

where f(v)qi(X) is the series obtained from f(v)(X) by replacing each variable vj
by vqij. It can be shown [7] that there is a unique formal Ao-module law F(v) over
A0[v] whose logarithm is f (v). In that case, [03C00]F(v) has the following property [6,
Prop. 5.8]:

Moreover [7],
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PROPOSITION. We can specialize F(v) by setting each vj to some suitable aj E A
to get the canonical lifting F over A.

PROPOSITION. Specialize F(v) as follows: setting vi to ti E A[[t]] = A[[t1, ... ,
tn-1]] for 1  i  n - 1, vi to 03B1i for i  n, we obtain a formal Ao-module over
A[[t]], to be denoted by F or F(t). Then F is a universal lifting of P.

REMARK. When J( /1(0 is ramified, F cannot be a universal lifting in the sense
of Section 2, for A ~ WAo ( k ) . Here, we mean that F furnishes an isomorphism of
Xp ~WA0(k) A with Spf A[[t]].

From now on we assume that K/K0 is unramified and 03C0 = 03C00. Moreover, we
assume that [03C00]F E A0[[X]]. By [11], this is possible and it implies that F is
actually defined over Ao. Consequently, F(qN) = F for all N. All quasi-canonical
liftings are liftings of P, and have r = if cao = 0. We easily get fj,o = 1 for all j.
We choose a universal lifting F of F as follows: F is obtained from F(v) by

setting vi = ti for 1  i  n - 1, vn = 1, vi = 0 for i &#x3E; n. Then one can show

as in [6, Sect. 13] that the modulus of the canonical lifting is 0.
Now we take a closer look at the logarithm f(v) of F(v). Let

A recursive expression for the coefficients bn(v) is immediate from the defini-
tion :

We are going to write down a more explicit formula for bm ( v ) . It tums out
that the monomials in bm ( v ) can be indexed by ordered partitions of m. An
ordered partition of m means a decomposition of m into a sum of positive integers:
m = 03A3sj=1 lj. Equivalently, we can say that an ordered partition of m means
dividing (0, 1,..., m - 1) into segments ( 0, ... , l 1 - 1~,~l1,...,l1 + l2 - 1~, ....
Let Si (i  1) be the set of the first elements in segments of length i. Then the
sets {Si}i1 are determined by the ordered partition and conversely, determine the
ordered partition. For our applications, it is most convenient to refer to the collection
of sets S = {Si}i1 as an ordered partition. Now introduce the following notation:
q(Si) = 03A3x~Si qX. An easy induction yields
LEMMA 8. For all m  0,

where the sum is taken over all ordered partitions S = {Si}i1 of m.
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From this formula we can get a similar formula for the coefficients bm(t) of the
logarithm of F(t).
PROPOSITION 8. For any j  0,

exists in K0[[t]]. The limit is

where Pj is the set of all ordered partitions S = {Si}i1 such that (1) there is an
integer k such that S is an ordered partition of j + nk; (2) j + nk - n ~ Sn; (3)
Si is empty for all i &#x3E; n.

Proof. Let ak = 7rSbj+nk(t). It is clear that if we specialize the expansion of
bm(v) to get the expansion of bm(t), only terms involving ordered partitions such
that Si is empty for all i &#x3E; n are left. It is also clear that ak - ak-1 is the sum of
terms involving ordered partitions such that j + nk - n ~ Sn. Then j + nk - n has
to belong to some S2 + t with 1  i  n - 1 and 0  t  i - 1, and the exponent
of ti in such a term is at least qj+nk-n-(i-1) &#x3E; qj+nk-2n. It follows immediately
that {ak} is a Cauchy sequence and converges to the claimed limit. 0

It is immediate from the above formula that the limit power series converges
on the open unit polydisc (XpQ9 K0)(K0) = {x E Kn-10 | ord(x) &#x3E; 0} and hence
defines a rigid analytic function there. Gross and Hopkins define the maps

and use them to define the map 03A6 : Xp 0 K0 ~ PI-1 0 Ko, t ~ [03A60(t),...,
03A6n-1 (t)]. That this map is well-defined and étale follows from
PROPOSITION 9. The determinant of T(t) = (03A6(t), Dt1 03A6(t),..., Dtn-103A6(t)) is
a unit in A0[[t]]. If the characteristic of Ko is positive, we have det T(t) = 1.
We will give a proof of the second statement. Let

and we will show det ’ where



312

Then tkDtk03A6j(t) is given by

Now we expand det T’(t). A typical term in the expansion is sgn(03C3)t03C3(0)S(0)...
t03C3(n-1)S(n-1), where 03C3 is a permutation on {0, 1,...,n - 1} and t03C3(0)S(0) is a term in the
expansion of 03A603C3(0), t03C3(k)S(k) is a term in the expansion of tkDtk03A603C3(k) for 1  k 
n - 1.

Let m - 1 = maxk maxi(S(k)i + (i - 1)). Assume m - 1 E S(ko) + (io - 1).
Then (ko, io) is unique and in fact m ~ Q(ko) (modn). Suppose m &#x3E; io. Let
kt be such that 03C3(k1) ~ m - io (modn). Define a new permutation: 03C3’(k0) =
03C3(k1), u’(ki) = 03C3(k0), u’(k) = a(k) if k ~ ko, ki. Let S’(k) = S(k) if
k ~ ko, ki . Let S’(ko) be the same as S(ko) except that m - io is removed from
S(k0)i0. Let S’(ki ) be the same as S(kl) except that m - io is added to S(kl)io.
We may have to remove some numbers from S’(ko)n or to add some numbers to
S’(k1)n so that t03C3’(0)S’(0) is a term in the expansion of 03A603C3’(0)(t), t03C3’(k)S’(k) is a term in the
expansion of tkDtk 03A603C3(k) for 1  k  n - 1.
Now it is easy to verify that t03C3(0)S(0) ... t03C3(n-1)S(n-1) = t03C3’(0)S’(0)... t03C3’(n-1)S’(n-1). But the signs

sgn(03C3), sgn(Q’) differ. So they are cancelled with each other in the expansion of
detT’(t).

Thus only terms such that m = io are left. But there is only one such term,
namely 1 . t1 ····· tn-l. This completes the proof of det T(t) = 1. ~

Gross and Hopkins define an action of G = Aut(F) on both XF and pn-l and
show that the map 03A6 is G-equivariant. In fact, let R be the ring of integers in the
division algebra over K0 of invariant 1/n, then Endk(F) = Rand G(k) = R* (cf.
Sect. 14). The action of G(k) on pn-t can be extended to the action of the larger
group (R 0 K0)* and we have the following wonderful property.
PROPOSITION. 1ft, t’ e XF(Ao), g e G(k), then 03A6(t).g = 03A6(t’) if and only if
there is an element f E Hom A0(F(t) , F(t’)) 0Ao K0 such that f 0 ko is equal to
g.

Using this proposition, one can show that the inverse image of [ei] precisely
consists of those quasi-canonical liftings FL such that 03A3n-1j=0jsj(L) ~ i (mod n).
Here e1 = (1, 0, ... , 0), e2 = (0, 1, 0, ... , 0),..., are the standard basis of Gna
and x ~ [x] is the projection GnaB{0} ~ pn-1.

12. The Bruhat-Tits building for SLn(K0)
In the current case (K/K0 unramified, 03C0 = 03C00), the 03C0Z-orbits of lattices in K are
the same as the K*0-orbits. This shows that the quasi-canonical liftings correspond
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bijectively to the vertices of the Bruhat-Tits building for SLn(Iio). We find that
our next main result (Theorem 3) is best formulated in terms of the apartment A
of this building, which is described below:

Let pn E W be the vector el + ··· + en, W = Rn/Rpn, and 0: Rn ~ W be
the natural map. The set of vertices in ,A is ~(Zn). Let Pk = 03A3ki=lei E Rn (1 
k  n). Then for any point x e Zn, and any Q e Sn C GLn(Z), the n points
0(x + 03C3. pj) (1  i  n) form an (n - 1)-simplex in A and any simplex is
contained in such an (n - 1 )-simplex. The geometric realization lAI of A is an
(n - 1 )-dimensional affine space. To see this, we remark that the affine root system
(D of SLn(K) consists of the affine functions ei - e*j - m (i 0 j, m E Z, {e*i} is the
dual basis of {ei}) on W and the geometric realization of (n - 1)-simplices in the
apartment are the Weyl chambers of lll. Therefore, by standard theory of Coxeter
groups, lAI is the (n - 1)-dimensional space W. The action of Sn on Rn induces
an action on W. A fundamental domain for this action is f 0(x) |x1 ··· Xn},
which can be considered as a geometric realization |A+| for some subcomplex A +
in an obvious way.
We shall put two coordinates s, l on lAI, which we identify with W. For

any point P = ~(t1,...,tn) E W, we set si(P) = ti+ 1 - ii, li(P) = 1 (P) +
2s2(P)+···+isi(P). We also set l(P) = ln-1(P). This function has the following
remarkable property: for any (n - 1 )-simplex with vertices Po,..., Pn-1, the
integers 1(Pi) are all distinct modulo n. By abuse of notation, we also use li(s) to
denote si + 2s2 + ··· + isi, for any s E R n-1

13. Valuation functions of Gross-Hopkins map

To state the following theorem, we shall use q-l(P) to denote the point

for any PElAI. Recall that qi
THEOREM 3. Let t E X (A),

for 1  i  n-1. Assume 1  y1  ···  Yn - 1 &#x3E; 0. There is some (n-1)-simplex
0394 on ,A with vertices Po,..., Pn-1 such that y is on the geometric simplex in Rn-I 
spanned by q -, (Po), ... , q-l(Pn-1). Arrange the index so that l(Pj) ~ j (mod n).
Then we have

The equality holds when y is not on the face of d opposite to Pj.
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REMARK. Let t ~ X(A) and yi be given as above. The condition 1 &#x3E; y, &#x3E; ... &#x3E;

yn-1 &#x3E; 0 is equivalent to that the Newton polygon of the multiplication-bY-1r
morphism on F(t) has a break at (q’, ord(ti)) for each i = 1,..., n - 1.
EXAMPLE 1 (n = 2). We have

Therefore, the exceptional set of 03A60 (resp. 03A61) consists of the valuations of the
moduli of quasi-canonical liftings of odd (resp. even) levels.

EXAMPLE 2 (n = 3). The exceptional sets of 4lo , 03A61, 03A62 in the region 1  yi )
y2 j 0 are shown in Figure 1, Figure 2, Figure 3, and Figure 4 is all the three
figures overlapped. The vertices in Figure 4 represent the valuations of the moduli
of quasi-canonical liftings.
We begin the proof with a few Lemmas.

LEMMA 9. The valuation function of 03A6j (t) restricted to

is the same as that of
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Fig. 2. Exceptional set of 4D 1.

Fig. 3. Exceptional set of 03A62.

where Un-1 = t1/qn-1n-1, U. - tl/qit-l/qi+l 1  i  n - 2, and Fj is the set of all
(n - 1 )-tuple 8 of non-negative integers such that si + 282 -f- ... + (n - 1 )Sn- 1 ~

j (mod n). Moreover, the exceptional sets E03A6j and EWj are also the same.
Proof. Using the notations in the proof of Proposition 9, 03A8j (t) can be rewritten

as follows:

where S(s)i = {li-1(s) + it 1 t = 0, 1,...., Si - 1}. We make the following claim:
given t E A such that ord(t) E W, if tjS(t) is of minimal order in the expansion of
03A6j(t), Si = #Si, then S = S(s). Both statements of the lemma will follow from
this claim.
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To prove the claim, let x = ord(t). By assumption, the minimum of Eq(Ti)xi -
n-lE(n - i)#Ti (T E Pj) occurs when T = S. Recall that the ordered partition
S of m can be considered as a finite sequence of positive integers (1j) such that
El.1 = m. Our claim is equivalent to: (lj) is an increasing sequence. But this is
easy to verify: if lj &#x3E; lj+1, exchange lj and Ij+l we get a new ordered partition
T and it can be shown that £q(Tj)zj - n-1 E(n - i)#Ti is strictly smaller than
03A3q(Si)xi - n-103A3(n - i)#Si using the relation xilqi &#x3E; xi+1/qi+1. This finished
the proof of the claim and also of the lemma.

For any (n - 1 )-simplex A with vertices Po,..., Pn-1 on A, let |q0394| be the
geometric simplex in Rn-1 spanned by q-l(P0), ..., q-l(Pn-1). This first statement
of Theorem 3 is contained in the following, which is basically a consequence of
our description of |A+|.
LEMMA 10. The subset Q’ = tx E Rn-1&#x3E;0 | 1  x1  ···  xn-1} is the union of
all |q0394| for all 0394 on A+. 0

LEMMA 11. Let f(X) = 03A3k~ZnakXk be a power series in n variables,

Vf(x) = min{ord(ak) + k.x}

be its valuation furcction. For any k, the set {x E Rn | Vf(x) = ord(ak) + k . x} is
convex. 0

From these lemmas, Theorem 3 can be translated into the following state-

ments :

(A) For any vertex P on A, let j - l(P), then the minimal of
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occurs when and only when t = s(P).
(B) If P’ is a vertex adjacent to P, then the minimum of

occurs when t = s(P) (it may also occur somewhere else).
These statements are further translated into the following lemma:

LEMMA 12. Letc E Zn-1 be such that E = 0 or c = s(P) - s (Q) for some
adjacent vertices P, Q on A. For any s E zn-l such that l(s) ~ 0 (mod n), we
have

In case f = 0, the equality holds if and only if s = 0.
Proof. Let b = n-lE(n - i)si. Let z = q-1  1. Let W(q) be the LHS of the

inequality in question. We are going to expand W(1/z)/(1 - z) into a Laurentz
series around z = 0: W(z)/(1 - z) = 03A3i~Zakzk and to show that ai  b for all
i  0, and ai  0 for all i e Z.

Let us introduce the following symbol: for any real x, {x} is defined to be l x J
if x  0, otherwise it is defined to be 0. Then the coefficient ak of the expansion
of W(z) is easily seen to be

Now assume k  0. We claim that if ak is defined by the above formula with all
{·} replaced with ~·~, then ak  ak. To see the claim, we look at (*). Note that
{x/i}-{x/(i+1)}  ~z/i~ - ~x/(i+1)~ foranyrealx.Thistakescareoftheterms
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{k+li(s+~)/i}-{k+li(s+~)/i+1}. We also note that |li~)| is always less than or
equal to i. Therefore, if k + li(~)  0, we have -{k+li(~)/i}+{k+li(~)/i+1} =
-0+0 = -(-1)+(-1) =-~k+li(~)/i~+~k+li(~)/i+1~. If k+li(~)  0, this
equality surely holds also. But it is very easy to see from (**) that in fact a’k = b
(using the fact Lx + n~ - Lx J = n for any x E R, n E Z). Thus we have proved
ak  b for k  0.

Ifk  0, then all the terms of the form {k+li(~)/i} or {k+li(~)/i+1} vanish.
Thus the inequality {x/i} - {x/(i + 1)}  0 implies that ak is non-negative (look
at (*)).

Finally, if e = 0 and the equality holds, we will show that s = 0. Examining
the above arguments, we find that the equality holds precisely when |li(s)|  i for
all i. But ln-1 (s) is divisible by n, so it must be equal to 0. Moreover, ln-2(s) ~
Ln-1(s) = 0 (modn - 1), so In-2(s) must vanish also. Inductively we then show
that all li(s) are zero. It follows s = 0. 0

The proof of Theorem 3 is now completed.

14. Endomorphisms of reductions of the canonical lifting

Let W be the ring of integers in the completion of the maximal unramified extension
of K. We shall determine the endomorphism ring of F~A(W/03C0NW) for all N  1.
This result is due to Gross [4] when n = 2 and to Tatevossian [16] when K/K0
is unramified. Our proof of the general case is based on Gross’ method. Thus we
want to re-normalize our constructions, following Gross [4] (cf. discussions at the
end of Sect. 4).

Let L be the unramified extension of K0 of degree n and B its ring of integers.
Let GB be the special model of the Lubin-Tate B-module over B attached to
(L, ro) such that [1rO]GB(X) = 1rOX + Xqn. Let GB be GB 0B ko. Considering
GB only as an Ao-module, we get a formal Ao-module GAo of height n. By our
choice of [03C00]GB, it follows that GAo is actually defined over ko. In particular, the
Frobenius ~: X ~ Xq is an endomorphism of GAo . In fact

where B acts on GAo by b H [b]GB. We have ~n = [03C00]GB, ~o [b]GB = [b03C3]GB o p,
where u is the Frobenius automorphism of L/K0. This shows that R is the ring of
integers in the division algebra over K0 of invariant 1 /n.
Now fixing an Ao-embedding ¿: A - R. Then GAo can be given a formal A-

module structure via t, to be denoted by GA. Clearly GA is of height 1. Therefore
it lifts uniquely to W. This unique lifting, when considered as an Ao-module,
is denoted by F and is called the canonical lifting of (GA0, l). Let FN-1 =

F 0 W/03C0NW,
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Reductions of homomorphisms give embeddings

Identifying each RN with its image in Ro = R, we have ~N0RN = A, which is
identified with l(A).
THEOREM 4. For all N  0,

Proof. Using formal cohomology, Gross [4] showed that the A-module ROI RI is
annihilated by 7r and reduced the theorem to the following statement:

dimk(R0/R1) = n - 1. We observe that Gross’ result in particular implies
A + 03C0 R ~ R1.

LEMMA 13. Let f E EndW/03C02W(F1), g E (W/03C02W)[[X]] be such that g(0) = 0.
Then

Proof. Since [03C00]F1(X) ~ Xqn (mod03C0), we can write [03C00]F1(X) = 03C0h(X) +
Xqn, with h(X) E (W/03C02W)[[X]]. So

Therefore,

LEMMA 13’. Let f E Ri. Lift f arbitrarily to a power series f’ E WEXU with
f’(0) = 0. Then f’ o [03C00]F1 - [1rO]Fl o f’ == 0 (mod1r2, Xqn).

Proof. This is a restatement of last lemma. ~

LEMMA 14. There is some u E W* and some g E W[[X]] with g(O) = 1 such
that

Proof. This is clear from the Newton polygon of [03C00]F, see the example in
Section 6. ~
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We can replace l by any 03B1l03B1-1(03B1 E Autk(GAo)). Therefore, by the theorem
of Skolem-Noether, we may assume that the maximal unramified subextension
A’ of A/Ao is contained in B (both A and B are now considered as subrings of
R = Endk(GA0)).
LEMMA 15.(i)A’+03C0R = A+03C0R.(ii)A’+~R = A+~R.(iii)R1 ç A+~R.

Proof. To see (i), note that the inclusion A’ + 1r R C A + 1r R is obvious, and
that their quotient module 1r Rare both of order qf. (ii) follows from (i). To prove
(iii), let f E Ri . Write f = 03A3n-1i=0[bi]GB~i, with bi E B. Lift f to f’ e W[[X]]
as

higher terms.

An easy computation using Lemma 14 shows that f’ o [03C00]F1 - [03C00]F1 o f’ is
of ordX  qn-f, and the coefficient of Xqn-f is uJr(bo - bqn-f0) (mod 7r 2). By
Lemma 13’, this implies that bo e A’ + 03C00B. It follows that f E A’ + pR =
A + ~R. Il

LEMMA 16. For any integer j such that 0  j  f - 1, we have

LEMMA 17. Ri C A + 7r R.
Proof. Given f E Ri, write f = En-1 [bi]GB~i. By Lemma 15, f E A+~R. By

Lemma 16, we can adjust f by adding an element of A + 03C0R (which is known to be
contained in Rl) and assume that bo = 0. Lift f to f’(X) = 03A3n-1i=1[bi]GB(Xqi) =
b1Xq + higherterms. Compute f’ o [03C00]F1 - [03C00]F1 o f’. We find that it is of

ordx j qn-f+1 and the coefficient of Xqn-f+1 is -u1rbr-f (mod r2). This
implies that bl e 03C00B and therefore, f E ~2R.

Thus we have established R1 g A + ~2R. Repeat the argument inductively. We
finally obtain R1 C A + Of R = A + 03C0R. c

Now we have proved RI = A + 03C0R. It follows that dimk(R/R1) = n - 1. By
Gross’ result, this completes the proof of Theorem 4. 0
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